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ABSTRACT

In this paper, we study the enhancement method for dynamic regret in online con-
vex optimization. Existing works have shown that adaptive learning for dynamic
environment (Ader) enjoys an 𝑂

(√︁
(1 + 𝑃𝑇 ) 𝑇

)
dynamic regret upper bound,

where 𝑇 is the number of rounds and 𝑃𝑇 is the path length of the reference strategy
sequence. The basic idea of Ader is to maintain a group of experts, where each
expert obtains the best dynamic regret of a specific path length by running Mirror
Descent (MD) with specific parameter, and then tracks the best expert by Nor-
malized Exponentiated Subgradient (NES). However, Ader is not environmental
adaptive. By introducing the estimated linear loss function 𝑥̂∗𝑡 , the dynamic regret
for Optimistic Mirror Descent (OMD) is tighter than MD if the environment is not
completely adversarial and 𝑥̂∗𝑡 is well-estimated. Based on the fact that optimism
can enhance dynamic regret, we develop an algorithm to replace MD and NES in
Ader with OMD and Optimistic Normalized Exponentiated Subgradient (ONES)
respectively, and utilize the adaptive trick to achieve 𝑂

(√︁
(1 + 𝑃𝑇 ) 𝑀𝑇

)
dynamic

regret upper bound, where 𝑀𝑇 ⩽ 𝑂 (𝑇) is a measure of estimation accuracy. In
particular, if 𝑥̂∗𝑡 ∈ 𝜕𝜑𝑡 , where 𝜑𝑡 represents the estimated convex loss function
and 𝜕𝜑𝑡 is Lipschitz continuous, then the dynamic regret upper bound of OMD
has a subgradient variation type. Based on this fact, we develop a variant algo-
rithm whose upper bound has a subgradient variation type. All our algorithms are
environmental adaptive.

1 INTRODUCTION

The Online Convex Optimization (OCO), which was introduced by Zinkevich (2003), plays a vital
role in online learning as its interesting theory and wide application (Shalev-Shwartz, 2012). The
OCO problem can be viewed as repeated games between the learner and the adversary: At round 𝑡,
the learner chooses a map 𝑥𝑡 from a hypothesis class 𝐶 for prediction, and the adversary feeds back
a convex loss function 𝜑𝑡 , then the learner suffers an instantaneous loss 𝜑𝑡 (𝑥𝑡 ). In general, 𝜑𝑡 (𝑥𝑡 )
is bounded to exclude the case where the loss can be arbitrarily large.

The appropriate performance metric, namely regret, as described below, comes from game theory
since the framework of OCO is game-theoretic and adversarial in nature (Zinkevich, 2003; Hazan,
2019).

regret
(𝑧1 ,𝑧2 , · · · ,𝑧𝑇 )

𝒜 ≔

𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) −
𝑇∑︁
𝑡=1

𝜑𝑡 (𝑧𝑡 ) , (1)

where 𝑧𝑡 ∈ 𝐶 represents the reference strategy in round 𝑡, and 𝒜 is the algorithm that generates 𝑥𝑡 .
Particularly, if 𝑧𝑡 ≡ 𝑧, we have the following static regret,

regret
(𝑧,𝑧, · · · ,𝑧)

𝒜 ≔

𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) −
𝑇∑︁
𝑡=1

𝜑𝑡 (𝑧) .

Correspondingly, we call Eq. (1) dynamic regret. The static regret used in most literature is usu-
ally written as sup𝑧∈𝐶 regret(𝑧,𝑧, · · · ,𝑧) 𝒜. There are plenty of works devoted to designing online
algorithms to minimize static regret (Cesa-Bianchi & Lugosi, 2006; Shalev-Shwartz, 2012; Hazan,
2019; Orabona, 2019). Recently, designing online algorithms to minimize dynamic regret has at-
tracted much attention (Hall & Willett, 2013; Jadbabaie et al., 2015; Mokhtari et al., 2016; Zhang
et al., 2018; Zhao et al., 2020; Campolongo & Orabona, 2021; Kalhan et al., 2021).
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An online algorithm is environmental adaptive if it maintains the regret upper bound when the envi-
ronment is adversarial, and tightens the upper bound as much as possible when the environment is
not completely adversarial. Optimistic algorithm provides a way to achieve environmental adaptive.
The word “optimistic” refers to the idea that if the learner can predict the impending loss when the
environment is not completely adversarial, then the regret upper bound may be tightened. How to
predict the impending loss is not the focus of the optimistic algorithm. The Optimistic Mirror De-
scent (OMD) was proposed by Chiang et al. (2012) and extended by Rakhlin & Sridharan (2013).

The regret upper bound usually contains some characteristic terms. The following are three well-
known characteristic terms.

• The path length term (Zinkevich, 2003), 𝑃𝑇 =
∑𝑇

𝑡=2 ∥𝑧𝑡 − 𝑧𝑡−1∥.
• The gradient variation term (Chiang et al., 2012), 𝑉𝑇 =

∑𝑇
𝑡=2 sup𝐶 ∥∇𝜑𝑡 − ∇𝜑𝑡−1∥2.

• The function variation term (Besbes et al., 2015), 𝐹𝑇 =
∑𝑇

𝑡=2 sup𝐶 ∥𝜑𝑡 − 𝜑𝑡−1∥.

Usually the dynamic regret upper bound contains a path length term. Zinkevich (2003) shows that
mirror descent achieves an 𝑂

(
(1 + 𝑃𝑇 )

√
𝑇
)

dynamic regret upper bound, where 𝑇 is the number of
games. Zhang et al. (2018) propose a method, namely adaptive learning for dynamic environment
(Ader), achieves an 𝑂

(√︁
(1 + 𝑃𝑇 ) 𝑇

)
dynamic regret upper bound, which is optimal in completely

adversarial environment. The main idea of Ader is to run multiple Mirror Descent (MD) in parallel,
each with a different step size that is optimal for a specific path length, and track the best one with
Normalized Exponentiated Subgradient (NES). Zhao et al. (2020) follow the idea of Ader, and try
to utilize smoothness to enhance the dynamic regret.

In this paper, we follow the idea of Ader and develop an algorithm, namely ONES-OMD with
adaptive trick, which achieves an 𝑂

(√︁
(1 + 𝑃𝑇 ) 𝑀𝑇

)
dynamic regret upper bound, where 𝑀𝑇 is a

measure of estimation accuracy. The main idea is to replace MD and NES in Ader with OMD and
Optimistic Normalized Exponentiated Subgradient (ONES) respectively, and utilizes the adaptive
trick. In particular, if the estimated linear loss 𝑥̂∗𝑡 in OMD is the subgradient of an estimated convex
loss 𝜑𝑡 and 𝜕𝜑𝑡 is Lipschitz continuous, then its dynamic regret upper bound has a subgradient
variation type. For this situation, we develop a variant of ONES-OMD with adaptive trick, the upper
bound of which has a subgradient variation type. All our algorithms are environmental adaptive.

The contributions of this article are summarized as follows.

• We develop the ONES-OMD with adaptive trick, which achieves an 𝑂
(√︁
(1 + 𝑃𝑇 ) 𝑀𝑇

)
dynamic regret upper bound.

• We develop a variant of ONES-OMD with adaptive trick, whose dynamic regret upper
bound has a subgradient variation type.

• We propose the adaptive trick, which is an extension of the doubling trick. The adaptive
trick gets rid of the explicit dependence of the dynamic regret upper bound on the number
of rounds 𝑇 .

• ONES-OMD with adaptive trick and its variant version are all environmental adaptive.

