

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 KEEPLoRA: CONTINUAL LEARNING WITH RESIDUAL GRADIENT ADAPTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Continual learning for pre-trained vision-language models requires balancing three competing objectives: retaining pre-trained knowledge, preserving knowledge from a sequence of learned tasks, and maintaining the plasticity to acquire new knowledge. This paper presents a simple but effective approach called *KeepLoRA* to effectively balance these objectives. We first analyze the knowledge retention mechanism within the model parameter space and find that general knowledge is mainly encoded in the *principal* subspace, while task-specific knowledge is encoded in the *residual* subspace. Motivated by this finding, *KeepLoRA* learns new tasks by restricting LoRA parameter updates in the residual subspace to prevent interfering with previously learned capabilities. Specifically, we infuse knowledge for a new task by projecting its gradient onto a subspace orthogonal to both the principal subspace of pre-trained model and the dominant directions of previous task features. Our theoretical and empirical analyses confirm that *KeepLoRA* balances the three objectives and achieves state-of-the-art performance. The source code is available in the supplementary material.

1 INTRODUCTION

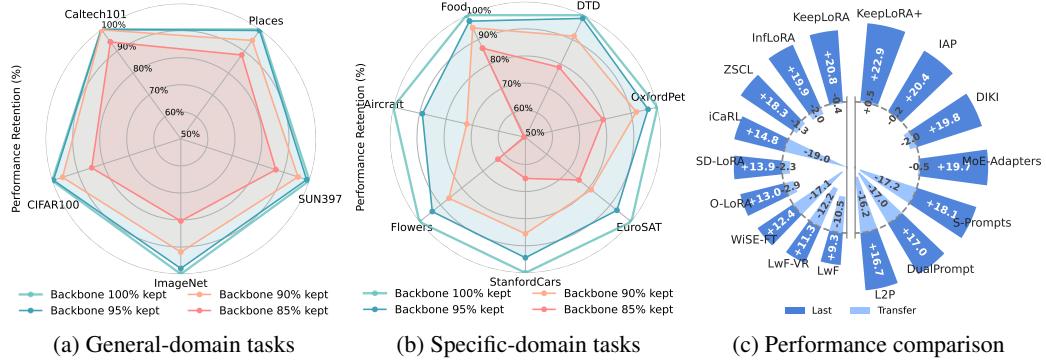


Figure 1: Analysis of model parameter subspaces and overall CL performance. In Fig. 1a and 1b, we measure zero-shot performance after reconstructing attention weights using only the top principal singular components. While performance on general-domain datasets remains highly robust, performance on most specific-domain datasets degrades sharply as more low-energy components are removed. In Fig. 1c, the *Last* metric measures the accuracy gain on the final learned task relative to a zero-shot baseline, while *Transfer* measures the accuracy degradation on unseen tasks.

Vision-language models (VLMs) have demonstrated remarkable zero-shot transfer capabilities, making them cornerstones of many downstream applications (Comanici et al., 2025; Achiam et al., 2023; Radford et al., 2021). Despite this success, their performance on certain datasets can be insufficient, motivating the need for continual learning (CL). An effective CL method requires balance of three competing objectives: maintaining the ability to learn new knowledge (*plasticity*), preventing the forgetting of previously learned tasks (*backward stability*), and crucially, preserving the general pre-trained knowledge that guarantees general transferability (*forward stability*) (Mukhoti et al.,

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
197

108 dominant feature directions of each learned task. The unified principal subspace, with a size not
 109 exceeding the square of the feature dimension, effectively preserves both pre-trained and newly
 110 acquired knowledge.

111 Our contributions are summarized as follows:

112

- 113 • We empirically analyze the parameter space of pre-trained models and find that general
 114 knowledge is primarily encoded in the parameter principal subspace, while domain-specific
 115 adaptations are better captured by the residual subspace.
- 116 • We propose *KeepLoRA*, a novel method that leverages residual subspace constraints for
 117 parameter updates, validated by theoretical analysis showing how it optimally balances
 118 plasticity and stability through orthogonal projections.
- 119 • Experiments on dual-encoder (CLIP) and encoder-decoder (LLaVA) models validate that
 120 *KeepLoRA* effectively balances the three core challenges of plasticity, backward stability,
 121 and forward stability, establishing new state-of-the-art results on benchmark datasets.

2 RELATED WORKS

123 In continual learning, forward stability is typically preserved using reference-data regularization and
 124 architecture extension techniques. In addition, gradient projection methods are commonly employed
 125 to address backward stability and plasticity. In this section, we review these lines of work.

126 **Reference-Data Regularization.** Continual learning on narrow task distributions can cause the
 127 model feature space to collapse, degrading its pre-trained zero-shot transfer capabilities (Zheng
 128 et al., 2023). Reference-data methods aim to counteract this by anchoring the model representations.
 129 *ZSCL* (Zheng et al., 2023) uses the ImageNet (Deng et al., 2009) and Conceptual Captions (Sharma
 130 et al., 2018) datasets as reference data, employing distillation to preserve the feature space structure.
 131 However, the effectiveness of this approach is sensitive to the choice of reference data and the teacher
 132 model, with performance degrading when fewer images or classes are used (Zheng et al., 2023). Yu
 133 et al. (2024) propose MoE-Adapters by training a selector on the TinyImageNet (Deng et al., 2009)
 134 dataset to identify out-of-distribution data, which is then processed by the original frozen model.
 135 Wu et al. (2025a) leverage the generative model Stable Diffusion (Rombach et al., 2022) to create
 136 synthetic reference data for distillation. These methods inherently increase computational overhead
 137 and depend on external reference data, limiting their practical feasibility.

138 **Architecture Extension.** Architecture extension methods freeze the pre-trained model and extend
 139 it with new parameters for each task. L2P (Wang et al., 2022c) selects the most relevant prompts
 140 from a prompt pool, while DualPrompt (Wang et al., 2022b) uses explicitly task-sharing and task-
 141 specific prompts. CODA-Prompt (Smith et al., 2023) proposes end-to-end prompt selection methods
 142 to increase plasticity. MoE-Adapters (Yu et al., 2024) inserts a mixture of adapters into the image
 143 encoder, activating a subset for each task. DIKI (Tang et al., 2024) calibrates knowledge integration
 144 by determining the likelihood that a test sample belongs to a learned task. IAP (Fu et al.,
 145 2025) introduces Instance-Aware Gated Prompting to further improve the effectiveness of prompt
 146 selection. However, these methods cannot entirely avoid parameter selection errors or suboptimal
 147 activation coefficients. Moreover, this approach of adding external parameters does not truly infuse
 148 new knowledge into the base model.

149 **Gradient Projection.** Gradient projection methods mitigate catastrophic forgetting by constraining
 150 parameter updates into specific subspaces, thereby preventing interference with previously ac-
 151 quired knowledge (Qiao et al., 2024). In the context of full fine-tuning, methods such as Gradient
 152 Projection Memory (GPM) (Saha et al., 2021) enforce orthogonality between the gradients of a new
 153 task and a stored basis of principal gradient directions from previous tasks. To improve the effi-
 154 ciency of full fine-tuning, CoSo (Cheng et al., 2025) utilizes Task-Specific Subspace Estimation and
 155 updates an orthogonal basis matrix. This thought has also been adapted to parameter-efficient tech-
 156 niques. For example, O-LoRA (Wang et al., 2023a) constrains the LoRA subspaces of new tasks to
 157 be orthogonal to those of previous tasks, ensuring that learning occurs in novel directions. InfLoRA
 158 (Liang & Li, 2024) applies a constraint where the LoRA down-projection matrix A is orthogonal to
 159 GPM (Saha et al., 2021) or DualGPM (Liang & Li, 2023) to prevent interference. However, these

existing methods primarily focus on mitigating backward forgetting, the loss of knowledge from previously learned sequential tasks. They do not explicitly address or analysis the preservation of general pre-trained knowledge, which is crucial for maintaining the model’s general transferability and preventing forward forgetting.

3 METHOD

3.1 PRELIMINARY

Problem Formulation. We adopt the multi-domain task incremental learning (MTIL) setting (Zheng et al., 2023), where the model encounters a sequence of n tasks $\{\mathcal{T}^1, \mathcal{T}^2, \dots, \mathcal{T}^n\}$. Each task $\mathcal{T}^i = (\mathcal{D}^i, \mathcal{C}^i)$ for $i \in \{1, 2, \dots, n\}$ comprises a dataset \mathcal{D}^i and corresponding class vocabulary \mathcal{C}^i . The dataset $\mathcal{D}^i = \{(\mathbf{x}_j^i, y_j^i)\}_{j=1}^{N_i}$ contains N_i training examples, where each \mathbf{x}_j^i denotes an input image and y_j^i represents the corresponding one-hot encoded ground truth label. The class vocabulary $\mathcal{C}^i = \{c_j^i\}_{j=1}^{m_i}$ establishes the mapping between categorical labels and semantic class names, with m_i denoting the total number of distinct classes for task \mathcal{T}^i . During inference, the model classifies an input image \mathbf{x} within \mathcal{C}^i . The goal of continual learning is to maintain performance on pre-trained knowledge and all previously encountered tasks while adapting to new ones.

Vanilla LoRA. Low-rank adaptation (LoRA) (Hu et al., 2022) decomposes weight updates into two low-rank matrices $\mathbf{A} \in \mathbb{R}^{d_{\text{in}} \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times d_{\text{out}}}$, where $r \ll \min(d_{\text{in}}, d_{\text{out}})$. During training, \mathbf{W} remains frozen while only \mathbf{A} and \mathbf{B} are fine-tuned. The matrices are initialized with $\mathbf{A} \sim \mathcal{N}(0, \sigma^2)$ and $\mathbf{B} = \mathbf{0}$. For input $\mathbf{x} \in \mathbb{R}^{d_{\text{in}}}$, the forward pass becomes:

$$\mathbf{y} = \mathbf{x} \left(\mathbf{W} + \frac{\alpha}{r} \mathbf{AB} \right) \quad (1)$$

where α is a scaling factor.

3.2 KEEPLORA: GRADIENT PROJECTION ADAPTATION

Continual learning for pre-trained vision-language models demands a balance between *plasticity*, the ability to acquire new knowledge, and *learning stability*, which comprises both *forward stability* to preserve general pre-trained knowledge and *backward stability* to retain knowledge from previously learned tasks. To address this problem, we propose *KeepLoRA*, a method built upon LoRA that employs residual subspace constraints to unify stability preservation and new knowledge infusion.

Stability: Preserving Pre-trained and Previous Task Knowledge. KeepLoRA retains stability by projecting the subspaces of pre-trained knowledge and previous task knowledge onto a unified principal subspace. Subsequent adaptations for new tasks are then confined to the residual subspace orthogonal to this principal subspace, thereby minimizing interference with the learned knowledge.

Pre-trained Knowledge Subspace: We analyze the parameters of the pre-trained model to understand how the model stores general knowledge. Specifically, we decompose each weight matrix $\mathbf{W} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{out}}}$ requiring updates via singular value decomposition (SVD) as $\mathbf{W} = \mathbf{USV}^\top$. The decomposition produces a subspace $\mathbf{W}_p = \mathbf{U}_{:,1:p}$, and the subspace is constrained such that:

$$\|\mathbf{W}_p\|_F^2 \geq \epsilon_w \|\mathbf{W}\|_F^2 \quad (2)$$

where $\epsilon_w \in (0, 1)$ controls the energy ratio retained in \mathbf{W}_p .

Previous Task Knowledge Subspace: To mitigate forgetting of learned tasks, the LoRA module updating matrix \mathbf{W} for new tasks should minimize interference with features from previous tasks. Specifically, our goal is to make $\mathbf{Y} = \text{LoRA}_t(\mathbf{X})$ as close to $\mathbf{0}$ as possible for any input \mathbf{X} from previous tasks $\{\mathcal{T}_i\}_{i=1}^{t-1}$. Since no real or synthetic samples from previous tasks are available for replay, we propose to extract the dominant singular vectors of previous tasks as the dominant feature directions. This approach enables us to continuously compress task-specific information and enforce matrix \mathbf{A} to be orthogonal to the dominant singular vectors on LoRA initialization. After training for task t , we extract and store the dominant feature directions for this task. These directions are chosen to be orthogonal to the subspace jointly defined by the principal weights and the dominant feature directions of all $t-1$ tasks. We then define the feature space for the t -th task as:

$$\hat{\mathbf{X}}_t = \mathbf{X}_t - \mathbf{W}_p \mathbf{W}_p^\top \mathbf{X}_t - \mathbf{M}_{t-1} \mathbf{M}_{t-1}^\top \mathbf{X}_t \quad (3)$$

216 where $\mathbf{M}_{t-1} \in \mathbb{R}^{d_{in} \times k}$ represents the accumulated direction matrix containing the dominant singular
 217 vectors from tasks $\{1, 2, \dots, t-1\}$, and k denotes the total number of stored singular vectors. We
 218 initialize $\mathbf{M}_0 = \emptyset$ as an empty matrix. The number of stored vectors k is dynamically determined
 219 by an energy threshold $\epsilon_f \in (0, 1)$. Specifically, we retain the minimum number k of dominant
 220 directions required to satisfy:

$$221 \quad \|\hat{\mathbf{X}}_t\|_F^2 + \|\mathbf{W}_p \mathbf{W}_p^\top \mathbf{X}_t\|_F^2 + \|\mathbf{M}_{t-1} \mathbf{M}_{t-1}^\top \mathbf{X}_t\|_F^2 \geq \epsilon_f \|\mathbf{X}_t\|_F^2 \quad (4)$$

223 We perform SVD on the features $\hat{\mathbf{X}}_t = \mathbf{U}_t \mathbf{S}_t \mathbf{V}_t^\top$ and extract the top- m dominant singular vectors
 224 to update our subspace matrix: $\mathbf{M}_t = [\mathbf{M}_{t-1}, \mathbf{V}_{t(:,1:m)}]$, where m is determined by a threshold ϵ_f .

