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Abstract

Closed-loop optimal control design for high-dimensional nonlinear systems has been a long-standing
challenge. Traditional methods, such as solving the associated Hamilton-Jacobi-Bellman equation,
suffer from the curse of dimensionality. Recent literature proposed a new promising approach based
on supervised learning, by leveraging powerful open-loop optimal control solvers to generate train-
ing data and neural networks as efficient high-dimensional function approximators to fit the closed-
loop optimal control. This approach successfully handles certain high-dimensional optimal control
problems but still performs poorly on more challenging problems. One of the crucial reasons for the
failure is the so-called distribution mismatch phenomenon brought by the controlled dynamics. In
this paper, we investigate this phenomenon and propose the initial value problem enhanced sampling
method to mitigate this problem. We theoretically prove that this sampling strategy improves over
the vanilla strategy on the classical linear-quadratic regulator by a factor proportional to the total
time duration. We further numerically demonstrate that the proposed sampling strategy significantly
improves the performance on tested control problems, including the optimal landing problem of a
quadrotor and the optimal reaching problem of a 7 DoF manipulator.

1 Introduction

Optimal control aims to find a control for a dynamical system over a period of time such that a specified loss function
is minimized. Generally speaking, there are two types of optimal controls: open-loop optimal control and closed-
loop (feedback) optimal control. Open-loop optimal control deals with the problem with a given initial state, and its
solution is a function of time for the specific initial data, independent of the other states of the system. In contrast,
closed-loop optimal control aims to find the optimal control policy as a function of the state that gives us optimal
control for general initial states.

By the nature of the problem, solving the open-loop control problem is relatively easy and various open-loop control
solvers can handle nonlinear problems even when the state lives in high dimensions (Betts, 1998; Rao, 2009). Closed-
loop control is much more powerful than open-loop control since it can cope with different initial states, and it is more
robust to the disturbance of dynamics. The classical approach to obtaining a closed-loop optimal control function is by
solving the associated Hamilton-Jacobi-Bellman (HJB) equation. However, traditional numerical algorithms for HJB
equations such as the finite difference method or finite element method face the curse of dimensionality (Bellman,
1957) and hence can not deal with high-dimensional problems.

Since the work Han & E (2016) for stochastic optimal control problems, there have been growing interest on making
use of the capacity of neural networks (NNs) in approximating high-dimensional functions to solve the closed-loop
optimal control problems (Nakamura-Zimmerer et al., 2021a;b; 2020; Böttcher et al., 2022; E et al., 2022). Generally
speaking, there are two categories of methods in this promising direction. One is policy search approach (Han &
E, 2016; Ainsworth et al., 2021; Böttcher et al., 2022; Zhao et al., 2022), which directly parameterizes the policy
function by neural networks, computes the total cost with various initial points, and minimizes the average total cost.
When solving problems with a long time span and high nonlinearity, the corresponding optimization problems can be
extremely hard and may get stuck in local minima (Levine & Koltun, 2014). The other category of methods is based on
supervised learning (Nakamura-Zimmerer et al., 2021a;b; 2020; 2022). Combining various techniques for open-loop
control, one can solve complex high-dimensional open-loop optimal control problems; see Betts (1998); Rao (2009);
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Kang et al. (2021) for detailed surveys. Consequently, we can collect optimal trajectories for different initial points
as training data, parameterize the control function (or value function) using NNs, and train the NN models to fit the
closed-loop optimal controls (or optimal values). This work focuses on the second approach and aims to improve its
performance through adaptive sampling.

As demonstrated in Nakamura-Zimmerer et al. (2021b); Zang et al. (2022); Zhao & Han (2022), NN controllers
trained by the vanilla supervised-learning-based approach can perform poorly even when both the training error and
test error on collected datasets are fairly small. Some existing works attribute this phenomenon to the fact that the
learned controller may deteriorate badly at some difficult initial states even though the error is small in the average
sense. Several adaptive sampling methods regarding the initial points are hence proposed (see Section 4 for a detailed
discussion). However, these methods all focus on choosing optimal paths according to different initial points and
ignore the effect of dynamics. This is an issue since the paths controlled by the NN will deviate from the optimal paths
further and further over time due to the accumulation of errors. As shown in Section 6, applying adaptive sampling
only on initial points is insufficient to solve challenging problems.

This work is concerned with the so-called distribution mismatch phenomenon brought by the dynamics in the
supervised-learning-based approach. This phenomenon refers to the fact that the discrepancy between the state distri-
bution of the training data and the state distribution generated by the NN controller typically increases over time and
the training data fails to represent the states encountered when the trained NN controller is used. Such phenomenon has
also been identified in reinforcement learning (Kakade & Langford, 2002; Long & Han, 2022) and imitation learning
(Ross & Bagnell, 2010). To mitigate this phenomenon, we propose the initial value problem (IVP) enhanced sampling
method to make the states in the training dataset more closely match the states that the controller reaches. In the IVP
enhanced sampling method, we iteratively re-evaluate the states that the NN controller reaches by solving IVPs and
recalculate new training data by solving the open-loop control problems starting at these states. Our sampling method
is very versatile to be combined with other techniques like a faster open-loop control solver or better neural network
structures.

The resulting supervised-learning-based approach empowered by the IVP enhanced sampling can be interpreted as
an instance of the exploration-labeling-training (ELT) algorithms (Zhang et al., 2018; E et al., 2021) for closed-loop
optimal control problems. At a high level, the ELT algorithm proceeds iteratively with the following three steps: (1)
exploring the state space and examining which states need to be labeled; (2) solving the control problem to label these
states and adding them to the training data; (3) training the machine learning model. Through the lens of the ELT
algorithm, there are at least three aspects to improve the efficiency of the supervised-learning-based approach for the
closed-loop optimal control problem:

• Use the adaptive sampling method. Adaptive sampling methods aim to sequentially choose the time-state
pairs based on previous results to improve the performance of the NN controller. This corresponds to the
first step in the ELT algorithm and is the main focus of this work. We will discuss other adaptive sampling
methods in Section 4.

• Improve the efficiency of data generation, i.e., solving the open-loop optimal control problems. Although the
open-loop optimal control problem is much easier than the closed-loop optimal control problem, its time cost
cannot be neglected and the efficiency varies significantly with different methods. This corresponds to the
second step in the ELT algorithm and we refer to Kang et al. (2021) for a detailed survey.

• Improve the learning process of the neural networks. This corresponds to the third step in the ELT algorithm.
The recent works Nakamura-Zimmerer et al. (2020; 2021b; 2022) focus on the structure of the neural net-
works and design a special ansatz such that the NN controller is close to the linear quadratic controller around
the equilibrium point to improve the stability of the NN controller.

The main contributions of the paper can be summarized as follows:

• We investigate the distribution mismatch phenomenon brought by the controlled dynamics in the supervised-
learning-based approach, which explains the failure of this approach for challenging problems. We propose
the IVP enhanced sampling method to update the training data, which significantly alleviates the distribution
mismatch problem.
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• We show that the IVP enhanced sampling method can significantly improve the performance of the learned
closed-loop controller on a uni-dimensional linear quadratic control problem (theoretically and numerically)
and two high-dimensional problems (numerically), the quadrotor landing problem and the reaching problem
of a 7-DoF manipulator.

• We compare the IVP enhanced sampling method with other adaptive sampling methods and show that the
IVP enhanced method gives the best performance.