2 PROBLEM FORMULATION

We denote by ⟨· , ·⟩ the bilinear map. Let 𝐻 be a Hilbert space over R. 𝐶 is a nonempty subset of
𝐻. The bilinear map ⟨· , ·⟩ defined on 𝐻 represents its inner product. We formalize OCO problem as
follows. At round 𝑡,

the player chooses the strategy 𝑥𝑡 ∈ 𝐶 according to some algorithm,
where 𝐶 is closed and convex, and 𝜌 = sup𝑥,𝑦∈𝐶 ∥𝑥 − 𝑦∥ < +∞, 0 ∈ 𝐶,
the adversary (environment) feeds back a convex loss function 𝜑𝑡

with dom 𝜕𝜑𝑡 ⊃ 𝐶 and ∥𝜕𝜑𝑡 (𝐶)∥ ⩽ 𝜚 < +∞,

where 𝜕 represents the subdifferential operator. We choose the dynamic regret as the performance
metric, and design adaptive algorithm to enhance its upper bound.
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3 OPTIMISTIC ALGORITHM

3.1 OPTIMISTIC MIRROR DESCENT

Optimistic Mirror Descent (OMD) in the form of projection is formalized as

𝑥̃𝑡+1 = 𝑃𝐶

(
𝑥̃𝑡 − 𝜂𝑥∗𝑡

)
, 𝑥∗𝑡 ∈ 𝜕𝜑𝑡 (𝑥𝑡 ) , 𝑥̃1 = 𝑥1 ∈ 𝐶,

𝑥𝑡+1 = 𝑃𝐶

(
𝑥̃𝑡+1 − 𝜂𝑥̂∗𝑡+1

)
,

(2)

where 𝑃𝐶 represents the projection onto the subset 𝐶, 𝜂 > 0 is the step size, 𝑥̂∗𝑡 ∈ 𝐻 is the estimated
linear loss function in round 𝑡. In Hilbert space, the projection of any point onto a closed convex
subset exists and is unique (See Lemma 1 in Appendix A.1), which leads to 𝑥̃𝑡 , 𝑥𝑡 ∈ 𝐶, ∀𝑡 ∈ N.

Remark 1 If 𝜑𝑡 is differentiable and 𝑥̂∗
𝑡+1 = ∇𝜑𝑡 (𝑥̃𝑡+1), then OMD (Eq. (2)) becomes

𝑥̃𝑡+1 = 𝑃𝐶 (𝑥̃𝑡 − 𝜂∇𝜑𝑡 (𝑥𝑡 )) , 𝑥̃1 = 𝑥1 ∈ 𝐶,
𝑥𝑡+1 = 𝑃𝐶 (𝑥̃𝑡+1 − 𝜂∇𝜑𝑡 (𝑥̃𝑡+1)) ,

(3)

Chiang et al. (2012) studied the static regret of Eq. (3).

The following theorem states that OMD has dynamic regret upper bound.

Theorem 1 OMD enjoys the following dynamic regret upper bound,

regret
(𝑧1 ,𝑧2 , · · · ,𝑧𝑇 )

OMD ⩽
𝜌2

2𝜂
+ 𝜌

𝜂

𝑇∑︁
𝑡=2
∥𝑧𝑡 − 𝑧𝑡−1∥ +

𝜂

2

𝑇∑︁
𝑡=1



𝑥∗𝑡 − 𝑥̂∗𝑡 

2 − 1
2𝜂

𝑇∑︁
𝑡=1
∥𝑥𝑡 − 𝑥̃𝑡 ∥2 , (4)

where 𝑧𝑡 ∈ 𝐶 represents the reference strategy in round 𝑡.

Set 𝑥̂∗𝑡 to be null, then OMD degenerates into Mirror Descent (MD), i.e.,

𝑥𝑡+1 = 𝑃𝐶

(
𝑥𝑡 − 𝜂𝑥∗𝑡

)
, 𝑥∗𝑡 ∈ 𝜕𝜑𝑡 (𝑥𝑡 ) , 𝑥1 ∈ 𝐶,

and the corresponding dynamic regret upper bound degenerates into the following form,

regret
(𝑧1 ,𝑧2 , · · · ,𝑧𝑇 )

MD ⩽
𝜌2

2𝜂
+ 𝜌

𝜂

𝑇∑︁
𝑡=2
∥𝑧𝑡 − 𝑧𝑡−1∥ +

𝜂

2

𝑇∑︁
𝑡=1



𝑥∗𝑡 

2
. (5)

Remark 2 Eq. (5) is a slight improvement of the following well-known upper bound (Zinkevich,
2003; Zhang et al., 2018).

regret
(𝑧1 ,𝑧2 , · · · ,𝑧𝑇 )

MD ⩽
7𝜌2

4𝜂
+ 𝜌

𝜂

𝑇∑︁
𝑡=2
∥𝑧𝑡 − 𝑧𝑡−1∥ +

𝜂

2

𝑇∑︁
𝑡=1



𝑥∗𝑡 

2
.

Comparing Eq. (4) and Eq. (5), we realize that by introducing the estimated linear loss function
𝑥̂∗𝑡 , the dynamic regret upper bound can be tighter in the case the environment is not completely
adversarial and 𝑥̂∗𝑡 is well-estimated, and meanwhile guarantees the same upper bound in the worst
case.

3.2 OPTIMISTIC NORMALIZED EXPONENTIATED SUBGRADIENT

Optimistic Normalized Exponentiated Subgradient (ONES) is formalized as

𝑤𝑡+1 = 𝒩
(
𝑤𝑡 ◦ e−𝜃ℓ𝑡

)
, 𝑤1 = 𝑤1 ∈ ri△𝑛,

𝑤𝑡+1 = 𝒩
(
𝑤𝑡+1 ◦ e−𝜃ℓ̂𝑡+1

)
,

(6)

where 𝒩 is the normalization operator, ◦ is the Hadamard product symbol, 𝜃 > 0 is the step size,
ℓ𝑡 is the loss vector, ℓ̂𝑡 is the corresponding estimated vector, ri is the relative interior operator,
and △𝑛 B

{
𝑤

��𝑤 ∈ R𝑛+1+ , ∥𝑤∥1 = 1
}

is the probability simplex. The normalization operator 𝒩

guarantees that 𝑤𝑡 , 𝑤𝑡 ∈ ri△𝑛.
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ONES (Eq. (6)) is equivalent to the following iteration,

𝑣̃𝑡+1 = 𝑣̃𝑡 − 𝜃ℓ𝑡 , 𝑤𝑡+1 = 𝒩e𝑣̃𝑡+1 , 𝑣̃1 = 𝑣1 ∈ R𝑛+1,
𝑣𝑡+1 = 𝑣̃𝑡+1 − 𝜃ℓ̂𝑡+1, 𝑤𝑡+1 = 𝒩e𝑣𝑡+1 ,

(7)

or the following compact version,

𝑤𝑡+1 = 𝒩

(
𝑤1 ◦ e−𝜃

∑𝑡
𝑖=1 ℓ𝑖−𝜃ℓ̂𝑡+1

)
, 𝑤1 ∈ ri △𝑛 .

The following theorem states that ONES has static regret upper bound.

Theorem 2 ONES enjoys the following static regret upper bound,

regret
(𝑤,𝑤, · · · ,𝑤)

ONES ⩽
1
𝜃

∑︁
𝑖

𝑤 (𝑖) ln 𝑤 (𝑖)
𝑤1 (𝑖)

+ 𝜃

2

𝑇∑︁
𝑡=1




ℓ𝑡 − ℓ̂𝑡


2

∞
− 1

2𝜃

𝑇∑︁
𝑡=1
∥𝑤𝑡 − 𝑤𝑡 ∥21 , (8)

where 𝑤 ∈ △𝑛 represents the reference strategy.

Remark 3 Theorem 2 is a refined version of Theorem 19 of Syrgkanis et al. (2015). The Kullback-
Leibler divergence term allows the regret upper bound to be controlled by the initial value 𝑤1 of
ONES.

Set ℓ̂𝑡 to be null, then ONES degenerates into Normalized Exponentiated Subgradient (NES), i.e.,

𝑤𝑡+1 = 𝒩
(
𝑤𝑡 ◦ e−𝜃ℓ𝑡

)
, 𝑤1 ∈ ri△𝑛−1,

and the corresponding static regret upper bound degenerates into the following form,

regret
(𝑤,𝑤, · · · ,𝑤)

NES ⩽
1
𝜃

∑︁
𝑖

𝑤 (𝑖) ln 𝑤 (𝑖)
𝑤1 (𝑖)

+ 𝜃

2

𝑇∑︁
𝑡=1
∥ℓ𝑡 ∥2∞ . (9)

Remark 4 If 𝑤1 = 1
𝑛+11𝑛+1 in Eq. (9), where 1𝑛+1 is the all-ones vector in R𝑛+1, then

regret
(𝑤,𝑤, · · · ,𝑤)

NES ⩽
ln (𝑛 + 1)

𝜃
+ 𝜃

2

𝑇∑︁
𝑡=1
∥ℓ𝑡 ∥2∞ ,

which is a well-known upper bound (Shalev-Shwartz, 2012).