225 *Unified Principal Subspace.* Since both \mathbf{W}_p and \mathbf{M}_t consist of orthogonal direction vectors operating
 226 within the same d_{in} -dimensional feature space, and the total number of orthogonal vectors is upper-bounded by d_{in} , we can mathematically unify them into a single projection subspace:
 227 $\mathbf{M}'_t = [\mathbf{W}_p, \mathbf{M}_t]$. The unified subspace leverages the theoretical foundation that predictive models
 228 can be transformed into lossless compressors (Deletang et al., 2024) and model weights embody a
 229 compressed representation of the training data (Franceschelli et al., 2024). Under this perspective,
 230 \mathbf{W}_p captures the essential feature representation space of the pre-training data, while \mathbf{M}_t preserves
 231 the dominant feature directions during continual learning. Both components represent compressed
 232 knowledge from their respective data distributions.

233 To ensure the new t -th task updates never interfere \mathbf{M}'_{t-1} , KeepLoRA achieves this through a modified
 234 LoRA approach, where matrix \mathbf{A} is initialized within $\{\mathbf{M}'_{t-1}\}^\perp$ and frozen throughout training,
 235 while only \mathbf{B} is optimized.

236 **Plasticity: Gradient-Informed LoRA Initialization in Residual Subspace.** While the unified
 237 principal subspace ensures learning stability, KeepLoRA also requires maintaining plasticity to
 238 adapt to new tasks. We achieve it by initializing the LoRA module using task-specific gradient
 239 information, aligning adaptation directions with full fine-tuning while confining updates to $\{\mathbf{M}'_{t-1}\}^\perp$.
 240 Specially, we utilize gradient information to guide the initialization within the constrained residual
 241 space. Let $\mathbf{G}_t = \nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W}; \mathcal{D}^t)$ denotes the gradient of the weight matrix \mathbf{W} of the t -th task at the
 242 first training step. We project this gradient onto the residual subspace:

$$245 \quad \hat{\mathbf{G}}_t = \underbrace{\mathbf{G}_t}_{\text{plasticity}} - \underbrace{\mathbf{W}_p \mathbf{W}_p^\top \mathbf{G}_t - \mathbf{M}_{t-1} \mathbf{M}_{t-1}^\top \mathbf{G}_t}_{\text{forward and backward stability}} \quad (5)$$

246 We perform SVD on the projected gradient $\hat{\mathbf{G}}_t = \mathbf{U} \mathbf{S} \mathbf{V}^\top$ and initialize the LoRA matrices with
 247 top- r singular vectors as:

$$248 \quad \mathbf{A} = \mathbf{U}_{(:,1:r)}, \quad \mathbf{B} = \mathbf{S}_{1:r} \mathbf{V}_{(:,1:r)}^\top \quad (6)$$

249 where $\mathbf{U}_{(:,1:r)}$ denotes the first r columns of \mathbf{U} , and r is the rank parameter. This gradient-informed
 250 initialization directly simulates the update direction of full fine-tuning while operating within the
 251 residual subspace, enabling effective adaptation without undermining these critical stability
 252 constraints. Since the initial product $\frac{\alpha}{r} \mathbf{A} \mathbf{B}$ is non-zero, the frozen parameter \mathbf{W} can be adjusted to
 253 maintain the initial parameter values unchanged. Specifically, we replace the original parameter \mathbf{W}
 254 with $\mathbf{W}' = \mathbf{W} - \frac{\alpha}{r} \mathbf{A} \mathbf{B}$ to ensure that the initial forward pass behavior remains identical with the
 255 initial model. Algorithm 1 summarizes the proposed KeepLoRA method.

256 **Algorithm 1** KeepLoRA for Continual Learning

- 257 1: **Input:** Pre-trained model f_θ with updatable parameters $\{\mathbf{B}_i\}$, task sequence $\{\mathcal{T}^t\}_{t=1}^n$, hyper-
 258 parameters $\epsilon_w, \epsilon_f, r, \alpha$
- 259 2: **Output:** Updated model $f_{\theta'}$ with merged LoRA adapters
- 260 3: **for** task $t = 1$ to n **do**
- 261 4: Initialize KeepLoRA through Eq. 5 and Eq. 6
- 262 5: Replace the parameter \mathbf{W} with the modified frozen parameter $\mathbf{W}' = \mathbf{W} - \frac{\alpha}{r} \mathbf{A}_t \mathbf{B}_t$
- 263 6: Compute the loss and optimize the KeepLoRA parameters \mathbf{B}_t
- 264 7: Merge KeepLoRA and current model by $\mathbf{W} = \mathbf{W}' + \frac{\alpha}{r} \mathbf{A}_t \mathbf{B}_t$
- 265 8: Extract dominant feature directions through Eq. 3 and Eq. 4
- 266 9: **end for**

270 3.3 DISCUSSION OF KEEPLORA
271

272 Eq. 5 and Eq. 6 serve as the core formulas of KeepLoRA, enabling its balance of plasticity and stability: \mathbf{G}_t enhances plasticity by identifying new task adaptation directions, while the subtracted terms
273 remove gradients that interfere with pre-trained and previous task knowledge, ensuring stability. To
274 verify these core designs, we first establish the equivalence between KeepLoRA parameter update
275 rule and gradient projection learning, defining the necessary properties of the subspace spanned by
276 \mathbf{A}_t . We then demonstrate that the initialization of \mathbf{A}_t meets these properties.
277

278 **Analyzes of Frozen \mathbf{A}_t LoRA Updates.** The KeepLoRA parameter update method involves freezing
279 \mathbf{A}_t and optimizing only \mathbf{B}_t . The following proposition demonstrates that this update rule is
280 equivalent to gradient descent constrained within the subspace $\text{span}(\mathbf{A}_t)$.
281

282 **Proposition 3.1.** *(LoRA with frozen down-projection \mathbf{A}_t is equivalent to gradient projection up-
283 date.) Let $\mathcal{L}(\mathbf{W}; \mathcal{D}^t)$ denote the loss function for the t -th task \mathcal{T}^t , where: $\mathbf{W} = \mathbf{W}' + \frac{\alpha}{r} \mathbf{A}_t \mathbf{B}_t$,
284 $\mathbf{G}_t = \nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W}; \mathcal{D}^t)$. Optimizing only \mathbf{B}_t through gradient descent with learning rate η is equivalent
285 to performing gradient descent on the orthogonal projection of \mathbf{G}_t onto $\text{span}(\mathbf{A}_t)$. The weight
286 update of \mathbf{W} satisfies:*
287

$$\Delta \mathbf{W} = \frac{\alpha}{r} \mathbf{A}_t \Delta \mathbf{B}_t = -c \mathbf{A}_t \mathbf{A}_t^\top \mathbf{G}_t, \quad (7)$$

288 where $c = \frac{\eta \alpha^2}{r^2}$ is a positive constant integrating the learning rate and LoRA scaling effects.
289

290 **Remark.** Proposition 3.1 reveals that frozen \mathbf{A}_t updates are inherently subspace constrained: all
291 changes to \mathbf{W} are confined to $\text{span}(\mathbf{A}_t)$, as $\mathbf{A}_t \mathbf{A}_t^\top$ acts as an orthogonal projection operator on
292 this subspace. Furthermore, $\text{span}(\mathbf{A}_t)$ requires satisfying the following two properties in continual
293 learning: (i) Orthogonal to knowledge subspaces: $\text{span}(\mathbf{A}_t)$ need to be orthogonal to subspaces en-
294 coding pre-trained knowledge and previously learned tasks, ensuring updates to \mathbf{W} do not interfere
295 with existing knowledge, preventing both forward and backward forgetting. (ii) Adaptation to the
296 current task: $\text{span}(\mathbf{A}_t)$ needs to capture the dominant directions of \mathbf{G}_t , approximating the gradient
297 of full-parameter fine-tuning to maintain plasticity.
298

299 **Validation of KeepLoRA \mathbf{A}_t Initialization.** The preceding proposition outlines the required prop-
300 erties of $\text{span}(\mathbf{A}_t)$. The key question is whether the KeepLoRA initialization of \mathbf{A}_t meets the two
301 properties. We validate it by connecting the initialization to a constrained optimization problem.
302

303 **Proposition 3.2.** *KeepLoRA initialization of \mathbf{A}_t through Eq. 5 and Eq. 6 is the solution to the
304 following constrained optimization problem:*
305

$$\begin{aligned} & \min_{\mathbf{A}_t^\top \mathbf{A}_t = \mathbf{I}} \|\mathbf{G}_t - \mathbf{A}_t \mathbf{A}_t^\top \mathbf{G}_t\|_F^2, \\ & \text{s.t. } \mathbf{W}_p^\top \mathbf{A}_t = \mathbf{M}_{t-1}^\top \mathbf{A}_t = \mathbf{0}, \end{aligned} \quad (8)$$

306 where \mathbf{G}_t is the current task gradient w.r.t. the base model \mathbf{W} , \mathbf{W}_p is the principal subspace of
307 pre-trained parameters, and \mathbf{M}_{t-1} is the dominant feature directions from previous tasks.
308

309 **Remark.** Proposition 3.2 directly connects KeepLoRA’s initialization technique to the two proper-
310 ties of Proposition 3.1, verifying its optimality: (i) Satisfying orthogonality (via constraints): The
311 equality constraints $\mathbf{W}_p^\top \mathbf{A}_t = \mathbf{0}$ and $\mathbf{M}_{t-1}^\top \mathbf{A}_t = \mathbf{0}$ explicitly enforce $\text{span}(\mathbf{A}_t) \perp \text{span}(\mathbf{W}_p)$ and
312 $\text{span}(\mathbf{A}_t) \perp \text{span}(\mathbf{M}_{t-1})$. It guarantees that $\text{span}(\mathbf{A}_t)$ is orthogonal to both the principal subspace
313 of the model parameters and the dominant feature directions to preserve stability. (ii) Optimal adap-
314 tation (via objective): The objective function minimizes the Frobenius norm of $\mathbf{G}_t - \mathbf{A}_t \mathbf{A}_t^\top \mathbf{G}_t$, the
315 residual component of \mathbf{G}_t that lies outside $\text{span}(\mathbf{A}_t)$. By the Pythagorean theorem for the Frobenius
316 norms ($\|\mathbf{G}_t\|_F^2 = \|\mathbf{A}_t \mathbf{A}_t^\top \mathbf{G}_t\|_F^2 + \|\mathbf{G}_t - \mathbf{A}_t \mathbf{A}_t^\top \mathbf{G}_t\|_F^2$), minimizing this residual is equivalent to
317 maximizing the norm of the projected gradient $\mathbf{A}_t \mathbf{A}_t^\top \mathbf{G}_t$. It ensures $\text{span}(\mathbf{A}_t)$ captures the domi-
318 nant gradient directions for the current task, preserving plasticity.
319

320 In summary, Propositions 3.1 and 3.2 form a complete theoretical loop: Proposition 3.1 defines
321 the necessary properties of $\text{span}(\mathbf{A}_t)$ for stable-plastic continual learning. Proposition 3.2 further
322 proves that the initialization technique of \mathbf{A}_t in KeepLoRA is aligned with these properties, which
323 ensures that $\text{span}(\mathbf{A}_t)$ is orthogonal to the principal subspace of the model parameters \mathbf{W}_p and
dominant feature directions of each learned task \mathbf{M}_{t-1} to maintain stability, while being adaptive to
the current task gradient to improve plasticity.
324

324
 325 Table 2: Comparison of different methods on MTIL for each **classification** task in terms of *Transfer*,
 326 *Average*, and *Last* scores (%). The best results are in **bold**.
 327