2 Preliminary

2.1 Open-loop and Closed-loop Optimal Control

We consider the following deterministic controlled dynamical system:{
ẋ(t) = f(t,x(t),u(t)), t ∈ [t0, T ],
x(t0) = x0,

(1)

where x(t) ∈ Rn denotes the state, u(t) ∈ U ⊂ Rm denotes the control with U being the set of admissible controls,
f : [0, T ] × Rn × U → Rn is a smooth function describing the dynamics, t0 ∈ [0, T ] denotes the initial time, and
x0 ∈ Rn denotes the initial state. Given a fixed t0 ∈ [0, T ] and x0 ∈ Rn, solving the open-loop optimal control
problem means to find a control path u∗ : [t0, T ] → U to minimize

J(u; t0,x0) =
∫ T

t0

L(t,x(t),u(t))dt+M(x(T )) s.t. (x,u) satisfy the system (1),

where L : [0, T ] × Rn × U → R and M : Rn → R are the running cost and terminal cost, respectively. We use
x∗(t; t0,x0) and u∗(t; t0,x0) to denote the optimal state and control with the specified initial time t0 and initial state
x0, which emphasizes the dependence of the open-loop optimal solutions on the initial time and state. We assume the
open-loop optimal control problem is well-posed, i.e., the solution always exists and is unique.

In contrast to the open-loop control being a function of time only, closed-loop control is a function of the time-state
pair (t,x). Given a closed-loop control u : [0, T ] × Rn → U , we can induce a family of the open-loop controls with
all possible initial time-state pairs (t0,x0): u(t; t0,x0) = u(t,xu(t; t0,x0)), where xu(t; t0,x0) is defined by the
following initial value problem (IVP):

IVP(x0, t0, T,u) :
{

ẋu(t; t0,x0) = f(t,xu(t; t0,x0),u(t,xu(t; t0,x0)), t ∈ [t0, T ],
xu(t0; t0,x0) = x0.

(2)

To ease the notation, we always use the same character to denote the closed-loop control function and the induced
family of the open-loop controls. The context of closed-loop or open-loop control can be inferred from the arguments
and will not be confusing. It is well known in the classical optimal control theory (see, e.g. Liberzon (2011)) that
there exists a closed-loop optimal control function u∗ : [0, T ] × Rn → U such that for any t0 ∈ [0, T ] and x0 ∈ Rn,
u∗(t; t0,x0) = u∗(t,x∗(t; t0,x0)), which means the family of the open-loop optimal controls with all possible initial
time-state pairs can be induced from the closed-loop optimal control function. Since IVPs can be easily solved, one can
handle the open-loop control problems with all possible initial time-state pairs if a good closed-loop control solution
is available. Moreover, the closed-loop control is more robust to dynamic disturbance and model misspecification, and
hence it is much more powerful in applications. In this paper, our goal is to find a near-optimal closed-loop control û
such that for x0 ∈ X ⊂ Rn with X being the set of initial states of interest, the associated total cost is near-optimal,
i.e., |J(û( · ; 0,x0); 0,x0) − J(u∗( · ; 0,x0); 0,x0)| is small.

2.2 Supervised-learning-based Approach for Closed-loop Optimal Control Problem

Here we briefly explain the idea of the supervised-learning-based approach for the closed-loop optimal control prob-
lem. The first step is to generate training data by solving the open-loop optimal control problems with zero initial
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time and initial states randomly sampled in X . Then, the training data is collected by evenly choosing points in every
optimal path:

D = {(ti,j ,xi,j),ui,j}1≤i≤M,1≤j≤N ,

where M and N are the number of sampled training trajectories and the number of points chosen in each path,
respectively. Finally, a function approximator (mostly neural network, as considered in this work) with parameters θ
is trained by solving the following regression problem:

min
θ

1
MN

M∑
i=1

N∑
j=1

∥ui,j − uNN(ti,j ,xi,j ; θ)∥2, (3)

and gives the NN controller uNN.

3 IVP Enhanced Sampling Method

Although the vanilla supervised-learning-based approach can achieve a good performance in certain problems
(Nakamura-Zimmerer et al., 2021a), it is observed that its performance on complex problems is not satisfactory (see
Nakamura-Zimmerer et al. (2021b); Zang et al. (2022) and examples below). One of the crucial reasons that the vanilla
method fails is the distribution mismatch phenomenon. To better illustrate this phenomenon, let µ0 be the distribution
of the initial state of interest and u : [0, T ] × Rn → U be a closed-loop control function. We use µu(t) to denote the
distribution of x(t) generated by u: ẋ(t) = f(t,x(t),u(t,x(t))),x0 ∼ µ0. Note that in the training process (3), the
distribution of the state at time t is µu∗(t), the state distribution generated by the closed-loop optimal control. On the
other hand, when we apply the learned NN controller in the dynamics, the distribution of the input state of uNN at time
t is µuNN(t). The error between state x driven by u∗ and uNN accumulates and makes the discrepancy between µu∗(t)
and µuNN(t) increases over time. Hence, the training data fails to represent the states encountered in the controlled
process, and the error between u∗ and uNN dramatically increases when t is large. See Figures 1 (left) and 3 below
for an illustration of this phenomenon.

To overcome this problem, we propose the following IVP enhanced sampling method. The key idea is to improve the
quality of the NN controller iteratively by enlarging the training dataset with the states seen by the NN controller at
previous times. Given predesigned (not necessarily even-spaced) temporal grid points 0 = t0 < t1 < · · · < tK = T ,
we first generate a training dataset S0 by solving open-loop optimal control problems on the time interval [0, T ] starting
from points in X0, a set of initial points sampled from µ0, and train the initial model û0. Under the control of û0,
the generated trajectory deviates more and more from the optimal trajectory. So we stop at time t1, i.e., compute the
IVPs using û0 as the closed-loop control and points in X0 as the initial points on the time interval [0, t1], and then
on the interval [t1, T ] solve new optimal paths that start at the end-points of the previous IVPs. The new training
dataset S1 is then composed of new data (between t1 and T) and the data before time t1 in the dataset S0, and we
train a new model û1 using S1. We repeat this process to the predesigned temporal grid points t2, t3, · · · until end
up with T . In other words, in each iteration, the adaptively sampled data replaces the corresponding data (defined on
the same time interval) in the training dataset (the size of training data remains the same). The whole process can
be formulated as Algorithm 1, and we refer to Figure 1 for an illustration of the algorithm’s mechanism. We call
this method IVP enhanced sampling method because the initial points of the open-loop optimal control problems are
sampled by solving the IVP with the up-to-date NN controller. It is worth noting that the later iterations require less
effort in labeling data as the trajectories are shorter and thus easier to solve.

It is worthwhile mentioning that the IVP enhanced sampling method is versatile enough to combine other improve-
ments for closed-loop optimal control problems, such as efficient open-loop control problem solvers (Kang et al.,
2021; Zang et al., 2022) or specialized neural network structures (Nakamura-Zimmerer et al., 2020; 2021b; 2022).
One design choice regarding the network structure in the IVP enhanced sampling method is whether to share the same
network among different time intervals. We choose to use the same network for all the time intervals in the following
numerical examples, but the opposite choice is also feasible.

4 Comparison with Other Adaptive Sampling Methods

In this section, we review existing literature on adaptive sampling methods for the closed-loop optimal control problem.
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Figure 1: An illustration of how the proposed IVP enhanced sampling (Algorithm 1) works when there are two
intermediate temporal grid points t1 and t2.