Comparing Eq. (8) and Eq. (9), we realize that by introducing the estimated linear loss vector ℓ̂𝑡 , the
static regret upper bound can be tighter in the case the environment is not completely adversarial
and ℓ̂𝑡 is well-estimated, and meanwhile guarantees the same upper bound in the worst case.

A typical application scenario of ONES is to combine expert advices. Suppose a group of experts
{𝑒𝑖}𝑖∈𝐼 provide suggestions to a player, where 𝐼 is an index set. At round 𝑡, the expert 𝑒𝑖 provides a
suggestion strategy 𝑥𝑡 (𝑖) ∈ 𝐶, the player combines experts’ suggestions with weight 𝑤𝑡 to generate
the final strategy 𝑥𝑡 = ⟨𝑤𝑡 , 𝒙𝑡 ⟩, where 𝒙𝑡 = {𝑥𝑡 (𝑖)}𝑖∈𝐼 and 𝑤𝑡 is generated by ONES. Then

𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) − 𝜑𝑡 (⟨𝑤, 𝒙𝑡 ⟩) ⩽
𝑇∑︁
𝑡=1

〈
𝜕𝜑𝑡 (𝑥𝑡 ) , ⟨𝑤𝑡 − 𝑤, 𝒙𝑡 ⟩

〉
=

𝑇∑︁
𝑡=1

〈
⟨𝜕𝜑𝑡 (𝑥𝑡 ) , 𝒙𝑡 ⟩ , 𝑤𝑡 − 𝑤

〉
.

Choose ℓ𝑡 ∈ ⟨𝜕𝜑𝑡 (𝑥𝑡 ) , 𝒙𝑡 ⟩ as the surrogate linear loss, we have

𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) − 𝜑𝑡 (⟨𝑤, 𝒙𝑡 ⟩) ⩽
𝑇∑︁
𝑡=1
⟨ℓ𝑡 , 𝑤𝑡 − 𝑤⟩ = regret

(𝑤,𝑤, · · · ,𝑤)
ONES.

4 ENHANCEMENT METHOD FOR DYNAMIC REGRET

In this section, we follow the idea of Ader (Zhang et al., 2018) and attempt to enhance the dynamic
regret by replacing MD and NES in Ader with OMD and ONES respectively.
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We modify the dynamic regret upper bound for OMD (Eq. (4)) by dropping the negative term,

regret
(𝑧1 ,𝑧2 , · · · ,𝑧𝑇 )

OMD ⩽
𝜌2

2𝜂
+ 𝜌

𝜂

𝑇∑︁
𝑡=2
∥𝑧𝑡 − 𝑧𝑡−1∥ +

𝜂

2

𝑇∑︁
𝑡=1



𝑥∗𝑡 − 𝑥̂∗𝑡 

2
⩽

𝜌2

2𝜂
+ 𝜌

𝜂
𝑃𝑇 +

𝜂

2
𝜚2𝑆𝑇 , (10)

where

𝑃𝑇 =

𝑇∑︁
𝑡=2
∥𝑧𝑡 − 𝑧𝑡−1∥ , 𝑆𝑇 = 4 + 𝜚−2

𝑇−1∑︁
𝑡=1



𝑥∗𝑡 − 𝑥̂∗𝑡 

2
, and



𝑥̂∗𝑡 

 ⩽ 𝜚.

After going for the game for 𝑇 rounds, the value of 𝑆𝑇 is fixed, however, the path length 𝑃𝑇 remains
unknown. This implies that the optimal parameter ¤𝜂 =

√︁
𝜌 (𝜌 + 2𝑃𝑇 ) /𝑆𝑇/𝜚 cannot be determined.

A feasible method is to maintain a group of experts {𝑒𝑖}𝑖∈𝐸 (𝐸 is unknown temporarily), where the
expert 𝑒𝑖 operates OMD with a certain parameter 𝜂𝑖 , and then composite the experts’ suggestions by
weight 𝑤𝑡 to obtain the final strategy, i.e., 𝑥𝑡 = ⟨𝑤𝑡 , 𝒙𝑡 ⟩, where 𝒙𝑡 = {𝑥𝑡 (𝑖)}𝑖∈𝐸 and 𝑥𝑡 (𝑖) represent
the suggestion of the expert 𝑒𝑖 . This ingenious way to solve parameter difficulties comes from Zhang
et al. (2018). Note that the dynamic regret can be decomposed as

𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) − 𝜑𝑡 (𝑧𝑡 ) =
𝑇∑︁
𝑡=1

𝜑𝑡 (⟨𝑤𝑡 , 𝒙𝑡 ⟩) − 𝜑𝑡

(〈
1 𝑗 , 𝒙𝑡

〉)
+

𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ( 𝑗)) − 𝜑𝑡 (𝑧𝑡 )

⩽
𝑇∑︁
𝑡=1

〈
ℓ𝑡 , 𝑤𝑡 − 1 𝑗

〉
+

𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ( 𝑗)) − 𝜑𝑡 (𝑧𝑡 ) ,
(11)

where 1 𝑗 is the one-hot vector corresponding to the expert 𝑒 𝑗 , and ℓ𝑡 ∈ ⟨𝜕𝜑𝑡 (𝑥𝑡 ) , 𝒙𝑡 ⟩, we use ONES
to generate 𝑤𝑡 . Since the ONES guarantees

regret
(𝑤,𝑤, · · · ,𝑤)

ONES ⩽
1
𝜃

∑︁
𝑖

𝑤 (𝑖) ln 𝑤 (𝑖)
𝑤1 (𝑖)

+ 𝜃

2

𝑇∑︁
𝑡=1




ℓ𝑡 − ℓ̂𝑡


2

∞

by dropping the negative term in Eq. (8), we have
𝑇∑︁
𝑡=1

〈
ℓ𝑡 , 𝑤𝑡 − 1 𝑗

〉
⩽

1
𝜃

∑︁
𝑖

1 𝑗 (𝑖) ln
1 𝑗 (𝑖)
𝑤1 (𝑖)

+ 𝜃

2

𝑇∑︁
𝑡=1




ℓ𝑡 − ℓ̂𝑡


2

∞
⩽
− ln𝑤1 ( 𝑗)

𝜃
+ 𝜃𝜌2𝜚2

2
𝐿𝑇 , (12)

where

𝐿𝑇 = 4 + 𝜌−2𝜚−2
𝑇−1∑︁
𝑡=1




ℓ𝑡 − ℓ̂𝑡


2

∞
, and




ℓ̂𝑡


 ⩽ 𝜌𝜚.

We rearrange Eq. (10) and Eq. (12) as follows,
𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ( 𝑗)) − 𝜑𝑡 (𝑧𝑡 ) ⩽
𝜌 (𝜌 + 2𝑃𝑇 )

2𝜂 𝑗

+
𝜂 𝑗 𝜚

2

2
𝑆𝑇 ( 𝑗) ⩽

𝜌 (𝜌 + 2𝑃𝑇 )
2𝜂 𝑗

+
𝜂 𝑗 𝜚

2

2
𝑀𝑇 ,

𝑇∑︁
𝑡=1

〈
ℓ𝑡 , 𝑤𝑡 − 1 𝑗

〉
⩽
− ln𝑤1 ( 𝑗)

𝜃
+ 𝜃𝜌2𝜚2

2
𝐿𝑇 ⩽

− ln𝑤1 ( 𝑗)
𝜃

+ 𝜃𝜌2𝜚2

2
𝑀𝑇 , (13)

where

𝑀𝑇 = max
{
𝐿𝑇 ,max

𝑗
𝑆𝑇 ( 𝑗)

}
, 𝑆𝑇 ( 𝑗) = 4 + 𝜚−2

𝑇−1∑︁
𝑡=1



𝑥∗𝑡 ( 𝑗) − 𝑥̂∗𝑡 ( 𝑗)

2
, (14)

𝑥∗𝑡 ( 𝑗) ∈ 𝜕𝜑𝑡 (𝑥𝑡 ( 𝑗)), 𝑥𝑡 ( 𝑗) is the suggestion strategy of 𝑒 𝑗 , 𝑥̂∗𝑡 ( 𝑗) is the corresponding estimated
linear loss function for 𝑒 𝑗 with



𝑥̂∗𝑡 ( 𝑗)

 ⩽ 𝜚. We call 𝑀𝑇 the measure of estimation accuracy. When
the environment is not completely adversarial and all 𝑥̂∗𝑡 ( 𝑗) and ℓ̂𝑡 predict accurately, then 𝑀𝑇 grows
slowly. On the contrary, when the environment is completely adversarial, the prediction will fail and
𝑀𝑇 grows linearly.

