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ABSTRACT

Continual learning for pre-trained vision-language models requires balancing
three competing objectives: retaining pre-trained knowledge, preserving knowl-
edge from a sequence of learned tasks, and maintaining the plasticity to ac-
quire new knowledge. This paper presents a simple but effective approach called
KeepLoRA to effectively balance these objectives. We first analyze the knowl-
edge retention mechanism within the model parameter space and find that gen-
eral knowledge is mainly encoded in the principal subspace, while task-specific
knowledge is encoded in the residual subspace. Motivated by this finding,
KeepLoRA learns new tasks by restricting LoORA parameter updates in the residual
subspace to prevent interfering with previously learned capabilities. Specifically,
we infuse knowledge for a new task by projecting its gradient onto a subspace
orthogonal to both the principal subspace of pre-trained model and the dominant
directions of previous task features. Our theoretical and empirical analyses con-
firm that KeepLoRA balances the three objectives and achieves state-of-the-art
performance. The source code is available in the supplementary material.

1 INTRODUCTION
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Figure 1: Analysis of model parameter subspaces and overall CL performance. In Fig. |lajand
we measure zero-shot performance after reconstructing attention weights using only the top prin-
cipal singular components. While performance on general-domain datasets remains highly robust,
performance on most specific-domain datasets degrades sharply as more low-energy components
are removed. In Fig. the Last metric measures the accuracy gain on the final learned task relative
to a zero-shot baseline, while Transfer measures the accuracy degradation on unseen tasks.

Vision-language models (VLMs) have demonstrated remarkable zero-shot transfer capabilities,
making them cornerstones of many downstream applications (Comanici et al., 2025} [Achiam et al.}
[2023};[Radford et al.,[2021). Despite this success, their performance on certain datasets can be insuf-
ficient, motivating the need for continual learning (CL). An effective CL method requires balance of
three competing objectives: maintaining the ability to learn new knowledge (plasticity), preventing
the forgetting of previously learned tasks (backward stability), and crucially, preserving the general
pre-trained knowledge that guarantees general transferability (forward stability)
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Table 1: Comparison of LoRA-based approaches to continual learning. When learning the ¢-th
task, O-LoRA regularizes the down-projection matrix to be orthogonal to that of previous tasks
to improve stability; InfLoRA constrains the optimization of task features H; to be orthogonal to
previous dominant directions M;_; to jointly improve plasticity and stability; SD-LoRA optimizes

a decoupled LoRA to improve stability and re-scales the magnitudes {ai}f;i of parameters from
previous tasks to improve plasticity. By contrast, our method constrains optimization to a subspace
orthogonal to both the principal weight subspace W), and previous task directions M;_; to preserve
stability, and initializes the update in an optimal gradient space derived from G to boost plasticity.

Method Initialization Training Objective
LoRA A LoRA B

O-LoRA (Wang et al.|2023a) A < N (0,02) B+« 0 Las(As, By) + Y00 [|A] Al

= . . USV'T =8VD(H, - M,_ M, H,)
InfLoRA (Liang & Lil[2024) 47" U, Bo Las(B)
SD-LoRA (Wu etal.|2025b) A« N (0,02) B+ 0 Las({ai )2}, A By)

. SVD(G; — W,W.) Gy — M,_ M, |G

KeepLoRA (This paper) A (—(U: P pB ; STV,iTl t-1G1) Leas(By)

2024; Zheng et al. 2023). Degradation of this pre-trained knowledge is particularly detrimental, as
it erodes the core value of VLMs. Therefore, the central challenge is how to learn new knowledge
effectively without undermining these critical stability constraints.

A straightforward solution, replaying pre-training data, is rarely viable due to prohibitive computa-
tional costs and the frequent unavailability of proprietary training corpora (Wang et al., [2024; Zhou
et al.| [2024; Rolnick et al., [2019). The current alternatives largely follow two paths. The first is
(i) reference-data regularization, which uses reference data to anchor the model parameters and
retain stability (Wu et al.l 2025a; Zheng et al.l 2023). However, the success of these approaches
is highly sensitive to the choice of reference data with additional training costs (Luo et al., 2025
Zheng et al., |2023)). The second path involves (ii) architecture extension, such as prompt-pool (Fu
et al.,|2025; Wang et al., 2022b)) or MoE-adapters (Yu et al.,|2024; |Dou et al.,|2024) while freezing
the model backbone. Although effective in preventing forgetting, these modules increase inference
costs (Nayak et al.l 2025) and complicate the deployment (Cai et al.l [2025}; [Zadouri et al.| [2023]).
Since trained weights are compact representations of data (Deletang et al., 2024} [Franceschelli et al.}
2024), an ideal CL method should infuse new knowledge directly into the existing parameter space,
leveraging its inherent redundancy rather than accumulating external modules (Sharma et al.l[2024).

To identify where new knowledge can be infused without disrupting existing abilities, we analyze
the parameter space of the backbone attention weights via singular value decomposition (SVD). As
shown in Fig. |laland our analysis reveals that the principal subspace, spanned by components
with large singular values, predominantly encodes general knowledge, while the residual subspace,
associated with small singular values, encodes domain-specific knowledge. This observation in-
dicates that performance on specialized datasets is highly sensitive to alterations in the residual
subspace, whereas general datasets remain robust to such changes. This insight forms the basis of
our approach: to coherently achieve forward stability, backward stability, and plasticity, CL updates
should be constrained to the residual subspace, enabling the acquisition of new domain-specific
knowledge without affecting the principal subspace that encodes general knowledge.

We implement our subspace-constrained updates using low-rank adaptation, a parameter-efficient
method whose updates can be merged into the original weights post-training, thus incurring no
inference overhead. Existing low-rank CL methods, such as O-LoRA (Wang et al.,2023a)), InfLoRA
(Liang & Lil [2024), and SD-LoRA (Wu et al., 2025b), lack considering the transfer ability of pre-
trained model and update directions within suboptimal subspaces, which limit their plasticity and
stability as shown in Tab.[T] To overcome this, we initialize the low-rank update using the gradient
from the first training step. This ensures that the update direction closely approximates the full-
parameter tuning gradient to boost plasticity. To keep stability, we explicitly project this update
into the residual subspace of the pre-trained weights. This constrains learning to directions that
do not interfere with the model’s core transferable knowledge. Building on this, we construct a
unified principal subspace that stores both the principal subspace of the model parameters and the
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dominant feature directions of each learned task. The unified principal subspace, with a size not
exceeding the square of the feature dimension, effectively preserves both pre-trained and newly
acquired knowledge.

Our contributions are summarized as follows:

* We empirically analyze the parameter space of pre-trained models and find that general
knowledge is primarily encoded in the parameter principal subspace, while domain-specific
adaptations are better captured by the residual subspace.

* We propose KeepLoRA, a novel method that leverages residual subspace constraints for
parameter updates, validated by theoretical analysis showing how it optimally balances
plasticity and stability through orthogonal projections.

» Experiments on dual-encoder (CLIP) and encoder-decoder (LLaVA) models validate that
KeepLoRA effectively balances the three core challenges of plasticity, backward stability,
and forward stability, establishing new state-of-the-art results on benchmark datasets.

2 RELATED WORKS

In continual learning, forward stability is typically preserved using reference-data regularization and
architecture extension techniques. In addition, gradient projection methods are commonly employed
to address backward stability and plasticity. In this section, we review these lines of work.

Reference-Data Regularization. Continual learning on narrow task distributions can cause the
model feature space to collapse, degrading its pre-trained zero-shot transfer capabilities (Zheng
et al.,2023)). Reference-data methods aim to counteract this by anchoring the model representations.
ZSCL (Zheng et al., [2023)) uses the ImageNet (Deng et al.,[2009) and Conceptual Captions (Sharma
et al.,|2018) datasets as reference data, employing distillation to preserve the feature space structure.
However, the effectiveness of this approach is sensitive to the choice of reference data and the teacher
model, with performance degrading when fewer images or classes are used (Zheng et al., 2023). Yu
et al.| (2024) propose MoE-Adapters by training a selector on the TinyImageNet (Deng et al., [2009)
dataset to identify out-of-distribution data, which is then processed by the original frozen model.
Wu et al.| (2025a) leverage the generative model Stable Diffusion (Rombach et al.| [2022)) to create
synthetic reference data for distillation. These methods inherently increase computational overhead
and depend on external reference data, limiting their practical feasibility.

Architecture Extension. Architecture extension methods freeze the pre-trained model and extend
it with new parameters for each task. L2P (Wang et al., [2022c) selects the most relevant prompts
from a prompt pool, while DualPrompt (Wang et al., 2022b) uses explicitly task-sharing and task-
specific prompts. CODA-Prompt (Smith et al.,2023)) proposes end-to-end prompt selection methods
to increase plasticity. MoE-Adapters (Yu et al., 2024) inserts a mixture of adapters into the image
encoder, activating a subset for each task. DIKI (Tang et al., 2024)) calibrates knowledge integra-
tion by determining the likelihood that a test sample belongs to a learned task. IAP (Fu et al.,
2025) introduces Instance-Aware Gated Prompting to further improve the effectiveness of prompt
selection. However, these methods cannot entirely avoid parameter selection errors or suboptimal
activation coefficients. Moreover, this approach of adding external parameters does not truly infuse
new knowledge into the base model.

