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ABSTRACT

Continual learning for pre-trained vision-language models requires balancing
three competing objectives: retaining pre-trained knowledge, preserving knowl-
edge from a sequence of learned tasks, and maintaining the plasticity to ac-
quire new knowledge. This paper presents a simple but effective approach called
KeepLoRA to effectively balance these objectives. We first analyze the knowl-
edge retention mechanism within the model parameter space and find that gen-
eral knowledge is mainly encoded in the principal subspace, while task-specific
knowledge is encoded in the residual subspace. Motivated by this finding,
KeepLoRA learns new tasks by restricting LoRA parameter updates in the residual
subspace to prevent interfering with previously learned capabilities. Specifically,
we infuse knowledge for a new task by projecting its gradient onto a subspace
orthogonal to both the principal subspace of pre-trained model and the dominant
directions of previous task features. Our theoretical and empirical analyses con-
firm that KeepLoRA balances the three objectives and achieves state-of-the-art
performance. The source code is available in the supplementary material.

1 INTRODUCTION
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Figure 1: Analysis of model parameter subspaces and overall CL performance. In Fig. 1a and 1b,
we measure zero-shot performance after reconstructing attention weights using only the top prin-
cipal singular components. While performance on general-domain datasets remains highly robust,
performance on most specific-domain datasets degrades sharply as more low-energy components
are removed. In Fig. 1c, the Last metric measures the accuracy gain on the final learned task relative
to a zero-shot baseline, while Transfer measures the accuracy degradation on unseen tasks.

Vision-language models (VLMs) have demonstrated remarkable zero-shot transfer capabilities,
making them cornerstones of many downstream applications (Comanici et al., 2025; Achiam et al.,
2023; Radford et al., 2021). Despite this success, their performance on certain datasets can be insuf-
ficient, motivating the need for continual learning (CL). An effective CL method requires balance of
three competing objectives: maintaining the ability to learn new knowledge (plasticity), preventing
the forgetting of previously learned tasks (backward stability), and crucially, preserving the general
pre-trained knowledge that guarantees general transferability (forward stability) (Mukhoti et al.,
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Table 1: Comparison of LoRA-based approaches to continual learning. When learning the t-th
task, O-LoRA regularizes the down-projection matrix to be orthogonal to that of previous tasks
to improve stability; InfLoRA constrains the optimization of task features Ht to be orthogonal to
previous dominant directions Mt−1 to jointly improve plasticity and stability; SD-LoRA optimizes
a decoupled LoRA to improve stability and re-scales the magnitudes {αi}t−1

i=1 of parameters from
previous tasks to improve plasticity. By contrast, our method constrains optimization to a subspace
orthogonal to both the principal weight subspace Wp and previous task directions Mt−1 to preserve
stability, and initializes the update in an optimal gradient space derived from Gt to boost plasticity.

Method Initialization Training Objective
LoRA A LoRA B

O-LoRA (Wang et al., 2023a) A← N
(
0, σ2

)
B ← 0 Lcls(At,Bt) +

∑t−1
i=0 ||A⊤

t Ai||2F

InfLoRA (Liang & Li, 2024) USV ⊤ = SVD
(
Ht −Mt−1M

⊤
t−1Ht

)
Lcls(Bt)A← Ur B ← 0

SD-LoRA (Wu et al., 2025b) A← N
(
0, σ2

)
B ← 0 Lcls({αi}t−1

i=1, αtAtBt)

KeepLoRA (This paper) SVD(Gt −WpW
⊤
p Gt −Mt−1M

⊤
t−1Gt) Lcls(Bt)

A← Ur B ← SrV
⊤
r

2024; Zheng et al., 2023). Degradation of this pre-trained knowledge is particularly detrimental, as
it erodes the core value of VLMs. Therefore, the central challenge is how to learn new knowledge
effectively without undermining these critical stability constraints.

A straightforward solution, replaying pre-training data, is rarely viable due to prohibitive computa-
tional costs and the frequent unavailability of proprietary training corpora (Wang et al., 2024; Zhou
et al., 2024; Rolnick et al., 2019). The current alternatives largely follow two paths. The first is
(i) reference-data regularization, which uses reference data to anchor the model parameters and
retain stability (Wu et al., 2025a; Zheng et al., 2023). However, the success of these approaches
is highly sensitive to the choice of reference data with additional training costs (Luo et al., 2025;
Zheng et al., 2023). The second path involves (ii) architecture extension, such as prompt-pool (Fu
et al., 2025; Wang et al., 2022b) or MoE-adapters (Yu et al., 2024; Dou et al., 2024) while freezing
the model backbone. Although effective in preventing forgetting, these modules increase inference
costs (Nayak et al., 2025) and complicate the deployment (Cai et al., 2025; Zadouri et al., 2023).
Since trained weights are compact representations of data (Deletang et al., 2024; Franceschelli et al.,
2024), an ideal CL method should infuse new knowledge directly into the existing parameter space,
leveraging its inherent redundancy rather than accumulating external modules (Sharma et al., 2024).

To identify where new knowledge can be infused without disrupting existing abilities, we analyze
the parameter space of the backbone attention weights via singular value decomposition (SVD). As
shown in Fig. 1a and 1b, our analysis reveals that the principal subspace, spanned by components
with large singular values, predominantly encodes general knowledge, while the residual subspace,
associated with small singular values, encodes domain-specific knowledge. This observation in-
dicates that performance on specialized datasets is highly sensitive to alterations in the residual
subspace, whereas general datasets remain robust to such changes. This insight forms the basis of
our approach: to coherently achieve forward stability, backward stability, and plasticity, CL updates
should be constrained to the residual subspace, enabling the acquisition of new domain-specific
knowledge without affecting the principal subspace that encodes general knowledge.

We implement our subspace-constrained updates using low-rank adaptation, a parameter-efficient
method whose updates can be merged into the original weights post-training, thus incurring no
inference overhead. Existing low-rank CL methods, such as O-LoRA (Wang et al., 2023a), InfLoRA
(Liang & Li, 2024), and SD-LoRA (Wu et al., 2025b), lack considering the transfer ability of pre-
trained model and update directions within suboptimal subspaces, which limit their plasticity and
stability as shown in Tab. 1. To overcome this, we initialize the low-rank update using the gradient
from the first training step. This ensures that the update direction closely approximates the full-
parameter tuning gradient to boost plasticity. To keep stability, we explicitly project this update
into the residual subspace of the pre-trained weights. This constrains learning to directions that
do not interfere with the model’s core transferable knowledge. Building on this, we construct a
unified principal subspace that stores both the principal subspace of the model parameters and the
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dominant feature directions of each learned task. The unified principal subspace, with a size not
exceeding the square of the feature dimension, effectively preserves both pre-trained and newly
acquired knowledge.

Our contributions are summarized as follows:

• We empirically analyze the parameter space of pre-trained models and find that general
knowledge is primarily encoded in the parameter principal subspace, while domain-specific
adaptations are better captured by the residual subspace.

• We propose KeepLoRA, a novel method that leverages residual subspace constraints for
parameter updates, validated by theoretical analysis showing how it optimally balances
plasticity and stability through orthogonal projections.

• Experiments on dual-encoder (CLIP) and encoder-decoder (LLaVA) models validate that
KeepLoRA effectively balances the three core challenges of plasticity, backward stability,
and forward stability, establishing new state-of-the-art results on benchmark datasets.

2 RELATED WORKS

In continual learning, forward stability is typically preserved using reference-data regularization and
architecture extension techniques. In addition, gradient projection methods are commonly employed
to address backward stability and plasticity. In this section, we review these lines of work.

Reference-Data Regularization. Continual learning on narrow task distributions can cause the
model feature space to collapse, degrading its pre-trained zero-shot transfer capabilities (Zheng
et al., 2023). Reference-data methods aim to counteract this by anchoring the model representations.
ZSCL (Zheng et al., 2023) uses the ImageNet (Deng et al., 2009) and Conceptual Captions (Sharma
et al., 2018) datasets as reference data, employing distillation to preserve the feature space structure.
However, the effectiveness of this approach is sensitive to the choice of reference data and the teacher
model, with performance degrading when fewer images or classes are used (Zheng et al., 2023). Yu
et al. (2024) propose MoE-Adapters by training a selector on the TinyImageNet (Deng et al., 2009)
dataset to identify out-of-distribution data, which is then processed by the original frozen model.
Wu et al. (2025a) leverage the generative model Stable Diffusion (Rombach et al., 2022) to create
synthetic reference data for distillation. These methods inherently increase computational overhead
and depend on external reference data, limiting their practical feasibility.

Architecture Extension. Architecture extension methods freeze the pre-trained model and extend
it with new parameters for each task. L2P (Wang et al., 2022c) selects the most relevant prompts
from a prompt pool, while DualPrompt (Wang et al., 2022b) uses explicitly task-sharing and task-
specific prompts. CODA-Prompt (Smith et al., 2023) proposes end-to-end prompt selection methods
to increase plasticity. MoE-Adapters (Yu et al., 2024) inserts a mixture of adapters into the image
encoder, activating a subset for each task. DIKI (Tang et al., 2024) calibrates knowledge integra-
tion by determining the likelihood that a test sample belongs to a learned task. IAP (Fu et al.,
2025) introduces Instance-Aware Gated Prompting to further improve the effectiveness of prompt
selection. However, these methods cannot entirely avoid parameter selection errors or suboptimal
activation coefficients. Moreover, this approach of adding external parameters does not truly infuse
new knowledge into the base model.