Method	Arch.	Kept	w/o Extra Data	Aircraft	Caltech101	CIFAR100	DTD	EuroSAT	Flowers	Food	MNIST	OxfordPet	Cars	Sun397	Avg.
Zero-shot	✓	✓	24.8	88.4	68.2	44.6	54.9	71.0	88.5	59.4	89.0	64.7	65.4		
Transfer															
LwF (Li & Hoiem, 2017)	✓	✗	—	74.5	56.9	39.1	51.1	52.6	72.8	60.6	75.1	30.3	55.9	56.9	
iCaRL (Rebuffi et al., 2017)	✓	✗	—	56.6	44.6	32.7	39.3	46.6	68.0	46.0	77.4	31.9	60.5	50.4	
LwF-VR (Ding et al., 2022)	✓	✗	—	77.1	61.0	40.5	45.3	54.4	74.6	47.9	76.7	36.3	58.6	57.2	
WiSE-FT (Wortsman et al., 2022)	✓	✗	—	73.5	55.6	35.6	41.5	47.0	68.3	53.9	69.3	26.8	51.9	52.3	
ZSCL (Zheng et al., 2023)	✓	✗	—	86.0	67.4	45.4	50.4	69.1	87.6	61.8	86.8	60.1	66.8	68.1	
O-LoRA (Wang et al., 2023a)	✓	✓	—	80.8	68.0	44.5	49.8	67.5	86.7	59.3	88.7	56.1	63.6	66.5	
InfLoRA (Liang & Li, 2024)	✓	✓	—	84.3	67.4	44.3	50.6	68.2	87.1	62.7	88.7	57.8	62.8	67.4	
SD-LoRA (Wu et al., 2025b)	✓	✓	—	82.3	67.5	44.4	51.0	67.9	87.2	61.1	88.4	58.2	63.4	67.1	
KeepLoRA	✓	✓	—	84.6	68.7	45.9	54.3	70.1	87.7	64.8	90.3	59.5	64.1	69.0	
L2P (Wang et al., 2022c)	✗	✓	—	65.6	50.9	30.4	41.4	49.3	71.8	36.3	77.5	55.3	53.4	53.2	
DualPrompt (Wang et al., 2022b)	✗	✓	—	56.7	51.4	28.7	33.7	45.6	70.9	59.5	77.7	49.5	50.4	52.4	
S-Prompts (Wang et al., 2022a)	✗	✓	—	67.3	49.4	26.7	39.7	47.1	70.2	34.3	78.9	56.7	52.2	52.2	
DIKI (Tang et al., 2024)	✗	✓	—	92.9	69.1	43.2	43.9	65.4	85.3	56.0	88.4	64.0	65.6	67.4	
MoE-Adapters (Yu et al., 2024)	✗	✗	—	87.9	68.2	44.4	49.9	70.7	88.7	59.7	89.1	64.5	65.5	68.9	
IAP (Fu et al., 2025)	✗	✓	—	93.0	68.7	44.0	47.0	70.4	85.9	63.5	89.7	66.2	63.3	69.2	
KeepLoRA+	✗	✓	—	85.9	69.9	44.6	53.7	70.9	88.9	65.4	90.8	63.0	66.1	69.9	
Average															
LwF (Li & Hoiem, 2017)	✓	✗	36.3	86.9	72.0	59.0	73.7	60.0	73.6	74.8	80.0	37.3	58.1	64.7	
iCaRL (Rebuffi et al., 2017)	✓	✗	35.5	89.2	72.2	60.6	68.8	70.0	78.2	62.3	81.8	41.2	62.5	65.7	
LwF-VR (Ding et al., 2022)	✓	✗	29.6	87.7	74.4	59.5	72.4	63.6	77.0	66.7	81.2	43.7	60.7	65.1	
WiSE-FT (Wortsman et al., 2022)	✓	✗	26.7	86.5	64.3	57.1	65.7	58.7	71.1	70.5	75.8	36.9	54.6	60.7	
ZSCL (Zheng et al., 2023)	✓	✗	45.1	92.0	80.1	64.3	79.5	81.6	89.6	75.2	88.9	64.7	68.0	75.4	
O-LoRA (Wang et al., 2023a)	✓	✓	39.8	93.2	78.3	61.7	78.9	76.3	88.5	73.9	90.1	60.2	65.2	73.3	
InfLoRA (Liang & Li, 2024)	✓	✓	53.6	95.6	82.8	65.0	80.9	79.6	89.1	76.1	90.2	62.3	64.5	76.3	
SD-LoRA (Wu et al., 2025b)	✓	✓	36.7	92.2	80.2	55.9	77.5	73.2	89.2	74.9	89.8	62.5	65.0	72.5	
KeepLoRA	✓	✓	55.6	95.7	83.2	65.6	82.2	82.0	89.5	77.4	91.5	63.9	65.8	77.5	
L2P (Wang et al., 2022c)	✗	✓	38.0	85.2	78.2	61.3	72.9	74.9	79.7	59.1	82.0	59.7	55.4	67.9	
DualPrompt (Wang et al., 2022b)	✗	✓	37.8	84.3	78.6	60.1	71.1	73.2	79.1	73.9	82.3	55.1	52.8	68.0	
S-Prompts (Wang et al., 2022a)	✗	✓	37.5	92.5	77.5	58.2	76.4	74.1	78.8	57.9	83.0	60.8	54.4	68.3	
DIKI (Tang et al., 2024)	✗	✓	45.4	95.7	83.0	65.0	78.2	82.5	87.1	71.7	90.0	67.2	66.6	75.7	
MoE-Adapters (Yu et al., 2024)	✗	✗	50.2	91.9	83.1	69.4	78.9	84.0	89.1	73.7	89.3	67.7	66.9	76.7	
IAP (Fu et al., 2025)	✗	✓	45.9	95.8	83.3	66.5	79.5	84.8	87.5	76.6	91.0	69.2	64.5	76.8	
KeepLoRA+	✗	✓	58.4	96.5	84.4	67.8	82.1	84.5	90.7	77.8	91.9	67.5	67.6	79.0	
Last															
LwF (Li & Hoiem, 2017)	✓	✗	26.3	87.5	71.9	66.6	79.9	66.9	83.8	99.6	92.1	66.1	80.4	74.6	
iCaRL (Rebuffi et al., 2017)	✓	✗	35.8	93.0	77.0	70.2	83.3	88.5	90.4	86.7	93.2	81.2	81.9	80.1	
LwF-VR (Ding et al., 2022)	✓	✗	20.5	89.8	72.3	67.6	85.5	73.8	85.7	99.6	93.1	73.3	80.9	76.6	
WiSE-FT (Wortsman et al., 2022)	✓	✗	27.2	90.8	68.0	68.9	86.9	74.0	87.6	99.6	92.6	77.8	81.3	77.7	
ZSCL (Zheng et al., 2023)	✓	✗	40.6	92.2	81.3	70.5	94.8	90.5	91.9	98.7	93.9	85.3	80.2	83.6	
O-LoRA (Wang et al., 2023a)	✓	✓	31.4	91.8	75.7	61.1	89.0	76.0	88.9	99.1	92.3	74.8	81.3	78.3	
InfLoRA (Liang & Li, 2024)	✓	✓	51.1	96.5	85.1	70.7	98.1	87.7	91.3	99.4	94.2	82.0	81.4	85.2	
SD-LoRA (Wu et al., 2025b)	✓	✓	31.1	92.3	79.8	57.4	88.7	76.1	90.6	99.0	92.9	81.3	81.6	79.2	
KeepLoRA	✓	✓	53.2	96.8	85.7	71.4	98.1	90.8	91.4	99.6	94.5	83.1	82.0	86.1	
L2P (Wang et al., 2022c)	✗	✓	38.0	87.1	84.2	72.9	86.0	96.1	89.2	99.0	94.1	79.6	76.0	82.0	
DualPrompt (Wang et al., 2022b)	✗	✓	37.8	87.1	84.6	71.8	89.2	96.3	89.1	99.1	94.5	79.9	76.5	82.3	
S-Prompts (Wang et al., 2022a)	✗	✓	37.5	95.1	83.7	70.2	97.5	96.5	89.0	99.1	94.0	79.5	75.8	83.4	
DIKI (Tang et al., 2024)	✗	✓	45.4	95.9	86.0	73.0	97.8	96.8	89.3	99.3	94.4	81.8	76.4	85.1	
MoE-Adapters (Yu et al., 2024)	✗	✗	49.8	92.2	86.1	78.1	95.7	94.3	89.5	98.1	89.9	81.6	80.0	85.0	
IAP (Fu et al., 2025)	✗	✓	46.8	96.1	86.7	75.2	98.1	97.0	89.6	99.4	94.7	82.8	76.7	85.7	
KeepLoRA+	✗	✓	57.3	97.6	87.2	76.5	98.4	95.7	92.6	99.5	94.7	87.2	83.2	88.2	

378

4 EXPERIMENTS

380 We conduct experiments on various benchmarks to validate the effectiveness of KeepLoRA in bal-
 381 ancing three core objectives of continual learning: forward stability, backward stability, and plas-
 382 ticity. (i) To quantify forward forgetting, we calculate the average accuracy on tasks $t + 1, \dots, n$
 383 after training on task t , which is defined as the *Transfer* metric, presented in Tab. 2, 3 and 4. Fig. 3
 384 further analyzes how KeepLoRA maintains the transferability. (ii) The *Last* metric, shown in Tab. 2,
 385 3 and 4, assesses model performance after continual training has completed, capturing both plas-
 386 ticity and backward stability. (iii) To further analyze plasticity, Fig. 2 compares our method with
 387 an unconstrained LoRA, demonstrating that KeepLoRA preserves stability with minimal sacrifice
 388 to its adaptive capability. The *Average* metric represents the mean accuracy across all learned tasks,
 389 offering a holistic measure of the balance between stability and plasticity.

390

4.1 MAIN RESULTS

391 We evaluate our method on the dual-encoder model CLIP (Radford et al., 2021) and encoder-decoder
 392 model LLaVA (Liu et al., 2023). For CLIP, the experiments are conducted on the MTIL (Zheng et al.,
 393 2023) benchmark, presenting results for alphabetical (Tab. 2) and random (Tab. 6) task orders in
 394 two settings, with and without architecture extension. KeepLoRA+ is a structure extension vari-
 395 ant with a prototype vector for a class name to help classification, which is detailed in Appendix
 396 B.3. For LLaVA, the experiments (Tab. 3 and 4) are conducted on MLLM-DCL (Guo et al., 2025b)
 397 and UCIT (Guo et al., 2025b) benchmarks, including various instruction formats such as image
 398 captioning, visual question-answer, and multiple-choice questions. Detailed information on exper-
 399 iment settings and benchmarks is presented in Appendices B.4 and B.1, separately. KeepLoRA
 400 and KeepLoRA+ achieve state-of-the-art performance on the *Transfer*, *Average*, and *Last* metrics in
 401 each of these settings. This demonstrates that our approach consistently addresses the challenges of
 402 forward stability, backward stability, and plasticity in continual learning.

403 Table 3: Comparison of different continual learning methods on MLLM-DCL benchmark for **VQA**
 404 tasks in terms of *Transfer*, *Average*, and *Last* scores (%). The best results are in **bold**.

Method	Sensing	Medical	Driving	Science	Finance	Avg.
Zero-shot	32.29	28.28	15.59	35.55	62.56	
Transfer						
LoRA-FT (Hu et al., 2022)	—	28.10	17.44	34.03	50.19	32.44
O-LoRA (Wang et al., 2023a)	—	<u>28.37</u>	18.37	33.72	<u>52.53</u>	33.25
CL-MoE (Huai et al., 2025)	—	28.25	<u>19.38</u>	<u>34.08</u>	48.56	32.57
SEFE (Chen et al., 2025)	—	28.10	19.63	33.85	52.36	<u>33.49</u>
KeepLoRA	—	28.49	16.63	34.13	55.61	33.71
Average						
LoRA-FT (Hu et al., 2022)	73.34	44.94	31.38	38.79	57.84	49.26
O-LoRA (Wang et al., 2023a)	75.04	45.71	32.62	38.54	<u>59.64</u>	50.31
CL-MoE (Huai et al., 2025)	74.19	45.60	32.08	38.88	<u>56.68</u>	49.49
SEFE (Chen et al., 2025)	<u>77.71</u>	<u>47.69</u>	<u>35.35</u>	<u>38.99</u>	59.57	<u>51.86</u>
KeepLoRA	79.55	50.80	37.53	40.70	62.35	54.19
Last						
LoRA-FT (Hu et al., 2022)	69.34	44.30	29.10	41.44	88.43	54.52
O-LoRA (Wang et al., 2023a)	72.30	46.89	31.59	41.50	88.06	56.07
CL-MoE (Huai et al., 2025)	71.83	47.36	29.49	41.48	<u>89.16</u>	55.86
SEFE (Chen et al., 2025)	<u>77.05</u>	<u>50.86</u>	<u>40.27</u>	<u>42.98</u>	88.40	<u>59.91</u>
KeepLoRA	78.76	54.34	50.19	49.48	89.30	64.41

429

4.2 ANALYSIS OF MODEL PLASTICITY

430 Plasticity assesses the ability to effectively acquire new knowledge following a sequence of con-
 431 tinual learning tasks. We evaluate two performance metrics for each task: (i) the accuracy

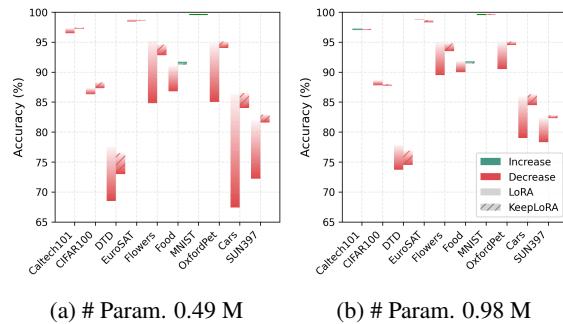
432 Table 4: Comparison of different continual learning methods on UCIT benchmark for **VQA** tasks in
 433 terms of *Transfer*, *Average*, and *Last* scores (%). The best results are in **bold**.