Algorithm 1 IVP enhanced sampling method for closed-loop optimal control design
1: Input: Initial distribution µ0, number of time points K, temporal grid points 0 = t0 < t1 < · · · < tK = T , time

step δ, number of initial points N .
2: Initialize: S−1 = ∅, û−1(t,x) = 0.
3: Independently sample N initial points from µ0 to get an initial point set X0.
4: for i = 0, 1, · · · ,K − 1 do
5: For any x0 ∈ X0, compute IVP (x0, 0, ti, ûi−1) according to (2). ▷Exploration
6: Set Xi = {xûi−1(ti; 0, x0) : x0 ∈ X0}.
7: For any xi ∈ Xi, call the open-loop optimal control solver to obtain x∗(t; ti,xi) and u∗(t; ti,xi) for t ∈

[ti, T ]. ▷Labeling
8: Set Ŝi = {(t,x∗(t; ti,xi),u∗(t; ti,xi)) : xi ∈ Xi, t ∈ [ti, T ], (t− t0)/δ ∈ N}.
9: Set Si = Ŝi

⋃
{(t,x,u) : t < ti, (t,x,u) ∈ Si−1}.

10: Train ûi with dataset Si. ▷Training
11: end for
12: Output: ûK−1.

We start with the methods in imitation learning (Hussein et al., 2017), which aim to learn the expert’s control function.
Our task can be viewed as an imitation problem if we take the optimal control function as the expert’s control. With
the same argument, we know the distribution mismatch phenomenon also exists therein. However, there is a key
difference regarding the mechanism of data generation between the two settings: in imitation learning, it is often
assumed that one can easily access the expert’s behavior at every time-state pair while in the optimal control problem,
it is much more computationally expensive to access since one must solve an open-loop optimal control problem. This
difference affects algorithm design fundamentally. Take the forward training algorithm (Ross & Bagnell, 2010), a
popular method in imitation learning for mitigating distribution mismatch, as an example. To apply it to the closed-
loop optimal control problem, we first need to consider a discrete-time version of the problem with a sufficiently fine
time grid: 0 = t0 < t1 < · · · < tK′ = T . At each time step ti, we learn a policy function ūi : Rn → U where the
state x in the training data are generated by sequentially applying ū0, . . . , ūi−1 and the labels are generated by solving
the open-loop optimal solutions with (ti, x) as the initial time-state pair. Hence, the open-loop control solver is called
with numbers proportionally to the discretized time steps K ′, and only the first value on each optimal control path is
used for learning. In contrast, in Algorithm 1, we can use much more values over the optimal control paths in learning,
which allows its temporal grid for sampling to be much coarser than the grid in the forward training algorithm, and
the total cost of solving open-loop optimal control problems is much lower.
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Another popular method in imitation learning is DAGGER (Dataset Aggregation) (Ross et al., 2011), which can also
be applied to help sampling in the closed-loop optimal control problem. In DAGGER, in order to improve the current
closed-loop controller û, one solves IVPs using û over [0, T ] starting from various initial states and collect the states
on a time grid 0 < t1 < · · · < tK−1 < T . The open-loop control problems are then solved with all the collected
time-state pairs as the initial time-state pair, and all the corresponding optimal solutions are used to construct a dataset
for learning a new controller. The process can be repeated until a good controller is obtained. The time-state selection
in DAGGER is also related to the distribution mismatch phenomenon, but somehow different from the IVP enhanced
sampling. Take the data collection using the controller û1 in the first iterative step for example. The IVP enhanced
sampling focuses on the states at the time grid t1 while DAGGER collects states at all the time grids. If û1 is still
far from optimal, the data collected at later time grids may be irrelevant to or even mislead training due to error
accumulation in states. In Section 8, we reports more theoretical and numerical comparison between DAGGER and
IVP enhanced sampling, which indicates DAGGER performs less satisfactorily.

Except for the forward training algorithm and DAGGER, there are other adaptive sampling methods for the closed-
loop optimal control problems. Nakamura-Zimmerer et al. (2021a) propose an adaptive sampling method that prefers
to choose the initial points with large gradients of the value function as the value function tends to be steep and hard
to learn around these points. Landry et al. (2021) propose to sample the initial points on which the errors between
predicted values from the NN and optimal values are large. These two adaptive sampling methods both focus on
finding points that are not learned well but ignore the influence of the accumulation of the distribution mismatch
over time brought by controlled dynamics. We will show in Section 6 that the IVP enhanced sampling method can
outperform such sampling methods.

5 Theoretical Analysis on an LQR Example

In this section, we analyze the superiority of the IVP sampling method by considering the following uni-dimensional
linear quadratic regulator (LQR) problem:

min
x(t),u(t)

1
T

∫ T

t0

|u(t)|2dt+ |x(T )|2

s.t. ẋ(t) = u(t), t ∈ [t0, T ], x(t0) = x0,

where T is a positive integer, t0 ∈ [0, T ] and x0 ∈ R. Classical theory on linear quadratic control (see, e.g. Sontag
(2013)) gives the following explicit linear form of the optimal controls:u∗(t; t0, x0) = − T

T (T −t0)+1x0, (open-loop optimal control)

u∗(t, x) = − T
T (T −t)+1x. (closed-loop optimal control)

We consider the following two models to approximate the closed-loop optimal control function with parameter θ:

Model 1: uθ(t, x) = − T
T (T −t)+1x+ b(t), where θ = {θt}0≤t≤T = {b(t)}0≤t≤T . (4)

Model 2: uθ(t, x) = a(t)x+ b(t), where θ = {θt}0≤t≤T = {(a(t), b(t))}0≤t≤T . (5)

Since there will be no error in learning a linear model when the data is exact, to mimic the errors encountered when
learning neural networks, throughout this section, we assume the data has certain noise. To be precise, for any t0 ∈
[0, T ] and x0 ∈ R, the open-loop optimal control solver gives the following approximated optimal path: û(t; t0, x0) = − T

T (T −t0)+1x0 + ϵZ,

x̂(t; t0, x0) = x0 +
∫ t

t0
û(t; t0, x0)dt = T (T −t)+1

T (T −t0)+1x0 + (t− t0)ϵZ,

where ϵ > 0 is a small positive number to indicate the scale of the error and Z is a normal random variable whose
mean is m and variance is σ2. In other words, the obtained open-loop control is still constant in each path, just like
the optimal open-loop control, but perturbed by a random constant. The random variables in different approximated
optimal paths starting from different t0 or x0 are assumed to be independent.
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We compare the vanilla supervised-learning-based method and IVP enhanced sampling method theoretically for the
first model and numerically for the second model (in Appendix A). In the vanilla method, we randomly sample NT
initial points from a standard normal distribution and use corresponding optimal paths to learn the controller. In the
IVP enhanced sampling method, we randomly sample N initial points from a standard normal distribution, set the
temporal grid points for sampling as 0 < 1 < · · · < T − 1 < T , and perform Algorithm 1. In both methods, the
open-loop optimal control solver is called NT times in total.

Theorem 1 compares the performance of the vanilla method and the IVP enhanced sampling method under Model
1 (4) . The more detailed statement and proof can be found in Appendix A. This theorem shows that both the distri-
bution difference and performance difference with respect to the optimal solution for the vanilla method will increase
when T increases, while they are always constantly bounded for the IVP enhanced sampling method. Therefore, com-
pared to the vanilla method, the IVP enhanced sampling method mitigates the distribution mismatch phenomenon and
significantly improves the performance when T is large.

Theorem 1. Under Model 1 (4), let uo, uv and ua be the optimal controller, the controller learned by the
vanilla method, and the controller learned by the IVP enhanced sampling method, respectively. Define IVPs:
ẋs(t) = us(t) = us(t, xs(t)), xs(0) = xinit, 0 ≤ t ≤ T, s ∈ {o, v, a}.