Gradient Projection. Gradient projection methods mitigate catastrophic forgetting by constrain-
ing parameter updates into specific subspaces, thereby preventing interference with previously ac-
quired knowledge (Qiao et al., 2024). In the context of full fine-tuning, methods such as Gradient
Projection Memory (GPM) (Saha et al.l|2021) enforce orthogonality between the gradients of a new
task and a stored basis of principal gradient directions from previous tasks. To improve the effi-
ciency of full fine-tuning, CoSo (Cheng et al.|[2025) utilizes Task-Specific Subspace Estimation and
updates an orthogonal basis matrix. This thought has also been adapted to parameter-efficient tech-
niques. For example, O-LoRA (Wang et al.l 2023a)) constrains the LoRA subspaces of new tasks to
be orthogonal to those of previous tasks, ensuring that learning occurs in novel directions. InfLoRA
(Liang & Li, [2024])) applies a constraint where the LoRA down-projection matrix A is orthogonal to
GPM (Saha et al., 2021) or DualGPM (Liang & Li,|2023) to prevent interference. However, these
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existing methods primarily focus on mitigating backward forgetting, the loss of knowledge from
previously learned sequential tasks. They do not explicitly address or analysis the preservation of
general pre-trained knowledge, which is crucial for maintaining the model’s general transferability
and preventing forward forgetting.

3 METHOD

3.1 PRELIMINARY

Problem Formulation. We adopt the multi-domain task incremental learning (MTIL) setting
(Zheng et al., [2023), where the model encounters a sequence of n tasks {Tl, N ,7"}. Each
task 7" = (D*,C") fori € {1,2,...,n} comprises a dataset D" and corresponding class vocabulary
C'. The dataset D' = {(w;, y;)};vz‘l contains NV; training examples, where each &} denotes an input
image and y; represents the corresponding one-hot encoded ground truth label. The class vocabulary
Ct = {c; ;”:1 establishes the mapping between categorical labels and semantic class names, with

m; denoting the total number of distinct classes for task T*. During inference, the model classifies
an input image « within C*. The goal of continual learning is to maintain performance on pre-trained
knowledge and all previously encountered tasks while adapting to new ones.

Vanilla LoRA. Low-rank adaptation (LoRA) (Hu et al.|, 2022) decomposes weight updates into two
low-rank matrices A € R%*" and B € R"*%u«, where r < min(diy, doy). During training, W
remains frozen while only A and B are fine-tuned. The matrices are initialized with A ~ N(0, 0?)
and B = 0. For input € R%, the forward pass becomes:

y=a(W+>AB) (1)

where « is a scaling factor.

3.2 KEEPLORA: GRADIENT PROJECTION ADAPTATION

Continual learning for pre-trained vision-language models demands a balance between plasticity, the
ability to acquire new knowledge, and learning stability, which comprises both forward stability to
preserve general pre-trained knowledge and backward stability to retain knowledge from previously
learned tasks. To address this problem, we propose KeepLoRA, a method built upon LoRA that
employs residual subspace constraints to unify stability preservation and new knowledge infusion.

Stability: Preserving Pre-trained and Previous Task Knowledge. KeepLoRA retains stability
by projecting the subspaces of pre-trained knowledge and previous task knowledge onto a unified
principal subspace. Subsequent adaptations for new tasks are then confined to the residual subspace
orthogonal to this principal subspace, thereby minimizing interference with the learned knowledge.

Pre-trained Knowledge Subspace: We analyze the parameters of the pre-trained model to under-
stand how the model stores general knowledge. Specifically, we decompose each weight matrix
W € R%n*dout requiring updates via singular value decomposition (SVD) as W = USV " The
decomposition produces a subspace W, = U. 1., and the subspace is constrained such that:

IW,l|% = el W% )
where ¢, € (0, 1) controls the energy ratio retained in W,,.

Previous Task Knowledge Subspace: To mitigate forgetting of learned tasks, the LoRA module
updating matrix W for new tasks should minimize interference with features from previous tasks.
Specifically, our goal is to make Y = LoRA;(X) as close to 0 as possible for any input X from
previous tasks {7; f;i Since no real or synthetic samples from previous tasks are available for
replay, we propose to extract the dominant singular vectors of previous tasks as the dominant feature
directions. This approach enables us to continuously compress task-specific information and enforce
matrix A to be orthogonal to the dominant singular vectors on LoRA initialization. After training
for task ¢, we extract and store the dominant feature directions for this task. These directions are
chosen to be orthogonal to the subspace jointly defined by the principal weights and the dominant
feature directions of all £ — 1 tasks. We then define the feature space for the ¢-th task as:

X=X, - W,WX, - M, 1M, X, 3)
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where M;_; € R%n*F represents the accumulated direction matrix containing the dominant singu-
lar vectors from tasks {1,2,...,t—1}, and k denotes the total number of stored singular vectors. We
initialize My = () as an empty matrix. The number of stored vectors & is dynamically determined
by an energy threshold ey € (0,1). Specifically, we retain the minimum number %k of dominant
directions required to satisfy:

1 Xel 3+ W, W, Xl + [ My ML Xl |3 > 64| X[ )

We perform SVD on the features X + = USy VtT and extract the top-m dominant singular vectors
to update our subspace matrix: My = [M;_1, Vy(. 1.mm)], Where m is determined by a threshold €.

Unified Principal Subspace. Since both W), and M; consist of orthogonal direction vectors op-
erating within the same d;,,-dimensional feature space, and the total number of orthogonal vec-
tors is upper-bounded by d;,,, we can mathematically unify them into a single projection subspace:
M, = [W,,, M]. The unified subspace leverages the theoretical foundation that predictive models
can be transformed into lossless compressors (Deletang et al., 2024)) and model weights embody a
compressed representation of the training data (Franceschelli et al [2024). Under this perspective,
W,, captures the essential feature representation space of the pre-training data, while M, preserves
the dominant feature directions during continual learning. Both components represent compressed
knowledge from their respective data distributions.

To ensure the new ¢-th task updates never interfere M,_,, KeepLoRA achieves this through a modi-

fied LoRA approach, where matrix A is initialized within {Mt/f1 } and frozen throughout training,
while only B is optimized.

Plasticity: Gradient-Informed LoRA Initialization in Residual Subspace. While the unified
principal subspace ensures learning stability, KeepLoRA also requires maintaining plasticity to
adapt to new tasks. We achieve it by initializing the LoORA module using task-specific gradient in-
formation, aligning adaptation directions with full fine-tuning while confining updates to { M/ _, }+.
Specially, we utilize gradient information to guide the initialization within the constrained residual
space. Let Gy = Vyw L(W; D) denotes the gradient of the weight matrix W of the ¢-th task at the
first training step. We project this gradient onto the residual subspace:

~ T T
G = Gy — Wpr Gy — Mt—lMt_1Gt o)
N
plasticity forward and backward stability

We perform SVD on the projected gradient G = USV" and initialize the LoORA matrices with
top-r singular vectors as:

AU B=SuV3, ©

where U. 1., denotes the first  columns of U, and r is the rank parameter. This gradient-informed
initialization directly simulates the update direction of full fine-tuning while operating within the
residual subspace, enabling effective adaptation without undermining these critical stability con-
straints. Since the initial product & AB is non-zero, the frozen parameter W can be adjusted to
maintain the initial parameter values unchanged. Specifically, we replace the original parameter W
with W’ = W — 2 AB to ensure that the initial forward pass behavior remains identical with the
initial model. Algorithm [I|summarizes the proposed KeepLoRA method.

Algorithm 1 KeepLoRA for Continual Learning

1: Input: Pre-trained model f, with updatable parameters { B;}, task sequence {7*}7 ,, hyper-
parameters €,,, €5, 1, &

: Output: Updated model fyp- with merged LoRA adapters

: fortaskt =1ton do
Initialize KeepLoRA through Eq. [5|and Eq. [6]
Replace the parameter W with the modified frozen parameter W' = W — 2 A, B,
Compute the loss and optimize the KeepLoRA parameters By
Merge KeepLoRA and current model by W = W' + 2 A, B,
Extract dominant feature directions through Eq.[3|and Eq. 4]

end for

VRN R




Under review as a conference paper at ICLR 2026

3.3 DISCUSSION OF KEEPLORA

Eq.[5|and Eq.[gserve as the core formulas of KeepLoRA, enabling its balance of plasticity and stabil-
ity: G, enhances plasticity by identifying new task adaptation directions, while the subtracted terms
remove gradients that interfere with pre-trained and previous task knowledge, ensuring stability. To
verify these core designs, we first establish the equivalence between KeepLoRA parameter update
rule and gradient projection learning, defining the necessary properties of the subspace spanned by
A;. We then demonstrate that the initialization of A; meets these properties.

Analyzes of Frozen A; LoRA Updates. The KeepLoRA parameter update method involves freez-
ing A; and optimizing only B,. The following proposition demonstrates that this update rule is
equivalent to gradient descent constrained within the subspace span(A;).

Proposition 3.1. (LoRA with frozen down-projection Ay is equivalent to gradient projection up-
date.) Let L(W; D") denote the loss function for the t-th task T*, where: W = W' + 2 A, B,
G; = Vw L(W ;D). Optimizing only B; through gradient descent with learning rate 1 is equiva-
lent to performing gradient descent on the orthogonal projection of G onto span(A;). The weight
update of W satisfies:

AW = %AtABt = —cAA] Gy, 7

2
where ¢ = "I is a positive constant integrating the learning rate and LoRA scaling effects.

Remark. Proposition [3.1] reveals that frozen A, updates are inherently subspace constrained: all
changes to W are confined to span(A;), as A; A, acts as an orthogonal projection operator on
this subspace. Furthermore, span(A;) requires satisfying the following two properties in continual
learning: (i) Orthogonal to knowledge subspaces: span(A;) need to be orthogonal to subspaces en-
coding pre-trained knowledge and previously learned tasks, ensuring updates to W do not interfere
with existing knowledge, preventing both forward and backward forgetting. (ii) Adaptation to the
current task: span(A;) needs to capture the dominant directions of G, approximating the gradient

of full-parameter fine-tuning to maintain plasticity.

Validation of KeepLoRA A; Initialization. The preceding proposition outlines the required prop-
erties of span(A;). The key question is whether the KeepLoRA initialization of A; meets the two
properties. We validate it by connecting the initialization to a constrained optimization problem.