Gradient Projection. Gradient projection methods mitigate catastrophic forgetting by constrain-
ing parameter updates into specific subspaces, thereby preventing interference with previously ac-
quired knowledge (Qiao et al., 2024). In the context of full fine-tuning, methods such as Gradient
Projection Memory (GPM) (Saha et al., 2021) enforce orthogonality between the gradients of a new
task and a stored basis of principal gradient directions from previous tasks. To improve the effi-
ciency of full fine-tuning, CoSo (Cheng et al., 2025) utilizes Task-Specific Subspace Estimation and
updates an orthogonal basis matrix. This thought has also been adapted to parameter-efficient tech-
niques. For example, O-LoRA (Wang et al., 2023a) constrains the LoRA subspaces of new tasks to
be orthogonal to those of previous tasks, ensuring that learning occurs in novel directions. InfLoRA
(Liang & Li, 2024) applies a constraint where the LoRA down-projection matrix A is orthogonal to
GPM (Saha et al., 2021) or DualGPM (Liang & Li, 2023) to prevent interference. However, these
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existing methods primarily focus on mitigating backward forgetting, the loss of knowledge from
previously learned sequential tasks. They do not explicitly address or analysis the preservation of
general pre-trained knowledge, which is crucial for maintaining the model’s general transferability
and preventing forward forgetting.

3 METHOD

3.1 PRELIMINARY

Problem Formulation. We adopt the multi-domain task incremental learning (MTIL) setting
(Zheng et al., 2023), where the model encounters a sequence of n tasks {T 1, T 2, . . . , T n}. Each
task T i = (Di, Ci) for i ∈ {1, 2, . . . , n} comprises a datasetDi and corresponding class vocabulary
Ci. The dataset Di = {(xi

j , y
i
j)}

Ni
j=1 contains Ni training examples, where each xi

j denotes an input
image and yij represents the corresponding one-hot encoded ground truth label. The class vocabulary
Ci = {cij}

mi
j=1 establishes the mapping between categorical labels and semantic class names, with

mi denoting the total number of distinct classes for task T i. During inference, the model classifies
an input image x within Ci. The goal of continual learning is to maintain performance on pre-trained
knowledge and all previously encountered tasks while adapting to new ones.

Vanilla LoRA. Low-rank adaptation (LoRA) (Hu et al., 2022) decomposes weight updates into two
low-rank matrices A ∈ Rdin×r and B ∈ Rr×dout , where r ≪ min(din, dout). During training, W
remains frozen while only A and B are fine-tuned. The matrices are initialized with A ∼ N (0, σ2)
and B = 0. For input x ∈ Rdin , the forward pass becomes:

y = x
(
W +

α

r
AB

)
(1)

where α is a scaling factor.

3.2 KEEPLORA: GRADIENT PROJECTION ADAPTATION

Continual learning for pre-trained vision-language models demands a balance between plasticity, the
ability to acquire new knowledge, and learning stability, which comprises both forward stability to
preserve general pre-trained knowledge and backward stability to retain knowledge from previously
learned tasks. To address this problem, we propose KeepLoRA, a method built upon LoRA that
employs residual subspace constraints to unify stability preservation and new knowledge infusion.

Stability: Preserving Pre-trained and Previous Task Knowledge. KeepLoRA retains stability
by projecting the subspaces of pre-trained knowledge and previous task knowledge onto a unified
principal subspace. Subsequent adaptations for new tasks are then confined to the residual subspace
orthogonal to this principal subspace, thereby minimizing interference with the learned knowledge.

Pre-trained Knowledge Subspace: We analyze the parameters of the pre-trained model to under-
stand how the model stores general knowledge. Specifically, we decompose each weight matrix
W ∈ Rdin×dout requiring updates via singular value decomposition (SVD) as W = USV ⊤. The
decomposition produces a subspace Wp = U:,1:p, and the subspace is constrained such that:

||Wp||2F ≥ ϵw||W ||2F (2)
where ϵw ∈ (0, 1) controls the energy ratio retained in Wp.

Previous Task Knowledge Subspace: To mitigate forgetting of learned tasks, the LoRA module
updating matrix W for new tasks should minimize interference with features from previous tasks.
Specifically, our goal is to make Y = LoRAt(X) as close to 0 as possible for any input X from
previous tasks {Ti}t−1

i=1 . Since no real or synthetic samples from previous tasks are available for
replay, we propose to extract the dominant singular vectors of previous tasks as the dominant feature
directions. This approach enables us to continuously compress task-specific information and enforce
matrix A to be orthogonal to the dominant singular vectors on LoRA initialization. After training
for task t, we extract and store the dominant feature directions for this task. These directions are
chosen to be orthogonal to the subspace jointly defined by the principal weights and the dominant
feature directions of all t− 1 tasks. We then define the feature space for the t-th task as:

X̂t = Xt −WpW
⊤
p Xt −Mt−1M

⊤
t−1Xt (3)

4
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where Mt−1 ∈ Rdin×k represents the accumulated direction matrix containing the dominant singu-
lar vectors from tasks {1, 2, . . . , t−1}, and k denotes the total number of stored singular vectors. We
initialize M0 = ∅ as an empty matrix. The number of stored vectors k is dynamically determined
by an energy threshold ϵf ∈ (0, 1). Specifically, we retain the minimum number k of dominant
directions required to satisfy:

||X̂t||2F + ||WpW
⊤
p Xt||2F + ||Mt−1M

⊤
t−1Xt||2F ≥ ϵf ||Xt||2F (4)

We perform SVD on the features X̂t = UtStV
⊤
t and extract the top-m dominant singular vectors

to update our subspace matrix: Mt = [Mt−1,Vt(:,1:m)], where m is determined by a threshold ϵf .

Unified Principal Subspace. Since both Wp and Mt consist of orthogonal direction vectors op-
erating within the same din-dimensional feature space, and the total number of orthogonal vec-
tors is upper-bounded by din, we can mathematically unify them into a single projection subspace:
M ′

t = [Wp,Mt]. The unified subspace leverages the theoretical foundation that predictive models
can be transformed into lossless compressors (Deletang et al., 2024) and model weights embody a
compressed representation of the training data (Franceschelli et al., 2024). Under this perspective,
Wp captures the essential feature representation space of the pre-training data, while Mt preserves
the dominant feature directions during continual learning. Both components represent compressed
knowledge from their respective data distributions.

To ensure the new t-th task updates never interfere M ′
t−1, KeepLoRA achieves this through a modi-

fied LoRA approach, where matrix A is initialized within {M ′

t−1}⊥ and frozen throughout training,
while only B is optimized.

Plasticity: Gradient-Informed LoRA Initialization in Residual Subspace. While the unified
principal subspace ensures learning stability, KeepLoRA also requires maintaining plasticity to
adapt to new tasks. We achieve it by initializing the LoRA module using task-specific gradient in-
formation, aligning adaptation directions with full fine-tuning while confining updates to {M ′

t−1}⊥.
Specially, we utilize gradient information to guide the initialization within the constrained residual
space. Let Gt = ∇WL(W ;Dt) denotes the gradient of the weight matrix W of the t-th task at the
first training step. We project this gradient onto the residual subspace:

Ĝt = Gt︸︷︷︸
plasticity

−WpW
⊤
p Gt −Mt−1M

⊤
t−1Gt︸ ︷︷ ︸

forward and backward stability

(5)

We perform SVD on the projected gradient Ĝ = USV ⊤ and initialize the LoRA matrices with
top-r singular vectors as:

A = U:,1:r, B = S1:rV
⊤
:,1:r (6)

where U:,1:r denotes the first r columns of U , and r is the rank parameter. This gradient-informed
initialization directly simulates the update direction of full fine-tuning while operating within the
residual subspace, enabling effective adaptation without undermining these critical stability con-
straints. Since the initial product α

rAB is non-zero, the frozen parameter W can be adjusted to
maintain the initial parameter values unchanged. Specifically, we replace the original parameter W
with W ′ = W − α

rAB to ensure that the initial forward pass behavior remains identical with the
initial model. Algorithm 1 summarizes the proposed KeepLoRA method.

Algorithm 1 KeepLoRA for Continual Learning

1: Input: Pre-trained model fθ with updatable parameters {Bi}, task sequence {T t}nt=1, hyper-
parameters ϵw, ϵf , r, α

2: Output: Updated model fθ′ with merged LoRA adapters
3: for task t = 1 to n do
4: Initialize KeepLoRA through Eq. 5 and Eq. 6
5: Replace the parameter W with the modified frozen parameter W ′ = W − α

rAtBt

6: Compute the loss and optimize the KeepLoRA parameters Bt

7: Merge KeepLoRA and current model by W = W ′ + α
rAtBt

8: Extract dominant feature directions through Eq. 3 and Eq. 4
9: end for

5
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3.3 DISCUSSION OF KEEPLORA

Eq. 5 and Eq. 6 serve as the core formulas of KeepLoRA, enabling its balance of plasticity and stabil-
ity: Gt enhances plasticity by identifying new task adaptation directions, while the subtracted terms
remove gradients that interfere with pre-trained and previous task knowledge, ensuring stability. To
verify these core designs, we first establish the equivalence between KeepLoRA parameter update
rule and gradient projection learning, defining the necessary properties of the subspace spanned by
At. We then demonstrate that the initialization of At meets these properties.

Analyzes of Frozen At LoRA Updates. The KeepLoRA parameter update method involves freez-
ing At and optimizing only Bt. The following proposition demonstrates that this update rule is
equivalent to gradient descent constrained within the subspace span(At).
Proposition 3.1. (LoRA with frozen down-projection At is equivalent to gradient projection up-
date.) Let L(W ;Dt) denote the loss function for the t-th task T t, where: W = W ′ + α

rAtBt,
Gt = ∇WL(W ;Dt). Optimizing only Bt through gradient descent with learning rate η is equiva-
lent to performing gradient descent on the orthogonal projection of Gt onto span(At). The weight
update of W satisfies:

∆W =
α

r
At∆Bt = −cAtA

⊤
t Gt, (7)

where c = ηα2

r2 is a positive constant integrating the learning rate and LoRA scaling effects.