1. If xinit is a random variable following a standard normal distribution, which is independent of the initial points
and noises in the training process. Let {x̂j

v(t)}NT
j=1 and {x̂j

a(t)}N
j=1 be the state variables in the training data

of the vanilla method and the last iteration of the IVP enhanced sampling method. Then, x̂j
v(t), x̂j

a(t), xv(t)
and xa(t) are normal random variables, Ex̂j

v(t) = Exv(t),Ex̂j
a(t) = Exa(t) and

|E|x̂j
v(t)|2 − E|xv(t)|2| = (1 − 1

NT
)ϵ2t2, |E|x̂j

a(t)|2 − E|xa(t)|2| ≤ ϵ2.

2. If xinit is a fixed initial point, define the total cost

Js = 1
T

∫ T

0
|us(t)|2dt+ |xs(T )|2, s ∈ {o, v, a}.

Then, EJv − Jo = (T 2 + 1)(m2 + σ2

NT
)ϵ2, EJa − Jo ≤ 3(m2 + σ2

N
)ϵ2.

Next we present the numerical results when we use Model 2 (5) to fit the closed-loop optimal control.

In the following experiments, we set ϵ = 0.1, m = 0.1 and σ2 = 1. Figure 2 (left) compares the optimal path xo(t)
with xv(t) and xa(t), the IVPs generated by the controllers learned by the vanilla method and IVP enhanced sampling
method (all three paths start at xinit = 1). In this experiment, we set T = 30 and N = 100. Figure 2 (middle)
shows how the time t influences the differences of the second order moments between the state distribution of the
training data and the state distribution of the IVP generated by learned controllers in the vanilla method and the IVP
enhanced sampling method. We set the total time T = 100 and N = 100. Figure 2 (right) compares the performance
of the vanilla method and IVP enhanced sampling method on different total times T . The performance difference is an
empirical estimation of E[Jv −Jo] and E[Ja−Jo] when xinit follows a standard normal distribution. In this experiment,
for each method, we set N = 100 and learn 10 different controllers with different realizations of the training data and
calculate the average of the performance difference on 1000 randomly sampled initial points (from a standard normal
distribution) and 10 learned controllers.

6 The Optimal Landing Problem of Quadrotor

In this section, we test the IVP enhanced sampling method on the optimal landing problem of a quadrotor. We
consider the full quadrotor dynamic model with 12-dimensional state variable and 4-dimensional control vari-
able (Bouabdallah et al., 2004; Madani & Benallegue, 2006; Mahony et al., 2012). The state variable of a quadrotor
is x = (pT,vT

b ,η
T,wT

b )T ∈ R12 where p = (x, y, z) ∈ R3 is the position of quadrotor in Earth-fixed coordinates,
vb ∈ R3 is the velocity in body-fixed coordinates, η = (ϕ, θ, ψ) ∈ R3 (roll, pitch, yaw) is the attitude in terms
of Euler angles in Earth-fixed coordinates, and wb ∈ R3 is the angular velocity in body-fixed coordinates. Control
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Figure 2: Numerical results on learning Model 2 (5). Left: the optimal path and the paths generated by the vanilla
sampling method and the IVP enhanced sampling method. Middle: differences of the second order moments (in
the logarithm scale) between the distributions of the training data and the data reached by the controllers at different
times. Right: performance differences (in the logarithm scale) of the vanilla sampling method and the IVP enhanced
sampling method for different total times (in the logarithm scale).

u = (s, τx, τy, τz)T ∈ R4 is composed of total thrust s and body torques (τx, τy, τz) from the four rotors. The
dynamics of the quadrotor can be writen down as ẋ = f(x,u):

ṗ = RT(η)vb,

v̇b = −wb × vb − R(η)g + 1
mAu,

η̇ = K(η)wb,

ẇb = −J−1wb × Jwb + J−1Bu,

More details about matrix A, B, R(η) and K(η) are in Appendix B. We aim to find optimal landing paths from
some initial states x0 to a target state xT = 0 with minimum control efforts during a fixed time duration T = 16.
In the experiment, the distribution of the initial state of interest is the uniform distribution on the set X = {x, y ∈
[−40, 40], z ∈ [20, 40], vx, vy, vz ∈ [−1, 1], θ, ϕ ∈ [−π/4, π/4], ψ ∈ [−π, π]; w = 0}. The running cost and terminal
cost are

L(x,u) = (u − ud)TQu(u − ud), M(x) = pTQpf p + vTQvf v + ηTQηf η + wTQwf w = xTQf x,

where ud = (mg, 0, 0, 0) represents the reference control that balances with gravity and Qu = diag(1, 1, 1, 1) repre-
sents the weight matrix characterizing the cost of deviating from the reference control. We take Qpf = 5I3, Qvf =
10I3, Qηf = 25I3, Qwf = 50I3. We set the entries in the terminal cost larger than the running cost as we want to
give the endpoint more penalty for deviating from the landing target. The open-loop optimal solutions are obtained by
solving the corresponding two-point boundary value problems with the space-marching technique (Zang et al., 2022).
See Appendix C for more details.

We sample N = 500 initial points for training. On every optimal path, we select time-state-action tuples with time
step δ = 0.2. Thus the number of training data is always 81×500 at every iteration. Note that when solving BVPs and
IVPs, we use denser time grids to ensure the solution is accurate enough. The neural network models in all quadrotor
experiments have the same structure with 13-dimensional input (12 for states and 1 for time) and 4-dimensional output.
The networks are fully-connected with 2 hidden layers; each layer has 128 hidden neurons and we use tanh as the
activation function. The inputs are scaled to (−1, 1) where the upper bound and lower bound are the maximum
and minimum of the training dataset. Since the activation function is tanh, we adapt Xavier initialization (Glorot &
Bengio, 2010) before training. We train the neural network by the Adam (Kingma & Ba, 2015) optimizer with learning
rate 0.001, batch size 1000, and 1000 epochs. At every iteration of IVP enhanced sampling method, we train a new
neural network from scratch. Our model and training programs are implemented by PyTorch (Paszke et al., 2019).
The experiments of quadrotor are conducted on a Macbook Pro with an Apple M1 pro core.

In the first experiment, we use our IVP enhanced sampling method and choose temporal grid points 0 < 10 < 14 < 16.
In this experiment, average time of training a neural network is about 6.6 minutes. It takes about 5.1s to solve an
optimal path whose total time T − t0 = 16 at iteration 0, takes about 1.91s to solve an optimal path whose total
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time T − t1 = 6 at iteration 1, and takes about 1.3s at iteration 2. After learning, we use learned models to run
the initial value problem at 500 training initial points and show the similarity between paths controlled by the NN
controller and their corresponding training data. In Figure 3, the left sub-figure shows the average pointwise distance
between data reached by the NN controller and corresponding training data at different times. The right sub-figure
shows the maximum mean discrepancy (Borgwardt et al., 2006) between these two datasets using Gaussian kernel
k(x, y) = exp(− ∥x−y∥2

2 ). In both figures, there are jumps at t = 10 and 14 since the NN-controlled path is continuous
across time while training data is discontinuous at locations where we do IVP enhanced sampling. It can be seen that
without adaptive sampling (after iteration 0), the discrepancy between the states reached by the NN controller and
training data is large. With our method, they get closer to each other as the iteration goes.

Figure 3: Left: the average pointwise distance between the training data and the data reached by controllers at different
times. Right: the maximum mean discrepancy (in the logarithm scale) between the training data and the data reached
by controllers at every time using the Gaussian kernel.

Next, we check the performance of the learned NN controller. First, we give an intuitive vision illustration. One
example is shown in Figure 4. The path controlled by û0 matches the optimal path at the beginning but deviates
around t = 10. Then the path controlled by û1 fits the optimal path more and deviates around t = 14. Finally, the
path controlled by û3 matches the optimal path till the terminal time. Note that the cost of three controlled paths is
3296.2, 119.9, 6.7, respectively, and the optimal cost is 6.3.