Proposition 3.2. KeepLoRA initialization of A, through Eq. 3| and Eq. [0] is the solution to the
following constrained optimization problem:
min |G, — A, A Gif3,
AT A=1
s.t WPTAt = M)f—ElAt = 0,

(®)

where G is the current task gradient w.r.t. the base model W, W, is the principal subspace of
pre-trained parameters, and M, _1 is the dominant feature directions from previous tasks.

Remark. Proposition [3.2]directly connects KeepLoRA's initialization technique to the two proper-
ties of Proposition verifying its optimality: (i) Satisfying orthogonality (via constraints): The
equality constraints Wl A, = 0 and M," ; A; = 0 explicitly enforce span(A;) L span(W,) and
span(A;) L span(M;_1). It guarantees that span(A;) is orthogonal to both the principal subspace
of the model parameters and the dominant feature directions to preserve stability. (ii) Optimal adap-
tation (via objective): The objective function minimizes the Frobenius norm of G; — AtAl;r Gy, the
residual component of G that lies outside span(A;). By the Pythagorean theorem for the Frobenius
norms (||G¢||% = || A:A] Gi||% + |Gt — A; A G,||%), minimizing this residual is equivalent to
maximizing the norm of the projected gradient A; A G. It ensures span(A;) captures the domi-
nant gradient directions for the current task, preserving plasticity.

In summary, Propositions [3.1] and [3.2] form a complete theoretical loop: Proposition [3.1] defines
the necessary properties of span(A;) for stable-plastic continual learning. Proposition further
proves that the initialization technique of A; in KeepLoRA is aligned with these properties, which
ensures that span(A;) is orthogonal to the principal subspace of the model parameters W,, and
dominant feature directions of each learned task M;_; to maintain stability, while being adaptive to
the current task gradient to improve plasticity.
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Table 2: Comparison of different methods on MTIL for each classification task in terms of Transfer,
Average, and Last scores (%). The best results are in bold.

‘b.\‘b'
> D X
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T K Y LSS
Method P OO K K o7 O S Avs
Zero-shot v 248 88.4 68.2 44.6 549 71.0 88.5 594 89.0 64.7 654
Transfer

- 745 569 39.1 51.1 526 72.8 60.6 75.1 30.3 559 56.9
— 56.6 44.6 32.7 393 46.6 68.0 46.0 774 319 60.5 50.4
- 771 61.0 40.5 453 544 74.6 479 76.7 363 58.6 57.2
— 735 556 35.6 415 47.0 68.3 539 69.3 268 519 523
- 86.0 674 454 50.4 69.1 87.6 61.8 86.8 60.1 66.8 68.1
— 80.8 68.0 44.5 49.8 67.5 86.7 59.3 88.7 56.1 63.6 66.5
— 843 674 443 50.6 682 87.1 62.7 88.7 57.8 62.8 67.4
- 823 67.5 444 51.0 679 87.2 61.1 884 582 634 67.1
— 84.6 68.7 459 543 70.1 87.7 64.8 90.3 59.5 64.1 69.0

-  65.6 509 304 41.4 493 71.8 363 77.5 553 534 532
— 56.77 514 28.7 33.7 45.6 709 59.5 77.7 49.5 504 524
- 673 494 26.7 39.7 47.1 70.2 343 78.9 56.7 522 522
- 929 69.1 432 439 654 853 56.0 884 64.0 65.6 67.4
- 879 682 444 499 70.7 88.7 59.7 89.1 64.5 65.5 68.9
—  93.0 68.7 44.0 47.0 704 859 63.5 89.7 66.2 63.3 69.2
— 859 699 44.6 53.7 70.9 88.9 654 90.8 63.0 66.1 69.9

LwF (Li & Hoiem|[2017)
1CaRL (Rebuffi et al| 2017)
LwWEF-VR (Ding et a1}[2022)
WIiSE-FT (Wortsman et al.| 2022)
ZSCL (Zheng et al.}|2023)
O-LoRA (Wang et al.| 2023a)
InfLORA (Liang & Li|[2024)
SD-LoRA (Wu et al|[2025b)
KeepLoRA

L2P (Wang et a1}[2022¢)
DualPrompt (Wang et al.,2022b)
S-Prompts (Wang et al}2022a)
DIKI (Tang et al.}|2024)
MoE-Adapters (Yu et al}[2024)
TAP (Fu et alf[2025)
KeepLoRA+

Average
LwF (Li & Hoiem|[2017)
1CaRL (Rebuffi et al.|2017)
LWEF-VR (Ding et a1}[2022)
WISE—FT (Wortsman et al.|[2022)
ZSCL (zheng et al.}[2023)
O-LoRA (Wang et al.|[2023a)
InfLORA (Liang & Lil 2024)
SD-LoRA (Wu et al[2025b)
KeepLoRA

36.3 86.9 72.0 59.0 73.7 60.0 73.6 74.8 80.0 37.3 58.1 64.7
355 89.2 722 60.6 68.8 70.0 782 62.3 81.8 41.2 62.5 65.7
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26.7 86.5 64.3 57.1 657 58.7 71.1 70.5 75.8 36.9 54.6 60.7
45.1 92.0 80.1 643 79.5 81.6 89.6 752 88.9 64.7 68.0 75.4
39.8 93.2 783 61.7 789 763 88.5 739 90.1 60.2 652 73.3
53.6 95.6 82.8 65.0 80.9 79.6 89.1 76.1 90.2 623 64.5 76.3
36.7 92.2 80.2 559 775 732 89.2 749 89.8 62.5 65.0 72.5
55.6 95.7 83.2 65.6 82.2 82.0 89.5 77.4 91.5 63.9 65.8 77.5

38.0 852 78.2 61.3 72.9 74.9 79.7 59.1 82.0 59.7 554 67.9
37.8 843 78.6 60.1 71.1 73.2 79.1 73.9 82.3 55.1 52.8 68.0
37.5 92.5 77.5 582 764 74.1 78.8 57.9 83.0 60.8 544 68.3
45.4 957 83.0 65.0 782 82.5 87.1 71.7 90.0 672 66.6 75.7
502 91.9 83.1 69.4 78.9 84.0 89.1 73.7 89.3 67.7 66.9 76.7
459 95.8 83.3 66.5 79.5 84.8 87.5 76.6 91.0 69.2 64.5 76.8
58.4 96.5 84.4 67.8 82.1 84.5 90.7 77.8 91.9 67.5 67.6 79.0

L2P (Wang et al.}|2022c)
DualPrompt (Wang et a1} 2022b)
S-Prompts (wang et al|[2022a)
DIKI (Tang et al.}|2024)
MoE-Adapters (Yu et al}[2024)
IAP (Fuetal|2025)
KeepLoRA+

N R N N N N N AN

Last
LwF (Li & Hoiem|[2017)
1CaRL (Rebufii et al| 2017)
LWF-VR (Ding et al.}2022)
WiSE-FT (Wortsman et al.}[2022)
ZSCL (Zheng et al.||2023)
O-LoRA (Wang et al.||2023a)
InfLoRA (Liang & Lil2024)
SD-LoRA (Wu et al|2025b)
KeepLoRA

26.3 87.5 719 66.6 79.9 66.9 83.8 99.6 92.1 66.1 80.4 74.6
358 93.0 77.0 70.2 83.3 88.5 90.4 86.7 93.2 81.2 81.9 80.1
20.5 89.8 723 67.6 85.5 73.8 85.7 99.6 93.1 73.3 80.9 76.6
27.2 90.8 68.0 68.9 86.9 74.0 87.6 99.6 92.6 77.8 81.3 77.7
40.6 922 81.3 70.5 94.8 90.5 91.9 98.7 93.9 85.3 80.2 83.6
314 91.8 75.7 61.1 89.0 76.0 88.9 99.1 923 74.8 81.3 78.3
51.1 96.5 85.1 70.7 98.1 87.7 91.3 99.4 94.2 82.0 81.4 85.2
31.1 92.3 79.8 57.4 88.7 76.1 90.6 99.0 92.9 81.3 81.6 79.2
53.2 96.8 85.7 71.4 98.1 90.8 91.4 99.6 94.5 83.1 82.0 86.1

38.0 87.1 84.2 729 86.0 96.1 89.2 99.0 94.1 79.6 76.0 82.0
37.8 87.1 84.6 71.8 89.2 96.3 89.1 99.1 94.5 79.9 76.5 823
37.5 95.1 83.7 702 97.5 96.5 89.0 99.1 94.0 79.5 75.8 834
454 959 86.0 73.0 97.8 96.8 89.3 99.3 944 81.8 764 85.1
49.8 922 86.1 78.1 95.7 943 89.5 98.1 89.9 81.6 80.0 85.0
46.8 96.1 86.7 752 98.1 97.0 89.6 99.4 94.7 82.8 76.7 85.7
57.3 97.6 87.2 76.5 98.4 957 92.6 99.5 94.7 87.2 83.2 88.2

L2P (Wang et al.|[2022¢)
DualPrompt (Wang et al. 2022b)
S—PI'OI'IlptS (Wang et al.|[2022a)
DIKI (Tang et al.}[2024)
MoE-Adapters (yu et al|[2024)
TAP (Fu et al | 2025)
KeepLoRA+
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4 EXPERIMENTS

We conduct experiments on various benchmarks to validate the effectiveness of KeepLoRA in bal-
ancing three core objectives of continual learning: forward stability, backward stability, and plas-
ticity. (i) To quantify forward forgetting, we calculate the average accuracy on tasks t + 1,....,n
after training on task ¢, which is defined as the Transfer metric, presented in Tab. 2] B]and 4] Fig.
further analyzes how KeepLoRA maintains the transferability. (ii) The Last metric, shown in Tab.
[3|and [4] assesses model performance after continual training has completed, capturing both plas-
ticity and backward stability. (iii) To further analyze plasticity, Fig. 2] compares our method with
an unconstrained LoRA, demonstrating that KeepLoRA preserves stability with minimal sacrifice
to its adaptive capability. The Average metric represents the mean accuracy across all learned tasks,
offering a holistic measure of the balance between stability and plasticity.