Method	ImgNet-R	ArxivQA	VizWiz	IconQA	CLEVR	Flickr30k	Avg.
Zero-shot	16.27	53.73	38.39	19.20	20.63	41.88	
Transfer							
LoRA-FT (Hu et al., 2022)	–	52.63	18.30	6.02	16.97	40.29	26.84
O-LoRA (Wang et al., 2023a)	–	<u>52.87</u>	<u>19.57</u>	4.42	16.85	41.04	26.95
CL-MoE (Huai et al., 2025)	–	52.00	19.32	7.37	<u>17.81</u>	<u>41.28</u>	<u>27.56</u>
SEFE (Chen et al., 2025)	–	53.33	18.68	<u>7.48</u>	17.03	40.90	27.48
KeepLoRA	–	52.83	20.39	9.18	18.12	41.50	28.40
Average							
LoRA-FT (Hu et al., 2022)	75.98	77.78	41.56	38.83	34.56	43.25	51.99
O-LoRA (Wang et al., 2023a)	82.43	<u>80.06</u>	41.73	35.87	33.94	43.74	52.96
CL-MoE (Huai et al., 2025)	80.16	77.10	40.43	30.33	33.10	<u>43.95</u>	50.85
SEFE (Chen et al., 2025)	<u>85.49</u>	78.55	42.92	40.33	<u>34.80</u>	43.64	<u>54.29</u>
KeepLoRA	86.50	83.63	<u>42.66</u>	<u>40.08</u>	35.24	44.11	55.37
Last							
LoRA-FT (Hu et al., 2022)	58.60	76.73	45.72	67.43	61.57	58.03	61.35
O-LoRA (Wang et al., 2023a)	74.17	<u>80.93</u>	45.30	62.87	63.83	57.24	64.06
CL-MoE (Huai et al., 2025)	67.17	<u>75.77</u>	44.38	52.63	54.40	57.28	58.61
SEFE (Chen et al., 2025)	<u>80.23</u>	79.13	47.11	69.40	<u>65.70</u>	<u>57.33</u>	66.48
KeepLoRA	82.43	86.70	<u>46.54</u>	<u>67.80</u>	66.40	57.18	67.84

455
 456
 457 achieved by training on the task in isolation, serving as an upper bound, and (ii) the
 458 accuracy measured immediately after the task is learned within the continual sequence. Our
 459 analysis in Fig. 2 compares KeepLoRA with a standard LoRA baseline. In the isolation-task setting,
 460 KeepLoRA performs comparably to LoRA, as gradient-informed initialization of the frozen
 461 down-projection matrix A effectively captures the essential learning direction, maintaining high
 462 learning capacity. Furthermore, when switching to the continual learning scenario, KeepLoRA
 463 exhibits a consistently smaller performance drop on new tasks compared to LoRA. This sug-
 464 gests that, by confining updates to the residual subspace and avoiding interference with pre-
 465 viously learned knowledge, our method enhances the model’s plasticity for subsequent tasks.
 466
 467

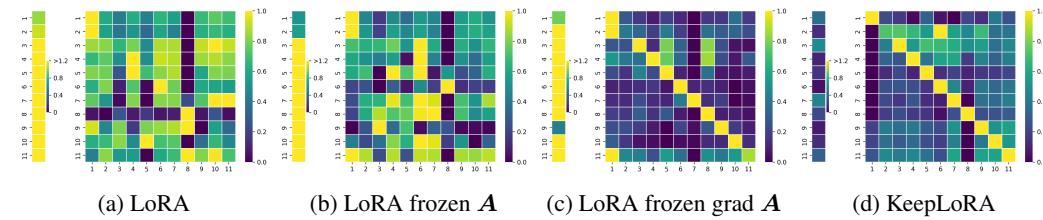
4.3 ANALYSIS OF MODEL STABILITY

469 We analyze stability by visualizing the
 470 interference of the LoRA module be-
 471 tween multiple tasks in Fig. 3. In these
 472 heatmaps, the off-diagonal cells repre-
 473 sent inter-task interference, while the ver-
 474 tical bar on the left indicates the over-
 475 all impact on the backbone. The stand-
 476 ard LoRA (Fig. 3a) and LoRA with a
 477 frozen matrix A (Fig. 3b) both exhibit
 478 significant interference. The bright pat-
 479 terns in their heatmaps and vertical bars
 480 show that training on a current task hea-
 481 vily interferes with the representations of
 482 other tasks, leading to poor stability. Al-
 483 though gradient-informed initialization
 484 (Fig. 3c) reduces off-diagonal inter-
 485 ference, the overall impact on the backbone
 486 remains high, as shown by its bright ver-
 487 tical bar. In contrast, KeepLoRA (Fig. 3d)
 488



489
 490 Figure 2: Comparison of plasticity between KeepLoRA
 491 and the LoRA baseline under the same learnable par-
 492 ameter budgets: Fig. 2a 0.49 million parameters and Fig.
 493 2b 0.98 million parameters. Each bar represents the per-
 494 formance drop for a task, measured as the difference be-
 495 tween accuracy from isolated training and accuracy after
 496 sequential learning and immediate testing.

486 shows a desirable pattern: a bright diagonal with dark off-diagonal cells. This indicates that the
 487 updates of the model are focused on the current task, causing minimal interference with others. The
 488 dark vertical bar further confirms that the overall impact on the backbone is consistently low. By
 489 minimizing interference with previously learned tasks, KeepLoRA ensures backward stability. Fur-
 490 thermore, its minimal interference with unseen tasks, as indicated by the low norm, is critical for
 491 preserving forward stability.



500 Figure 3: Visualization of the average L2 norm of the output magnitude from the learned LoRA
 501 across multiple tasks. Each heatmap cell at row i and column j displays the normalized average
 502 L2 norm of the LoRA’s output when the model, trained up to task i , is tested on task j ’s data. The
 503 vertical bar to the left of each heatmap indicates the mean output norm across all test tasks after each
 504 training stage, with darker colors signifying a lower norm and thus a reduced impact on the stability.

506 4.4 ABLATION STUDY

508 To analyze the contribution of each component, we conduct an ablation study starting from a stan-
 509 dard LoRA baseline. As shown in Tab. 5, our modifications progressively improve performance.
 510 Freezing the down-projection matrix \mathbf{A} even with random initialization, enhances stability in the
 511 continual learning setting by mitigating destructive interference with the backbone weights. Sub-
 512 sequently, employing a (i) gradient-informed initialization further improves plasticity, leading to a
 513 5.9% increase on the *Last* metric and indicating more effective adaptation. After constraining the
 514 updates to be orthogonal to (ii) the principal subspace \mathbf{W}_p and (iii) the dominant feature directions
 515 \mathbf{M} , gains of 4.0% on *Transfer*, 7.3% on *Average*, and 10.7% on *Last*, demonstrating the critical role
 516 of subspace projection in balancing stability and plasticity.

517 Table 5: Ablation Study of KeepLoRA on MTIL.

519 Training Strategy	520 Transfer	521 Δ	522 Average	523 Δ	524 Last	525 Δ
520 LoRA (rank 8, # param. 0.98 M)	58.3	0.0	61.5	0.0	59.4	0.0
521 LoRA frozen \mathbf{A} (rank 16, # param. 0.98 M)	63.9	+5.6	68.2	+6.7	69.5	+10.1
522 (i) Replace Eq. 5 by $\hat{\mathbf{G}}_t = \mathbf{G}_t$	65.0	+6.7	70.2	+8.7	75.4	+16.0
523 (ii) Replace Eq. 5 by $\hat{\mathbf{G}}_t = \mathbf{G}_t - \mathbf{W}_p \mathbf{W}_p^\top \mathbf{G}_t$	65.9	+7.6	71.5	+10.0	76.5	+17.1
524 (iii) Replace Eq. 5 by $\hat{\mathbf{G}}_t = \mathbf{G}_t - \mathbf{M}_{t-1} \mathbf{M}_{t-1}^\top \mathbf{G}_t$	68.1	+9.8	77.2	+15.7	86.1	+26.7
525 KeepLoRA (Eq. 5)	69.0	+10.7	77.5	+16.0	86.1	+26.7

527 5 CONCLUSION

529 This work is motivated by the observation that the principal subspace of parameters encodes general
 530 knowledge and the residual subspace captures domain-specific adaptations. Building on this, we
 531 proposed KeepLoRA, a parameter-efficient fine-tuning method that can effectively achieve a
 532 balance among the competing objectives of plasticity, backward stability, and forward stability. Our
 533 theoretical analysis confirms that constraining parameter updates to the residual subspace is an opti-
 534 mal strategy, maximizing plasticity for the current task while maintaining orthogonality to subspaces
 535 encoding general and previously learned knowledge. Experiments show that KeepLoRA learns new
 536 tasks with minimal interference with the model’s backbone parameters. Its learning capacity within
 537 the residual subspace is comparable to unconstrained LoRA on isolated tasks, yet it suffers a signifi-
 538 cantly smaller performance drop in the continual learning setting. As a simple and effective method,
 539 KeepLoRA provides a principled approach for continual learning that is applicable to larger models
 and more diverse tasks.

540
541
ETHICS STATEMENT

542 All authors have read and adhered to the ICLR Code of Ethics. This paper presents an algorithmic
 543 contribution, KeepLoRA, aimed at advancing the field of continual learning. Our empirical validation
 544 is conducted exclusively on publicly available and widely used academic benchmarks, such as
 545 CIFAR100 and Caltech101, which do not contain personally identifiable or sensitive information.
 546 While we acknowledge that advancements in machine learning have broad societal consequences,
 547 our work does not introduce foreseeable negative applications or exacerbate biases beyond those
 548 potentially present in the general pre-trained models.

549
550
REPRODUCIBILITY STATEMENT
551

552 To ensure full reproducibility, we provide the source code for our method, KeepLoRA, in the sup-
 553 plementary material. Our method is detailed in Sec. 3, with the core framework summarized in
 554 Algorithm 1. We specify all hyperparameters used for our method and the baselines, including
 555 learning rates, batch size, and the preservation ratios ϵ_w and ϵ_f in Appendix B.

556
557
REFERENCES
558

559 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 560 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 561 report. *arXiv preprint arXiv:2303.08774*, 2023.

562 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
 563 nents with random forests. In *European conference of computer vision (ECCV)*, 2014.

564 Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
 565 mixture of experts in large language models. *IEEE Transactions on Knowledge and Data Engi-
 566 neering*, 2025.

567 Shuaichen Chang, David Palzer, Jialin Li, Eric Fosler-Lussier, and Ningchuan Xiao. Mapqa: A
 568 dataset for question answering on choropleth maps. In *arXiv preprint arXiv:2211.08545*, 2022.

569 Jinpeng Chen, Runmin Cong, Yuzhi Zhao, Hongzheng Yang, Guangneng Hu, Horace Ho Shing Ip,
 570 and Sam Kwong. Sefe: Superficial and essential forgetting eliminator for multimodal contin-
 571 ual instruction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 572 Recognition (CVPR)*, 2025.

573 Quan Cheng, Yuanyu Wan, Lingyu Wu, Chenping Hou, and Lijun Zhang. Continuous subspace
 574 optimization for continual learning. *arXiv preprint arXiv:2505.11816*, 2025.

575 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
 576 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and
 577 pattern recognition (CVPR)*, 2014.

578 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 579 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 580 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 581 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

582 Gregoire Deletang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
 583 pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al.
 584 Language modeling is compression. In *The Twelfth International Conference on Learning Rep-
 585 resentations*, 2024.

586 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 587 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 588 pp. 248–255. Ieee, 2009.

589 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
 590 web]. *IEEE signal processing magazine*, 2012.

594 Yuxuan Ding, Lingqiao Liu, Chunna Tian, Jingyuan Yang, and Haoxuan Ding. Don't stop learning:
 595 Towards continual learning for the clip model. *arXiv preprint arXiv:2207.09248*, 2022.
 596

597 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 598 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
 599 Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 600 scale. In *International Conference on Learning Representations (ICLR)*, 2021.

601 Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou, Xiao
 602 Wang, Zhiheng Xi, Xiaoran Fan, et al. Loramoe: Alleviating world knowledge forgetting in
 603 large language models via moe-style plugin. In *Proceedings of the 62nd Annual Meeting of the
 604 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1932–1945, 2024.

605 Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychome-
 606 trika*, 1936.

607

608 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
 609 examples: An incremental bayesian approach tested on 101 object categories. In *Conference on
 610 computer vision and pattern recognition workshop*, 2004.