Figure 4: The optimal path and path controlled by learned controllers. We show the 3-dimensional position p =
(x, y, z) and 3-dimensional attitude η = (ϕ, θ, ψ) in terms of Euler angles in Earth-fixed coordinates. The cost of
û0, û1, û2 controlled paths is 3296.2, 119.9, 6.7, respectively, and the optimal cost is 6.3.

In addition to the intuitive vision, we conduct experiments five times with different random seeds and provide more
statistical insights. Figure 5 shows the cumulative distribution function of the ratio between NN-controlled cost and
optimal cost on 200 test initial points. The light solid line represents the mean of the cumulative distribution for
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five experiments, while the shaded area represents the mean cost ratio ± the standard deviation. We also test the
performance of the ensembles, which use the average output of five networks. The ensemble results from three
iterations are represented by the three dark curves in the figure. Without any adaptive sampling, the performance of
model û0 is poor. In contrast, the NN model is very close to the optimal policy after two rounds of adaptive sampling.
The ensemble of networks after iteration 2 performs the best. More statistics of the ratios between the NN-controlled
costs and the optimal costs during three iterations are reported in Table 1. When the original network’s performance
is not too poor, the results after ensemble generally improve. However, when the original network performs extremely
poorly, there won’t be significant changes in the results after ensemble.

Figure 5: Cumulative distribution function of
the cost ratio (with the ideal curve being a
straight horizontal segment passing ratio = 1,
percentage=100%). Results of the IVP enhanced
method on 200 training initial points

Policy Mean 90% Median

û0 16.43 ( ± 6.16 ) 17.60 ( ± 4.80 ) 16.54 ( ± 6.92 )
û1 3.69 ( ± 1.62 ) 9.11 ( ± 5.54 ) 2.06 ( ± 0.72 )
û2 1.17 ( ± 0.09 ) 1.22 ( ± 0.09 ) 1.06 ( ± 0.02 )

û0 ensemble 20.37 46.85 15.05
û1 ensemble 1.78 2.54 1.29
û2 ensemble 1.03 1.04 1.01

Table 1: First 3 lines for û0, û1, û2 denote the policy after the
first, second, and third round of training, respectively and the
entries are averages and standard deviations of 5 experiments.
Lower 3 lines report the results from the ensemble of five net-
works trained independently.

Then we compare our method with four other methods. We also repeat every experiment five times with different
random seeds. Given that data generation is the most time-consuming part, to ensure fairness, we maintain the number
of solved open-loop problems at 1500 for all methods (except the last one). The methods under comparison are as
follows. Vanilla Sampling: Training a model on directly sampled 1500 optimal paths; Adaptive Sampling with Large
Control Norms (called AS w. large u): A method proposed by Nakamura-Zimmerer et al. (2021a), choosing initial
points with large gradient norms, equivalent to selecting initial points with large optimal control norms; Adaptive Sam-
pling with Large Total Costs (called AS w. large v): Choosing initial points whose total costs are large under the latest
NN controller; Adaptive Sampling with Large Value Gaps (called AS w. bad v): A variant of the SEAGuL algorithm
(Sample Efficient Adversarially Guided Learning (Landry et al., 2021)). The original SEAGuL algorithm proposes to
use a few gradient ascent updates to find initial points with large gaps between the learned values and optimal values.
Here we give this method more computational budget to solve more open-loop optimal control problems to find such
initial points. For the adaptive sampling methods (2-4), we use the same initial network as that in the IVP enhanced
sampling mehtod(i.e., the policy û0 after iteration 0 trained on 500 paths) and incrementally add 400, 300, and 300
paths to the training data, resulting in a final network trained on 1500 optimal paths. When adding new training paths,
we sample 2 initial points, calculate relevant indices using the latest policy, and retain the preferable one. For AS w.
large u, we compute the norms of the control variables of these two points at time 0 and select the one with larger
norms. For AS w. large v, we solve initial value problems (IVPs) to obtain the NN-controlled costs and choose the
larger one. For AS w. bad v, we solve two TPBVPs corresponding to these two points and choose the one with a
substantial difference between the NN-controlled value and the optimal value. The cumulative distribution functions
of cost ratios for these methods are depicted in Figure 6, highlighting the superior performance of our IVP enhanced
sampling method. Additional statistics are presented in Table 2. It is worthy noting that in our method, the time span
of the optimal paths to be solved becomes progressively shorter along iterations, leading to reduced computation time
compared to other methods where the time span remains constant at T for solving the open-loop problems.

We further test the performance of NN controllers obtained from different sampling methods in the presence of ob-
servation noises, considering that the sensors have errors in reality. During simulation, we add a disturbance ϵ to the
input of the network, where ϵ ∈ R13 (including the disturbance of time) is uniformly sampled from [−σ, σ]13. We test
σ = 0.01, 0.05, 0.1 and the numerical results are shown in Figure 7. We also test the performance of the open-loop
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Figure 6: Cumulative distribution function
of the cost ratio across different sampling
methods.

Methods Mean 90% Median

IVP enhanced sampling 1.17 ( ± 0.09 ) 1.22 ( ± 0.09 ) 1.06 ( ± 0.02 )
AS w. bad v 1.45 ( ± 0.18 ) 1.93 ( ± 0.33 ) 1.24 ( ± 0.12 )
AS w. large v 1.94 ( ± 0.09 ) 2.97 ( ± 0.38 ) 1.46 ( ± 0.08 )
AS w. large u 1.75 ( ± 0.33 ) 2.39 ( ± 0.67 ) 1.44 ( ± 0.23 )
Vanilla sampling 2.15 ( ± 0.96 ) 3.18 ( ± 1.71 ) 1.89 ( ± 0.78 )

Table 2: Statistical results of different sampling methods.

optimal controller under perturbation where a disturbance ϵ̂ ∈ R is added to the input time. Figure 7 shows that when
disturbance exists, closed-loop controllers are more reliable than the open-loop controller and the one trained by the
IVP enhanced sampling method performs best among all the methods.

Figure 7: Cumulative distribution function of the cost ratio between NN controlled value and the optimal value under
disturbance.

Finally we consider the impact of different choices of temporal grid points in Algorithm 1. We test 4 experiments
and repeat 5 times using the same random seeds. The results listed in Table 3 show that our algorithm is robust to the
choice of temporal grid points.

Temporal grid points (T = 16)
iter 4 8 10 12 14

2 1.36 (± 0.08)
3 3.69 (± 1.62) 1.17 (± 0.09)
4 10.86 (± 2.27) 1.72 (± 0.49) 1.17 (± 0.07)
6 14.39 (± 1.85) 12.14 (± 5.64) 6.30 (± 2.67) 1.73 (± 0.46) 1.22 (± 0.04)

Table 3: Average cost ratio on 200 test points of every model. The outcomes were consistent after the initial itera-
tion(16.43 (± 6.16)), and thus, we have excluded them from the table. This uniformity arises from utilizing the same
five random seeds for repeating the experiments. The first line indicates that we performed 2 iterations, and the cor-
responding temporal grid points for adaptive sampling are 0 < 14 < 16. After iteration 0, the average ratio of policy
cost over optimal cost is 16.43 and after iteration 1, it decreases to 1.36. The second line shows the same experiment
in Figure 5.
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7 The Optimal Reaching Problem of a 7-DoF Manipulator

Figure 8: An illustration of the reaching problem of the manipulator. The solid manipulator demonstrates its initial
position. We label the end effectors of the five instances of robots by “1,2,3,4,5” to indicator the position of the robot
at different times t1 = 0.0, t2 = 0.2, t3 = 0.4, t4 = 0.6, t5 = 0.8.