4.1 MAIN RESULTS

‘We evaluate our method on the dual-encoder model CLIP (Radford et al.,2021) and encoder-decoder
model LLaVA (Liu et al.,|2023)). For CLIP, the experiments are conducted on the MTIL (Zheng et al.,
2023) benchmark, presenting results for alphabetical (Tab. [2) and random (Tab. [6)) task orders in
two settings, with and without architecture extension. KeepLoRA+ is a structure extension vari-
ant with a prototype vector for a class name to help classification, which is detailed in Appendix
For LLaVA, the experiments (Tab. [3|and ) are conducted on MLLM-DCL (Guo et al., 2025b)
and UCIT (Guo et al., 2025b)) benchmarks, including various instruction formats such as image
captioning, visual question-answer, and multiple-choice questions. Detailed information on exper-
iment settings and benchmarks is presented in Appendices [B.4] and separately. KeepLoRA
and KeepLoRA+ achieve state-of-the-art performance on the Transfer, Average, and Last metrics in
each of these settings. This demonstrates that our approach consistently addresses the challenges of
forward stability, backward stability, and plasticity in continual learning.

Table 3: Comparison of different continual learning methods on MLLM-DCL benchmark for VQA
tasks in terms of Transfer, Average, and Last scores (%). The best results are in bold.

~
&&% Q&o‘b _ éo% .&Qe@ . &
Method o W A o <& Ave.
Zero-shot 3229 2828 1559 3555 62.56
Transfer
LoRA-FT (Hu et a1} 2022) - 28.10 17.44 3403 50.19 3244
O-LoRA (Wang et al|2023a) - 28.37 18.37 3372 52.53  33.25
CL-MOE (Huai et al}2025) - 28.25 19.38  34.08 48.56  32.57
SEFE (Chen et al.|[2025) - 28.10 19.63 33.85 5236 33.49
KeepLoRA - 28.49 16.63 3413 55.61 33.71
Average
LoRA-FT (Huetal}2022) 73.34 4494 3138 38.79 57.84  49.26
O-LoRA (Wang et al|2023a) 75.04 4571 32.62 3854 59.64 50.31
CL-MOE (Huai et al| 2025) 7419 45.60 32.08 38.88 56.68 49.49
SEFE (Chen et al.|[2025) 7771 47.69 3535 3899 59.57 51.86
KeepLoRA 7955 50.80 37.53 40.70 6235 54.19
Last
LoRA-FT (Hu etal}[2022) 69.34 4430 29.10 4144 8843 5452
O-LoRA (wang et al|[2023a) 7230 46.89 31.59 41,50 88.06  56.07
CL-MOE (Huai et al|2025) 71.83 4736 2949 4148 89.16 55.86
SEFE (Chen et al.|[2025) 77.05 50.86 40.27 4298 88.40 5991
KeepLoRA 78.76 5434 50.19 4948 89.30 64.41

4.2 ANALYSIS OF MODEL PLASTICITY

Plasticity assesses the ability to effectively acquire new knowledge following a sequence of con-
tinual learning tasks. We evaluate two performance metrics for each task: (i) the accuracy
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Table 4: Comparison of different continual learning methods on UCIT benchmark for VQA tasks in
terms of Transfer, Average, and Last scores (%). The best results are in bold.

& e & & F
M S SOY &
ethod S A« < Avg.
Zero-shot 16.27 5373 3839 19.20 20.63 41.88
Transfer
LoRA-FT (Hu et a1} 2022) - 52.63 18.30  6.02 16.97 4029 26.84
O-LoRA (Wang et al.|2023a) - 52.87 19.57 442 16.85 41.04 2695
CL-MOE (Huai et al.|2025) - 52.00 19.32  7.37 17.81 4128  27.56
SEFE (Chen et al|[2025) - 5333 18.68 7.48 17.03 4090 27.48
KeepLoRA - 52.83 20.39 9.18 18.12 41.50 28.40
Average
LoRA-FT (Hu et at}2022) 7598 77778 4156 38.83 3456 4325 5199
O-LoRA (Wang et al.|[2023a) 8243 80.06 41.73 3587 3394 4374 5296
CL-MOE (Huai et al.|2025) 80.16  77.10 4043 30.33 33.10 4395 50.85
SEFE (Chen et al.||2025) 85.49  78.55 4292 40.33 34.80 43.64 54.29
KeepLoRA 86.50 83.63 42.66 40.08 3524 44.11 55.37
Last
LoRA-FT (Hu et at}/2022) 58.60 76.73 4572 6743 6157 58.03 61.35
O-LoRA (Wang et al./[2023a) 7417 80.93 4530 62.87 63.83 5724  64.06
CL-MOE (Huai et al.|2025) 67.17 7577 4438 52.63 5440 5728 58.61
SEFE (Chen et al.||2025) 80.23 79.13 4711 6940 6570 57.33  66.48
KeepLoRA 8243 86.70 46.54 67.80 6640 57.18 67.84

achieved by training on the task in isolation, serving as an upper bound, and (ii) the accu-
racy measured immediately after the task is learned within the continual sequence. Our anal-
ysis in Fig. 2] compares KeepLoRA with a standard LoRA baseline. In the isolation-task set-
ting, KeepLoRA performs comparably to LoRA, as gradient-informed initialization of the frozen
down-projection matrix A effectively captures the essential learning direction, maintaining high
learning capacity. Furthermore, when switching to the continual learning scenario, KeepLoRA
exhibits a consistently smaller performance drop on new tasks compared to LoRA. This sug-
gests that, by confining updates to the residual subspace and avoiding interference with pre-
viously learned knowledge, our method enhances the model’s plasticity for subsequent tasks.

4.3 ANALYSIS OF MODEL STABILITY

We analyze stability by visualizing the 0T - 10T - =
interference of the LoRA module be- * “« - * <«
tween multiple tasks in Fig. 3] In these =1 . i b e e e

< e - | L) < s ]

heatmaps, the off-diagonal cells repre-

Accuracy (%)
K
Accuracy (%)

sent inter-task interference, while the ver- & e ol
tical bar on the left indicates the over- 7 i i 7 e o inerease-
all impact on the backbone. The stan- 7 u | 7 e
dard LoRA (Fig. @ and LoRA with a Y SR P
frozen matrix A (Fig. both exhibit S T I S S S T
significant interference. The bright pat- ¢ ‘

terns in their heatmaps and vertical bars (a) # Param. 0.49 M (b) # Param. 0.98 M

show that training on a current task heav- . o

ily interferes with the representations of ~Figure 2: Comparison of plasticity between KeepLoRA
other tasks, leading to poor stability. Al- and the LoRA baseline under the same learnable param-
though gradient-informed initialization ~eter budgets: Fig. [24] 0.49 million parameters and Fig.
(Fig. reduces off-diagonal interfer- [26]0.98 million parameters. Each bar represents the per-
ence, the overall impact on the backbone formance drop for a task, measured as the difference be-
remains high, as shown by its bright verti- tween accuracy from isolated training and accuracy after
cal bar. In contrast, KeepLoRA (Fig. sequential learning and immediate testing.
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shows a desirable pattern: a bright diagonal with dark off-diagonal cells. This indicates that the
updates of the model are focused on the current task, causing minimal interference with others. The
dark vertical bar further confirms that the overall impact on the backbone is consistently low. By
minimizing interference with previously learned tasks, KeepLoRA ensures backward stability. Fur-
thermore, its minimal interference with unseen tasks, as indicated by the low norm, is critical for
preserving forward stability.

(a) LoRA (b) LoRA frozen A (c) LoRA frozen grad A (d) KeepLoRA

Figure 3: Visualization of the average L2 norm of the output magnitude from the learned LoRA
across multiple tasks. Each heatmap cell at row 7 and column j displays the normalized average
L2 norm of the LoRA’s output when the model, trained up to task ¢, is tested on task j’s data. The
vertical bar to the left of each heatmap indicates the mean output norm across all test tasks after each
training stage, with darker colors signifying a lower norm and thus a reduced impact on the stability.

4.4 ABLATION STUDY

To analyze the contribution of each component, we conduct an ablation study starting from a stan-
dard LoRA baseline. As shown in Tab. [5 our modifications progressively improve performance.
Freezing the down-projection matrix A even with random initialization, enhances stability in the
continual learning setting by mitigating destructive interference with the backbone weights. Sub-
sequently, employing a (i) gradient-informed initialization further improves plasticity, leading to a
5.9% increase on the Last metric and indicating more effective adaptation. After constraining the
updates to be orthogonal to (ii) the principal subspace W), and (iii) the dominant feature directions
M, gains of 4.0% on Transfer, 7.3% on Average, and 10.7% on Last, demonstrating the critical role
of subspace projection in balancing stability and plasticity.

Table 5: Ablation Study of KeepLoRA on MTIL.

Training Strategy | Transfer A | Average A | Last A
LoRA (rank 8, # param. 0.98 M) 58.3 0.0 61.5 0.0 59.4 0.0
LoRA frozen A (rank 16, # param. 0.98 M) 63.9 +5.6 68.2 +6.7 | 69.5 +10.1
(i) Replace Eq.[5]by Gy = G, 650  +6.7 702 +87 | 754 +16.0
(ii) Replace Eq.[3]by G; = G; — W, W[ G; 659  +76 | 715  +100 | 765 +17.1
(iii) Replace Eq.[5|by G; = G; — M;_1 M, |G, 68.1 +9.8 772 4157 | 86.1 +26.7
KeepLoRA (Eq. 69.0 +10.7 717.5 +16.0 | 86.1 +26.7

5 CONCLUSION

This work is motivated by the observation that the principal subspace of parameters encodes general
knowledge and the residual subspace captures domain-specific adaptations. Building on this, we
proposed KeepL.oRA, a parameter-efficient fine-tuning method that can effectively achieve a bal-
ance among the competing objectives of plasticity, backward stability, and forward stability. Our
theoretical analysis confirms that constraining parameter updates to the residual subspace is an opti-
mal strategy, maximizing plasticity for the current task while maintaining orthogonality to subspaces
encoding general and previously learned knowledge. Experiments show that KeepLoRA learns new
tasks with minimal interference with the model’s backbone parameters. Its learning capacity within
the residual subspace is comparable to unconstrained LoRA on isolated tasks, yet it suffers a signifi-
cantly smaller performance drop in the continual learning setting. As a simple and effective method,
KeepLoRA provides a principled approach for continual learning that is applicable to larger models
and more diverse tasks.