611 Giorgio Franceschelli, Claudia Cevenini, and Mirco Musolesi. Training foundation models
 612 as data compression: On information, model weights and copyright law. *arXiv preprint
 613 arXiv:2407.13493*, 2024.

614

615 Hao Fu, Hanbin Zhao, Jiahua Dong, Chao Zhang, and Hui Qian. Iap: Improving continual learn-
 616 ing of vision-language models via instance-aware prompting. *arXiv preprint arXiv:2503.20612*,
 617 2025.

618 H. Guo, F. Zeng, Z. Xiang, et al. Hide-llava: Hierarchical decoupling for continual instruction
 619 tuning of multimodal large language model. In *arXiv preprint arXiv:2503.12941*, 2025a.

620

621 Haiyang Guo, Fei Zhu, Hongbo Zhao, Fanhu Zeng, Wenzhuo Liu, Shijie Ma, Da-Han Wang, and
 622 Xu-Yao Zhang. Mcitlib: Multimodal continual instruction tuning library and benchmark. *arXiv
 623 preprint arXiv:2508.07307*, 2025b.

624 Ziyu Guo, Ray Zhang, Hao Chen, Jialin Gao, Dongzhi Jiang, Jiaze Wang, and Pheng-Ann Heng.
 625 Sciverse: Unveiling the knowledge comprehension and visual reasoning of lmms on multi-modal
 626 scientific problems. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp.
 627 19683–19704, 2025c.

628

629 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
 630 Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
 631 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 632 3608–3617, 2018.

633 Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions
 634 for medical visual question answering. In *arXiv preprint arXiv:2003.10286*, 2020.

635

636 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 637 and deep learning benchmark for land use and land cover classification. *IEEE Journal of selected
 638 topics in applied earth observations and remote sensing*, 2019.

639

640 Dan Hendrycks, Steven Basart, Norman Mu, et al. The many faces of robustness: A critical analysis
 641 of out-of-distribution generalization. In *Proceedings of the IEEE/CVF International Conference
 642 on Computer Vision (ICCV)*, pp. 8340–8349, 2021.

643

644 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 645 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

646

647 Tianyu Huai, Jie Zhou, Xingjiao Wu, Qin Chen, Qingchun Bai, Ze Zhou, and Liang He. Cl-moe:
 648 Enhancing multimodal large language model with dual momentum mixture-of-experts for contin-
 649 ual visual question answering. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 650 and Pattern Recognition*, pp. 19608–19617, 2025.

648 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 649 Farhadi. A diagram is worth a dozen images. In *European Conference on Computer Vision*
 650 (*ECCV*), pp. 235–251. Springer, 2016.

651

652 Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh
 653 Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal
 654 machine comprehension. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 655 *Recognition (CVPR)*, pp. 4999–5007, 2017.

656 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 657 categorization. In *Proceedings of the IEEE international conference on computer vision work-*
 658 *shops*, 2013.

659

660 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 661 2009.

662 Lei Li, Yuqi Wang, Runxin Xu, et al. Multimodal arxiv: A dataset for improving scientific com-
 663 prehension of large vision-language models. In *arXiv preprint arXiv:2403.00231*, 2024.

664

665 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis*
 666 *and machine intelligence*, 40(12):2935–2947, 2017.

667

668 Yan-Shuo Liang and Wu-Jun Li. Adaptive plasticity improvement for continual learning. In *Pro-*
 669 *ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7816–
 7825, 2023.

670

671 Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learn-
 672 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 673 pp. 23638–23647, 2024.

674

675 Adam Dahlgren Lindström and Savitha Sam Abraham. Clevr-math: A dataset for compositional
 676 language, visual and mathematical reasoning. In *arXiv preprint arXiv:2208.05358*, 2022.

677

678 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 679 *in neural information processing systems*, 36:34892–34916, 2023.

680

681 Sylvain Lobry, Diego Marcos, Jesse Murray, et al. Rsvqa: Visual question answering for remote
 682 sensing data. In *IEEE Transactions on Geoscience and Remote Sensing*, volume 58, pp. 8555–
 8566, 2020.

683

684 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-*
 685 *ence on Learning Representations (ICLR)*, 2019.

686

687 Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang,
 688 and Song-Chun Zhu. Iconqa: A new benchmark for abstract diagram understanding and visual
 689 language reasoning. In *Proceedings of the 35th Conference on Neural Information Processing*
 690 *Systems (NeurIPS) Track on Datasets and Benchmarks*, 2021.

691

692 Mao-Lin Luo, Zi-Hao Zhou, Tong Wei, and Min-Ling Zhang. Lada: Scalable label-specific clip
 693 adapter for continual learning. In *Forty-second International Conference on Machine Learning*,
 694 2025.

695

696 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 697 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

698

699 Jishnu Mukhoti, Yarin Gal, Philip Torr, and Puneet K. Dokania. Fine-tuning can cripple your founda-
 700 tion model; preserving features may be the solution. *Transactions on Machine Learning Research*,
 701 2024. ISSN 2835-8856. Featured Certification.

702

703 Nikhil Shivakumar Nayak, Krishnateja Killamsetty, Ligong Han, Abhishek Bhandwaldar, Pra-
 704 teek Chanda, Kai Xu, Hao Wang, Aldo Pareja, Oleg Silkin, Mustafa Eyceoz, et al. Sculpt-
 705 ing subspaces: Constrained full fine-tuning in llms for continual learning. *arXiv preprint*
 706 *arXiv:2504.07097*, 2025.

702 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 703 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*,
 704 2008.

705 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012
 706 IEEE conference on computer vision and pattern recognition (CVPR)*, 2012.

708 Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet-
 709 lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-
 710 to-sentence models. In *Proceedings of the IEEE International Conference on Computer Vision
 711 (ICCV)*, pp. 2641–2649, 2015.

712 Jingyang Qiao, zhizhong zhang, Xin Tan, Chengwei Chen, Yanyun Qu, Yong Peng, and Yuan Xie.
 713 Prompt gradient projection for continual learning. In *The Twelfth International Conference on
 714 Learning Representations*, 2024.

716 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 717 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 718 models from natural language supervision. In *International conference on machine learning*, pp.
 719 8748–8763. PmLR, 2021.

720 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 721 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on
 722 Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

724 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 725 replay for continual learning. *Advances in neural information processing systems*, 32, 2019.

727 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 728 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 729 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

730 Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
 731 *International Conference on Learning Representations*, 2021.

733 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
 734 hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of the 56th
 735 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 736 2556–2565, 2018.

737 Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The truth is in there: Improving reasoning
 738 in language models with layer-selective rank reduction. In *The Twelfth International Conference
 739 on Learning Representations*, 2024.

741 Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Jens
 742 Beßwenger, Ping Luo, Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph vi-
 743 sual question answering. In *European Conference on Computer Vision (ECCV)*, pp. 256–274.
 744 Springer, 2024.

745 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
 746 Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
 747 composed attention-based prompting for rehearsal-free continual learning. In *Proceedings of the
 748 IEEE/CVF conference on computer vision and pattern recognition*, pp. 11909–11919, 2023.

749 Longxiang Tang, Zhuotao Tian, Kai Li, Chunming He, Hantao Zhou, Hengshuang Zhao, Xiu Li, and
 750 Jiaya Jia. Mind the interference: Retaining pre-trained knowledge in parameter efficient continual
 751 learning of vision-language models. In *European conference on computer vision*, pp. 346–365.
 752 Springer, 2024.

754 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 755 learning: Theory, method and application. *IEEE transactions on pattern analysis and machine
 intelligence*, 46(8):5362–5383, 2024.

756 Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
 757 Xuan-Jing Huang. Orthogonal subspace learning for language model continual learning. In
 758 *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 10658–10671,
 759 2023a.

760 Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
 761 An occam’s razor for domain incremental learning. *Advances in Neural Information Processing
 762 Systems*, 35:5682–5695, 2022a.

764 Ziao Wang, Yuhang Li, Junda Wu, Jaehyeon Soon, and Xiaofeng Zhang. Finvis-gpt: A multimodal
 765 large language model for financial chart analysis. In *arXiv preprint arXiv:2308.01430*, 2023b.

766 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 767 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 768 rehearsal-free continual learning. In *European conference on computer vision*, pp. 631–648.
 769 Springer, 2022b.

771 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
 772 cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Pro-
 773 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149,
 774 2022c.

775 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
 776 Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
 777 fine-tuning of zero-shot models. In *Proceedings of the IEEE/CVF conference on computer vision
 778 and pattern recognition*, pp. 7959–7971, 2022.

779 Bin Wu, Wuxuan Shi, Jinqiao Wang, and Mang Ye. Synthetic data is an elegant gift for continual
 780 vision-language models. In *Proceedings of the Computer Vision and Pattern Recognition Confer-
 781 ence*, pp. 2813–2823, 2025a.

783 Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
 784 Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class incre-
 785 mental learning. *arXiv preprint arXiv:2501.13198*, 2025b.

786 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 787 Large-scale scene recognition from abbey to zoo. In *IEEE computer society conference on com-
 788 puter vision and pattern recognition*, 2010.

790 Jiazu Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
 791 continual learning of vision-language models via mixture-of-experts adapters. In *Proceedings of
 792 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23219–23230, 2024.

793 Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermış, Acyr Locatelli, and Sara Hooker. Push-
 794 ing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning.
 795 *arXiv preprint arXiv:2309.05444*, 2023.

797 Hongbo Zhao, Fei Zhu, Rundong Wang, Gaofeng Meng, and Zhaoxiang Zhang. Mllm-cl: Continual
 798 learning for multimodal large language models. In *arXiv preprint arXiv:2506.05453*, 2025.

800 Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
 801 zero-shot transfer degradation in continual learning of vision-language models. In *Proceedings of
 802 the IEEE/CVF international conference on computer vision*, pp. 19125–19136, 2023.

804 Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
 805 incremental learning: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 806 46(12):9851–9873, 2024.

807
 808
 809

810 A PROOFS OF PROPOSITIONS
811812 A.1 PROOFS OF PROPOSITION 3.1
813814 *Proof.* Suppose for loss function \mathcal{L} for task \mathcal{T}^t and a linear layer with $\mathbf{y} = \mathbf{x}\mathbf{W}$, where \mathbf{y} is output
815 of layer and \mathbf{x} is the input. We can compute gradient of \mathbf{B}_t directly as follow:

816
$$\frac{\partial \mathcal{L}}{\partial \mathbf{B}_t} = \frac{\partial \mathbf{W}}{\partial \mathbf{B}_t} \cdot \frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \frac{\alpha}{r} \mathbf{A}_t^\top \mathbf{G}_t. \quad (9)$$

817
818

819 In a gradient descent iteration, the change of \mathbf{B}_t is represented by a negative gradient: $\Delta \mathbf{B}_t =$
820 $-\frac{\eta\alpha}{r} \mathbf{A}_t^\top \mathbf{G}_t$. Therefore, when \mathbf{A}_t is frozen to only update \mathbf{B}_t in each iteration, we can obtain the
821 variation of \mathbf{W} in one iteration to complete the proof:

822
$$\Delta \mathbf{W} = \frac{\alpha}{r} \mathbf{A}_t \Delta \mathbf{B}_t = -\frac{\eta\alpha^2}{r^2} \mathbf{A}_t \mathbf{A}_t^\top \mathbf{G}_t. \quad (10)$$

823
824

825 \square
826827 A.2 PROOFS OF PROPOSITION 3.2
828829 *Proof.* We proceed by transforming the constrained optimization problem, leveraging subspace
830 properties, and applying the Eckart–Young–Mirsky Theorem (Eckart & Young, 1936) to confirm
831 the optimal solution.832 *Step 1: Equivalent Transformation of the Objective Function.* For an orthonormal matrix \mathbf{A}_t sat-
833 isfying $\mathbf{A}_t^\top \mathbf{A}_t = \mathbf{I}$, the orthogonal projection operator $\mathbf{P}_{\mathbf{A}_t} = \mathbf{A}_t \mathbf{A}_t^\top$ satisfies the Pythagorean
834 theorem for the Frobenius norm:

835
$$\|\mathbf{G}_t\|_F^2 = \|\mathbf{P}_{\mathbf{A}_t} \mathbf{G}_t\|_F^2 + \|\mathbf{G}_t - \mathbf{P}_{\mathbf{A}_t} \mathbf{G}_t\|_F^2.$$

836

837 Since $\|\mathbf{G}_t\|_F^2$ is a constant independent of \mathbf{A}_t , minimizing the original objective $\|\mathbf{G}_t - \mathbf{P}_{\mathbf{A}_t} \mathbf{G}_t\|_F^2$
838 is *equivalent* to maximizing the projected norm $\|\mathbf{P}_{\mathbf{A}_t} \mathbf{G}_t\|_F^2$. The optimization problem thus can be
839 rewritten as:

840
$$\begin{aligned} & \max_{\mathbf{A}_t^\top \mathbf{A}_t = \mathbf{I}} \|\mathbf{A}_t \mathbf{A}_t^\top \mathbf{G}_t\|_F^2, \\ 841 & \text{s.t. } \mathbf{W}_p^\top \mathbf{A}_t = \mathbf{M}_{t-1}^\top \mathbf{A}_t = \mathbf{0}. \end{aligned} \quad (11)$$