In this section, we consider the optimal reaching problem on a 7-DoF torque-controlled manipulator, the KUKA LWR
iiwa R820 14 (Kuka; Bischoff et al., 2010). We can write down the dynamics of the manipulator as,

ẋ = f(x,u) = (v,a(x,u)),

where u ∈ R7 is the control torque, x = (q,v) ∈ R14, q ∈ R7 is the joint angles, v = q̇ ∈ R7 is the joint velocities,
q̈ = a(x,u) ∈ R7 is the acceleration of joint angles. The acceleration a is given by the (non-linear) forward dynamics

M(q)a + C(q, q̇)q̇ + g(q) = u.

Here M(q) is the generalized inertia matrix, C(q, q̇)q̇ represents the centrifugal forces and Coriolis forces, and g(q)
is the generalized gravity. Our goal is to find the optimal torque u ∈ U ⊂ R7 that drives the manipulator from
x0 to x1 in T = 0.8 seconds and minimizes a quadratic type cost. See Figure 8 for an illustration of the task. In
the experiments, we take x0 = (q0,0),x1 = (q1,0) with q0 = [1.68, 1.25, 2.44,−1.27,−0.98, 1.12,−1.36]T and
q1 = [2.77, 0.58, 1.54,−1.70,−2.17, 0.08,−2.58]T. The initial positions q are sampled uniformly and independently
in a 7-dimensional cube centered at q0 with side length 0.02. Initial velocities v are set to zero. The running cost and
terminal cost are

L(x,u) = a(x,u)TQaa(x,u) + (u − u1)TQu(u − u1), M(x) = (x − x1)TQf (x − x1),

where u1 is the torque to balance gravity at state x1, i.e. a(x1,u1) = 0. Under this setting, (x1,u1) is an equilibrium
of the system, i.e. a1 = a(x1,u1) = 0 and f(x1,u1) = (v1,a1) = 0. We takeQa = 0.005I7, Qu = 0.025I7, Qf =
25000I14 where we use large weights Qf to ensure the reaching goal is approximately achieved.

To obtain training data, we solve the open-loop control problem use differential dynamic programming (Jacobson &
Mayne, 1970) implemented in the Crocoddy library (Mastalli et al., 2020). In the simulation and open-loop solver,
we take time step ∆t = 0.001 and use the semi-implicit Euler discretization. The dataset is then created from the
(discrete) optimal trajectories warm-started by the initial guess. Each trajectory has T/∆t = 800 data points that are
pairs of 15-dimensional input states including time and 7-dimensional output controls.
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The backbone network for this example is the QRNet (Nakamura-Zimmerer et al., 2020; 2021b). QRNet exploits
the solution corresponding to the LQR problem at equilibrium and thus improves the network performance around
the equilibrium (Hu et al., 2023). The usage of a different network structure in this example also demonstrates the
genericness/versatility of the IVP enhanced sampling method. Suppose we have the linear quadratic regulator (LQR)
uLQR for the problem with linearized dynamics and quadratized costs at (x1,u1), the QRNet can be formulated as

uQR(t,x) = σ(uLQR(t,x) + uNN(t,x; θ) − uNN(T,x1)),

where uNN(t,x; θ) is any neural network with trainable parameters θ, and σ is a saturating function that satisfies
σ(u1) = u1, σu(u1) = I7. The σ used in this example is defined coordinate-wisely as

σ(u) = umin + umax − umin

1 + c1 exp[−c2(u− u1)] ,

where c1 = (umax − u1)/(u1 − umin), c2 = (umax − umin)/[(umax − u1)(u1 − umin)] with umin, umax being minimum
and maximum values for u. Here u, umin = −150 and umax = 150 are the corresponding values at each coordinate of
u,umin,umax, respectively.

To get the LQR, we expand the dynamics linearly as

f(x,u) ≈ fx(x1,u1)(x − x1) + fu(x1,u1)(u − u1),

and the term related to acceleration in the running cost quadratically as

a(x,u)TQaa(x,u) ≈ La(x,u)TQaLa(x,u)
=(x − x1)TaT

xQaax(x − x1) + (u − u1)TaT
uQaau(u − u1) + 2(x − x1)TaT

xQaau(u − u1),

where La = ax(x1,u1)(x − x1) + au(x1,u1)(u − u1), and we exploit a(x1,u1) = 0 and f(x1,u1) = 0. The
derivatives boil down to ax and au which can be analytically computed in the Pinocchio library (Carpentier et al.,
2015–2021; 2019; Carpentier & Mansard, 2018). In the experiment, we solve the LQR by the implementation in the
Drake library (Tedrake & the Drake Development Team, 2019).

All the QRNets uQR are trained by minimizing a mean square error (3) over the training dataset with the Adam
optimizer (Kingma & Ba, 2015) with learning rate 0.001, batch size 256 and epochs 2000. uNN is a fully-connected
network with 6 hidden layers; each layer has 128 neurons. The first three layers use the tanh function as activation
while the last three layers use ELU (Clevert et al., 2016). Network and training are implemented in PyTorch (Paszke
et al., 2019). During iterations, all networks are trained from scratch, i.e. a new network with random weights instead
of inheriting weights from the previous iteration. After each epoch of training, we compute the loss on the validation
dataset. The network with the least validation loss is then used for data generation in the next iteration or as the final
policy (at the last iteration).

We evaluate networks trained in six different ways: four using Algorithm 1 with different temporal grid points (AS1–
AS4), and two using the vanilla sampling method with 300 (Vanilla300) and 900 (Vanilla900) trajectories separately.
AS1–AS4 are trained with an initial training data of 100 trajectories and undergo three iterations (K = 3), i.e., each of
them requires solving the open-loop solution 300 times in total for generating training data. The difference of the four
networks lies in that they use different temporal grids (t1 and t2) for enhanced sampling.

Each experiment has been independently run five times. We again plot the cumulative distribution functions of cost
ratios (clipped at 2.0) between the NN-controlled cost and optimal cost in Figure 9 (left: mean ± standard deviation
and ensemble of AS4 in different iterations; middle: average of final networks trained by different schemes). We find
that adding more data in the vanilla sampling method has very limited effects on improvement while the IVP enhanced
sampling greatly improves the performance. Furthermore, such improvement is again robust to different choices of
temporal grid points (AS1–AS4).

We additionally test the performance of the network trained by our adaptive sampling method in the presence of
measurement errors. At each simulation timestep, the network’s input states are corrupted by a noise uniformly
sampled from [−σ, σ]14 for σ = 10−5, 10−4, 10−3. See Figure 9 (right) for the results on the best model trained from
AS1–AS4. The NN controller performs well at σ = 10−4, and there are more than 60% of cases in which our controller
achieves a ratio less than 2.0 at σ = 10−3.
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Training a neural network on an NVIDIA 3070 Ti GPU requires approximately 7769 seconds. Moreover, the time
required for sampling decreases as the time grids approach the terminal time. For instance, when employing a single
process with an Intel 12700KF CPU, it takes roughly 76 seconds to sample 100 optimal trajectories at a time grid of
0.16, while it takes about 35 seconds to sample 100 optimal trajectories at a time grid of 0.64. These reported sampling
times include solving both the IVPs from 0 to ti and open-loop optimal control problems on [ti, T ]. Note that we use
the previously optimal solution to warm up the new open-loop optimal control problems.