10
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ETHICS STATEMENT

All authors have read and adhered to the ICLR Code of Ethics. This paper presents an algorithmic
contribution, KeepLoRA, aimed at advancing the field of continual learning. Our empirical valida-
tion is conducted exclusively on publicly available and widely used academic benchmarks, such as
CIFAR100 and Caltech101, which do not contain personally identifiable or sensitive information.
While we acknowledge that advancements in machine learning have broad societal consequences,
our work does not introduce foreseeable negative applications or exacerbate biases beyond those
potentially present in the general pre-trained models.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide the source code for our method, KeepLLoRA, in the sup-
plementary material. Our method is detailed in Sec. [3] with the core framework summarized in
Algorithm We specify all hyperparameters used for our method and the baselines, including
learning rates, batch size, and the preservation ratios €,, and €7 in Appendix

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative compo-
nents with random forests. In European conference of computer vision (ECCV), 2014.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts in large language models. IEEE Transactions on Knowledge and Data Engi-
neering, 2025.

Shuaichen Chang, David Palzer, Jialin Li, Eric Fosler-Lussier, and Ningchuan Xiao. Mapqa: A
dataset for question answering on choropleth maps. In arXiv preprint arXiv:2211.08545, 2022.

Jinpeng Chen, Runmin Cong, Yuzhi Zhao, Hongzheng Yang, Guangneng Hu, Horace Ho Shing Ip,
and Sam Kwong. Sefe: Superficial and essential forgetting eliminator for multimodal contin-
ual instruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2025.

Quan Cheng, Yuanyu Wan, Lingyu Wu, Chenping Hou, and Lijun Zhang. Continuous subspace
optimization for continual learning. arXiv preprint arXiv:2505.11816, 2025.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), 2014.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Gregoire Deletang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al.
Language modeling is compression. In The Twelfth International Conference on Learning Rep-
resentations, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 2012.

11



Under review as a conference paper at ICLR 2026

Yuxuan Ding, Lingqiao Liu, Chunna Tian, Jingyuan Yang, and Haoxuan Ding. Don’t stop learning:
Towards continual learning for the clip model. arXiv preprint arXiv:2207.09248, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations (ICLR), 2021.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou, Xiao
Wang, Zhiheng Xi, Xiaoran Fan, et al. Loramoe: Alleviating world knowledge forgetting in
large language models via moe-style plugin. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1932-1945, 2024.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1936.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In Conference on
computer vision and pattern recognition workshop, 2004.

Giorgio Franceschelli, Claudia Cevenini, and Mirco Musolesi. Training foundation models
as data compression: On information, model weights and copyright law. arXiv preprint
arXiv:2407.13493, 2024.

Hao Fu, Hanbin Zhao, Jiahua Dong, Chao Zhang, and Hui Qian. Iap: Improving continual learn-
ing of vision-language models via instance-aware prompting. arXiv preprint arXiv:2503.20612,
2025.

H. Guo, F. Zeng, Z. Xiang, et al. Hide-llava: Hierarchical decoupling for continual instruction
tuning of multimodal large language model. In arXiv preprint arXiv:2503.12941, 2025a.

Haiyang Guo, Fei Zhu, Hongbo Zhao, Fanhu Zeng, Wenzhuo Liu, Shijie Ma, Da-Han Wang, and
Xu-Yao Zhang. Mcitlib: Multimodal continual instruction tuning library and benchmark. arXiv
preprint arXiv:2508.07307, 2025b.

Ziyu Guo, Ray Zhang, Hao Chen, Jialin Gao, Dongzhi Jiang, Jiaze Wang, and Pheng-Ann Heng.
Sciverse: Unveiling the knowledge comprehension and visual reasoning of Imms on multi-modal
scientific problems. In Findings of the Association for Computational Linguistics: ACL 2025, pp.
19683-19704, 2025c.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3608-3617, 2018.

Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions
for medical visual question answering. In arXiv preprint arXiv:2003.10286, 2020.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of selected
topics in applied earth observations and remote sensing, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, et al. The many faces of robustness: A critical analysis
of out-of-distribution generalization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 8340-8349, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Tianyu Huai, Jie Zhou, Xingjiao Wu, Qin Chen, Qingchun Bai, Ze Zhou, and Liang He. Cl-moe:
Enhancing multimodal large language model with dual momentum mixture-of-experts for contin-
ual visual question answering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 19608—-19617, 2025.

12



Under review as a conference paper at ICLR 2026

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images. In European Conference on Computer Vision
(ECCV), pp. 235-251. Springer, 2016.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh
Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal
machine comprehension. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4999-5007, 2017.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Lei Li, Yuqi Wang, Runxin Xu, et al. Multimodal arxiv: A dataset for improving scientific compre-
hension of large vision-language models. In arXiv preprint arXiv:2403.00231, 2024.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935-2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Adaptive plasticity improvement for continual learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7816—
7825, 2023.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 23638-23647, 2024.

Adam Dahlgren Lindstrom and Savitha Sam Abraham. Clevr-math: A dataset for compositional
language, visual and mathematical reasoning. In arXiv preprint arXiv:2208.05358, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892-34916, 2023.

Sylvain Lobry, Diego Marcos, Jesse Murray, et al. Rsvqa: Visual question answering for remote
sensing data. In IEEE Transactions on Geoscience and Remote Sensing, volume 58, pp. 8555—
8566, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019.

Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang,
and Song-Chun Zhu. Iconga: A new benchmark for abstract diagram understanding and visual
language reasoning. In Proceedings of the 35th Conference on Neural Information Processing
Systems (NeurIPS) Track on Datasets and Benchmarks, 2021.

Mao-Lin Luo, Zi-Hao Zhou, Tong Wei, and Min-Ling Zhang. Lada: Scalable label-specific clip
adapter for continual learning. In Forty-second International Conference on Machine Learning,
2025.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Jishnu Mukhoti, Yarin Gal, Philip Torr, and Puneet K. Dokania. Fine-tuning can cripple your founda-
tion model; preserving features may be the solution. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. Featured Certification.

Nikhil Shivakumar Nayak, Krishnateja Killamsetty, Ligong Han, Abhishek Bhandwaldar, Pra-
teek Chanda, Kai Xu, Hao Wang, Aldo Pareja, Oleg Silkin, Mustafa Eyceoz, et al. Sculpt-
ing subspaces: Constrained full fine-tuning in llms for continual learning. arXiv preprint
arXiv:2504.07097, 2025.

13



Under review as a conference paper at ICLR 2026

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing,
2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEFE conference on computer vision and pattern recognition (CVPR), 2012.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pp. 2641-2649, 2015.

Jingyang Qiao, zhizhong zhang, Xin Tan, Chengwei Chen, Yanyun Qu, Yong Peng, and Yuan Xie.
Prompt gradient projection for continual learning. In The Twelfth International Conference on
Learning Representations, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001-2010, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2021.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2556-2565, 2018.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The truth is in there: Improving reasoning
in language models with layer-selective rank reduction. In The Twelfth International Conference
on Learning Representations, 2024.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Jens
Beiwenger, Ping Luo, Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph vi-
sual question answering. In European Conference on Computer Vision (ECCV), pp. 256-274.
Springer, 2024.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
composed attention-based prompting for rehearsal-free continual learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 11909-11919, 2023.

Longxiang Tang, Zhuotao Tian, Kai Li, Chunming He, Hantao Zhou, Hengshuang Zhao, Xiu Li, and
Jiaya Jia. Mind the interference: Retaining pre-trained knowledge in parameter efficient continual
learning of vision-language models. In European conference on computer vision, pp. 346-365.
Springer, 2024.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual

learning: Theory, method and application. IEEE transactions on pattern analysis and machine
intelligence, 46(8):5362-5383, 2024.

14



Under review as a conference paper at ICLR 2026

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuan-Jing Huang. Orthogonal subspace learning for language model continual learning. In
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 10658-10671,
2023a.

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning. Advances in Neural Information Processing
Systems, 35:5682-5695, 2022a.

Ziao Wang, Yuhang Li, Junda Wu, Jachyeon Soon, and Xiaofeng Zhang. Finvis-gpt: A multimodal
large language model for financial chart analysis. In arXiv preprint arXiv:2308.01430, 2023b.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European conference on computer vision, pp. 631-648.
Springer, 2022b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 139-149,
2022c.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7959-7971, 2022.

Bin Wu, Wuxuan Shi, Jinqiao Wang, and Mang Ye. Synthetic data is an elegant gift for continual
vision-language models. In Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, pp. 2813-2823, 2025a.

Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class incre-
mental learning. arXiv preprint arXiv:2501.13198, 2025b.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In IEEE computer society conference on com-
puter vision and pattern recognition, 2010.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23219-23230, 2024.

Ted Zadouri, Ahmet Ustiin, Arash Ahmadian, Beyza Ermis, Acyr Locatelli, and Sara Hooker. Push-
ing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning.
arXiv preprint arXiv:2309.05444, 2023.

Hongbo Zhao, Fei Zhu, Rundong Wang, Gaofeng Meng, and Zhaoxiang Zhang. Mllm-cl: Continual
learning for multimodal large language models. In arXiv preprint arXiv:2506.05453, 2025.

Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
zero-shot transfer degradation in continual learning of vision-language models. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 19125-19136, 2023.