842

843 *Step 2: Substitute $\hat{\mathbf{G}}_t$ and Simplify Using Constraints.* Recall from Eq. 5 that the projected gradient
844 $\hat{\mathbf{G}}_t$ is defined as:

845
$$\hat{\mathbf{G}}_t = \mathbf{G}_t - \mathbf{W}_p \mathbf{W}_p^\top \mathbf{G}_t - \mathbf{M}_{t-1} \mathbf{M}_{t-1}^\top \mathbf{G}_t.$$

846

847 Rearranging gives $\mathbf{G}_t = \hat{\mathbf{G}}_t + \mathbf{W}_p \mathbf{W}_p^\top \mathbf{G}_t + \mathbf{M}_{t-1} \mathbf{M}_{t-1}^\top \mathbf{G}_t$. Substitute this into the objective:

848
$$\|\mathbf{A}_t \mathbf{A}_t^\top (\hat{\mathbf{G}}_t + \mathbf{W}_p \mathbf{W}_p^\top \mathbf{G}_t + \mathbf{M}_{t-1} \mathbf{M}_{t-1}^\top \mathbf{G}_t)\|_F^2.$$

849

850 For any feasible \mathbf{A}_t , we use $\mathbf{W}_p^\top \mathbf{A}_t = \mathbf{M}_{t-1}^\top \mathbf{A}_t = \mathbf{0}$ to simplify: $\mathbf{A}_t^\top (\mathbf{W}_p \mathbf{W}_p^\top \mathbf{G}_t) =$
851 $(\mathbf{W}_p^\top \mathbf{A}_t)^\top (\mathbf{W}_p^\top \mathbf{G}_t) = \mathbf{0}^\top (\mathbf{W}_p^\top \mathbf{G}_t) = \mathbf{0}$. Similarly, $\mathbf{A}_t^\top (\mathbf{M}_{t-1} \mathbf{M}_{t-1}^\top \mathbf{G}_t) = \mathbf{0}$.852 Thus, $\mathbf{A}_t \mathbf{A}_t^\top (\mathbf{W}_p \mathbf{W}_p^\top \mathbf{G}_t + \mathbf{M}_{t-1} \mathbf{M}_{t-1}^\top \mathbf{G}_t) = \mathbf{0}$, and the objective reduces to maximizing
853 $\|\mathbf{A}_t \mathbf{A}_t^\top \hat{\mathbf{G}}_t\|_F^2$. The optimization problem simplifies to:

854
$$\begin{aligned} & \max_{\mathbf{A}_t^\top \mathbf{A}_t = \mathbf{I}} \|\mathbf{A}_t \mathbf{A}_t^\top \hat{\mathbf{G}}_t\|_F^2, \\ 855 & \text{s.t. } \mathbf{W}_p^\top \mathbf{A}_t = \mathbf{M}_{t-1}^\top \mathbf{A}_t = \mathbf{0}. \end{aligned} \quad (12)$$

856

857 *Step 3: Optimal \mathbf{A}_t via Eckart–Young–Mirsky Theorem.* The Eckart–Young–Mirsky Theorem
858 (Eckart & Young, 1936) states that for any matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ and integer $k \leq \min(m, n)$, the
859 r -dimensional subspace that maximizes $\|\mathbf{P}\mathbf{X}\|_F^2$, where \mathbf{P} is the orthogonal projection onto the
860 subspace, is spanned by the top- r left singular vectors of \mathbf{X} .

864 Here, $\mathbf{X} = \hat{\mathbf{G}}_t$, and we seek an r -dimensional subspace spanned by \mathbf{A}_t to maximize $\|\mathbf{A}_t \mathbf{A}_t^\top \hat{\mathbf{G}}_t\|_F^2$.
 865 By the theorem, the optimal \mathbf{A}_t consists of the top- r left singular vectors of $\hat{\mathbf{G}}_t$.
 866

867 *Step 4: Verify Feasibility of the Optimal \mathbf{A}_t .* We confirm the optimal \mathbf{A}_t satisfies the constraints
 868 $\mathbf{W}_p^\top \mathbf{A}_t = \mathbf{0}$ and $\mathbf{M}_{t-1}^\top \mathbf{A}_t = \mathbf{0}$.

869 By the definition of $\hat{\mathbf{G}}_t$ in Eq. 5, we have:
 870

$$871 \mathbf{W}_p^\top \hat{\mathbf{G}}_t = \mathbf{0}, \quad \mathbf{M}_{t-1}^\top \hat{\mathbf{G}}_t = \mathbf{0}. \quad (13)$$

873 Substituting SVD of $\hat{\mathbf{G}} = \mathbf{U} \mathbf{S} \mathbf{V}$ in Eq. 13 : $\mathbf{W}_p^\top \hat{\mathbf{G}}_t = \mathbf{W}_p^\top \mathbf{U} \mathbf{S} \mathbf{V}^\top = \mathbf{0}$. Since $\mathbf{S} \mathbf{V}^\top$ is column-
 874 full rank (singular values are non-negative, and \mathbf{V} is orthonormal), $\mathbf{W}_p^\top \mathbf{U}$ must be the zero matrix.
 875 Thus, $\mathbf{W}_p^\top \mathbf{U} = \mathbf{0}$, hence $\mathbf{W}_p^\top \mathbf{A}_t = \mathbf{W}_p^\top \mathbf{U}_{:,1:r} = \mathbf{0}$. The same logic applies to \mathbf{M}_{t-1} : $\mathbf{M}_{t-1}^\top \hat{\mathbf{G}}_t =$
 876 $\mathbf{M}_{t-1}^\top \mathbf{U} \mathbf{S} \mathbf{V}^\top = \mathbf{0}$ implies $\mathbf{M}_{t-1}^\top \mathbf{U} = \mathbf{0}$, hence $\mathbf{M}_{t-1}^\top \mathbf{A}_t = \mathbf{0}$.
 877

878 Thus, the optimal solution to Eq. 8 is exactly the top- r left singular vectors of $\hat{\mathbf{G}}_t$, which matches
 879 KeepLoRA \mathbf{A}_t initialization. The proof is completed. \square
 880

881 B EXPERIMENT DETAILS

882 B.1 BENCHMARK

883 **MTIL** benchmark (Zheng et al., 2023) consists of 11 image classification datasets: Aircraft (Maji
 884 et al., 2013), Caltech101 (Fei-Fei et al., 2004), Cifar100 (Krizhevsky et al., 2009), DTD (Cimpoi
 885 et al., 2014), EuroSAT (Helber et al., 2019), Flowers (Nilsback & Zisserman, 2008), Food (Bossard
 886 et al., 2014), MNIST (Deng, 2012), OxfordPet (Parkhi et al., 2012), StanfordCars (Krause et al.,
 887 2013), and SUN397 (Xiao et al., 2010). Each dataset is treated as a task.

888 **MLLM-DCL** benchmark (Zhao et al., 2025) consists of multiple downstream VQA datasets:
 889 RSVQA (Lobry et al., 2020), PathVQA (He et al., 2020), DriveLM (Sima et al., 2024), FinVis (Wang
 890 et al., 2023b), AI2D (Kembhavi et al., 2016), Sciverse (Guo et al., 2025c), MapQA (Chang et al.,
 891 2022), and TQA (Kembhavi et al., 2017). It covers 5 specialized areas: Remote Sensing, Medical,
 892 Driving, Finance, and Science. Each area is treated as a task.
 893

894 **UCIT** benchmark (Guo et al., 2025a) consists of 6 VQA datasets: ArxivQA (Li et al., 2024),
 895 CLEVR-Math (Lindström & Abraham, 2022), IconQA (Lu et al., 2021), ImageNet-R (Hendrycks
 896 et al., 2021), VizWiz-Caption (Gurari et al., 2018), and Flickr30k (Plummer et al., 2015). Each
 897 dataset is treated as a task.
 898

900 B.2 EVALUATION METRICS

901 We define the *Transfer*, *Average*, and *Last* metrics to evaluate model performance under continual
 902 learning scenarios. Let $a_t^{(i)}$ represent the accuracy of the model on task t after training on task i with
 903 a total of n tasks. The *Transfer*, *Average*, and *Last* metrics for task t are computed as follows:
 904

$$905 \text{Transfer}_t = \frac{1}{t-1} \sum_{i=1}^{t-1} a_t^{(i)}, \quad t = 2, 3, \dots, n, \quad (14)$$

$$906 \text{Average}_t = \frac{1}{n} \sum_{i=1}^n a_t^{(i)}, \quad t = 1, 2, \dots, n, \quad (15)$$

$$907 \text{Last}_t = a_t^{(n)}, \quad t = 1, 2, \dots, n. \quad (16)$$

908 The *Transfer* metric evaluates forward stability by measuring the performance of unseen tasks
 909 throughout $(i+1, i+2, \dots, n)$ after training on the task i . The *Last* metric measures the final
 910 performance on each task after completing all training steps, quantifying both plasticity and back-
 911 ward stability. The *Average* metric represents the mean accuracy across all time steps, offering a
 912 holistic measure of stability and plasticity.
 913

918 B.3 IMPLEMENTATION DETAILS OF KEEPLORA+
919

920 We extend KeepLoRA with a structure variant, termed KeepLoRA+, which incorporates a prototype
921 vector for each class name to improve classification performance. Each prototype vector is initial-
922 ized using the mean feature extracted by the vision encoder from the corresponding class samples.
923 During the training stage, we jointly optimize the prototype vectors alongside the KeepLoRA
924 parameters. In the inference stage, the logits derived from the similarity of the prototype vectors are
925 averaged with the logits calculated from the text-side contrast.

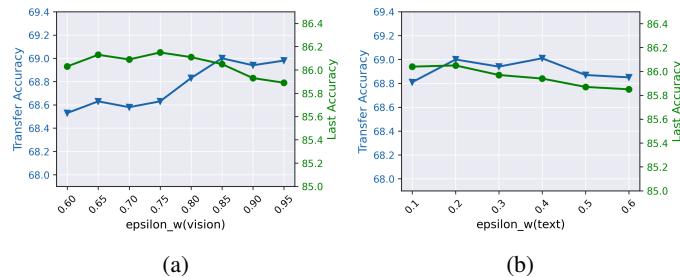
926 B.4 ADDITIONAL IMPLEMENTATION DETAILS
927

928 **CLIP Experiments.** We adopt the CLIP (Radford et al., 2021) model with a ViT-B/16 (Dosovitskiy
929 et al., 2021) image encoder. The training process is carried out using the AdamW (Loshchilov &
930 Hutter, 2019) optimizer, with a learning rate of 10^{-3} and a batch size of 64 across all tasks with no
931 more than 10 epochs. For the primary experiments, we set the hyperparameters as $\epsilon_{w(\text{vision})} = 0.85$
932 and $\epsilon_{w(\text{text})} = 0.2$ in vision encoder and text encoder separately and set $\epsilon_f = 0.99$. KeepLoRA+ is a
933 structure extension variant with an extension prototype vector for a classname to help classification.
934 All experiments of KeepLoRA are conducted on a single NVIDIA 4090 GPU. For the reproduced
935 methods, we performed careful hyperparameter tuning. For O-LoRA (Wang et al., 2023a), the
936 learning rate is 5×10^{-4} with a regularization coefficient of 0.1. For InfLoRA (Liang & Li, 2024),
937 the learning rate is 10^{-3} , with $\epsilon_f = 0.99$. The learning rate for SD-LoRA (Wu et al., 2025b) is set
938 to 5×10^{-3} .

939 **LLaVA Experiments.** We adopt the LLaVA-1.5-7b (Liu et al., 2023) model for multimodal contin-
940 ual instruction tuning experiments. The training is conducted on $4 \times$ NVIDIA H100 GPUs using the
941 AdamW optimizer. For the MLLM-DCL benchmark, we set the learning rate to 2×10^{-5} and train
942 for no more than 3 epochs per task. For the UCIT benchmark, the learning rate is set to 2×10^{-4} for
943 all tasks except Flickr30k, which uses 5×10^{-5} and train 1 epoch for each task. The hyperparameters
944 for subspace constraints are configured as $\epsilon_w = 0.6$ and $\epsilon_f = 0.99$.

945 C SUPPLEMENTARY EXPERIMENTS
946947 C.1 COMPARISON ON MTIL WITH ORDER II.
948

949 We compare different methods on MTIL in random order: StanfordCars, Food, MNIST, OxfordPet,
950 Flowers, SUN397, Aircraft, Caltech101, DTD, EuroSAT and CIFAR100. As shown in Tab. 6,
951 KeepLoRA consistently outperforms previous methods across all metrics.
952

953 C.2 HYPERPARAMETER ANALYSIS
954

955 956 957 958 959 960 961 962 963 964 Figure 4: Effects of hyperparameters $\epsilon_{w(\text{vision})}$ and $\epsilon_{w(\text{text})}$ on *Transfer* and *Last*, respectively.
965 966

967 We examine the effects of hyperparameters $\epsilon_{w(\text{vision})}$ and $\epsilon_{w(\text{text})}$ on *Transfer* and *Last*. For the image
968 encoder, *Last* fluctuates slightly, with a minor decline when $\epsilon_{w(\text{vision})}$ is larger. Between 0.75 and
969 0.85, *Transfer* shows a clear increase. For the text encoder, which uses only class names and thus
970 has much less training data than images, the coefficient $\epsilon_{w(\text{text})}$ exhibits low performance sensitivity.
971 Datasets with image-text pairs or VQA tasks, which include substantial text data, warrant further
972 study in this regard.