Remark. Proposition 3.1 reveals that frozen At updates are inherently subspace constrained: all
changes to W are confined to span(At), as AtA

⊤
t acts as an orthogonal projection operator on

this subspace. Furthermore, span(At) requires satisfying the following two properties in continual
learning: (i) Orthogonal to knowledge subspaces: span(At) need to be orthogonal to subspaces en-
coding pre-trained knowledge and previously learned tasks, ensuring updates to W do not interfere
with existing knowledge, preventing both forward and backward forgetting. (ii) Adaptation to the
current task: span(At) needs to capture the dominant directions of Gt, approximating the gradient
of full-parameter fine-tuning to maintain plasticity.

Validation of KeepLoRA At Initialization. The preceding proposition outlines the required prop-
erties of span(At). The key question is whether the KeepLoRA initialization of At meets the two
properties. We validate it by connecting the initialization to a constrained optimization problem.
Proposition 3.2. KeepLoRA initialization of At through Eq. 5 and Eq. 6 is the solution to the
following constrained optimization problem:

min
A⊤

t At=I
∥Gt −AtA

⊤
t Gt∥2F ,

s.t W⊤
p At = M⊤

t−1At = 0,
(8)

where Gt is the current task gradient w.r.t. the base model W , Wp is the principal subspace of
pre-trained parameters, and Mt−1 is the dominant feature directions from previous tasks.

Remark. Proposition 3.2 directly connects KeepLoRA’s initialization technique to the two proper-
ties of Proposition 3.1, verifying its optimality: (i) Satisfying orthogonality (via constraints): The
equality constraints W⊤

p At = 0 and M⊤
t−1At = 0 explicitly enforce span(At) ⊥ span(Wp) and

span(At) ⊥ span(Mt−1). It guarantees that span(At) is orthogonal to both the principal subspace
of the model parameters and the dominant feature directions to preserve stability. (ii) Optimal adap-
tation (via objective): The objective function minimizes the Frobenius norm of Gt −AtA

⊤
t Gt, the

residual component of Gt that lies outside span(At). By the Pythagorean theorem for the Frobenius
norms (∥Gt∥2F = ∥AtA

⊤
t Gt∥2F + ∥Gt −AtA

⊤
t Gt∥2F ), minimizing this residual is equivalent to

maximizing the norm of the projected gradient AtA
⊤
t Gt. It ensures span(At) captures the domi-

nant gradient directions for the current task, preserving plasticity.

In summary, Propositions 3.1 and 3.2 form a complete theoretical loop: Proposition 3.1 defines
the necessary properties of span(At) for stable-plastic continual learning. Proposition 3.2 further
proves that the initialization technique of At in KeepLoRA is aligned with these properties, which
ensures that span(At) is orthogonal to the principal subspace of the model parameters Wp and
dominant feature directions of each learned task Mt−1 to maintain stability, while being adaptive to
the current task gradient to improve plasticity.

6
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Table 2: Comparison of different methods on MTIL for each classification task in terms of Transfer,
Average, and Last scores (%). The best results are in bold.
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Zero-shot ✓ ✓ 24.8 88.4 68.2 44.6 54.9 71.0 88.5 59.4 89.0 64.7 65.4
Transfer

LwF (Li & Hoiem, 2017) ✓ ✗ – 74.5 56.9 39.1 51.1 52.6 72.8 60.6 75.1 30.3 55.9 56.9
iCaRL (Rebuffi et al., 2017) ✓ ✗ – 56.6 44.6 32.7 39.3 46.6 68.0 46.0 77.4 31.9 60.5 50.4
LwF-VR (Ding et al., 2022) ✓ ✗ – 77.1 61.0 40.5 45.3 54.4 74.6 47.9 76.7 36.3 58.6 57.2
WiSE-FT (Wortsman et al., 2022) ✓ ✗ – 73.5 55.6 35.6 41.5 47.0 68.3 53.9 69.3 26.8 51.9 52.3
ZSCL (Zheng et al., 2023) ✓ ✗ – 86.0 67.4 45.4 50.4 69.1 87.6 61.8 86.8 60.1 66.8 68.1
O-LoRA (Wang et al., 2023a) ✓ ✓ – 80.8 68.0 44.5 49.8 67.5 86.7 59.3 88.7 56.1 63.6 66.5
InfLoRA (Liang & Li, 2024) ✓ ✓ – 84.3 67.4 44.3 50.6 68.2 87.1 62.7 88.7 57.8 62.8 67.4
SD-LoRA (Wu et al., 2025b) ✓ ✓ – 82.3 67.5 44.4 51.0 67.9 87.2 61.1 88.4 58.2 63.4 67.1
KeepLoRA ✓ ✓ – 84.6 68.7 45.9 54.3 70.1 87.7 64.8 90.3 59.5 64.1 69.0

L2P (Wang et al., 2022c) ✗ ✓ – 65.6 50.9 30.4 41.4 49.3 71.8 36.3 77.5 55.3 53.4 53.2
DualPrompt (Wang et al., 2022b) ✗ ✓ – 56.7 51.4 28.7 33.7 45.6 70.9 59.5 77.7 49.5 50.4 52.4
S-Prompts (Wang et al., 2022a) ✗ ✓ – 67.3 49.4 26.7 39.7 47.1 70.2 34.3 78.9 56.7 52.2 52.2
DIKI (Tang et al., 2024) ✗ ✓ – 92.9 69.1 43.2 43.9 65.4 85.3 56.0 88.4 64.0 65.6 67.4
MoE-Adapters (Yu et al., 2024) ✗ ✗ – 87.9 68.2 44.4 49.9 70.7 88.7 59.7 89.1 64.5 65.5 68.9
IAP (Fu et al., 2025) ✗ ✓ – 93.0 68.7 44.0 47.0 70.4 85.9 63.5 89.7 66.2 63.3 69.2
KeepLoRA+ ✗ ✓ – 85.9 69.9 44.6 53.7 70.9 88.9 65.4 90.8 63.0 66.1 69.9

Average
LwF (Li & Hoiem, 2017) ✓ ✗ 36.3 86.9 72.0 59.0 73.7 60.0 73.6 74.8 80.0 37.3 58.1 64.7
iCaRL (Rebuffi et al., 2017) ✓ ✗ 35.5 89.2 72.2 60.6 68.8 70.0 78.2 62.3 81.8 41.2 62.5 65.7
LwF-VR (Ding et al., 2022) ✓ ✗ 29.6 87.7 74.4 59.5 72.4 63.6 77.0 66.7 81.2 43.7 60.7 65.1
WiSE-FT (Wortsman et al., 2022) ✓ ✗ 26.7 86.5 64.3 57.1 65.7 58.7 71.1 70.5 75.8 36.9 54.6 60.7
ZSCL (Zheng et al., 2023) ✓ ✗ 45.1 92.0 80.1 64.3 79.5 81.6 89.6 75.2 88.9 64.7 68.0 75.4
O-LoRA (Wang et al., 2023a) ✓ ✓ 39.8 93.2 78.3 61.7 78.9 76.3 88.5 73.9 90.1 60.2 65.2 73.3
InfLoRA (Liang & Li, 2024) ✓ ✓ 53.6 95.6 82.8 65.0 80.9 79.6 89.1 76.1 90.2 62.3 64.5 76.3
SD-LoRA (Wu et al., 2025b) ✓ ✓ 36.7 92.2 80.2 55.9 77.5 73.2 89.2 74.9 89.8 62.5 65.0 72.5
KeepLoRA ✓ ✓ 55.6 95.7 83.2 65.6 82.2 82.0 89.5 77.4 91.5 63.9 65.8 77.5

L2P (Wang et al., 2022c) ✗ ✓ 38.0 85.2 78.2 61.3 72.9 74.9 79.7 59.1 82.0 59.7 55.4 67.9
DualPrompt (Wang et al., 2022b) ✗ ✓ 37.8 84.3 78.6 60.1 71.1 73.2 79.1 73.9 82.3 55.1 52.8 68.0
S-Prompts (Wang et al., 2022a) ✗ ✓ 37.5 92.5 77.5 58.2 76.4 74.1 78.8 57.9 83.0 60.8 54.4 68.3
DIKI (Tang et al., 2024) ✗ ✓ 45.4 95.7 83.0 65.0 78.2 82.5 87.1 71.7 90.0 67.2 66.6 75.7
MoE-Adapters (Yu et al., 2024) ✗ ✗ 50.2 91.9 83.1 69.4 78.9 84.0 89.1 73.7 89.3 67.7 66.9 76.7
IAP (Fu et al., 2025) ✗ ✓ 45.9 95.8 83.3 66.5 79.5 84.8 87.5 76.6 91.0 69.2 64.5 76.8
KeepLoRA+ ✗ ✓ 58.4 96.5 84.4 67.8 82.1 84.5 90.7 77.8 91.9 67.5 67.6 79.0