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
incremental learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(12):9851-9873, 2024.

15



Under review as a conference paper at ICLR 2026

A PROOFS OF PROPOSITIONS

A.1 PROOFS OF PROPOSITION[3 1]

Proof. Suppose for loss function £ for task 7 and a linear layer with y = W, where y is output
of layer and « is the input. We can compute gradient of B; directly as follow:
oL ow oL !
= : = —A/G,. 9
0B, 0B, oW r ' " ®
In a gradient descent iteration, the change of B; is represented by a negative gradient: AB; =

f%A:Gt. Therefore, when A, is frozen to only update B; in each iteration, we can obtain the
variation of W in one iteration to complete the proof:

2
AW = 24,AB, = -2 a,47 G, (10)
T T

O

A.2 PROOFS OF PROPOSITION[3.2]

Proof. We proceed by transforming the constrained optimization problem, leveraging subspace
properties, and applying the Eckart—Young—Mirsky Theorem (Eckart & Young| [1936) to confirm
the optimal solution.

Step 1: Equivalent Transformation of the Objective Function. For an orthonormal matrix A; sat-
isfying A, A; = I, the orthogonal projection operator P4, = A;A/ satisfies the Pythagorean
theorem for the Frobenius norm:

G = [1Pa,Gill% + |Gt — Pa, G5

Since ||G¢]|% is a constant independent of A;, minimizing the original objective ||G; — Pa, G¢||%

is equivalent to maximizing the projected norm || P4, G||%. The optimization problem thus can be

rewritten as: . )
max AtA Gt
;"At:I” t ”Fﬂ

st WA, =M, A =0

(1)

Step 2: Substitute Gy and Simplify Using Constraints. Recall from Eq. that the projected gradient
G is defined as: .
G =G - W,W,G,— M,_ 1M, |G,.

Rearranging gives G; = G, + Wpr—r G+ Mt,lMt—Eth. Substitute this into the objective:

|AA] (cl*t + W, W, G, + MHMLGt) 13-

For any feasible A;, we use WA, = M," A, = 0 to simplify: A (W,W,/G,) =
(WpTAt)T(WpTGt) = OT(WPTGt) =0. Slmllaﬂy, A;l— (MtflMt—ith) =0.
Thus, A, A/ (W,W, G, + M;_1M," |G;) = 0, and the objective reduces to maximizing
| A; AT Gy||%. The optimization problem simplifies to:

max [|AA] Gy},

A;rAt:I (12)
st WA, =M, A =0

Step 3: Optimal A; via Eckart-Young—Mirsky Theorem. The Eckart—Young-Mirsky Theorem
(Eckart & Young] [1936) states that for any matrix X € R™*" and integer kK < min(m,n), the
r-dimensional subspace that maximizes | PX||%, where P is the orthogonal projection onto the
subspace, is spanned by the top-r left singular vectors of X.
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Here, X = G, and we seek an r-dimensional subspace spanned by A to maximize ||A; A Gy |%.
By the theorem, the optimal A; consists of the top-r left singular vectors of G;.

Step 4: Verify Feasibility of the Optimal A;. We confirm the optimal A; satisfies the constraints
WJAt = 0 and Mt—r_lAt =0.

By the definition of G, in Eq.[5| we have:
WG =0, M/ ,G/=0. (13)

Substituting SVD of G = USV in Eq.: WG, =W, USVT =0. Since SV is column-
full rank (singular values are non-negative, and V' is orthonormal), WpTU must be the zero matrix.
Thus, WpTU = 0, hence WpTAt = WPTU:J:T = 0. The same logic applies to M;_1: MtT_lét =
M,” ,USVT = 0implies M, ;U = 0, hence M," ; A; = 0.

Thus, the optimal solution to Eq. is exactly the top-r left singular vectors of G, which matches
KeepLoRA A; initialization. The proof is completed. O

B EXPERIMENT DETAILS

B.1 BENCHMARK

MTIL benchmark (Zheng et al., [2023) consists of 11 image classification datasets: Aircraft (Maji
et al.} 2013), Caltech101 (Fei-Fei et al., 2004), Cifar100 (Krizhevsky et al., [2009), DTD (Cimpo1
et al.,[2014), EuroSAT (Helber et al.,[2019), Flowers (Nilsback & Zissermanl 2008)), Food (Bossard
et al.| [2014), MNIST (Deng|, 2012), OxfordPet (Parkhi et al., [2012), StanfordCars (Krause et al.,
2013), and SUN397 (Xiao et al.,|2010). Each dataset is treated as a task.

MLLM-DCL benchmark (Zhao et al.l 2025) consists of multiple downstream VQA datasets:
RSVQA (Lobry et al.,[2020), PathVQA (He et al.,2020), DriveLM (Sima et al., 2024), FinVis (Wang
et al., 2023b), AI2D (Kembhavi et al.l |2016)), Sciverse (Guo et al.| [2025¢), MapQA (Chang et al.,
2022), and TQA (Kembhavi et al., 2017). It covers 5 specialized areas: Remote Sensing, Medical,
Driving, Finance, and Science. Each area is treated as a task.

UCIT benchmark (Guo et al., |2025a) consists of 6 VQA datasets: ArxivQA (Li et al.l [2024),
CLEVR-Math (Lindstrom & Abraham, [2022), IconQA (Lu et al., 2021)), ImageNet-R (Hendrycks
et al., [2021), VizWiz-Caption (Gurari et al., 2018), and Flickr30k (Plummer et al., 2015). Each
dataset is treated as a task.

B.2 EVALUATION METRICS

We define the Transfer, Average, and Last metrics to evaluate model performance under continual
learning scenarios. Let agl) represent the accuracy of the model on task ¢ after training on task ¢ with
a total of n tasks. The Transfer, Average, and Last metrics for task ¢ are computed as follows:

t—1
1 i
Transfer; = mZag), t=23,...,n, (14)
=1
1 &< @
Averagetzﬁzgag), t=1,2,...,n, (15)
Last, = o\, t=1,2,...,n. (16)

The Transfer metric evaluates forward stability by measuring the performance of unseen tasks
throughout (2 + 1,7 + 2,...,n) after training on the task 7. The Last metric measures the final
performance on each task after completing all training steps, quantifying both plasticity and back-
ward stability. The Average metric represents the mean accuracy across all time steps, offering a
holistic measure of stability and plasticity.
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B.3 IMPLEMENTATION DETAILS OF KEEPLORA+

We extend KeepLoRA with a structure variant, termed KeepLoRA+, which incorporates a prototype
vector for each class name to improve classification performance. Each prototype vector is initial-
ized using the mean feature extracted by the vision encoder from the corresponding class samples.
During the training stage, we jointly optimize the prototype vectors alongside the KeepL.oRA pa-
rameters. In the inference stage, the logits derived from the similarity of the prototype vectors are
averaged with the logits calculated from the text-side contrast.

B.4 ADDITIONAL IMPLEMENTATION DETAILS

CLIP Experiments. We adopt the CLIP (Radford et al.,2021) model with a ViT-B/16 (Dosovitskiy
et al., 2021 image encoder. The training process is carried out using the AdamW (Loshchilov &
Hutter, [2019) optimizer, with a learning rate of 10~3 and a batch size of 64 across all tasks with no
more than 10 epochs. For the primary experiments, we set the hyperparameters as €,(yision) = 0.85
and €,(iex) = 0.2 in vision encoder and text encoder separately and set € = 0.99. KeepLoRA+ is a
structure extension variant with an extension prototype vector for a classname to help classification.
All experiments of KeepLoRA are conducted on a single NVIDIA 4090 GPU. For the reproduced
methods, we performed careful hyperparameter tuning. For O-LoRA (Wang et al.| 2023a)), the
learning rate is 5 x 10~* with a regularization coefficient of 0.1. For InfLoRA (Liang & Li, 2024),
the learning rate is 10~3, with er = 0.99. The learning rate for SD-LoRA (Wu et al., [2025b) is set
to5 x 1073,

LLaVA Experiments. We adopt the LLaVA-1.5-7b (Liu et al., 2023)) model for multimodal contin-
ual instruction tuning experiments. The training is conducted on 4x NVIDIA H100 GPUs using the
AdamW optimizer. For the MLLM-DCL benchmark, we set the learning rate to 2 x 10~5 and train
for no more than 3 epochs per task. For the UCIT benchmark, the learning rate is set to 2 x 10~* for
all tasks except Flickr30k, which uses 5 x 10~? and train 1 epoch for each task. The hyperparameters
for subspace constraints are configured as €,, = 0.6 and ¢y = 0.99.

C SUPPLEMENTARY EXPERIMENTS

C.1 COMPARISON ON MTIL WITH ORDER II.

We compare different methods on MTIL in random order: StanfordCars, Food, MNIST, OxfordPet,
Flowers, SUN397, Aircraft, Caltech101, DTD, EuroSAT and CIFAR100. As shown in Tab. [6]
KeepLoRA consistently outperforms previous methods across all metrics.

C.2 HYPERPARAMETER ANALYSIS
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Figure 4: Effects of hyperparameters €, (yision) and €y, (texy O Transfer and Last, respectively.

We examine the effects of hyperparameters €, (yision) and €y, (exty O Transfer and Last. For the image
encoder, Last fluctuates slightly, with a minor decline when €, (vision) is larger. Between 0.75 and
0.85, Transfer shows a clear increase. For the text encoder, which uses only class names and thus
has much less training data than images, the coefficient €, ix) €xhibits low performance sensitivity.
Datasets with image-text pairs or VQA tasks, which include substantial text data, warrant further
study in this regard.
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Table 6: Comparison of different continual learning methods on MTIL for each task with order-1I in
terms of Transfer, Average, and Last scores (%). The best results are highlighted with bold style.