Figure 9: Cumulative distribution functions of cost ratios (with the ideal curve being a straight horizontal segment
passing ratio = 1, percentage=100%) under different iterations when training AS4 (left), different training schemes
(middle) and different intensities of measurement noises (right).

We compare the ratio of policy cost over the optimal cost, see Table 4 for the mean ratio over all 1200 trajectories of
the test dataset. The ratio has been clipped at 2.0 for each trajectory. The results demonstrate that the IVP enhanced
sampling method has great improvement over the vanilla supervised-learning-based method. It also shows the IVP
enhanced sampling is not sensible to the choices of the temporal grid points. Besides, we also try augmenting the
dataset with newly collected data instead of replacing them, as detailed in Section 9. Through the comparison between
AS3 and AS3* in Table 4, we find that the alternative approach does not bring further improvement.

time grid iter 0 iter 1 iter 2

Vanilla300 1.92 (± 0.06)
Vanilla900 1.89 (± 0.09)

AS1 0.16 - 0.48 - 0.8 1.81 (± 0.16) 1.29 (± 0.21) 1.09 (± 0.08)
AS2 0.16 - 0.56 - 0.8 1.94 (± 0.07) 1.34 (± 0.17) 1.15 (± 0.14)
AS3 0.16 - 0.64 - 0.8 1.92 (± 0.08) 1.37 (± 0.21) 1.07 (± 0.11)

AS3* 0.16 - 0.64 - 0.8 1.96 (± 0.05) 1.40 (± 0.17) 1.24 (± 0.28)
AS4 0.16 - 0.72 - 0.8 1.96 (± 0.03) 1.29 (± 0.18) 1.13 (± 0.10)

Table 4: The mean ratio of policy costs / optimal costs of the optimal reaching problem of the manipulator. The ratio
has been clipped at 2.0 for each test trajectory. The vanilla300/900 correspond to networks trained on 300/900 optimal
trajectories, respectively. The choices of temporal grid points for adaptive sampling in the remaining rows can be
inferred by the location of columns. For example, AS1 has temporal grid points 0 < 0.16 < 0.48 < 0.8. AS3* has the
same temporal grid points as AS3 except that it augments the dataset directly instead of replacing them, as discussed
in Section 9.

8 Comparison with DAGGER

In this section, we give a comprehensive comparison between DAGGER (Dataset Aggregation) (Ross et al., 2011)
and the IVP enhanced sampling, in terms of concepts, theoretical results, and numerical results. When referring to
DAGGER, we mostly mean the single iteration version of DAGGER (i.e., augmenting dataset once) unless otherwise
stated explicitly.

Concept. Both DAGGER and IVP enhanced sampling methods solve IVPs using the policy from the previous iter-
ation to generate time-state pairs as new initial time-state pairs and call the open-loop solver to label the trajectories
starting from these pairs. Their main differences are as follows. In the i-th iteration, the IVP enhanced sampling
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method only solves the IVPs till the i-th time grid and uses the time and the visited states at the i-th time grid as the
initial time-state pairs to collect new open-loop optimal data. In contrast, in each iteration, the DAGGER method needs
to solve until the penultimate temporal grid tK−1, collect the states on all the time grids 0 < t1 < · · · < tK−1 < T ,
and use all the collected time-state pairs as the initial time-state pair to generate new open-loop optimal data. In the
IVP enhanced sampling method, the later times are only visited by networks trained from later iterations. Hopefully,
networks from later iterations perform better and generate relevant time-state pairs at later time grids. In contrast,
each network from the DAGGER method acts on the dynamical system until the final grid. For stiff dynamics that
accumulate errors fast, the time-state pairs at later time grids generated by a network from earlier iterations can deviate
much from what the optimal policy will visit. These data might then deteriorate the performance instead, as supported
by the numerical results below.

Computation cost. With the same time grids (say 0 = t0 < t1 · · · < tK = T ), we argue that the efforts of training
the IVP enhanced sampling method and single iteration DAGGER are approximately the same since the cost for data
labeling and training are approximately the same, respectively.

First, in terms of the computation cost of data labeling, the IVP enhanced sampling method requires labelingK dataset
of M trajectories. The single iteration DAGGER labels the same amounts of data. Though DAGGER requires fewer
efforts in solving the IVPs as the IVP enhanced sampling method always solves IVPs from t = 0. However, for
many problems, the time spent in solving IVPs is negligible compared to that in solving the open-loop optimal control
problems. Specifically, in our first numerical example of optimal landing, it takes about 2.5 hours to do the BVP
computation in total while it only takes 7 minutes to do IVP integration in total. In the second numerical example
of the reaching problem, to solve 100 trajectories, it takes 308 seconds to solve the open-loop solution through DDP
while it only takes 3 seconds to do IVP integration. Therefore, the cost for data labeling is approximately the same.

Second, in terms of training time, let us assume that the initial dataset contains M trajectories and each trajectory
contributes N time-state-action tuples. The IVP enhanced sampling method needs to train K networks; each network
is trained on an enhanced dataset with M trajectories. Then, there are in total MKN time-state-action tuples visited
in the IVP enhanced sampling method (same data is counted repeatedly when training different networks, the same
below). DAGGER trains two networks, one with M trajectories and the other with MK trajectories. The former
dataset contains MN time-state-action tuples while the latter one contains approximately

M(T − t0
T

+ T − t1
T

+ · · · + T − tK−1

T
)N = M(K − 1

T
(t0 + t1 + · · · + tK−1))N

time-state-action tuples. Then, for time grids t0 = 0 < 10 < 14 < 16 = T (e.g. the landing problem of a quadrotor
below), DAGGER visits approximately 16.67% fewer data than the IVP enhanced sampling method; for time grids
t0 = 0 < 0.16 < 0.64 < 0.8 = T and t0 = 0 < 0.16 < 0.48 < 0.8 = T (e.g. the reaching problem of the manipulator
below), DAGGER visits the same amounts of data as and approximately 6.67% more than the IVP enhanced sampling
method, respectively; Therefore, with the same number of epochs in training each network, the training efforts do not
differ much in the two methods.

In the following, we compare the IVP enhanced sampling method with DAGGER. We will see that, for the LQR
example in Section 5 and Appendix A, the IVP enhanced sampling method surpasses DAGGER both theoretically and
numerically, especially for large T . For the landing and reaching problem studied previously , both methods perform
similarly well. However, in more difficult settings of both problems, the IVP enhanced sampling method outperforms
DAGGER.

Results on the LQR example. We first investigate the performance of DAGGER on the LQR example. With a
slight abuse of notation, we will use x̂i

j(t) and ûi
j(t) to denote the open-loop optimal paths sampled for training, x̃i

j to
denote the initial states used to generate the training trajectories, ud(t, x) to denote the closed-loop controller learned
by DAGGER, and xd(t), ud(t) to denote the IVP solution generated by the closed-loop controller ud.

In DAGGER, we again choose K = T and the temporal grid points ti = i for 0 ≤ i ≤ K. We first sample N initial
points {x̃0

j}N
j=1 from the normal standard distribution and then generated N approximated optimal paths starting at

t0 = 0:

û0
j (t) = − T

T 2 + 1 x̃
0
j + ϵZ0

j , x̂
0
j (t) = T (T − t) + 1

T 2 + 1 x̃j + ϵtZ0
j ,
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where {Z0
j }N

j=1 are i.i.d. normal random variables and independent with initial states whose mean is m and variance
is σ2. We then train the closed-loop controller u0 by solving the following least square problems:

min
θ

∫ T

0

N∑
j=1

|û0
j (t) − u0(t, x̂0

j (t))|2dt.