972
973 Table 6: Comparison of different continual learning methods on MTIL for each task with order-II in
974 terms of *Transfer*, *Average*, and *Last* scores (%). The best results are highlighted with **bold** style.
975
976
977
978
979

Method	Inf.	Efficiency	w/o Extra Data	Cars	Food	MNIST	Oxfordpet	Flowers	Sun397	Aircraft	Caltech101	DTD	EuroSAT	CIFAR100	Avg.
Zero-shot	✓	✓	—	64.7	88.5	59.4	89.0	71.0	65.4	24.8	88.4	44.6	54.9	68.2	
Transfer															
LwF (Li & Hoiem, 2017)	✓	✗	—	87.8	58.5	71.9	46.6	57.3	12.8	81.4	34.5	34.5	46.8	53.2	
iCaRL (Rebuffi et al., 2017)	✓	✗	—	86.1	51.8	67.6	50.4	57.9	11.0	72.3	31.2	32.7	48.1	50.9	
LwF-VR (Ding et al., 2022)	✓	✗	—	88.2	57.0	71.4	50.0	58.0	13.0	82.0	34.4	29.3	47.6	53.1	
WiSE-FT (Wortsman et al., 2022)	✓	✗	—	87.2	57.6	67.0	45.0	54.0	12.9	78.6	35.5	28.4	44.3	51.1	
ZSCL (Zheng et al., 2023)	✓	✗	—	<u>88.3</u>	57.5	84.7	68.1	64.8	21.1	<u>88.2</u>	<u>45.3</u>	55.2	<u>68.2</u>	<u>64.1</u>	
O-LoRA (Wang et al., 2023a)	✓	✓	—	87.8	56.7	90.1	<u>71.4</u>	64.0	20.7	87.4	43.9	46.3	65.9	63.4	
InfLoRA (Liang & Li, 2024)	✓	✓	—	88.2	56.7	90.2	71.3	65.0	22.2	88.2	43.8	47.3	67.2	64.0	
SD-LoRA (Wu et al., 2025b)	✓	✓	—	88.0	56.4	<u>90.5</u>	71.0	64.6	22.0	87.8	43.7	47.1	66.4	63.7	
KeepLoRA	✓	✓	—	88.7	<u>57.7</u>	91.2	72.1	65.8	23.4	88.8	45.4	<u>48.5</u>	68.2	65.0	
L2P (Wang et al., 2022c)	✗	✓	—	70.6	30.7	78.3	42.8	38.3	17.4	75.3	27.4	23.1	20.7	42.5	
DualPrompt (Wang et al., 2022b)	✗	✓	—	79.9	46.9	85.2	51.3	45.1	9.3	82.7	29.9	42.9	47.2	52.1	
S-Prompts (Wang et al., 2022a)	✗	✓	—	59.8	46.2	67.7	47.5	43.8	13.5	76.8	31.4	22.6	43.5	45.3	
DIKI (Tang et al., 2024)	✗	✓	—	85.8	59.8	<u>89.1</u>	<u>71.8</u>	62.6	<u>24.3</u>	<u>93.3</u>	42.7	46.8	67.8	64.4	
MoE-Adapters (Yu et al., 2024)	✗	✗	—	<u>88.8</u>	<u>59.5</u>	<u>89.1</u>	69.9	<u>64.4</u>	18.1	86.9	43.7	54.6	68.2	64.3	
IAP (Fu et al., 2025)	✗	✓	—	85.7	59.4	<u>89.1</u>	71.3	62.7	24.4	94.0	43.8	49.0	68.6	64.9	
KeepLoRA+	✗	✓	—	89.1	58.1	90.7	72.4	65.4	24.0	88.9	44.0	<u>52.7</u>	70.2	65.5	
Average															
LwF (Li & Hoiem, 2017)	✓	✗	—	49.0	77.0	92.1	85.9	66.5	67.2	20.9	84.7	44.6	45.5	50.5	62.2
iCaRL (Rebuffi et al., 2017)	✓	✗	—	52.0	75.9	77.4	74.6	58.4	59.3	11.7	79.6	42.1	43.2	51.7	56.9
LwF-VR (Ding et al., 2022)	✓	✗	—	44.9	75.8	91.8	85.3	63.5	67.6	16.9	84.9	44.0	40.6	51.3	60.6
WiSE-FT (Wortsman et al., 2022)	✓	✗	—	52.6	79.3	91.9	83.9	63.4	65.2	23.3	83.7	45.4	40.0	48.2	61.5
ZSCL (Zheng et al., 2023)	✓	✗	—	81.7	91.3	91.9	91.0	<u>82.9</u>	72.5	33.6	89.7	53.3	62.8	<u>69.9</u>	<u>74.6</u>
O-LoRA (Wang et al., 2023a)	✓	✓	—	78.5	91.0	91.3	92.3	77.7	73.0	33.5	90.5	50.7	55.1	67.8	72.9
InfLoRA (Liang & Li, 2024)	✓	✓	—	<u>84.0</u>	<u>92.1</u>	91.7	<u>93.2</u>	81.6	<u>74.3</u>	<u>34.3</u>	<u>91.3</u>	51.5	56.6	69.0	74.5
SD-LoRA (Wu et al., 2025b)	✓	✓	—	76.8	91.1	90.8	92.5	76.5	73.1	34.0	90.7	49.1	56.2	68.2	72.6
KeepLoRA	✓	✓	—	85.2	92.3	<u>92.0</u>	93.7	84.8	74.8	35.9	91.8	53.1	<u>57.5</u>	70.0	75.6
L2P (Wang et al., 2022c)	✗	✓	—	80.1	87.4	86.7	89.6	76.8	59.1	27.7	79.5	39.9	34.6	26.5	62.5
DualPrompt (Wang et al., 2022b)	✗	✓	—	78.6	88.4	89.7	91.7	80.0	62.4	23.2	85.0	41.3	51.6	50.7	67.5
S-Prompts (Wang et al., 2022a)	✗	✓	—	79.2	86.5	89.5	87.0	78.2	61.5	25.5	83.6	41.9	36.3	47.2	65.1
DIKI (Tang et al., 2024)	✗	✓	—	81.9	88.9	<u>92.1</u>	92.8	<u>87.7</u>	70.3	<u>34.3</u>	<u>94.2</u>	51.5	56.1	69.5	74.5
MoE-Adapters (Yu et al., 2024)	✗	✗	—	<u>84.9</u>	<u>89.9</u>	89.3	91.4	86.2	<u>72.2</u>	33.4	89.4	53.3	61.4	69.9	74.7
IAP (Fu et al., 2025)	✗	✓	—	82.5	89.2	92.3	<u>93.2</u>	88.0	70.4	<u>34.3</u>	94.4	52.4	57.9	70.2	75.1
KeepLoRA+	✗	✓	—	88.0	92.4	91.9	93.9	87.4	75.2	39.2	92.0	52.8	60.9	71.8	76.9
Last															
LwF (Li & Hoiem, 2017)	✓	✗	—	34.6	69.6	99.3	88.7	61.1	72.5	32.5	88.1	65.6	90.9	<u>87.9</u>	71.9
iCaRL (Rebuffi et al., 2017)	✓	✗	—	46.0	81.5	91.3	82.8	66.5	72.2	16.3	91.6	68.1	83.2	<u>87.8</u>	71.6
LwF-VR (Ding et al., 2022)	✓	✗	—	27.4	61.2	<u>99.4</u>	86.3	60.6	70.7	23.4	88.0	61.3	84.3	88.1	68.2
WiSE-FT (Wortsman et al., 2022)	✓	✗	—	35.6	76.9	99.5	89.1	62.1	71.8	27.8	90.8	67.0	85.6	87.6	72.2
ZSCL (Zheng et al., 2023)	✓	✗	—	78.2	91.1	97.6	92.5	<u>87.4</u>	78.2	45.0	92.3	72.7	96.2	86.3	83.4
O-LoRA (Wang et al., 2023a)	✓	✓	—	70.3	89.8	97.8	92.9	73.8	79.8	44.4	95.3	66.3	91.5	85.9	80.7
InfLoRA (Liang & Li, 2024)	✓	✓	—	<u>82.4</u>	<u>92.0</u>	99.3	<u>93.9</u>	85.4	<u>81.2</u>	<u>46.1</u>	<u>96.5</u>	70.0	<u>97.6</u>	87.2	<u>84.7</u>
SD-LoRA (Wu et al., 2025b)	✓	✓	—	72.3	89.7	97.3	92.4	76.1	78.9	45.3	95.2	61.6	96.9	86.1	81.1
KeepLoRA	✓	✓	—	83.7	92.2	99.5	94.4	90.7	81.3	49.0	96.9	<u>72.3</u>	98.0	87.3	85.9
L2P (Wang et al., 2022c)	✗	✓	—	80.1	89.1	99.1	93.8	96.2	76.5	40.1	86.9	73.5	86.3	84.2	82.3
DualPrompt (Wang et al., 2022b)	✗	✓	—	78.6	<u>89.3</u>	99.2	94.1	96.5	76.8	39.8	89.0	71.6	90.7	84.9	82.8
S-Prompts (Wang et al., 2022a)	✗	✓	—	79.2	89.1	99.1	94.3	95.8	76.3	39.9	95.5	70.1	97.6	84.4	83.8
DIKI (Tang et al., 2024)	✗	✓	—	81.9	89.2	99.4	94.3	<u>96.8</u>	76.7	46.3	95.9	74.8	98.3	<u>86.6</u>	85.5
MoE-Adapters (Yu et al., 2024)	✗	✗	—	<u>84.1</u>	88.5	94.0	91.8	94.1	<u>77.8</u>	<u>50.4</u>	93.3	77.1	87.7	<u>86.6</u>	84.1
IAP (Fu et al., 2025)	✗	✓	—	82.5	88.6	99.4	<u>94.9</u>	97.7	76.9	46.1	<u>96.1</u>	74.7	<u>98.0</u>	<u>86.6</u>	85.9
KeepLoRA+	✗	✓	—	87.4	92.5	<u>99.3</u>	95.0	96.0	83.2	56.9	97.5	76.9	<u>98.0</u>	88.0	88.2

1026 C.3 PER-TRAINING-STEP RESULTS
10271028 We present the detailed per-training-step accuracies through all training steps in Tab. 7, 8, 9, 10,
1029 11 and 12. These results demonstrate strong performance in terms of both learning plasticity and
1030 stability.1031 Table 7: Accuracy of KeepLoRA on the MTIL benchmark with order-I. Each row represents the per-
1032 performance on every dataset of the model trained after the corresponding task. Transfer, Average,
1033 and Last metrics are shown.
1034

	Aircraft	Caltech101	CIFAR100	DTD	EuroSAT	Flowers	Food	MNIST	Oxfordpet	Cars	Sun397
Transfer	84.6	68.7	45.9	54.3	70.1	87.7	64.8	90.3	59.5	64.1	69.0
Aircraft	59.0	84.6	68.4	45.4	52.2	71.9	89.0	63.8	91.1	60.6	63.6
Caltech101	58.1	97.0	69.1	45.4	50.8	71.1	88.7	61.8	91.1	60.1	64.8
CIFAR100	56.0	96.8	87.6	46.8	56.3	68.9	87.3	66.3	90.1	59.6	64.7
DTD	55.9	96.7	87.5	75.0	57.9	69.6	87.1	64.7	90.3	59.5	64.6
EuroSAT	55.7	96.7	87.0	74.8	98.4	69.3	87.0	65.2	90.2	59.1	64.6
Flowers	55.6	97.0	86.9	74.4	98.4	93.3	86.9	65.0	90.3	59.4	64.3
Food	54.7	96.8	86.2	72.6	98.3	92.2	91.8	66.7	89.8	59.0	63.8
MNIST	54.3	96.7	85.8	72.4	98.1	91.8	91.8	99.5	89.7	59.3	63.8
OxfordPet	54.6	96.7	85.7	72.0	98.2	91.8	91.8	99.5	94.7	59.2	63.8
Cars	54.2	96.7	85.7	71.9	98.1	91.5	91.7	99.5	94.4	84.3	63.7
SUN397	53.2	96.8	85.7	71.4	98.1	90.8	91.4	99.6	94.5	83.1	82.0
Average	55.6	95.7	83.2	65.6	82.2	82.0	89.5	77.4	91.5	63.9	65.8
											77.5

1053 Table 8: Accuracy of KeepLoRA on the MTIL benchmark with order-II. Each row represents
1054 the performance on every dataset of the model trained after the corresponding task. Transfer,
1055 Average, and Last metrics are shown.
1056