3
.@*‘0 > X N < QQ
S \'@ Qz) S A X N N
Method SRS S L T A e & Ave
Zero-shot v 647 88.5 594 89.0 71.0 654 248 88.4 44.6 549 68.2
Transfer

— 87.8 585 719 46.6 57.3 12.8 81.4 345 345 46.8 53.2
- 86.1 51.8 67.6 50.4 579 11.0 723 31.2 32.7 48.1 50.9
- 882 57.0 714 50.0 58.0 13.0 82.0 344 293 47.6 53.1
- 872 57.6 67.0 45.0 540 129 78.6 355 284 443 51.1
— 883 575 84.7 68.1 64.8 21.1 88.2 453 55.2 68.2 64.1
- 87.8 56.7 90.1 71.4 64.0 20.7 87.4 439 463 659 634
- 882 56.7 90.2 713 65.0 22.2 88.2 43.8 473 67.2 64.0
— 88.0 564 90.5 71.0 64.6 22.0 87.8 43.7 47.1 664 63.7
— 88.7 57.7 91.2 72.1 65.8 23.4 88.8 454 48.5 68.2 65.0

— 706 30.7 78.3 42.8 383 174 753 27.4 23.1 20.7 425
~ 799 469 852 513 45.1 93 827 29.9 429 472 52.1
~ 59.8 462 67.7 47.5 43.8 13.5 76.8 31.4 22.6 43.5 453
~ 858 59.8 89.1 71.8 62.6 24.3 93.3 42.7 46.8 67.8 64.4
~ 88.8 59.5 89.1 69.9 64.4 18.1 86.9 437 54.6 682 643
~ 857 594 89.1 713 62.7 24.4 94.0 43.8 49.0 68.6 64.9
89.1 58.1 90.7 72.4 65.4 24.0 889 44.0 52.7 702 65.5

LWF (Li & Hoieml2017)
1CaRL (Rebuffi et al| 2017)
LWF-VR (Ding et al.}2022)
WIiSE-FT (Wortsman et al.| 2022)
ZSCL (Zheng et al }|2023)
O-LoRA (Wang et a1} [2023a)
InfLoRA (Liang & Lil 2024)
SD-LoRA (Wu et al|[2025b)
KeepLoRA

L2P (Wang et a1}[2022¢)
DualPrompt (wang et al}[2022b)
S-Prompts (Wang et al} 2022a)
DIKI (Tang et al.;|2024)
MoE-Adapters (Yu et al}[2024)
IAP (Fu et al.||2025)
KeepLoRA+

Average
LwF (Li & Hoiem|[2017)
1CaRL (Rebuffi et al.| 2017)
LWEF-VR (Ding et a1}[2022)
WiSE-FT (Wortsman et al.}[2022)
ZSCL (zheng et al.}[2023)
O-LoRA (Wang et al.} 2023a)
InfLoRA (Liang & Lil 2024)
SD-LoRA (Wu et al|[2025b)
KeepLoRA

49.0 77.0 92.1 859 66.5 67.2 209 84.7 44.6 455 505 62.2
52.0 759 774 74.6 584 593 11.7 79.6 42.1 432 51.7 56.9
449 758 91.8 853 635 67.6 169 849 44.0 40.6 51.3 60.6
52.6 793 919 839 63.4 652 233 83.7 454 40.0 48.2 61.5
81.7 91.3 919 91.0 82.9 725 33.6 89.7 53.3 62.8 69.9 74.6
78.5 91.0 91.3 923 77.7 73.0 33.5 90.5 50.7 55.1 67.8 72.9
84.0 92.1 91.7 93.2 81.6 74.3 343 91.3 515 56.6 69.0 74.5
76.8 91.1 90.8 92.5 76.5 73.1 34.0 90.7 49.1 56.2 68.2 72.6
85.2 92.3 92.0 93.7 84.8 74.8 359 91.8 53.1 57.5 70.0 75.6

80.1 87.4 86.7 89.6 76.8 59.1 27.7 79.5 39.9 34.6 26.5 62.5
78.6 88.4 89.7 91.7 80.0 62.4 232 85.0 413 51.6 50.7 67.5
79.2 86.5 89.5 87.0 78.2 61.5 25.5 83.6 41.9 363 47.2 65.1
81.9 889 92.1 92.8 87.7 70.3 34.3 942 515 56.1 69.5 74.5
84.9 89.9 89.3 91.4 862 722 334 894 53.3 614 69.9 747
82.5 89.2 923 93.2 88.0 70.4 34.3 94.4 524 57.9 70.2 75.1
88.0 92.4 91.9 93.9 87.4 752 39.2 92.0 52.8 60.9 71.8 76.9

L2P (Wang et al.}|2022c)
DualPrompt (Wang et al.}2022b)
S-Prompts (Wang et al| 2022a)
DIKI (Tang et al.}|2024)
MoE-Adapters (yu et al}[2024)
TAP (Fu et al|2025)
KeepLoRA+

N R N N N N N NERENN
|

Last
LwF (Li & Hoiem|[2017)
1CaRL (Rebuffi et al| 2017)
LWEF-VR (Ding et a1}|2022)
WiSE-FT (Wortsman et al.}[2022)
ZSCL (Zheng et al}[2023)
O-LoRA (Wang et al.|[2023a)
InfLLORA (Liang & Lij2024)
SD-LoRA (Wu et al|2025b)
KeepLoRA

346 69.6 99.3 88.7 61.1 725 325 88.1 65.6 90.9 87.9 71.9
46.0 81.5 91.3 82.8 66.5 722 16.3 91.6 68.1 832 87.8 71.6
274 612 994 863 60.6 70.7 23.4 88.0 61.3 84.3 88.1 68.2
35.6 769 99.5 89.1 62.1 71.8 27.8 90.8 67.0 85.6 87.6 722
782 91.1 97.6 925 87.4 782 45.0 923 72.7 96.2 86.3 83.4
70.3 89.8 97.8 92.9 73.8 79.8 444 953 66.3 91.5 859 80.7
824 92.0 99.3 939 854 81.2 46.1 96.5 70.0 97.6 872 84.7
723 89.7 973 924 76.1 78.9 453 952 61.6 96.9 86.1 8l.1
83.7 92.2 99.5 94.4 90.7 81.3 49.0 96.9 72.3 98.0 87.3 85.9

80.1 89.1 99.1 93.8 96.2 76.5 40.1 86.9 73.5 86.3 842 82.3
78.6 89.3 99.2 94.1 96.5 76.8 39.8 89.0 71.6 90.7 84.9 82.8
79.2 89.1 99.1 94.3 95.8 76.3 39.9 955 70.1 97.6 84.4 83.8
81.9 89.2 99.4 943 96.8 76.7 463 959 74.8 98.3 86.6 85.5
84.1 88.5 94.0 91.8 94.1 77.8 50.4 93.3 77.1 87.7 86.6 84.1
82.5 88.6 99.4 94.9 97.7 769 46.1 96.1 74.7 98.0 86.6 85.9
87.4 92.5 99.3 95.0 96.0 83.2 56.9 97.5 76.9 98.0 88.0 88.2

L2P (Wang et al.|[2022¢)
DualPrompt (wang et a1} 2022b)
S—Prompts (Wang et al.|[2022a)
DIKI (Tang et al.}[2024)
MoE-Adapters (yu et al|[2024)
IAP (Fuetal|f025)
KeepLoRA+
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C.3 PER-TRAINING-STEP RESULTS

We present the detailed per-training-step accuracies through all training steps in Tab. [7] [8] [0 [10]
[[Tand [I2] These results demonstrate strong performance in terms of both learning plasticity and
stability.

Table 7: Accuracy of KeepLoRA on the MTIL benchmark with order-I. Each row represents the per-
formance on every dataset of the model trained after the corresponding task. Transfer , Average ,

and Last metrics are shown.

> \ X
X N N\ S ¢
. Q.@% \@C:Q QY%' &Q &OC"YV @&% ob’ %x%& &Q&S’ & 8}0’/\
LR R R SR SR S LN
Transfer 84.6 6877 459 543 70.1 877 648 903 59.5 64.1  69.0
Aircraft 5900 84.6 684 454 522 719 89.0 63.8 91.1 606 63.6
Caltech101 58.1 1 97.0 69.1 454 50.8 71.1 88.7 61.8 91.1 60.1 64.8
CIFAR100 56.0 96.8 876 468 563 689 873 663 90.1 59.6 64.7
DTD 559 96.7 875 750 579 69.6 87.1 647 903 595 64.6
EuroSAT 557 96.7 87.0 748 (984 693 87.0 652 902 59.1 64.6
Flowers 556 970 869 744 984 933 869 650 903 594 643
Food 547 96.8 862 726 983 922 [91.8 667 89.8 59.0 63.8
MNIST 543 96.7 858 724 98.1 91.8 91.8 995 89.7 593 63.8
OxfordPet 546 96.7 857 720 982 91.8 91.8 995|947 592 63.8
Cars 542 96.7 857 719 98.1 91.5 91.7 995 944 843 63.7
SUN397 532 96.8 857 714 981 908 914 99.6 945 83.1 82.0 86.1
Average 556 957 832 656 822 820 895 774 915 639 658 715

Table 8: Accuracy of KeepLoRA on the MTIL benchmark with order-II. Each row represents
the performance on every dataset of the model trained after the corresponding task. Transfer ,
Average , and Last metrics are shown.