Now we need to allocate the group of experts. Let 𝑀𝑇 be fixed. According to 0 ⩽ 𝑃𝑇 ⩽ (𝑇 − 1) 𝜌,
the optimal parameter

¤𝜂 =

√︄
𝜌 (𝜌 + 2𝑃𝑇 )

𝜚2𝑀𝑇

∈ 𝜌

𝜚
√
𝑀𝑇

[
1,
√

2𝑇 − 1
]
.

5
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Note that

∃ 𝑗 ∈
{
0, 1, · · · ,

⌊
log2
√

2𝑇 − 1
⌋}
C 𝐸, such that ¤𝜂 ∈ 𝜌

𝜚
√
𝑀𝑇

[
2 𝑗 , 2 𝑗+1

)
,

we assign the expert group as {𝑒𝑖}𝑖∈𝐸 , where the expert 𝑒𝑖 operates OMD with 𝜂𝑖 =
𝜌

𝜚
√
𝑀𝑇

2𝑖 . Since
𝜂 𝑗 ⩽ ¤𝜂 < 2𝜂 𝑗 , then for expert 𝑒 𝑗 , the following bound holds,

regret
(𝑧1 ,𝑧2 , · · · ,𝑧𝑇 )

𝑒 𝑗 ⩽
𝜌 (𝜌 + 2𝑃𝑇 )

2𝜂 𝑗

+
𝜂 𝑗 𝜚

2

2
𝑀𝑇 <

𝜌 (𝜌 + 2𝑃𝑇 )
¤𝜂 + ¤𝜂𝜚

2

2
𝑀𝑇 =

3
2
𝜚
√︁
𝜌 (𝜌 + 2𝑃𝑇 ) 𝑀𝑇 , (15)

which implies that the expert 𝑒 𝑗 reaches an almost optimal upper bound.

Substitute Eq. (13) and Eq. (15) into Eq. (11) yields
𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) − 𝜑𝑡 (𝑧𝑡 ) <
− ln𝑤1 ( 𝑗)

𝜃
+ 𝜃𝜌2𝜚2

2
𝑀𝑇 +

3
2
𝜚
√︁
𝜌 (𝜌 + 2𝑃𝑇 ) 𝑀𝑇 .

To determine this upper bound, it suffices to choose some appropriate 𝑤1 and 𝜃. Let 𝑤1 (𝑖) =

𝛽 (𝑖 + 2)−𝛼, where 𝛼 ⩾ 𝜁−1 (2), 𝛽−1 =
∑

𝑖∈𝐸 (𝑖 + 2)−𝛼. 𝜁−1 (2) ≈ 1.728647238998183 is the root of
equation 𝜁 (𝛼) = 2 on R+, 𝜁 represents the Riemann 𝜁 function, i.e.,

𝜁 (𝛼) =
∞∑︁
𝑛=1

1
𝑛𝛼

, 𝛼 > 0.

Note that 𝛽 > 1 and 𝜂 𝑗 ⩽ ¤𝜂, we have

− ln𝑤1 ( 𝑗) < 𝛼 ln ( 𝑗 + 2) and 𝑗 ⩽ log2

√︄
1 + 2𝑃𝑇

𝜌
.

Thus,
𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) − 𝜑𝑡 (𝑧𝑡 ) <
𝛼

𝜃
ln

(
2 + log2

√︄
1 + 2𝑃𝑇

𝜌

)
+ 𝜃𝜌2𝜚2

2
𝑀𝑇 +

3
2
𝜚
√︁
𝜌 (𝜌 + 2𝑃𝑇 ) 𝑀𝑇 . (16)

Let 𝜃 ∝ 1√
𝑀𝑇

, we have
𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) − 𝜑𝑡 (𝑧𝑡 ) < 𝑂

(√︁
(1 + 𝑃𝑇 ) 𝑀𝑇

)
.

We call the above algorithm ONES-OMD. Comparing with 𝑂
(√︁
(1 + 𝑃𝑇 ) 𝑇

)
, the upper bound of

Ader proposed by Zhang et al. (2018), and noting that 𝑀𝑇 ⩽ 𝑂 (𝑇), the dynamic regret upper bound
of ONES-OMD is tighter in the case the environment is not completely adversarial and 𝑥̂∗𝑡 , ℓ̂𝑡 are
well predicted, and meanwhile guarantees the same rate in the worst case. The estimator 𝑥̂∗𝑡 and ℓ̂𝑡
play the pivot role in enhancing the dynamic regret.

Note that the above analysis is based on the premise that 𝑀𝑇 is fixed, we can utilize the following
adaptive trick to unfreeze 𝑀𝑇 , like utilizing the doubling trick to unfreeze 𝑇 to anytime.
Theorem 3 (Adaptive Trick) The adaptive trick

calls ONES-OMD with 𝜃 ∝ 2−𝑚 and 𝜂𝑖 =
𝜌

𝜚
2𝑖−𝑚, for 𝑖 = 0, 1, · · · , 𝑛,

under the constraints that 𝑀𝑇 ∈
[
4𝑚, 4𝑚+1

)
and 𝑇 ∈ 1

2

[
4𝑛, 4𝑛+1

)
+ 1,

where 𝑚 indicates the stage index of the game. The above execution process achieves an
𝑂

(√︁
(1 + 𝑃𝑇 ) 𝑀𝑇

)
dynamic regret upper bound.

Remark 5 The idea of adaptive trick is to divide the range of 𝑀𝑇 into stages of exponentially
increasing size and runs ONES-OMD on each stage. This inspiration comes from the doubling
trick, which divides 𝑇 into stages of doubling size and runs some appropriate algorithm on each
stage. Shifting from monitoring 𝑇 to monitoring 𝑀𝑇 is a crucial step in achieving environmental
adaptation.

To be understood easy, we illustrate the specific execution process for ONES-OMD with adaptive
trick in Algorithm 1.

6
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Algorithm 1 ONES-OMD with adaptive trick
1: 𝑚 ← −1, 𝑛← −1
2: for round 𝑡 = 1, 2, · · · do
3: 𝑛←

⌊
log2
√

2𝑡 − 1
⌋
, 𝑚 ←

⌊
log4 𝑀𝑡

⌋
, where 𝑀𝑡 is calculated according to Eq. (14)

4: if 𝑚 changed or 𝑛 changed then
5: Construct a set of experts {𝑒𝑖}𝑛𝑖=0 and invoke Algorithm 3 with 𝜂𝑖 =

𝜌

𝜚
2𝑖−𝑚 for 𝑒𝑖

6: Call Algorithm 2 with parameter 𝑛 and 𝜃 ∝ 2−𝑚
7: end if
8: Receive the estimated loss vector ℓ̂𝑡 from an arbitrary estimating process and send it to Al-

gorithm 2, receive a group of estimated linear losses
{
𝑥̂∗𝑡 (0) , 𝑥̂∗𝑡 (1) , · · · , 𝑥̂∗𝑡 (𝑛)

}
from an

arbitrary estimating process and send them to each expert
9: Get expert advice strategies 𝒙𝑡 = {𝑥𝑡 (0) , 𝑥𝑡 (1) , · · · , 𝑥𝑡 (𝑛)}, call Algorithm 2 to get the

weight 𝑤𝑡

10: Output strategy 𝑥𝑡 = ⟨𝑤𝑡 , 𝒙𝑡 ⟩, and then observe loss function 𝜑𝑡

11: Send ℓ𝑡 ∈ ⟨𝜕𝜑𝑡 (𝑥𝑡 ) , 𝒙𝑡 ⟩ to Algorithm 2, send 𝜕𝜑𝑡 to each expert
12: end for

Algorithm 2 Subprogram: ONES with parameter 𝑛 and 𝜃

Require: ℓ𝜏 and ℓ̂𝜏+1 from Algorithm 1
1: Output 𝑤1 (𝑖) = 𝛽 (𝑖 + 2)−𝛼, 𝑖 = 0, 1, · · · , 𝑛 at the first call, and each subsequent call follows the

ONES (Eq. (6))

Algorithm 3 Subprogram: OMD with parameter 𝜂
Require: 𝜕𝜑𝜏 and 𝑥̂∗

𝜏+1 from Algorithm 1
1: Output 𝑥1 ∈ 𝐶 at the first call, and each subsequent call follows the ONES (Eq. (2))

5 ENHANCEMENT METHOD FOR DYNAMIC REGRET IN SUBGRADIENT
VARIATION TYPE

In this section, we follow the idea of Section 4 to study the enhancement method for dynamic regret
in subgradient variation type.