Last
LwF (Li & Hoiem, 2017) ✓ ✗ 26.3 87.5 71.9 66.6 79.9 66.9 83.8 99.6 92.1 66.1 80.4 74.6
iCaRL (Rebuffi et al., 2017) ✓ ✗ 35.8 93.0 77.0 70.2 83.3 88.5 90.4 86.7 93.2 81.2 81.9 80.1
LwF-VR (Ding et al., 2022) ✓ ✗ 20.5 89.8 72.3 67.6 85.5 73.8 85.7 99.6 93.1 73.3 80.9 76.6
WiSE-FT (Wortsman et al., 2022) ✓ ✗ 27.2 90.8 68.0 68.9 86.9 74.0 87.6 99.6 92.6 77.8 81.3 77.7
ZSCL (Zheng et al., 2023) ✓ ✗ 40.6 92.2 81.3 70.5 94.8 90.5 91.9 98.7 93.9 85.3 80.2 83.6
O-LoRA (Wang et al., 2023a) ✓ ✓ 31.4 91.8 75.7 61.1 89.0 76.0 88.9 99.1 92.3 74.8 81.3 78.3
InfLoRA (Liang & Li, 2024) ✓ ✓ 51.1 96.5 85.1 70.7 98.1 87.7 91.3 99.4 94.2 82.0 81.4 85.2
SD-LoRA (Wu et al., 2025b) ✓ ✓ 31.1 92.3 79.8 57.4 88.7 76.1 90.6 99.0 92.9 81.3 81.6 79.2
KeepLoRA ✓ ✓ 53.2 96.8 85.7 71.4 98.1 90.8 91.4 99.6 94.5 83.1 82.0 86.1

L2P (Wang et al., 2022c) ✗ ✓ 38.0 87.1 84.2 72.9 86.0 96.1 89.2 99.0 94.1 79.6 76.0 82.0
DualPrompt (Wang et al., 2022b) ✗ ✓ 37.8 87.1 84.6 71.8 89.2 96.3 89.1 99.1 94.5 79.9 76.5 82.3
S-Prompts (Wang et al., 2022a) ✗ ✓ 37.5 95.1 83.7 70.2 97.5 96.5 89.0 99.1 94.0 79.5 75.8 83.4
DIKI (Tang et al., 2024) ✗ ✓ 45.4 95.9 86.0 73.0 97.8 96.8 89.3 99.3 94.4 81.8 76.4 85.1
MoE-Adapters (Yu et al., 2024) ✗ ✗ 49.8 92.2 86.1 78.1 95.7 94.3 89.5 98.1 89.9 81.6 80.0 85.0
IAP (Fu et al., 2025) ✗ ✓ 46.8 96.1 86.7 75.2 98.1 97.0 89.6 99.4 94.7 82.8 76.7 85.7
KeepLoRA+ ✗ ✓ 57.3 97.6 87.2 76.5 98.4 95.7 92.6 99.5 94.7 87.2 83.2 88.2
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4 EXPERIMENTS

We conduct experiments on various benchmarks to validate the effectiveness of KeepLoRA in bal-
ancing three core objectives of continual learning: forward stability, backward stability, and plas-
ticity. (i) To quantify forward forgetting, we calculate the average accuracy on tasks t + 1, . . . , n
after training on task t, which is defined as the Transfer metric, presented in Tab. 2, 3 and 4. Fig. 3
further analyzes how KeepLoRA maintains the transferability. (ii) The Last metric, shown in Tab. 2,
3 and 4, assesses model performance after continual training has completed, capturing both plas-
ticity and backward stability. (iii) To further analyze plasticity, Fig. 2 compares our method with
an unconstrained LoRA, demonstrating that KeepLoRA preserves stability with minimal sacrifice
to its adaptive capability. The Average metric represents the mean accuracy across all learned tasks,
offering a holistic measure of the balance between stability and plasticity.

4.1 MAIN RESULTS

We evaluate our method on the dual-encoder model CLIP (Radford et al., 2021) and encoder-decoder
model LLaVA (Liu et al., 2023). For CLIP, the experiments are conducted on the MTIL (Zheng et al.,
2023) benchmark, presenting results for alphabetical (Tab. 2) and random (Tab. 6) task orders in
two settings, with and without architecture extension. KeepLoRA+ is a structure extension vari-
ant with a prototype vector for a class name to help classification, which is detailed in Appendix
B.3. For LLaVA, the experiments (Tab. 3 and 4) are conducted on MLLM-DCL (Guo et al., 2025b)
and UCIT (Guo et al., 2025b) benchmarks, including various instruction formats such as image
captioning, visual question-answer, and multiple-choice questions. Detailed information on exper-
iment settings and benchmarks is presented in Appendices B.4 and B.1, separately. KeepLoRA
and KeepLoRA+ achieve state-of-the-art performance on the Transfer, Average, and Last metrics in
each of these settings. This demonstrates that our approach consistently addresses the challenges of
forward stability, backward stability, and plasticity in continual learning.

Table 3: Comparison of different continual learning methods on MLLM-DCL benchmark for VQA
tasks in terms of Transfer, Average, and Last scores (%). The best results are in bold.

Method Sen
sin

g

M
ed

ica
l

Driv
ing

Scie
nc

e

Fina
nc

e

Avg.

Zero-shot 32.29 28.28 15.59 35.55 62.56
Transfer

LoRA-FT (Hu et al., 2022) – 28.10 17.44 34.03 50.19 32.44
O-LoRA (Wang et al., 2023a) – 28.37 18.37 33.72 52.53 33.25
CL-MoE (Huai et al., 2025) – 28.25 19.38 34.08 48.56 32.57
SEFE (Chen et al., 2025) – 28.10 19.63 33.85 52.36 33.49
KeepLoRA – 28.49 16.63 34.13 55.61 33.71

Average
LoRA-FT (Hu et al., 2022) 73.34 44.94 31.38 38.79 57.84 49.26
O-LoRA (Wang et al., 2023a) 75.04 45.71 32.62 38.54 59.64 50.31
CL-MoE (Huai et al., 2025) 74.19 45.60 32.08 38.88 56.68 49.49
SEFE (Chen et al., 2025) 77.71 47.69 35.35 38.99 59.57 51.86
KeepLoRA 79.55 50.80 37.53 40.70 62.35 54.19

Last
LoRA-FT (Hu et al., 2022) 69.34 44.30 29.10 41.44 88.43 54.52
O-LoRA (Wang et al., 2023a) 72.30 46.89 31.59 41.50 88.06 56.07
CL-MoE (Huai et al., 2025) 71.83 47.36 29.49 41.48 89.16 55.86
SEFE (Chen et al., 2025) 77.05 50.86 40.27 42.98 88.40 59.91
KeepLoRA 78.76 54.34 50.19 49.48 89.30 64.41

4.2 ANALYSIS OF MODEL PLASTICITY

Plasticity assesses the ability to effectively acquire new knowledge following a sequence of con-
tinual learning tasks. We evaluate two performance metrics for each task: (i) the accuracy
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Table 4: Comparison of different continual learning methods on UCIT benchmark for VQA tasks in
terms of Transfer, Average, and Last scores (%). The best results are in bold.

Method Im
gN

et-
R

Arxi
vQ

A

VizW
iz

Ico
nQ

A

CLEVR

Flic
kr3

0k

Avg.

Zero-shot 16.27 53.73 38.39 19.20 20.63 41.88
Transfer

LoRA-FT (Hu et al., 2022) – 52.63 18.30 6.02 16.97 40.29 26.84
O-LoRA (Wang et al., 2023a) – 52.87 19.57 4.42 16.85 41.04 26.95
CL-MoE (Huai et al., 2025) – 52.00 19.32 7.37 17.81 41.28 27.56
SEFE (Chen et al., 2025) – 53.33 18.68 7.48 17.03 40.90 27.48
KeepLoRA – 52.83 20.39 9.18 18.12 41.50 28.40

Average
LoRA-FT (Hu et al., 2022) 75.98 77.78 41.56 38.83 34.56 43.25 51.99
O-LoRA (Wang et al., 2023a) 82.43 80.06 41.73 35.87 33.94 43.74 52.96
CL-MoE (Huai et al., 2025) 80.16 77.10 40.43 30.33 33.10 43.95 50.85
SEFE (Chen et al., 2025) 85.49 78.55 42.92 40.33 34.80 43.64 54.29
KeepLoRA 86.50 83.63 42.66 40.08 35.24 44.11 55.37

Last
LoRA-FT (Hu et al., 2022) 58.60 76.73 45.72 67.43 61.57 58.03 61.35
O-LoRA (Wang et al., 2023a) 74.17 80.93 45.30 62.87 63.83 57.24 64.06
CL-MoE (Huai et al., 2025) 67.17 75.77 44.38 52.63 54.40 57.28 58.61
SEFE (Chen et al., 2025) 80.23 79.13 47.11 69.40 65.70 57.33 66.48
KeepLoRA 82.43 86.70 46.54 67.80 66.40 57.18 67.84

achieved by training on the task in isolation, serving as an upper bound, and (ii) the accu-
racy measured immediately after the task is learned within the continual sequence. Our anal-
ysis in Fig. 2 compares KeepLoRA with a standard LoRA baseline. In the isolation-task set-
ting, KeepLoRA performs comparably to LoRA, as gradient-informed initialization of the frozen
down-projection matrix A effectively captures the essential learning direction, maintaining high
learning capacity. Furthermore, when switching to the continual learning scenario, KeepLoRA
exhibits a consistently smaller performance drop on new tasks compared to LoRA. This sug-
gests that, by confining updates to the residual subspace and avoiding interference with pre-
viously learned knowledge, our method enhances the model’s plasticity for subsequent tasks.

(a) # Param. 0.49 M (b) # Param. 0.98 M

Figure 2: Comparison of plasticity between KeepLoRA
and the LoRA baseline under the same learnable param-
eter budgets: Fig. 2a 0.49 million parameters and Fig.
2b 0.98 million parameters. Each bar represents the per-
formance drop for a task, measured as the difference be-
tween accuracy from isolated training and accuracy after
sequential learning and immediate testing.