> S
& e @ S » S
& S é\e’& s@& & S . &o{{’& \@5‘0 N @%Y* Q?%
SR R S O S SR o
Transfer 887 577 912 721 658 234 888 454 485 682 650
Cars 8627 887 57.1 913 717 655 23.5 874 466 507 69.5
Food 859 19297 583 91.1 723 660 239 883 453 498 70.5
MNIST 85.8 92.8 [9956] 912 719 662 23.0 886 464 504 68.1
OxfordPet 857 92.8 99.6 [948] 724 659 230 893 460 482 67.8
Flowers 85.6 92.8 99.6 94.8 1924 657 23.0 89.3 462 469 675
Sun397 852 927 99.6 94.6 922 827 240 89.6 442 470 68.0
Aircraft 84.8 927 99.6 946 921 827 [[51i6 89.3 442 463 68.0
Caltech101 848 927 99.6 946 922 826 51.6 (9T 44.5 487 683
DTD 848 926 99.6 948 922 826 513 969 [74S5 482 682
EuroSAT 84.6 927 99.6 946 921 822 511 970 745 (986 66.6
CIFAR100 837 923 995 944 908 813 490 969 723 98.0 [873 859
Average 852 923 920 937 848 748 359 918 531 57.5 70.0 756

USE OF LARGE LANGUAGE MODELS

We use the large language model to polish text and check grammar. All outputs were reviewed by
the authors, who take full responsibility for the final content.
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Table 9: Accuracy of KeepLoRA+ on the MTIL benchmark with order-I. Each row represents
the performance on every dataset of the model trained after the corresponding task. Transfer ,
Average , and Last metrics are shown.

> \ X
3 D N S Q°
.@%\ & & © @cy SN @%& & o &q«
v & S S SR N
Transfer 859 699 446 537 709 889 654 908 630 66.1 699
Aircraft 5921 859 69.6 444 543 724 895 627 912 638 645
Caltech101 592 1975 702 443 533 714 895 627 914 638 65.1
CIFAR100 590 97.8 18821 45.1 527 703 887 678 90.8 633 663
DTD 590 97.8 880 [7641 544 705 88.6 666 907 633 663
EuroSAT 586 97.6 87.8 762 (9851 702 885 660 91.0 63.1 665
Flowers 588 97.6 879 761 985 [958 884 664 908 63.1 66.4
Food 584 97.6 87.6 766 98.4 958 [929] 654 904 625 665
MNIST 578 97.6 873 768 984 959 929 [99i51 902 622 66.5
OxfordPet 578 97.6 872 765 98.4 958 929 99.5 (948 622 66.4
Cars 577 97.5 873 767 984 956 929 99.5 94.8 [877 663
SUN397 573 97.6 872 765 98.4 957 92.6 99.5 947 872 (832 882
Average 584 965 844 678 821 845 907 778 919 675 676 79.0

Table 10: Accuracy of KeepLoRA+ on the MTIL benchmark with order-II. Each row represents
the performance on every dataset of the model trained after the corresponding task. Transfer ,
Average , and Last metrics are shown.

X N N
S &Sze q}% q(\ > @Q\\ Y(S Q~\
&F & TS
Transfer 89.1 581 90.7 724 654 240 889 440 527 70.2 65.5
Cars 884 89.1 589 916 723 653 242 83.0 448 539 70.1
Food 88.3 1928 572 90.1 724 654 242 885 445 525 708
MNIST 88.1 928 994 904 721 655 241 885 444 529 70.1
OxfordPet 883 927 994 952 728 653 241 887 442 522 702
Flowers 883 928 995 952 [96.1 653 239 887 444 517 699
Sun397 879 927 994 950 96.1 835 23.6 899 434 528 702
Aircraft 879 927 994 950 96.1 835|578 90.1 431 528 702
Caltech101 87.7 927 994 950 960 835 575 974 43.0 526 704
DTD 87.7 927 994 951 960 834 574 974763 527 70.1
EuroSAT 87.6 927 995 950 959 834 572 974 763 983 703
CIFAR100 874 925 993 950 96.0 833 569 975 769 98.0  88.0 882
Average 88.0 924 919 939 874 752 392 920 528 609 71.8 769
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Table 11: Accuracy of LoRA-FT, O-LoRA, CL-MoE, SEFE, KeepLoRA on the MLLM-DCL
benchmark. Each row represents the performance on every dataset of the model trained after the

corresponding task. | Transfer , Average , and Last metrics are shown.

(a) LoRA-FT (b) O-LoRA
> >
S i & ¥ &
& S & ¥
Transfer 28.1 17.4 34.0 50.2 /324  Transfer 28.4 18.4 33.7 52.5 333
Sensing 78.8 28.1 17.3 34.8 55.6 Sensing 794 28.4 17.6 34.9 56.1
Medical 75.51584 17.5 32.7 54.8 Medical 74.3158.5 19.2 33.2 56.0
Driving 70.0 47.5[52.3 34.6 40.9 Driving 74.7 48.3/52.6 33.1 45.2
Science 73.2 46.4 40.6 50.4 49.5 Science 74.6 46.5 422 50.1 52.8

Finance 69.3 44.3 29.1 414 88.4 545  Finance 72.3 469 31.6 41.5 88.1 56.1
Average 733 449 314 38.8 57.8 49.3  Average 75.0 45.7 32.6 38.5 59.6 50.3

(¢) CL-MoE (d) SEFE
N N
%&QO .\db’ 40% & '00@ ‘b?g@ %&QG &Q‘b 4&% 06000 KDQQ@
& ¥ F < F ¥ F <
Transfer 28.3 19.4 34.1 48.6 32.6 Transfer 28.1 19.6 339 52.41(33.5
Sensing 79.4 28.3 18.7 35.2 56.4 Sensing 78.8 28.1 18.6 35.1 56.2
Medical 74.8160.7 20.1 32.4 549 Medical 77.1159.5 20.7 33.0 55.7
Driving 74.0 44.3 52.1 34.7 39.6 Driving 77.8 51.6 52.5 33.5 474
Science 71.0 47.4 40.0[50.7 43.3 Science 77.9 48.4 44.7150.4 50.1

Finance 71.8 47.4 29.5 41.5/89.2 559  Finance 77.1 50.9 40.3 43.0/88.4 59.9
Average 74.2 45.6 32.1 389 56.7 49.5  Average 77.7 47.7 354 39.0 59.6 51.9

(e) KeepLoRA

N
. & ¢ &L
I PSP

o\
& ¥
Transfer 28.5 16.6 34.1 55.6 33.7

Sensing 80.01 28.5 17.0 35.1 55.1
Medical 79.9 158.6 16.3 33.7 55.6
Driving 79.8 57.7 53.1 33.7 54.6
Science 79.2 549 51.1[51.6 57.2
Finance 78.8 54.3 50.2 49.5 89.3 64.4

Average 79.6 50.8 37.5 40.7 624 54.2
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Table 12: Accuracy of LoRA-FT, O-LoRA, CL-MoE, SEFE, KeepLoRA on the UCIT benchmark.
Each row represents the performance on every dataset of the model trained after the corresponding

task. Transfer ,

(a) LORA-FT

Average , and Last metrics are shown.

(b) O-LoRA

Q.
& .i_foyv&(\) Q{V’ QQ&
&

Q~

& 40/
\@% & 4§

r & \&w
\,OOQ C}) Q\\

Transfer 52.6 18.3 6.0 17.0 40.3 26.8 Transfer 529 19.6 4.4 169 41.0 27.0
ImgNet-R 91.7 52.6 23.5 11.8 17.2 36.5 ImgNet-R 91.5 52.9 24.7 13.3 17.3 36.5
ArxivQA  90.592.1 13.1 2.1 14.2 21.5 ArxivQA  89.794.2 14.5 0.0 12.9 25.0
VizWiz 73.6 90.7/61.0 4.2 19.0 49.7 VizWiz 80.9 91.7/59.8 0.0 19.6 49.0
IconQA 727 77.1 53.7779.7 17.4 47.8 IconQA 80.2 80.3 54.5/75.9 17.6 48.6
CLEVR  68.8 77.4 52.3 67.8 77.9 46.1 CLEVR  78.1 80.4 51.6 63.2/72.4 46.0
Flickr30k 58.6 76.7 45.7 67.4 61.6 58.0 61.4 Flickr30k 74.2 80.9 45.3 62.9 63.8 57.2 64.1
Average  76.0 77.8 41.6 38.8 34.6 43.3 52.0 Average 82.4 80.1 41.7 35.9 33.9 43.7 53.0
(¢) CL-MoE (d) SEFE

% Q' & & ?*@4‘%’ \&V z;“% O?q&@ ?’Q,);Q" \&Q\e

%v54”00"<\* &
Transfer 52.019.3 7.4 17.8 41.3 27.6 Transfer 533 18.7 7.5 17.0 40.9 27.5
ImgNet-R 91.2 52.0 239 52 15.6 36.9 ImgNet-R 91.6 53.3 23.7 12.1 16.9 36.4
ArxivQA  89.2/92.5 14.8 10.0 15.7 26.2 ArxivQA  90.492.8 13.7 5.0 16.4 21.1
VizWiz 77.2 90.7/60.4 6.9 20.6 49.5 VizWiz 83.6 89.3/61.4 5.3 18.6 49.8
IconQA  79.5 76.2 51.0 54.7 19.4 47.9 IconQA 84.3 78.1 57.479.6 16.2 50.6
CLEVR  76.7 75.4 48.1 52.6 73.0 45.9 CLEVR  82.8 78.6 54.2 70.6 75.0 46.5
Flickr30k 61.2 75.8 44.4 52.6 54.4'57.3 58.6 Flickr30k 80.2 79.1 47.1 69.4 65.7/57.3 66.5
Average  80.2 77.1 40.4 30.3 33.1 44.0 50.9 Average  85.5 78.6 42.9 40.3 34.8 43.6 54.3

(e) KeepLoRA

N ¥
& ,40V$@ & &Q

& & \g) Y
S SRS C NG

Transfer 52.8 20.4 9.2 18.1 41.51284
ImgNet-R 9115 52.8 25.6 13.4 17.1 36.7
ArxivQA 9049415152 4.0 17.2 21.5
VizWiz 855 92.4 6135 10.1 21.0 50.6
IconQA  85.1 86.0 55.7 7619/ 17.1 50.9
CLEVR  84.1 89.3 51.5 63.3[7216/47.8

Flickr30k  82.4 86.7 46.6 67.8 66.4 57:2 67.8

Average  86.5 83.6 42.7 40.1 35.2 44.1 55.4
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