The following corollary states that, under the assumptions that 𝑥̂∗𝑡 is the subgradient of an estimated
convex loss 𝜑𝑡 , and 𝜕𝜑𝑡 is Lipschitz continuous, the dynamic regret upper bound of OMD has
subgradient variation type.
Corollary 1 If 𝑥̂∗𝑡 ∈ 𝜕𝜑𝑡 (𝑥̃𝑡 ) and 𝜕𝜑𝑡 is Lipschitz continuous, i.e.,

∃𝐿 > 0, such that ∥𝜕𝜑𝑡 (𝑥) − 𝜕𝜑𝑡 (𝑦)∥ ⩽ 𝐿 ∥𝑥 − 𝑦∥ , ∀𝑥, 𝑦 ∈ 𝐶,
where 𝜑𝑡 represents the estimated convex loss function, then

regret
(𝑧1 ,𝑧2 , · · · ,𝑧𝑇 )

OMD ⩽
𝜌 (𝜌 + 2𝑃𝑇 )

2𝜂
+ 𝜂

𝑇∑︁
𝑡=1

(
sup
𝑥∈𝐶




𝑥𝜑𝑡 − 𝑥𝜑𝑡




2
+ 1𝜂> 1√

2𝐿
𝐿2 ∥𝑥𝑡 − 𝑥̃𝑡 ∥2

)
,

where 𝑥𝜑𝑡 ∈ 𝜕𝜑𝑡 (𝑥), 𝑥𝜑𝑡 ∈ 𝜕𝜑𝑡 (𝑥), and 1𝜂> 1√
2𝐿

is the zero-one indicator function w.r.t. 1𝜂> 1√
2𝐿

= 1

iff 𝜂 > 1√
2𝐿

.

Remark 6 Corollary 1 is inspired by Zhao et al. (2020). However, we have not restricted 𝜕𝜑𝑡 to be
Lipschitz continuous.

Similar to Section 4, we also maintain a group of experts, and each expert operates OMD with a
specific parameter. Denote by 𝒙𝑡 the vector of expert advice strategies and 𝒙̃𝑡 the vector of all 𝑥̃𝑡s.

7
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Let

𝑉𝑇 = 4 + 𝜚−2
𝑇−1∑︁
𝑡=1

sup
𝑥∈𝐶




𝑥𝜑𝑡 − 𝑥𝜑𝑡




2
, 𝐷𝑇 = 𝐿2𝜚−2

(
𝜌2 +

𝑇−1∑︁
𝑡=1

max ∥𝒙𝑡 − 𝒙̃𝑡 ∥2
)
. (17)

The expert who operates OMD with the parameter 𝜂 yields the global dynamic regret upper bound
as follows,

𝜌 (𝜌 + 2𝑃𝑇 )
2𝜂

+ 𝜂𝜚2 (𝑉𝑇 + 𝐷𝑇 ) ,

and correspondingly, yields the local dynamic regret upper bound as follows,
𝜌 (𝜌 + 2𝑃𝑇 )

2𝜂
+ 𝜂𝜚2𝑉𝑇 , 𝜂 ⩽

1
√

2𝐿
.

In order to be compatible to 𝑉𝑇 , we choose ℓ̂𝑡 ∈
〈
𝜕𝜑𝑡

(̃
𝑥𝑡

)
, 𝒙𝑡

〉
in ONES, where 𝑥̃𝑡 = ⟨𝑤𝑡 , 𝒙𝑡 ⟩. Note

that ℓ𝑡 ∈ ⟨𝜕𝜑𝑡 (𝑥𝑡 ) , 𝒙𝑡 ⟩, we have


ℓ𝑡 − ℓ̂𝑡


2

∞
=




〈𝑥𝜑𝑡

𝑡 − 𝑥̃
𝜑𝑡

𝑡 , 𝒙𝑡
〉


2

∞
⩽ 𝜌2




𝑥𝜑𝑡

𝑡 − 𝑥̃
𝜑𝑡

𝑡




2
⩽ 𝜌2

(


𝑥𝜑𝑡

𝑡 − 𝑥
𝜑𝑡

𝑡




 + 


𝑥𝜑𝑡

𝑡 − 𝑥̃
𝜑𝑡

𝑡




)2
,

where 


𝑥𝜑𝑡

𝑡 − 𝑥̃
𝜑𝑡

𝑡




 ⩽ 𝐿




𝑥𝑡 − 𝑥̃𝑡


 = 𝐿 ∥⟨𝑤𝑡 − 𝑤𝑡 , 𝒙𝑡 ⟩∥ ⩽ 𝜌𝐿 ∥𝑤𝑡 − 𝑤𝑡 ∥1 .
According to Theorem 2, the static regret upper bound for ONES is

1
𝜃

∑︁
𝑖

𝑤 (𝑖) ln 𝑤 (𝑖)
𝑤1 (𝑖)

+ 𝜃𝜌2
𝑇∑︁
𝑡=1

sup
𝑥∈𝐶




𝑥𝜑𝑡 − 𝑥𝜑𝑡




2
+

(
𝜃𝜌4𝐿2 − 1

2𝜃

) 𝑇∑︁
𝑡=1
∥𝑤𝑡 − 𝑤𝑡 ∥21

⩽
1
𝜃

∑︁
𝑖

𝑤 (𝑖) ln 𝑤 (𝑖)
𝑤1 (𝑖)

+ 𝜃𝜌2𝜚2𝑉𝑇 , if 𝜃 ⩽
1

√
2𝜌2𝐿

.

If we choose 𝑉𝑇 + 𝐷𝑇 as the measure of estimation accuracy, then the global dynamic regret upper
bound is 𝑂

(√︁
(1 + 𝑃𝑇 ) (𝑉𝑇 + 𝐷𝑇 )

)
, and the group of experts is {𝑒𝜆}𝜆∈E , where

E =

{
0, 1, · · · ,

⌊
log2
√

2𝑇 − 1
⌋}

,

the expert 𝑒𝜆 operates OMD with 𝜂𝑒𝜆 =
𝜌

𝜚
√
𝑉𝑇+𝐷𝑇

2𝜆. If we choose 𝑉𝑇 as the measure of estimation

accuracy, then the local dynamic regret upper bound is 𝑂
(√︁
(1 + 𝑃𝑇 )𝑉𝑇

)
, and the group of experts

is
{
𝜖𝜇

}
𝜇∈ℰ , where

ℰ =

{
𝜇 ∈

{
0, 1, · · · ,

⌊
log2
√

2𝑇 − 1
⌋} ���� 𝜌

𝜚
√
𝑉𝑇

2𝜇 ⩽
1
√

2𝐿

}
,

the expert 𝜖𝜇 operates OMD with 𝜂𝜖𝜇 =
𝜌

𝜚
√
𝑉𝑇

2𝜇.