4.3 ANALYSIS OF MODEL STABILITY

We analyze stability by visualizing the
interference of the LoRA module be-
tween multiple tasks in Fig. 3. In these
heatmaps, the off-diagonal cells repre-
sent inter-task interference, while the ver-
tical bar on the left indicates the over-
all impact on the backbone. The stan-
dard LoRA (Fig. 3a) and LoRA with a
frozen matrix A (Fig. 3b) both exhibit
significant interference. The bright pat-
terns in their heatmaps and vertical bars
show that training on a current task heav-
ily interferes with the representations of
other tasks, leading to poor stability. Al-
though gradient-informed initialization
(Fig. 3c) reduces off-diagonal interfer-
ence, the overall impact on the backbone
remains high, as shown by its bright verti-
cal bar. In contrast, KeepLoRA (Fig. 3d)
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shows a desirable pattern: a bright diagonal with dark off-diagonal cells. This indicates that the
updates of the model are focused on the current task, causing minimal interference with others. The
dark vertical bar further confirms that the overall impact on the backbone is consistently low. By
minimizing interference with previously learned tasks, KeepLoRA ensures backward stability. Fur-
thermore, its minimal interference with unseen tasks, as indicated by the low norm, is critical for
preserving forward stability.

(a) LoRA (b) LoRA frozen A (c) LoRA frozen grad A (d) KeepLoRA

Figure 3: Visualization of the average L2 norm of the output magnitude from the learned LoRA
across multiple tasks. Each heatmap cell at row i and column j displays the normalized average
L2 norm of the LoRA’s output when the model, trained up to task i, is tested on task j’s data. The
vertical bar to the left of each heatmap indicates the mean output norm across all test tasks after each
training stage, with darker colors signifying a lower norm and thus a reduced impact on the stability.

4.4 ABLATION STUDY

To analyze the contribution of each component, we conduct an ablation study starting from a stan-
dard LoRA baseline. As shown in Tab. 5, our modifications progressively improve performance.
Freezing the down-projection matrix A even with random initialization, enhances stability in the
continual learning setting by mitigating destructive interference with the backbone weights. Sub-
sequently, employing a (i) gradient-informed initialization further improves plasticity, leading to a
5.9% increase on the Last metric and indicating more effective adaptation. After constraining the
updates to be orthogonal to (ii) the principal subspace Wp and (iii) the dominant feature directions
M , gains of 4.0% on Transfer, 7.3% on Average, and 10.7% on Last, demonstrating the critical role
of subspace projection in balancing stability and plasticity.

Table 5: Ablation Study of KeepLoRA on MTIL.

Training Strategy Transfer ∆ Average ∆ Last ∆

LoRA (rank 8, # param. 0.98 M) 58.3 0.0 61.5 0.0 59.4 0.0
LoRA frozen A (rank 16, # param. 0.98 M) 63.9 +5.6 68.2 +6.7 69.5 +10.1

(i) Replace Eq. 5 by Ĝt = Gt 65.0 +6.7 70.2 +8.7 75.4 +16.0
(ii) Replace Eq. 5 by Ĝt = Gt −WpW

⊤
p Gt 65.9 +7.6 71.5 +10.0 76.5 +17.1

(iii) Replace Eq. 5 by Ĝt = Gt −Mt−1M
⊤
t−1Gt 68.1 +9.8 77.2 +15.7 86.1 +26.7

KeepLoRA (Eq. 5) 69.0 +10.7 77.5 +16.0 86.1 +26.7

5 CONCLUSION

This work is motivated by the observation that the principal subspace of parameters encodes general
knowledge and the residual subspace captures domain-specific adaptations. Building on this, we
proposed KeepLoRA, a parameter-efficient fine-tuning method that can effectively achieve a bal-
ance among the competing objectives of plasticity, backward stability, and forward stability. Our
theoretical analysis confirms that constraining parameter updates to the residual subspace is an opti-
mal strategy, maximizing plasticity for the current task while maintaining orthogonality to subspaces
encoding general and previously learned knowledge. Experiments show that KeepLoRA learns new
tasks with minimal interference with the model’s backbone parameters. Its learning capacity within
the residual subspace is comparable to unconstrained LoRA on isolated tasks, yet it suffers a signifi-
cantly smaller performance drop in the continual learning setting. As a simple and effective method,
KeepLoRA provides a principled approach for continual learning that is applicable to larger models
and more diverse tasks.
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ETHICS STATEMENT

All authors have read and adhered to the ICLR Code of Ethics. This paper presents an algorithmic
contribution, KeepLoRA, aimed at advancing the field of continual learning. Our empirical valida-
tion is conducted exclusively on publicly available and widely used academic benchmarks, such as
CIFAR100 and Caltech101, which do not contain personally identifiable or sensitive information.
While we acknowledge that advancements in machine learning have broad societal consequences,
our work does not introduce foreseeable negative applications or exacerbate biases beyond those
potentially present in the general pre-trained models.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide the source code for our method, KeepLoRA, in the sup-
plementary material. Our method is detailed in Sec. 3, with the core framework summarized in
Algorithm 1. We specify all hyperparameters used for our method and the baselines, including
learning rates, batch size, and the preservation ratios ϵw and ϵf in Appendix B.
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A PROOFS OF PROPOSITIONS

A.1 PROOFS OF PROPOSITION 3.1

Proof. Suppose for loss function L for task T t and a linear layer with y = xW , where y is output
of layer and x is the input. We can compute gradient of Bt directly as follow:

∂L
∂Bt

=
∂W

∂Bt
· ∂L
∂W

=
α

r
A⊤

t Gt. (9)

In a gradient descent iteration, the change of Bt is represented by a negative gradient: ∆Bt =
−ηα

r A⊤
t Gt. Therefore, when At is frozen to only update Bt in each iteration, we can obtain the

variation of W in one iteration to complete the proof:

∆W =
α

r
At∆Bt = −

ηα2

r2
AtA

⊤
t Gt. (10)

A.2 PROOFS OF PROPOSITION 3.2

Proof. We proceed by transforming the constrained optimization problem, leveraging subspace
properties, and applying the Eckart–Young–Mirsky Theorem (Eckart & Young, 1936) to confirm
the optimal solution.

Step 1: Equivalent Transformation of the Objective Function. For an orthonormal matrix At sat-
isfying A⊤

t At = I , the orthogonal projection operator PAt
= AtA

⊤
t satisfies the Pythagorean

theorem for the Frobenius norm:

∥Gt∥2F = ∥PAt
Gt∥2F + ∥Gt − PAt

Gt∥2F .

Since ∥Gt∥2F is a constant independent of At, minimizing the original objective ∥Gt − PAt
Gt∥2F

is equivalent to maximizing the projected norm ∥PAt
Gt∥2F . The optimization problem thus can be

rewritten as:
max

A⊤
t At=I

∥AtA
⊤
t Gt∥2F ,

s.t W⊤
p At = M⊤

t−1At = 0.
(11)

Step 2: Substitute Ĝt and Simplify Using Constraints. Recall from Eq. 5 that the projected gradient
Ĝt is defined as:

Ĝt = Gt −WpW
⊤
p Gt −Mt−1M

⊤
t−1Gt.

Rearranging gives Gt = Ĝt +WpW
⊤
p Gt +Mt−1M

⊤
t−1Gt. Substitute this into the objective:

∥AtA
⊤
t

(
Ĝt +WpW

⊤
p Gt +Mt−1M

⊤
t−1Gt

)
∥2F .

For any feasible At, we use W⊤
p At = M⊤

t−1At = 0 to simplify: A⊤
t (WpW

⊤
p Gt) =

(W⊤
p At)

⊤(W⊤
p Gt) = 0⊤(W⊤

p Gt) = 0. Similarly, A⊤
t (Mt−1M

⊤
t−1Gt) = 0.

Thus, AtA
⊤
t (WpW

⊤
p Gt + Mt−1M

⊤
t−1Gt) = 0, and the objective reduces to maximizing

∥AtA
⊤
t Ĝt∥2F . The optimization problem simplifies to:

max
A⊤

t At=I
∥AtA

⊤
t Ĝt∥2F ,

s.t W⊤
p At = M⊤

t−1At = 0.
(12)

Step 3: Optimal At via Eckart–Young–Mirsky Theorem. The Eckart–Young–Mirsky Theorem
(Eckart & Young, 1936) states that for any matrix X ∈ Rm×n and integer k ≤ min(m,n), the
r-dimensional subspace that maximizes ∥PX∥2F , where P is the orthogonal projection onto the
subspace, is spanned by the top-r left singular vectors of X .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Here, X = Ĝt, and we seek an r-dimensional subspace spanned by At to maximize ∥AtA
⊤
t Ĝt∥2F .

By the theorem, the optimal At consists of the top-r left singular vectors of Ĝt.

Step 4: Verify Feasibility of the Optimal At. We confirm the optimal At satisfies the constraints
W⊤

p At = 0 and M⊤
t−1At = 0.

By the definition of Ĝt in Eq. 5, we have:

W⊤
p Ĝt = 0, M⊤

t−1Ĝt = 0. (13)

Substituting SVD of Ĝ = USV in Eq. 13 : W⊤
p Ĝt = W⊤

p USV ⊤ = 0. Since SV ⊤ is column-
full rank (singular values are non-negative, and V is orthonormal), W⊤

p U must be the zero matrix.
Thus, W⊤

p U = 0, hence W⊤
p At = W⊤

p U:,1:r = 0. The same logic applies to Mt−1: M⊤
t−1Ĝt =

M⊤
t−1USV ⊤ = 0 implies M⊤

t−1U = 0, hence M⊤
t−1At = 0.

Thus, the optimal solution to Eq. 8 is exactly the top-r left singular vectors of Ĝt, which matches
KeepLoRA At initialization. The proof is completed.