	Cars	Food	MNIST	OxfordPet	Flowers	Sun397	Aircraft	Caltech101	DTD	EuroSAT	CIFAR100
Transfer	88.7	57.7	91.2	72.1	65.8	23.4	88.8	45.4	48.5	68.2	65.0
Cars	86.2	88.7	57.1	91.3	71.7	65.5	23.5	87.4	46.6	50.7	69.5
Food	85.9	92.9	58.3	91.1	72.3	66.0	23.9	88.3	45.3	49.8	70.5
MNIST	85.8	92.8	99.6	91.2	71.9	66.2	23.0	88.6	46.4	50.4	68.1
OxfordPet	85.7	92.8	99.6	94.8	72.4	65.9	23.0	89.3	46.0	48.2	67.8
Flowers	85.6	92.8	99.6	94.8	92.4	65.7	23.0	89.3	46.2	46.9	67.5
Sun397	85.2	92.7	99.6	94.6	92.2	82.7	24.0	89.6	44.2	47.0	68.0
Aircraft	84.8	92.7	99.6	94.6	92.1	82.7	51.6	89.3	44.2	46.3	68.0
Caltech101	84.8	92.7	99.6	94.6	92.2	82.6	51.6	97.1	44.5	48.7	68.3
DTD	84.8	92.6	99.6	94.8	92.2	82.6	51.3	96.9	74.5	48.2	68.2
EuroSAT	84.6	92.7	99.6	94.6	92.1	82.2	51.1	97.0	74.5	98.6	66.6
CIFAR100	83.7	92.3	99.5	94.4	90.8	81.3	49.0	96.9	72.3	98.0	87.3
Average	85.2	92.3	92.0	93.7	84.8	74.8	35.9	91.8	53.1	57.5	75.6

1074 1075 USE OF LARGE LANGUAGE MODELS

1076 We use the large language model to polish text and check grammar. All outputs were reviewed by
1077 the authors, who take full responsibility for the final content.
1078

1080
1081
1082
1083
1084 Table 9: Accuracy of KeepLoRA+ on the MTIL benchmark with order-I. Each row represents
1085 the performance on every dataset of the model trained after the corresponding task. **Transfer**,
1086 **Average**, and **Last** metrics are shown.
1087

	Aircraft	Caltech101	CIFAR100	DTD	EuroSAT	Flowers	Food	MNIST	Oxfordpet	Cars	Sun397
Transfer	85.9	69.9	44.6	53.7	70.9	88.9	65.4	90.8	63.0	66.1	69.9
Aircraft	59.2	85.9	69.6	44.4	54.3	72.4	89.5	62.7	91.2	63.8	64.5
Caltech101	59.2	97.5	70.2	44.3	53.3	71.4	89.5	62.7	91.4	63.8	65.1
CIFAR100	59.0	97.8	88.2	45.1	52.7	70.3	88.7	67.8	90.8	63.3	66.3
DTD	59.0	97.8	88.0	76.4	54.4	70.5	88.6	66.6	90.7	63.3	66.3
EuroSAT	58.6	97.6	87.8	76.2	98.5	70.2	88.5	66.0	91.0	63.1	66.5
Flowers	58.8	97.6	87.9	76.1	98.5	95.8	88.4	66.4	90.8	63.1	66.4
Food	58.4	97.6	87.6	76.6	98.4	95.8	92.9	65.4	90.4	62.5	66.5
MNIST	57.8	97.6	87.3	76.8	98.4	95.9	92.9	99.5	90.2	62.2	66.5
OxfordPet	57.8	97.6	87.2	76.5	98.4	95.8	92.9	99.5	94.8	62.2	66.4
Cars	57.7	97.5	87.3	76.7	98.4	95.6	92.9	99.5	94.8	87.7	66.3
SUN397	57.3	97.6	87.2	76.5	98.4	95.7	92.6	99.5	94.7	87.2	83.2
Average	58.4	96.5	84.4	67.8	82.1	84.5	90.7	77.8	91.9	67.5	67.6
											79.0

1104
1105
1106
1107
1108
1109
1110 Table 10: Accuracy of KeepLoRA+ on the MTIL benchmark with order-II. Each row represents
1111 the performance on every dataset of the model trained after the corresponding task. **Transfer**,
1112 **Average**, and **Last** metrics are shown.
1113

	Cars	Food	MNIST	OxfordPet	Flowers	Sun397	Aircraft	Caltech101	DTD	EuroSAT	CIFAR100
Transfer	89.1	58.1	90.7	72.4	65.4	24.0	88.9	44.0	52.7	70.2	65.5
Cars	88.4	89.1	58.9	91.6	72.3	65.3	24.2	88.0	44.8	53.9	70.1
Food	88.3	92.8	57.2	90.1	72.4	65.4	24.2	88.5	44.5	52.5	70.8
MNIST	88.1	92.8	99.4	90.4	72.1	65.5	24.1	88.5	44.4	52.9	70.1
OxfordPet	88.3	92.7	99.4	95.2	72.8	65.3	24.1	88.7	44.2	52.2	70.2
Flowers	88.3	92.8	99.5	95.2	96.1	65.3	23.9	88.7	44.4	51.7	69.9
Sun397	87.9	92.7	99.4	95.0	96.1	83.5	23.6	89.9	43.4	52.8	70.2
Aircraft	87.9	92.7	99.4	95.0	96.1	83.5	57.8	90.1	43.1	52.8	70.2
Caltech101	87.7	92.7	99.4	95.0	96.0	83.5	57.5	97.4	43.0	52.6	70.4
DTD	87.7	92.7	99.4	95.1	96.0	83.4	57.4	97.4	76.3	52.7	70.1
EuroSAT	87.6	92.7	99.5	95.0	95.9	83.4	57.2	97.4	76.3	98.3	70.3
CIFAR100	87.4	92.5	99.3	95.0	96.0	83.3	56.9	97.5	76.9	98.0	88.0
Average	88.0	92.4	91.9	93.9	87.4	75.2	39.2	92.0	52.8	60.9	76.9

1131
1132
1133

1134
1135
1136
1137
1138
11391140 Table 11: Accuracy of LoRA-FT, O-LoRA, CL-MoE, SEFE, KeepLoRA on the MLLM-DCL
1141 benchmark. Each row represents the performance on every dataset of the model trained after the
1142 corresponding task. Transfer, Average, and Last metrics are shown.
1143

(a) LoRA-FT							(b) O-LoRA						
	Sensing	Medical	Driving	Science	Finance		Sensing	Medical	Driving	Science	Finance		
Transfer	28.1	17.4	34.0	50.2	32.4		Transfer	28.4	18.4	33.7	52.5	33.3	
Sensing	78.8	28.1	17.3	34.8	55.6		Sensing	79.4	28.4	17.6	34.9	56.1	
Medical	75.5	58.4	17.5	32.7	54.8		Medical	74.3	58.5	19.2	33.2	56.0	
Driving	70.0	47.5	52.3	34.6	40.9		Driving	74.7	48.3	52.6	33.1	45.2	
Science	73.2	46.4	40.6	50.4	49.5		Science	74.6	46.5	42.2	50.1	52.8	
Finance	69.3	44.3	29.1	41.4	88.4	54.5	Finance	72.3	46.9	31.6	41.5	88.1	56.1
Average	73.3	44.9	31.4	38.8	57.8	49.3	Average	75.0	45.7	32.6	38.5	59.6	50.3
(c) CL-MoE							(d) SEFE						
	Sensing	Medical	Driving	Science	Finance		Sensing	Medical	Driving	Science	Finance		
Transfer	28.3	19.4	34.1	48.6	32.6		Transfer	28.1	19.6	33.9	52.4	33.5	
Sensing	79.4	28.3	18.7	35.2	56.4		Sensing	78.8	28.1	18.6	35.1	56.2	
Medical	74.8	60.7	20.1	32.4	54.9		Medical	77.1	59.5	20.7	33.0	55.7	
Driving	74.0	44.3	52.1	34.7	39.6		Driving	77.8	51.6	52.5	33.5	47.4	
Science	71.0	47.4	40.0	50.7	43.3		Science	77.9	48.4	44.7	50.4	50.1	
Finance	71.8	47.4	29.5	41.5	89.2	55.9	Finance	77.1	50.9	40.3	43.0	88.4	59.9
Average	74.2	45.6	32.1	38.9	56.7	49.5	Average	77.7	47.7	35.4	39.0	59.6	51.9
(e) KeepLoRA													
	Sensing	Medical	Driving	Science	Finance								
Transfer	28.5	16.6	34.1	55.6	33.7								
Sensing	80.0	28.5	17.0	35.1	55.1								
Medical	79.9	58.6	16.3	33.7	55.6								
Driving	79.8	57.7	53.1	33.7	54.6								
Science	79.2	54.9	51.1	51.6	57.2								
Finance	78.8	54.3	50.2	49.5	89.3	64.4							
Average	79.6	50.8	37.5	40.7	62.4	54.2							

1183
1184
1185
1186
1187

Table 12: Accuracy of LoRA-FT, O-LoRA, CL-MoE, SEFE, KeepLoRA on the UCIT benchmark. Each row represents the performance on every dataset of the model trained after the corresponding task. Transfer, Average, and Last metrics are shown.

	(a) LoRA-FT						(b) O-LoRA					
	ImgNet-R	ArxivQA	VizWiz	IconQA	CLEVR	Flickr30k	ImgNet-R	ArxivQA	VizWiz	IconQA	CLEVR	Flickr30k
Transfer	52.6	18.3	6.0	17.0	40.3	26.8	Transfer	52.9	19.6	4.4	16.9	41.0
ImgNet-R	91.7	52.6	23.5	11.8	17.2	36.5	ImgNet-R	91.5	52.9	24.7	13.3	17.3
ArxivQA	90.5	92.1	13.1	2.1	14.2	21.5	ArxivQA	89.7	94.2	14.5	0.0	12.9
VizWiz	73.6	90.7	61.0	4.2	19.0	49.7	VizWiz	80.9	91.7	59.8	0.0	19.6
IconQA	72.7	77.1	53.7	79.7	17.4	47.8	IconQA	80.2	80.3	54.5	75.9	17.6
CLEVR	68.8	77.4	52.3	67.8	77.9	46.1	CLEVR	78.1	80.4	51.6	63.2	72.4
Flickr30k	58.6	76.7	45.7	67.4	61.6	58.0	Flickr30k	74.2	80.9	45.3	62.9	63.8
Average	76.0	77.8	41.6	38.8	34.6	43.3	Average	82.4	80.1	41.7	35.9	33.9
	(c) CL-MoE						(d) SEFE					
	ImgNet-R	ArxivQA	VizWiz	IconQA	CLEVR	Flickr30k	ImgNet-R	ArxivQA	VizWiz	IconQA	CLEVR	Flickr30k
Transfer	52.0	19.3	7.4	17.8	41.3	27.6	Transfer	53.3	18.7	7.5	17.0	40.9
ImgNet-R	91.2	52.0	23.9	5.2	15.6	36.9	ImgNet-R	91.6	53.3	23.7	12.1	16.9
ArxivQA	89.2	92.5	14.8	10.0	15.7	26.2	ArxivQA	90.4	92.8	13.7	5.0	16.4
VizWiz	77.2	90.7	60.4	6.9	20.6	49.5	VizWiz	83.6	89.3	61.4	5.3	18.6
IconQA	79.5	76.2	51.0	54.7	19.4	47.9	IconQA	84.3	78.1	57.4	79.6	16.2
CLEVR	76.7	75.4	48.1	52.6	73.0	45.9	CLEVR	82.8	78.6	54.2	70.6	75.0
Flickr30k	61.2	75.8	44.4	52.6	54.4	57.3	Flickr30k	80.2	79.1	47.1	69.4	65.7
Average	80.2	77.1	40.4	30.3	33.1	44.0	Average	85.5	78.6	42.9	40.3	34.8
	(e) KeepLoRA											
	ImgNet-R	ArxivQA	VizWiz	IconQA	CLEVR	Flickr30k	Transfer	52.8	20.4	9.2	18.1	41.5
Transfer	52.8	20.4	9.2	18.1	41.5	28.4	ImgNet-R	91.5	52.8	25.6	13.4	17.1
ImgNet-R	91.5	52.8	25.6	13.4	17.1	36.7	ArxivQA	90.4	94.5	15.2	4.0	17.2
ArxivQA	85.5	92.4	61.5	10.1	21.0	50.6	VizWiz	85.1	86.0	55.7	76.9	17.1
VizWiz	85.1	86.0	55.7	76.9	17.1	50.9	IconQA	84.1	89.3	51.5	68.3	72.6
IconQA	82.4	86.7	46.6	67.8	66.4	57.2	CLEVR	82.4	86.7	46.6	67.8	67.8
CLEVR	82.4	86.7	46.6	67.8	66.4	57.2	Flickr30k	86.5	83.6	42.7	40.1	35.2
Flickr30k	86.5	83.6	42.7	40.1	35.2	55.4	Average	86.5	83.6	42.7	40.1	35.2