We merge two expert groups and utilize ONES to track the best expert. In this case, the initial value
of ONES is

𝑤1 (𝑒𝜆) = 𝛽 (𝜆 + 2)−𝛼 , 𝜆 ∈ E,
𝑤1

(
𝜖𝜇

)
= 𝛽 (𝜇 + 2)−𝛼 , 𝜇 ∈ ℰ,

where 𝛼 ⩾ 𝜁−1 (1.5), 𝛽−1 =
∑

𝜆∈E (𝜆 + 2)−𝛼 + ∑
𝜇∈ℰ (𝜇 + 2)−𝛼. 𝜁−1 (1.5) ≈ 2.185285451787483

is the root of equation 𝜁 (𝛼) = 1.5 on R+, 𝜁 represents the Riemann 𝜁 function. Let 𝜃 ∝ 1√
𝑉𝑇

,

𝜃 ⩽ 1√
2𝜌2𝐿

, we have

𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) − 𝜑𝑡 (𝑧𝑡 ) ⩽


𝑂

(√︁
(1 + 𝑃𝑇 ) (𝑉𝑇 + 𝐷𝑇 )

)
,

𝑂

(√︁
(1 + 𝑃𝑇 )𝑉𝑇

)
, ¤𝜂 ⩽ 1

√
2𝐿

,

where ¤𝜂 =
√︁
𝜌 (𝜌 + 2𝑃𝑇 ) /(2𝑉𝑇 )/𝜚. We recombine this dynamic regret upper bound as

𝑂

(√︂
(1 + 𝑃𝑇 )

(
𝑉𝑇 + 1𝐿2𝜌(𝜌+2𝑃𝑇 )⩽𝜚2𝑉𝑇

𝐷𝑇

))
.

To make it easier to follow, we depict the above specific execution process in Algorithm 4.

8
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Algorithm 4 Subgradient variation version of ONES-OMD with adaptive trick
1: 𝑚 ← −1, 𝑚′← −1, 𝑛← −1, 𝑛′← −1
2: for round 𝑡 = 1, 2, · · · do
3: 𝑛 ← |E| − 1, 𝑛′ ← |ℰ | − 1, 𝑚 ←

⌊
log4 (𝑉𝑡 + 𝐷𝑡 )

⌋
, 𝑚′ ←

⌊
log4 𝑉𝑡

⌋
, where 𝑉𝑡 and 𝐷𝑡 are

calculated by Eq. (17)
4: if (𝑚 or 𝑚′ or 𝑛 or 𝑛′) changed then
5: Construct a set of experts {𝑒𝜆}𝜆∈E ∪

{
𝜖𝜇

}
𝜇∈ℰ and invoke Algorithm 6 with 𝜂𝑒𝜆 =

𝜌

𝜚
2𝜆−𝑚

for 𝑒𝜆, invoke Algorithm 6 with 𝜂𝜖𝜇 =
𝜌

𝜚
2𝜇−𝑚′ for 𝜖𝜇 if ℰ ≠ ∅

6: Call Algorithm 5 with parameter 𝑛, 𝑛′ and 𝜃 ∝ 2−𝑚′ , where 𝜃 ⩽ 1√
2𝜌2𝐿

7: end if
8: Receive the estimated convex loss 𝜑𝑡 from an arbitrary estimating process with 𝜕𝜑𝑡 to be

Lipschitz continuous, send 𝜕𝜑𝑡 to Algorithm 5 and each expert
9: Call Algorithm 5 to get expert advice strategies 𝒙𝑡 , 𝒙̃𝑡 , and the weight 𝑤𝑡

10: Output strategy 𝑥𝑡 = ⟨𝑤𝑡 , 𝒙𝑡 ⟩, and then observe loss function 𝜑𝑡

11: Send ℓ𝑡 ∈ ⟨𝜕𝜑𝑡 (𝑥𝑡 ) , 𝒙𝑡 ⟩ to Algorithm 5, send 𝜕𝜑𝑡 to each expert
12: end for

Algorithm 5 Subprogram: ONES with parameter 𝑛, 𝑛′ and 𝜃

Require: ℓ𝜏 and 𝜕𝜑𝜏+1 from Algorithm 4
1: Get expert advice strategies 𝒙𝜏 and 𝒙̃𝜏 , send them to Algorithm 4
2: Output 𝑤1 (𝑒𝜆) = 𝛽 (𝜆 + 2)−𝛼, 𝜆 = 0, 1, · · · , 𝑛, 𝑤1

(
𝜖𝜇

)
= 𝛽 (𝜇 + 2)−𝛼, 𝜇 = 0, 1, · · · , 𝑛′ at the

first call, and each subsequent call follows the following rule

𝑤𝜏+1 = 𝒩
(
𝑤𝜏 ◦ e−𝜃ℓ𝜏

)
, 𝑤1 = 𝑤1,

ℓ̂𝜏+1 ∈ ⟨𝜕𝜑𝜏+1 (⟨𝑤𝜏+1, 𝒙𝜏⟩) , 𝒙𝜏⟩ ,

𝑤𝜏+1 = 𝒩
(
𝑤𝜏+1 ◦ e−𝜃ℓ̂𝜏+1

)
Algorithm 6 Subprogram: OMD with parameter 𝜂
Require: 𝜕𝜑𝜏 and 𝜕𝜑𝜏+1 from Algorithm 4

1: Output 𝑥̃1 = 𝑥1 ∈ 𝐶 at the first call, and each subsequent call follows the ONES (Eq. (2))

6 CONCLUSIONS AND FUTURE WORK

In this paper, we study the enhancement method for dynamic regret in a non-adversarial environment
under the premise of guaranteeing the worst-case dynamic regret in OCO problem. We develop an
algorithm, named as ONES-OMD with adaptive trick. Theoretical analysis shows that our algorithm
achieves an 𝑂

(√︁
(1 + 𝑃𝑇 ) 𝑀𝑇

)
dynamic regret upper bound. We also develop a variant of ONES-

OMD with adaptive trick that makes the dynamic regret upper bound have a subgradient variation
type.

Tracking the best expert may be the general approach for online learning with dynamic regret. Op-
timism combined with adaptive trick provides a way to achieve environmental adaptation. We hope
this work encourages further research on smoothed online learning and online learning with delayed
feedback.
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Nicolò Campolongo and Francesco Orabona. A closer look at temporal variability in dynamic online
learning. arXiv e-prints, art. arXiv:2102.07666, February 2021.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006. doi: 10.1017/CBO9780511546921.

Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
Shenghuo Zhu. Online optimization with gradual variations. In Shie Mannor, Nathan Srebro, and
Robert C. Williamson (eds.), Proceedings of the 25th Annual Conference on Learning Theory,
volume 23 of Proceedings of Machine Learning Research, pp. 6.1–6.20, Edinburgh, Scotland, 25–
27 Jun 2012. JMLR Workshop and Conference Proceedings. URL https://proceedings.
mlr.press/v23/chiang12.html.

Eric Hall and Rebecca Willett. Dynamical models and tracking regret in online convex pro-
gramming. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th In-
ternational Conference on Machine Learning, volume 28 of Proceedings of Machine Learn-
ing Research, pp. 579–587, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https:
//proceedings.mlr.press/v28/hall13.html.

Elad Hazan. Introduction to Online Convex Optimization. arXiv e-prints, art. arXiv:1909.05207,
September 2019.

Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan. Online Optimiza-
tion : Competing with Dynamic Comparators. In Guy Lebanon and S. V. N. Vishwanathan (eds.),
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics,
volume 38 of Proceedings of Machine Learning Research, pp. 398–406, San Diego, Califor-
nia, USA, 09–12 May 2015. PMLR. URL https://proceedings.mlr.press/v38/
jadbabaie15.html.

Deepak S. Kalhan, Amrit Singh Bedi, Alec Koppel, Ketan Rajawat, Hamed Hassani, Abhishek K.
Gupta, and Adrish Banerjee. Dynamic online learning via frank-wolfe algorithm. IEEE Transac-
tions on Signal Processing, 69:932–947, 2021. doi: 10.1109/TSP.2021.3051871.

Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. Online optimization
in dynamic environments: Improved regret rates for strongly convex problems. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pp. 7195–7201, 2016. ISBN 978-1-5090-1838-3.
doi: 10.1109/CDC.2016.7799379.

Francesco Orabona. A modern introduction to online learning. arXiv e-prints, art.
arXiv:1912.13213, December 2019.

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Shai
Shalev-Shwartz and Ingo Steinwart (eds.), Proceedings of the 26th Annual Conference on Learn-
ing Theory, volume 30 of Proceedings of Machine Learning Research, pp. 993–1019, Prince-
ton, NJ, USA, 12–14 Jun 2013. PMLR. URL https://proceedings.mlr.press/v30/
Rakhlin13.html.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2012. ISSN 1935-8237. doi: 10.1561/2200000018.

Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of
regularized learning in games. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf.