B EXPERIMENT DETAILS

B.1 BENCHMARK

MTIL benchmark (Zheng et al., 2023) consists of 11 image classification datasets: Aircraft (Maji
et al., 2013), Caltech101 (Fei-Fei et al., 2004), Cifar100 (Krizhevsky et al., 2009), DTD (Cimpoi
et al., 2014), EuroSAT (Helber et al., 2019), Flowers (Nilsback & Zisserman, 2008), Food (Bossard
et al., 2014), MNIST (Deng, 2012), OxfordPet (Parkhi et al., 2012), StanfordCars (Krause et al.,
2013), and SUN397 (Xiao et al., 2010). Each dataset is treated as a task.

MLLM-DCL benchmark (Zhao et al., 2025) consists of multiple downstream VQA datasets:
RSVQA (Lobry et al., 2020), PathVQA (He et al., 2020), DriveLM (Sima et al., 2024), FinVis (Wang
et al., 2023b), AI2D (Kembhavi et al., 2016), Sciverse (Guo et al., 2025c), MapQA (Chang et al.,
2022), and TQA (Kembhavi et al., 2017). It covers 5 specialized areas: Remote Sensing, Medical,
Driving, Finance, and Science. Each area is treated as a task.

UCIT benchmark (Guo et al., 2025a) consists of 6 VQA datasets: ArxivQA (Li et al., 2024),
CLEVR-Math (Lindström & Abraham, 2022), IconQA (Lu et al., 2021), ImageNet-R (Hendrycks
et al., 2021), VizWiz-Caption (Gurari et al., 2018), and Flickr30k (Plummer et al., 2015). Each
dataset is treated as a task.

B.2 EVALUATION METRICS

We define the Transfer, Average, and Last metrics to evaluate model performance under continual
learning scenarios. Let a(i)t represent the accuracy of the model on task t after training on task i with
a total of n tasks. The Transfer, Average, and Last metrics for task t are computed as follows:

Transfert =
1

t− 1

t−1∑
i=1

a
(i)
t , t = 2, 3, . . . , n, (14)

Averaget =
1

n

n∑
i=1

a
(i)
t , t = 1, 2, . . . , n, (15)

Lastt = a
(n)
t , t = 1, 2, . . . , n. (16)

The Transfer metric evaluates forward stability by measuring the performance of unseen tasks
throughout (i + 1, i + 2, . . . , n) after training on the task i. The Last metric measures the final
performance on each task after completing all training steps, quantifying both plasticity and back-
ward stability. The Average metric represents the mean accuracy across all time steps, offering a
holistic measure of stability and plasticity.
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B.3 IMPLEMENTATION DETAILS OF KEEPLORA+

We extend KeepLoRA with a structure variant, termed KeepLoRA+, which incorporates a prototype
vector for each class name to improve classification performance. Each prototype vector is initial-
ized using the mean feature extracted by the vision encoder from the corresponding class samples.
During the training stage, we jointly optimize the prototype vectors alongside the KeepLoRA pa-
rameters. In the inference stage, the logits derived from the similarity of the prototype vectors are
averaged with the logits calculated from the text-side contrast.

B.4 ADDITIONAL IMPLEMENTATION DETAILS

CLIP Experiments. We adopt the CLIP (Radford et al., 2021) model with a ViT-B/16 (Dosovitskiy
et al., 2021) image encoder. The training process is carried out using the AdamW (Loshchilov &
Hutter, 2019) optimizer, with a learning rate of 10−3 and a batch size of 64 across all tasks with no
more than 10 epochs. For the primary experiments, we set the hyperparameters as ϵw(vision) = 0.85
and ϵw(text) = 0.2 in vision encoder and text encoder separately and set ϵf = 0.99. KeepLoRA+ is a
structure extension variant with an extension prototype vector for a classname to help classification.
All experiments of KeepLoRA are conducted on a single NVIDIA 4090 GPU. For the reproduced
methods, we performed careful hyperparameter tuning. For O-LoRA (Wang et al., 2023a), the
learning rate is 5× 10−4 with a regularization coefficient of 0.1. For InfLoRA (Liang & Li, 2024),
the learning rate is 10−3, with ϵf = 0.99. The learning rate for SD-LoRA (Wu et al., 2025b) is set
to 5× 10−3.

LLaVA Experiments. We adopt the LLaVA-1.5-7b (Liu et al., 2023) model for multimodal contin-
ual instruction tuning experiments. The training is conducted on 4× NVIDIA H100 GPUs using the
AdamW optimizer. For the MLLM-DCL benchmark, we set the learning rate to 2× 10−5 and train
for no more than 3 epochs per task. For the UCIT benchmark, the learning rate is set to 2×10−4 for
all tasks except Flickr30k, which uses 5×10−5 and train 1 epoch for each task. The hyperparameters
for subspace constraints are configured as ϵw = 0.6 and ϵf = 0.99.

C SUPPLEMENTARY EXPERIMENTS

C.1 COMPARISON ON MTIL WITH ORDER II.

We compare different methods on MTIL in random order: StanfordCars, Food, MNIST, OxfordPet,
Flowers, SUN397, Aircraft, Caltech101, DTD, EuroSAT and CIFAR100. As shown in Tab. 6,
KeepLoRA consistently outperforms previous methods across all metrics.

C.2 HYPERPARAMETER ANALYSIS

(a) (b)

Figure 4: Effects of hyperparameters ϵw(vision) and ϵw(text) on Transfer and Last, respectively.

We examine the effects of hyperparameters ϵw(vision) and ϵw(text) on Transfer and Last. For the image
encoder, Last fluctuates slightly, with a minor decline when ϵw(vision) is larger. Between 0.75 and
0.85, Transfer shows a clear increase. For the text encoder, which uses only class names and thus
has much less training data than images, the coefficient ϵw(text) exhibits low performance sensitivity.
Datasets with image-text pairs or VQA tasks, which include substantial text data, warrant further
study in this regard.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Comparison of different continual learning methods on MTIL for each task with order-II in
terms of Transfer, Average, and Last scores (%). The best results are highlighted with bold style.

Method Inf
. Effi

cie
nc

y

w/o
Extr

a Data

Cars Foo
d

M
NIS

T

Oxfo
rdP

et

Flow
ers

Sun
39

7

Airc
raf

t

Calt
ec

h1
01

DTD
Euro

SAT

CIFA
R10

0

Avg.

Zero-shot ✓ ✓ 64.7 88.5 59.4 89.0 71.0 65.4 24.8 88.4 44.6 54.9 68.2
Transfer

LwF (Li & Hoiem, 2017) ✓ ✗ – 87.8 58.5 71.9 46.6 57.3 12.8 81.4 34.5 34.5 46.8 53.2
iCaRL (Rebuffi et al., 2017) ✓ ✗ – 86.1 51.8 67.6 50.4 57.9 11.0 72.3 31.2 32.7 48.1 50.9
LwF-VR (Ding et al., 2022) ✓ ✗ – 88.2 57.0 71.4 50.0 58.0 13.0 82.0 34.4 29.3 47.6 53.1
WiSE-FT (Wortsman et al., 2022) ✓ ✗ – 87.2 57.6 67.0 45.0 54.0 12.9 78.6 35.5 28.4 44.3 51.1
ZSCL (Zheng et al., 2023) ✓ ✗ – 88.3 57.5 84.7 68.1 64.8 21.1 88.2 45.3 55.2 68.2 64.1
O-LoRA (Wang et al., 2023a) ✓ ✓ – 87.8 56.7 90.1 71.4 64.0 20.7 87.4 43.9 46.3 65.9 63.4
InfLoRA (Liang & Li, 2024) ✓ ✓ – 88.2 56.7 90.2 71.3 65.0 22.2 88.2 43.8 47.3 67.2 64.0
SD-LoRA (Wu et al., 2025b) ✓ ✓ – 88.0 56.4 90.5 71.0 64.6 22.0 87.8 43.7 47.1 66.4 63.7
KeepLoRA ✓ ✓ – 88.7 57.7 91.2 72.1 65.8 23.4 88.8 45.4 48.5 68.2 65.0

L2P (Wang et al., 2022c) ✗ ✓ – 70.6 30.7 78.3 42.8 38.3 17.4 75.3 27.4 23.1 20.7 42.5
DualPrompt (Wang et al., 2022b) ✗ ✓ – 79.9 46.9 85.2 51.3 45.1 9.3 82.7 29.9 42.9 47.2 52.1
S-Prompts (Wang et al., 2022a) ✗ ✓ – 59.8 46.2 67.7 47.5 43.8 13.5 76.8 31.4 22.6 43.5 45.3
DIKI (Tang et al., 2024) ✗ ✓ – 85.8 59.8 89.1 71.8 62.6 24.3 93.3 42.7 46.8 67.8 64.4
MoE-Adapters (Yu et al., 2024) ✗ ✗ – 88.8 59.5 89.1 69.9 64.4 18.1 86.9 43.7 54.6 68.2 64.3
IAP (Fu et al., 2025) ✗ ✓ – 85.7 59.4 89.1 71.3 62.7 24.4 94.0 43.8 49.0 68.6 64.9
KeepLoRA+ ✗ ✓ – 89.1 58.1 90.7 72.4 65.4 24.0 88.9 44.0 52.7 70.2 65.5

Average
LwF (Li & Hoiem, 2017) ✓ ✗ 49.0 77.0 92.1 85.9 66.5 67.2 20.9 84.7 44.6 45.5 50.5 62.2
iCaRL (Rebuffi et al., 2017) ✓ ✗ 52.0 75.9 77.4 74.6 58.4 59.3 11.7 79.6 42.1 43.2 51.7 56.9
LwF-VR (Ding et al., 2022) ✓ ✗ 44.9 75.8 91.8 85.3 63.5 67.6 16.9 84.9 44.0 40.6 51.3 60.6
WiSE-FT (Wortsman et al., 2022) ✓ ✗ 52.6 79.3 91.9 83.9 63.4 65.2 23.3 83.7 45.4 40.0 48.2 61.5
ZSCL (Zheng et al., 2023) ✓ ✗ 81.7 91.3 91.9 91.0 82.9 72.5 33.6 89.7 53.3 62.8 69.9 74.6
O-LoRA (Wang et al., 2023a) ✓ ✓ 78.5 91.0 91.3 92.3 77.7 73.0 33.5 90.5 50.7 55.1 67.8 72.9
InfLoRA (Liang & Li, 2024) ✓ ✓ 84.0 92.1 91.7 93.2 81.6 74.3 34.3 91.3 51.5 56.6 69.0 74.5
SD-LoRA (Wu et al., 2025b) ✓ ✓ 76.8 91.1 90.8 92.5 76.5 73.1 34.0 90.7 49.1 56.2 68.2 72.6
KeepLoRA ✓ ✓ 85.2 92.3 92.0 93.7 84.8 74.8 35.9 91.8 53.1 57.5 70.0 75.6

L2P (Wang et al., 2022c) ✗ ✓ 80.1 87.4 86.7 89.6 76.8 59.1 27.7 79.5 39.9 34.6 26.5 62.5
DualPrompt (Wang et al., 2022b) ✗ ✓ 78.6 88.4 89.7 91.7 80.0 62.4 23.2 85.0 41.3 51.6 50.7 67.5
S-Prompts (Wang et al., 2022a) ✗ ✓ 79.2 86.5 89.5 87.0 78.2 61.5 25.5 83.6 41.9 36.3 47.2 65.1
DIKI (Tang et al., 2024) ✗ ✓ 81.9 88.9 92.1 92.8 87.7 70.3 34.3 94.2 51.5 56.1 69.5 74.5
MoE-Adapters (Yu et al., 2024) ✗ ✗ 84.9 89.9 89.3 91.4 86.2 72.2 33.4 89.4 53.3 61.4 69.9 74.7
IAP (Fu et al., 2025) ✗ ✓ 82.5 89.2 92.3 93.2 88.0 70.4 34.3 94.4 52.4 57.9 70.2 75.1
KeepLoRA+ ✗ ✓ 88.0 92.4 91.9 93.9 87.4 75.2 39.2 92.0 52.8 60.9 71.8 76.9

Last
LwF (Li & Hoiem, 2017) ✓ ✗ 34.6 69.6 99.3 88.7 61.1 72.5 32.5 88.1 65.6 90.9 87.9 71.9
iCaRL (Rebuffi et al., 2017) ✓ ✗ 46.0 81.5 91.3 82.8 66.5 72.2 16.3 91.6 68.1 83.2 87.8 71.6
LwF-VR (Ding et al., 2022) ✓ ✗ 27.4 61.2 99.4 86.3 60.6 70.7 23.4 88.0 61.3 84.3 88.1 68.2
WiSE-FT (Wortsman et al., 2022) ✓ ✗ 35.6 76.9 99.5 89.1 62.1 71.8 27.8 90.8 67.0 85.6 87.6 72.2
ZSCL (Zheng et al., 2023) ✓ ✗ 78.2 91.1 97.6 92.5 87.4 78.2 45.0 92.3 72.7 96.2 86.3 83.4
O-LoRA (Wang et al., 2023a) ✓ ✓ 70.3 89.8 97.8 92.9 73.8 79.8 44.4 95.3 66.3 91.5 85.9 80.7
InfLoRA (Liang & Li, 2024) ✓ ✓ 82.4 92.0 99.3 93.9 85.4 81.2 46.1 96.5 70.0 97.6 87.2 84.7
SD-LoRA (Wu et al., 2025b) ✓ ✓ 72.3 89.7 97.3 92.4 76.1 78.9 45.3 95.2 61.6 96.9 86.1 81.1
KeepLoRA ✓ ✓ 83.7 92.2 99.5 94.4 90.7 81.3 49.0 96.9 72.3 98.0 87.3 85.9

L2P (Wang et al., 2022c) ✗ ✓ 80.1 89.1 99.1 93.8 96.2 76.5 40.1 86.9 73.5 86.3 84.2 82.3
DualPrompt (Wang et al., 2022b) ✗ ✓ 78.6 89.3 99.2 94.1 96.5 76.8 39.8 89.0 71.6 90.7 84.9 82.8
S-Prompts (Wang et al., 2022a) ✗ ✓ 79.2 89.1 99.1 94.3 95.8 76.3 39.9 95.5 70.1 97.6 84.4 83.8
DIKI (Tang et al., 2024) ✗ ✓ 81.9 89.2 99.4 94.3 96.8 76.7 46.3 95.9 74.8 98.3 86.6 85.5
MoE-Adapters (Yu et al., 2024) ✗ ✗ 84.1 88.5 94.0 91.8 94.1 77.8 50.4 93.3 77.1 87.7 86.6 84.1
IAP (Fu et al., 2025) ✗ ✓ 82.5 88.6 99.4 94.9 97.7 76.9 46.1 96.1 74.7 98.0 86.6 85.9
KeepLoRA+ ✗ ✓ 87.4 92.5 99.3 95.0 96.0 83.2 56.9 97.5 76.9 98.0 88.0 88.2

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.3 PER-TRAINING-STEP RESULTS

We present the detailed per-training-step accuracies through all training steps in Tab. 7, 8, 9, 10,
11 and 12. These results demonstrate strong performance in terms of both learning plasticity and
stability.

Table 7: Accuracy of KeepLoRA on the MTIL benchmark with order-I. Each row represents the per-
formance on every dataset of the model trained after the corresponding task. Transfer , Average ,

and Last metrics are shown.
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Transfer 84.6 68.7 45.9 54.3 70.1 87.7 64.8 90.3 59.5 64.1 69.0

Aircraft 59.0 84.6 68.4 45.4 52.2 71.9 89.0 63.8 91.1 60.6 63.6
Caltech101 58.1 97.0 69.1 45.4 50.8 71.1 88.7 61.8 91.1 60.1 64.8
CIFAR100 56.0 96.8 87.6 46.8 56.3 68.9 87.3 66.3 90.1 59.6 64.7
DTD 55.9 96.7 87.5 75.0 57.9 69.6 87.1 64.7 90.3 59.5 64.6
EuroSAT 55.7 96.7 87.0 74.8 98.4 69.3 87.0 65.2 90.2 59.1 64.6
Flowers 55.6 97.0 86.9 74.4 98.4 93.3 86.9 65.0 90.3 59.4 64.3
Food 54.7 96.8 86.2 72.6 98.3 92.2 91.8 66.7 89.8 59.0 63.8
MNIST 54.3 96.7 85.8 72.4 98.1 91.8 91.8 99.5 89.7 59.3 63.8
OxfordPet 54.6 96.7 85.7 72.0 98.2 91.8 91.8 99.5 94.7 59.2 63.8
Cars 54.2 96.7 85.7 71.9 98.1 91.5 91.7 99.5 94.4 84.3 63.7
SUN397 53.2 96.8 85.7 71.4 98.1 90.8 91.4 99.6 94.5 83.1 82.0 86.1

Average 55.6 95.7 83.2 65.6 82.2 82.0 89.5 77.4 91.5 63.9 65.8 77.5

Table 8: Accuracy of KeepLoRA on the MTIL benchmark with order-II. Each row represents
the performance on every dataset of the model trained after the corresponding task. Transfer ,
Average , and Last metrics are shown.
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Transfer 88.7 57.7 91.2 72.1 65.8 23.4 88.8 45.4 48.5 68.2 65.0

Cars 86.2 88.7 57.1 91.3 71.7 65.5 23.5 87.4 46.6 50.7 69.5
Food 85.9 92.9 58.3 91.1 72.3 66.0 23.9 88.3 45.3 49.8 70.5
MNIST 85.8 92.8 99.6 91.2 71.9 66.2 23.0 88.6 46.4 50.4 68.1
OxfordPet 85.7 92.8 99.6 94.8 72.4 65.9 23.0 89.3 46.0 48.2 67.8
Flowers 85.6 92.8 99.6 94.8 92.4 65.7 23.0 89.3 46.2 46.9 67.5
Sun397 85.2 92.7 99.6 94.6 92.2 82.7 24.0 89.6 44.2 47.0 68.0
Aircraft 84.8 92.7 99.6 94.6 92.1 82.7 51.6 89.3 44.2 46.3 68.0
Caltech101 84.8 92.7 99.6 94.6 92.2 82.6 51.6 97.1 44.5 48.7 68.3
DTD 84.8 92.6 99.6 94.8 92.2 82.6 51.3 96.9 74.5 48.2 68.2
EuroSAT 84.6 92.7 99.6 94.6 92.1 82.2 51.1 97.0 74.5 98.6 66.6
CIFAR100 83.7 92.3 99.5 94.4 90.8 81.3 49.0 96.9 72.3 98.0 87.3 85.9

Average 85.2 92.3 92.0 93.7 84.8 74.8 35.9 91.8 53.1 57.5 70.0 75.6

USE OF LARGE LANGUAGE MODELS

We use the large language model to polish text and check grammar. All outputs were reviewed by
the authors, who take full responsibility for the final content.
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Table 9: Accuracy of KeepLoRA+ on the MTIL benchmark with order-I. Each row represents
the performance on every dataset of the model trained after the corresponding task. Transfer ,
Average , and Last metrics are shown.
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Transfer 85.9 69.9 44.6 53.7 70.9 88.9 65.4 90.8 63.0 66.1 69.9