10

https://proceedings.mlr.press/v23/chiang12.html
https://proceedings.mlr.press/v23/chiang12.html
https://proceedings.mlr.press/v28/hall13.html
https://proceedings.mlr.press/v28/hall13.html
https://proceedings.mlr.press/v38/jadbabaie15.html
https://proceedings.mlr.press/v38/jadbabaie15.html
https://proceedings.mlr.press/v30/Rakhlin13.html
https://proceedings.mlr.press/v30/Rakhlin13.html
https://proceedings.neurips.cc/paper/2015/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf


Under review as a conference paper at ICLR 2022

Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31, pp. 1323–1333. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf.

Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Dynamic regret of convex and smooth
functions. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 12510–12520. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
939314105ce8701e67489642ef4d49e8-Paper.pdf.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the Twentieth International Conference on Machine Learning, ICML’03, pp.
928–935. AAAI Press, 2003. ISBN 1577351894.

11

https://proceedings.neurips.cc/paper/2018/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/939314105ce8701e67489642ef4d49e8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/939314105ce8701e67489642ef4d49e8-Paper.pdf


Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 PROOF OF THEOREM 1

The proof of Theorem 1 relies on the following lemma. Part of the proof is inspired by Zhao et al.
(2020).

Lemma 1 (Theorem 5.2 of Brezis (2011)) Let 𝐻 be a Hilbert space, and let 𝐶 ⊂ 𝐻 be a nonempty
closed convex set. Then ∀𝑥 ∈ 𝐻, ∃!𝑥0 = 𝑃𝐶 (𝑥), such that ⟨𝐶 − 𝑥0, 𝑥 − 𝑥0⟩ ⩽ 0.

We rearrange OMD as follows,

𝑦̃𝑡+1 = 𝑥̃𝑡 − 𝜂𝑥∗𝑡 , 𝑥̃𝑡+1 = 𝑃𝐶 (𝑦̃𝑡+1) ,
𝑦𝑡+1 = 𝑥̃𝑡+1 − 𝜂𝑥̂∗𝑡+1, 𝑥𝑡+1 = 𝑃𝐶 (𝑦𝑡+1) .

Note that

𝜑𝑡 (𝑥𝑡 ) − 𝜑𝑡 (𝑧𝑡 ) ⩽
1
𝜂

〈
𝜂𝑥∗𝑡 , 𝑥𝑡 − 𝑧𝑡

〉
, 𝑥∗𝑡 ∈ 𝜕𝜑𝑡 (𝑥𝑡 ) ,

and 〈
𝜂𝑥∗𝑡 , 𝑥𝑡 − 𝑧𝑡

〉
= 𝜂

〈
𝑥∗𝑡 − 𝑥̂∗𝑡 , 𝑥𝑡 − 𝑥̃𝑡+1

〉
+

〈
𝜂𝑥∗𝑡 , 𝑥̃𝑡+1 − 𝑧𝑡

〉
+

〈
𝜂𝑥̂∗𝑡 , 𝑥𝑡 − 𝑥̃𝑡+1

〉
= 𝜂

〈
𝑥∗𝑡 − 𝑥̂∗𝑡 , 𝑥𝑡 − 𝑥̃𝑡+1

〉
− ⟨𝑥̃𝑡 − 𝑦̃𝑡+1, 𝑧𝑡 − 𝑥̃𝑡+1⟩ − ⟨𝑥̃𝑡 − 𝑦𝑡 , 𝑥̃𝑡+1 − 𝑥𝑡 ⟩ ,

where

𝜂
〈
𝑥∗𝑡 − 𝑥̂∗𝑡 , 𝑥𝑡 − 𝑥̃𝑡+1

〉
⩽ 𝜂



𝑥∗𝑡 − 𝑥̂∗𝑡 

 ∥𝑥𝑡 − 𝑥̃𝑡+1∥ ⩽ 𝜂2

2


𝑥∗𝑡 − 𝑥̂∗𝑡 

2 + 1

2
∥𝑥𝑡 − 𝑥̃𝑡+1∥2 ,

and
1
2
∥𝑥𝑡 − 𝑥̃𝑡+1∥2 ⩽

1
2
∥𝑥̃𝑡+1∥2 −

1
2
∥𝑥𝑡 ∥2 + ⟨𝑦𝑡 , 𝑥𝑡 − 𝑥̃𝑡+1⟩ ,

since ⟨𝑥̃𝑡+1 − 𝑥𝑡 , 𝑦𝑡 − 𝑥𝑡 ⟩ ⩽ 0 according to Lemma 1. Thus〈
𝜂𝑥∗𝑡 , 𝑥𝑡 − 𝑧𝑡

〉
⩽

𝜂2

2


𝑥∗𝑡 − 𝑥̂∗𝑡 

2 + 1

2
∥𝑥̃𝑡+1∥2 −

1
2
∥𝑥𝑡 ∥2 − ⟨𝑥̃𝑡 − 𝑦̃𝑡+1, 𝑧𝑡 − 𝑥̃𝑡+1⟩ − ⟨𝑥̃𝑡 , 𝑥̃𝑡+1 − 𝑥𝑡 ⟩

⩽
𝜂2

2


𝑥∗𝑡 − 𝑥̂∗𝑡 

2 + 1

2
∥𝑧𝑡 − 𝑥̃𝑡 ∥2 −

1
2
∥𝑧𝑡 − 𝑥̃𝑡+1∥2 −

1
2
∥𝑥𝑡 − 𝑥̃𝑡 ∥2 ,

since ⟨𝑧𝑡 − 𝑥̃𝑡+1, 𝑦̃𝑡+1 − 𝑥̃𝑡+1⟩ ⩽ 0 according to Lemma 1. So we have

𝑇∑︁
𝑡=1

𝜑𝑡 (𝑥𝑡 ) − 𝜑𝑡 (𝑧𝑡 ) ⩽
1
2𝜂

𝑇∑︁
𝑡=1

(
∥𝑧𝑡 − 𝑥̃𝑡 ∥2 − ∥𝑧𝑡 − 𝑥̃𝑡+1∥2

)
+ 𝜂

2

𝑇∑︁
𝑡=1



𝑥∗𝑡 − 𝑥̂∗𝑡 

2 − 1
2𝜂

𝑇∑︁
𝑡=1
∥𝑥𝑡 − 𝑥̃𝑡 ∥2

⩽
1
2𝜂
∥𝑧1 − 𝑥̃1∥2 +

1
𝜂

𝑇∑︁
𝑡=2




 𝑧𝑡 + 𝑧𝑡−1
2

− 𝑥̃𝑡



 ∥𝑧𝑡 − 𝑧𝑡−1∥ +

𝜂

2

𝑇∑︁
𝑡=1



𝑥∗𝑡 − 𝑥̂∗𝑡 

2 − 1
2𝜂

𝑇∑︁
𝑡=1
∥𝑥𝑡 − 𝑥̃𝑡 ∥2

⩽
𝜌2

2𝜂
+ 𝜌

𝜂

𝑇∑︁
𝑡=2
∥𝑧𝑡 − 𝑧𝑡−1∥ +

𝜂

2

𝑇∑︁
𝑡=1



𝑥∗𝑡 − 𝑥̂∗𝑡 

2 − 1
2𝜂

𝑇∑︁
𝑡=1
∥𝑥𝑡 − 𝑥̃𝑡 ∥2 .

A.2 PROOF OF THEOREM 2

The proof of Theorem 2 relies on the following lemma.

Lemma 2 (Example 2.5 of Shalev-Shwartz (2012))
∑

𝑖 𝑤 (𝑖) ln𝑤 (𝑖) is 1-strongly-convex w.r.t ∥·∥1
over the probability simplex.

We rearrange ONES (Eq. (7)) as follows,

𝑣̃𝑡+1 = 𝑣̃𝑡 − 𝜃ℓ𝑡 , 𝑤𝑡+1 = 𝑁𝑡+1e𝑣̃𝑡+1 , 𝑣̃1 = 𝑣1 ∈ R𝑛+1,
𝑣𝑡+1 = 𝑣̃𝑡+1 − 𝜃ℓ̂𝑡+1, 𝑤𝑡+1 = 𝑁𝑡+1e𝑣𝑡+1 ,
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where 𝑁𝑡+1 and 𝑁𝑡+1 represents the normalization coefficients. Note that

⟨𝜃ℓ𝑡 , 𝑤𝑡 − 𝑤⟩ = 𝜃

〈
ℓ𝑡 − ℓ̂𝑡 , 𝑤𝑡 − 𝑤𝑡+1

〉
+ ⟨𝜃ℓ𝑡 , 𝑤𝑡+1 − 𝑤⟩ +

〈
𝜃ℓ̂𝑡 , 𝑤𝑡 − 𝑤𝑡+1

〉
= 𝜃

〈
ℓ𝑡 − ℓ̂𝑡 , 𝑤𝑡 − 𝑤𝑡+1

〉
+ ⟨̃𝑣𝑡 − 𝑣̃𝑡+1, 𝑤𝑡+1 − 𝑤⟩ + ⟨̃𝑣𝑡 − 𝑣𝑡 , 𝑤𝑡 − 𝑤𝑡+1⟩ ,

where

𝜃

〈
ℓ𝑡 − ℓ̂𝑡 , 𝑤𝑡 − 𝑤𝑡+1

〉
⩽ 𝜃




ℓ𝑡 − ℓ̂𝑡



∞
∥𝑤𝑡 − 𝑤𝑡+1∥1 ⩽

𝜃2

2




ℓ𝑡 − ℓ̂𝑡


2

∞
+ 1

2
∥𝑤𝑡 − 𝑤𝑡+1∥21 ,

and
1
2
∥𝑤𝑡 − 𝑤𝑡+1∥21 ⩽

〈
𝑤𝑡+1, ln

𝑤𝑡+1
𝑤𝑡

〉
,

since ⟨𝑤, ln𝑤⟩ is 1-strongly-convex w.r.t ∥·∥1 over the probability simplex according to Lemma 2.
Note that

⟨̃𝑣𝑡 − 𝑣̃𝑡+1, 𝑤𝑡+1 − 𝑤⟩ + ⟨̃𝑣𝑡 − 𝑣𝑡 , 𝑤𝑡 − 𝑤𝑡+1⟩
= ⟨̃𝑣𝑡 , 𝑤𝑡 − 𝑤⟩ − ⟨̃𝑣𝑡+1, 𝑤𝑡+1 − 𝑤⟩ − ⟨𝑣𝑡 , 𝑤𝑡 − 𝑤𝑡+1⟩

=

〈
ln

𝑤𝑡

𝑁𝑡

, 𝑤𝑡 − 𝑤
〉
−

〈
ln

𝑤𝑡+1

𝑁𝑡+1
, 𝑤𝑡+1 − 𝑤

〉
−

〈
ln

𝑤𝑡

𝑁𝑡

, 𝑤𝑡 − 𝑤𝑡+1

〉
= ⟨ln𝑤𝑡 , 𝑤𝑡 − 𝑤⟩ − ⟨ln𝑤𝑡+1, 𝑤𝑡+1 − 𝑤⟩ − ⟨ln𝑤𝑡 , 𝑤𝑡 − 𝑤𝑡+1⟩

=

〈
𝑤, ln

𝑤𝑡+1
𝑤𝑡

〉
−

〈
𝑤𝑡 , ln

𝑤𝑡

𝑤𝑡

〉
−

〈
𝑤𝑡+1, ln

𝑤𝑡+1
𝑤𝑡

〉
,

then

⟨𝜃ℓ𝑡 , 𝑤𝑡 − 𝑤⟩ ⩽
𝜃2

2




ℓ𝑡 − ℓ̂𝑡


2

∞
+

〈
𝑤, ln

𝑤𝑡+1
𝑤𝑡

〉
−

〈
𝑤𝑡 , ln

𝑤𝑡

𝑤𝑡

〉
⩽

𝜃2

2




ℓ𝑡 − ℓ̂𝑡


2

∞
+

〈
𝑤, ln

𝑤𝑡+1
𝑤𝑡

〉
− 1

2
∥𝑤𝑡 − 𝑤𝑡 ∥21

according to Lemma 2, and thus,

𝑇∑︁
𝑡=1
⟨ℓ𝑡 , 𝑤𝑡 − 𝑤⟩ ⩽

1
𝜃

𝑇∑︁
𝑡=1

〈
𝑤, ln

𝑤𝑡+1
𝑤𝑡

〉
+ 𝜃

2

𝑇∑︁
𝑡=1




ℓ𝑡 − ℓ̂𝑡


2

∞
− 1

2𝜃

𝑇∑︁
𝑡=1
∥𝑤𝑡 − 𝑤𝑡 ∥21

=
1
𝜃

〈
𝑤, ln

𝑤

𝑤1

〉
+ 𝜃

2

𝑇∑︁
𝑡=1




ℓ𝑡 − ℓ̂𝑡


2

∞
− 1

2𝜃

𝑇∑︁
𝑡=1
∥𝑤𝑡 − 𝑤𝑡 ∥21

since
𝑇∑︁
𝑡=1

〈
𝑤, ln

𝑤𝑡+1
𝑤𝑡

〉
=

〈
𝑤, ln

𝑤𝑇+1
𝑤1

〉
=

〈
𝑤, ln

𝑤

𝑤1

〉
−

〈
𝑤, ln

𝑤

𝑤𝑇+1

〉
⩽

〈
𝑤, ln

𝑤

𝑤1

〉
− 1

2
∥𝑤 − 𝑤𝑇+1∥21 ⩽

〈
𝑤, ln

𝑤

𝑤1

〉
=

1
𝜃

〈
𝑤, ln

𝑤

𝑤1

〉
.

A.3 PROOF OF THEOREM 3

Suppose the game has been played for 𝑇 rounds, and is in stage 𝑚. 𝑀𝑇 ∈
[
4𝑚, 4𝑚+1

)
. Denote by

𝑇𝑠 the total rounds number have been played in stage 𝑠. 𝑇 =
∑𝑚

𝑠=1 𝑇𝑠 . According to Eq. (16), the
dynamic regret upper bound of stage 𝑠 is

𝑂

(
𝛼 ln

(
2 + log2

√︄
1 +

2𝑃𝑇𝑠

𝜌

)
2𝑠 + 2𝜌2𝜚22𝑠 + 3𝜚

√︃
𝜌

(
𝜌 + 2𝑃𝑇𝑠

)
2𝑠

)
⩽ 𝑂

(√︁
(1 + 𝑃𝑇 )2𝑠

)
,

and then
𝑚∑︁
𝑠=1

𝑂

(√︁
(1 + 𝑃𝑇 )2𝑠

)
= 𝑂

(√︁
(1 + 𝑃𝑇 )2𝑚

)
= 𝑂

(√︁
(1 + 𝑃𝑇 ) 𝑀𝑇

)
.
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A.4 PROOF OF COROLLARY 1

Let 𝑥𝜑𝑡

𝑡 = 𝑥∗𝑡 , 𝑥̃𝜑𝑡

𝑡 = 𝑥̂∗𝑡 . Note that


𝑥𝜑𝑡

𝑡 − 𝑥̃
𝜑𝑡

𝑡




2
⩽

(


𝑥𝜑𝑡

𝑡 − 𝑥
𝜑𝑡

𝑡




 + 


𝑥𝜑𝑡

𝑡 − 𝑥̃
𝜑𝑡

𝑡




)2
⩽ 2




𝑥𝜑𝑡

𝑡 − 𝑥
𝜑𝑡

𝑡




2
+ 2𝐿2 ∥𝑥𝑡 − 𝑥̃𝑡 ∥2 ,

where 𝑥
𝜑𝑡

𝑡 ∈ 𝜕𝜑𝑡 (𝑥𝑡 ). According to Theorem 1, the dynamic regret upper bound for OMD is

𝜌2

2𝜂
+ 𝜌

𝜂
𝑃𝑇 + 𝜂

𝑇∑︁
𝑡=1




𝑥𝜑𝑡

𝑡 − 𝑥
𝜑𝑡

𝑡




2
+

(
𝜂𝐿2 − 1

2𝜂

) 𝑇∑︁
𝑡=1
∥𝑥𝑡 − 𝑥̃𝑡 ∥2

⩽
𝜌 (𝜌 + 2𝑃𝑇 )

2𝜂
+ 𝜂

𝑇∑︁
𝑡=1

(
sup
𝑥∈𝐶




𝑥𝜑𝑡 − 𝑥𝜑𝑡




2
+ 1𝜂> 1√

2𝐿
𝐿2 ∥𝑥𝑡 − 𝑥̃𝑡 ∥2

)
.
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