Aircraft 59.2 85.9 69.6 44.4 54.3 72.4 89.5 62.7 91.2 63.8 64.5
Caltech101 59.2 97.5 70.2 44.3 53.3 71.4 89.5 62.7 91.4 63.8 65.1
CIFAR100 59.0 97.8 88.2 45.1 52.7 70.3 88.7 67.8 90.8 63.3 66.3
DTD 59.0 97.8 88.0 76.4 54.4 70.5 88.6 66.6 90.7 63.3 66.3
EuroSAT 58.6 97.6 87.8 76.2 98.5 70.2 88.5 66.0 91.0 63.1 66.5
Flowers 58.8 97.6 87.9 76.1 98.5 95.8 88.4 66.4 90.8 63.1 66.4
Food 58.4 97.6 87.6 76.6 98.4 95.8 92.9 65.4 90.4 62.5 66.5
MNIST 57.8 97.6 87.3 76.8 98.4 95.9 92.9 99.5 90.2 62.2 66.5
OxfordPet 57.8 97.6 87.2 76.5 98.4 95.8 92.9 99.5 94.8 62.2 66.4
Cars 57.7 97.5 87.3 76.7 98.4 95.6 92.9 99.5 94.8 87.7 66.3
SUN397 57.3 97.6 87.2 76.5 98.4 95.7 92.6 99.5 94.7 87.2 83.2 88.2

Average 58.4 96.5 84.4 67.8 82.1 84.5 90.7 77.8 91.9 67.5 67.6 79.0

Table 10: Accuracy of KeepLoRA+ on the MTIL benchmark with order-II. Each row represents
the performance on every dataset of the model trained after the corresponding task. Transfer ,
Average , and Last metrics are shown.
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Transfer 89.1 58.1 90.7 72.4 65.4 24.0 88.9 44.0 52.7 70.2 65.5

Cars 88.4 89.1 58.9 91.6 72.3 65.3 24.2 88.0 44.8 53.9 70.1
Food 88.3 92.8 57.2 90.1 72.4 65.4 24.2 88.5 44.5 52.5 70.8
MNIST 88.1 92.8 99.4 90.4 72.1 65.5 24.1 88.5 44.4 52.9 70.1
OxfordPet 88.3 92.7 99.4 95.2 72.8 65.3 24.1 88.7 44.2 52.2 70.2
Flowers 88.3 92.8 99.5 95.2 96.1 65.3 23.9 88.7 44.4 51.7 69.9
Sun397 87.9 92.7 99.4 95.0 96.1 83.5 23.6 89.9 43.4 52.8 70.2
Aircraft 87.9 92.7 99.4 95.0 96.1 83.5 57.8 90.1 43.1 52.8 70.2
Caltech101 87.7 92.7 99.4 95.0 96.0 83.5 57.5 97.4 43.0 52.6 70.4
DTD 87.7 92.7 99.4 95.1 96.0 83.4 57.4 97.4 76.3 52.7 70.1
EuroSAT 87.6 92.7 99.5 95.0 95.9 83.4 57.2 97.4 76.3 98.3 70.3
CIFAR100 87.4 92.5 99.3 95.0 96.0 83.3 56.9 97.5 76.9 98.0 88.0 88.2

Average 88.0 92.4 91.9 93.9 87.4 75.2 39.2 92.0 52.8 60.9 71.8 76.9
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Table 11: Accuracy of LoRA-FT, O-LoRA, CL-MoE, SEFE, KeepLoRA on the MLLM-DCL
benchmark. Each row represents the performance on every dataset of the model trained after the
corresponding task. Transfer , Average , and Last metrics are shown.

(a) LoRA-FT

Sen
sin

g

M
ed

ica
l

Driv
ing

Scie
nc

e

Fina
nc

e

Transfer 28.1 17.4 34.0 50.2 32.4

Sensing 78.8 28.1 17.3 34.8 55.6
Medical 75.5 58.4 17.5 32.7 54.8
Driving 70.0 47.5 52.3 34.6 40.9
Science 73.2 46.4 40.6 50.4 49.5
Finance 69.3 44.3 29.1 41.4 88.4 54.5

Average 73.3 44.9 31.4 38.8 57.8 49.3

(b) O-LoRA
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Transfer 28.4 18.4 33.7 52.5 33.3

Sensing 79.4 28.4 17.6 34.9 56.1
Medical 74.3 58.5 19.2 33.2 56.0
Driving 74.7 48.3 52.6 33.1 45.2
Science 74.6 46.5 42.2 50.1 52.8
Finance 72.3 46.9 31.6 41.5 88.1 56.1

Average 75.0 45.7 32.6 38.5 59.6 50.3

(c) CL-MoE
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Transfer 28.3 19.4 34.1 48.6 32.6

Sensing 79.4 28.3 18.7 35.2 56.4
Medical 74.8 60.7 20.1 32.4 54.9
Driving 74.0 44.3 52.1 34.7 39.6
Science 71.0 47.4 40.0 50.7 43.3
Finance 71.8 47.4 29.5 41.5 89.2 55.9

Average 74.2 45.6 32.1 38.9 56.7 49.5

(d) SEFE
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Transfer 28.1 19.6 33.9 52.4 33.5

Sensing 78.8 28.1 18.6 35.1 56.2
Medical 77.1 59.5 20.7 33.0 55.7
Driving 77.8 51.6 52.5 33.5 47.4
Science 77.9 48.4 44.7 50.4 50.1
Finance 77.1 50.9 40.3 43.0 88.4 59.9

Average 77.7 47.7 35.4 39.0 59.6 51.9

(e) KeepLoRA
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Transfer 28.5 16.6 34.1 55.6 33.7

Sensing 80.0 28.5 17.0 35.1 55.1
Medical 79.9 58.6 16.3 33.7 55.6
Driving 79.8 57.7 53.1 33.7 54.6
Science 79.2 54.9 51.1 51.6 57.2
Finance 78.8 54.3 50.2 49.5 89.3 64.4

Average 79.6 50.8 37.5 40.7 62.4 54.2
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Table 12: Accuracy of LoRA-FT, O-LoRA, CL-MoE, SEFE, KeepLoRA on the UCIT benchmark.
Each row represents the performance on every dataset of the model trained after the corresponding
task. Transfer , Average , and Last metrics are shown.

(a) LoRA-FT
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Transfer 52.6 18.3 6.0 17.0 40.3 26.8

ImgNet-R 91.7 52.6 23.5 11.8 17.2 36.5
ArxivQA 90.5 92.1 13.1 2.1 14.2 21.5
VizWiz 73.6 90.7 61.0 4.2 19.0 49.7
IconQA 72.7 77.1 53.7 79.7 17.4 47.8
CLEVR 68.8 77.4 52.3 67.8 77.9 46.1
Flickr30k 58.6 76.7 45.7 67.4 61.6 58.0 61.4

Average 76.0 77.8 41.6 38.8 34.6 43.3 52.0

(b) O-LoRA

Im
gN

et-
R

Arxi
vQ

A

VizW
iz

Ico
nQ

A

CLEVR

Flic
kr3

0k

Transfer 52.9 19.6 4.4 16.9 41.0 27.0

ImgNet-R 91.5 52.9 24.7 13.3 17.3 36.5
ArxivQA 89.7 94.2 14.5 0.0 12.9 25.0
VizWiz 80.9 91.7 59.8 0.0 19.6 49.0
IconQA 80.2 80.3 54.5 75.9 17.6 48.6
CLEVR 78.1 80.4 51.6 63.2 72.4 46.0
Flickr30k 74.2 80.9 45.3 62.9 63.8 57.2 64.1

Average 82.4 80.1 41.7 35.9 33.9 43.7 53.0

(c) CL-MoE
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Transfer 52.0 19.3 7.4 17.8 41.3 27.6

ImgNet-R 91.2 52.0 23.9 5.2 15.6 36.9
ArxivQA 89.2 92.5 14.8 10.0 15.7 26.2
VizWiz 77.2 90.7 60.4 6.9 20.6 49.5
IconQA 79.5 76.2 51.0 54.7 19.4 47.9
CLEVR 76.7 75.4 48.1 52.6 73.0 45.9
Flickr30k 61.2 75.8 44.4 52.6 54.4 57.3 58.6

Average 80.2 77.1 40.4 30.3 33.1 44.0 50.9

(d) SEFE
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Transfer 53.3 18.7 7.5 17.0 40.9 27.5

ImgNet-R 91.6 53.3 23.7 12.1 16.9 36.4
ArxivQA 90.4 92.8 13.7 5.0 16.4 21.1
VizWiz 83.6 89.3 61.4 5.3 18.6 49.8
IconQA 84.3 78.1 57.4 79.6 16.2 50.6
CLEVR 82.8 78.6 54.2 70.6 75.0 46.5
Flickr30k 80.2 79.1 47.1 69.4 65.7 57.3 66.5

Average 85.5 78.6 42.9 40.3 34.8 43.6 54.3

(e) KeepLoRA
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Transfer 52.8 20.4 9.2 18.1 41.5 28.4

ImgNet-R 91.5 52.8 25.6 13.4 17.1 36.7
ArxivQA 90.4 94.5 15.2 4.0 17.2 21.5
VizWiz 85.5 92.4 61.5 10.1 21.0 50.6
IconQA 85.1 86.0 55.7 76.9 17.1 50.9
CLEVR 84.1 89.3 51.5 68.3 72.6 47.8
Flickr30k 82.4 86.7 46.6 67.8 66.4 57.2 67.8

Average 86.5 83.6 42.7 40.1 35.2 44.1 55.4
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