Then, we use u0 to solve the IVPs on the whole time horizon [0, T ] with initial states {x̃0
j}:

ẋ0
j (t) = u0(t, x0

j (t)), x0
j (0) = x̃0

j , 1 ≤ j ≤ N, (6)

and collect {x̃i
j}N

j=1 as x̃i
j := x0

j (i) for i = 1, 2, . . . , T−1. At each time step ti = i, we then computeN approximated
optimal paths starting from {x̃i

j}N
j=1:

ûi
j(t) = − T

T (T − i) + 1 x̃
i
j + ϵZi

j , x̂
i
j(t) = T (T − t) + 1

T (T − i) + 1 x̃
i
j + (t− i)ϵZi

j , t ∈ [i, T ], (7)

where {Zi
j}1≤i≤T −1 are i.i.d. normal random variables and independent with {x̃0

j}N
j=1 and {Zj}N

j=1 whose mean ism
and variance is σ2. Finally, we collect the optimal paths {(ûi

j , x̂
i
j)}0≤i≤T −1,1≤j≤N to train the closed-loop controller

ud by solving the following least square problems:

min
θ

∫ i+1

i

i∑
k=0

N∑
j=1

|ûk
j (t) − uθ(t, x̂k

j (t))|2dt (8)

for k = 0, 1, . . . , T−1. The final cost achieved via DAGGER, as detailed in the theorem below, exhibits a performance
difference with the optimal that increases as T increases. This stands in sharp contrast to the horizon-independent
performance difference assured by the IVP enhanced sampling method (Theorem 1), thereby underscoring the latter’s
superiority. The proof of the theorem is presented in Appendix A.

Theorem 2. Under Model 1 (4), define IVP generated by ud:

ẋd(t) = ud(t) = ud(t, xd(t)), xd(t) = x̃init, 0 ≤ t ≤ T

and the total cost:

Jd = 1
T

∫ T

0
|ud(t)|2dt+ |xd(T )|2.

If x̃init is a fixed point, then

EJd − Jo ≥ (T
2m2

4 + Tσ2

3N )ϵ2.

We then numerically compare the performance of DAGGER with the vanilla method and the IVP enhanced sampling
method on Model 2 (5). In these experiments, we again set ϵ = 0.1, m = 0.1 and σ2 = 1. We present the paths
generated by the optimal controller and the controllers learned by the vanilla method, the IVP enhanced sampling
method, and DAGGER in Figure 10 (left). Figure 10 (middle) compares the performance of these three methods on
different time horizons T . We also test DAGGER with multiple iterations in Figure 10 (right). Here we set total time
T = 30. The experiment shows that the performance of the learned controller does not improve with more iterations.
The detailed settings are identical to the numerical experiments in Appendix A.

Results on the landing problem. Following the same settings as in Section 6, we train a policy by DAGGER with
additional sampling at time t = 10 and 14. The results are summarized in Table 5. It shows that DAGGER performs
closely to the IVP enhanced sampling method. However, if we decrease the number of trajectories in the initial
dataset from 500 to 300 to train controllers using these two methods, we observe more decreases in performance in
the DAGGER method, which implies that DAGGER is more sensitive to the data amount. The main reason is that
DAGGER demands enough data at the beginning to have a good initial controller to explore the state over the whole
time interval. However, in complicated control problems, we do not have such privilege and indeed require adaptive
sampling to improve the controller.

16



Under review as submission to TMLR

Figure 10: Numerical results on learning Model 2 (5) with DAGGER.

# of iterations result

AS 3 1.092
DAGGER 2 1.069

AS-300 3 1.287
DAGGER-300 2 1.405

Table 5: Average cost ratio on 200 test points of controllers trained by the IVP enhanced sampling method and
DAGGER. All models are with time grids 0 < 10 < 14 < 16. Models with the suffix 300 are those trained on the
initial dataset with 300 trajectories, whose cost ratios are clipped at 10.0 for each test trajectory.

Results on the reaching problem. For the problem detailed in Section 7, by additionally sampling at time 0.16 and
0.64 in one iteration, the DAGGER algorithm achieves a policy cost / optimal cost ratio of 1.049 on the test dataset,
which is close to that achieved by the IVP enhanced sampling method.

We then increase the difficulty of the control problem by increasing the moving distance. Following the configurations
in Section 7, we change the center of the initial position to q0 = [1.60, 1.30, 2.70,−0.85,−1.90, 0.95,−1.60]T and
the terminal position to q1 = [2.75, 0.60, 2.00,−1.55,−2.15, 0.00,−2.60]T. Besides, as the DAGGER will generate
states in a wider range, we modify umin, umax in QRNet to umin = −2000, umax = 2000 in order to avoid saturation.
We also increase the size of the initial dataset from 100 trajectories to 200 trajectories. Each network is trained with
1500 epochs. The other settings are the same as that in Section 7.

Each method has been run 5 times independently, and we report their average and best performance. The results are
summarized in Table 6 and Figure 11. As we can see, the IVP enhanced sampling method is capable of finding a
closed-loop controller with an average ratio between policy cost and optimal cost achieving 1.0155. However, the
DAGGER algorithm cannot yield such a satisfactory result.

In DAGGER1, we apply the DAGGER method with time grids 0 < 0.16 < 0.48 < 0.8, an earlier final grid compared
to DAGGER2 which has time grids 0 < 0.16 < 0.64 < 0.8. We see an average improvement from 1.8528 to 1.6327.
DAGGER1 performs similarly to the network trained at the second iteration of AS, which implies that the extra data
sampled at t = 0.48 does not help much. Furthermore, we conduct an additional iteration of the DAGGER method,
which requires solving the open-loop problem to get 400 more trajectories and extra training of the network with
1000 trajectories in total. It performs worse, which also confirms the arguments we made at the beginning that the
uncarefully collected data may deteriorate the performance.

9 Conclusion and Future Work

In this work, we propose the IVP enhanced sampling method to overcome the distribution mismatch problem in the
supervised-learning-based approaches for the closed-loop optimal control problem. Both theoretical and numerical
results show that the IVP enhanced sampling method significantly improves the performance of the learned NN con-
troller and outperforms other adaptive sampling methods. There are a few directions worth exploring in future work.
In the IVP enhanced sampling method, one choice we need to make is the temporal grid points for adaptive sampling.
We recommend that at each iteration, one can compute the distance between the training data and data reached by
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Figure 11: Cumulative distribution functions of average cost ratio over 5 independent experiments (left) and the cost
ratio of the best controller among 5 independent experiments (right) under the proposed method and DAGGER for the
optimal reaching problem with a larger moving distance.

Temporal grid points (T = 0.8)
# of iterations 0.16 0.48 0.64

AS 3 1.6592 (1.5417) 1.3610 (1.0155)
DAGGER1 2 1.6327 (1.4004)
DAGGER2 2 1.8528 (1.6364)
DAGGER3 3 1.9293 (1.7478)

Table 6: The mean ratio between policy costs and optimal costs of the reaching problem with a larger moving distance.
In each cell, the first number is averaged over 5 independent experiments and the number in parenthesis is the average
ratio achieved by the best controller among 5 independent experiments. The ratio has been clipped at 2.0 for each
test trajectory. Both AS and DAGGER2 have temporal grid points 0 < 0.16 < 0.64 < 0.8. DAGGER3 repeats
DAGGER2 for one more DAGGER iteration.

the NN controller at different times (see Figure 3 for an example) and choose the time at which the distance starts
to increase quickly as the temporal grid for adaptive sampling. We observe that the IVP enhanced sampling method
performs well using this strategy. It will be ideal to make this process more systematic. Another direction is to design
more effective approaches utilizing the training data. In Algorithm 1 (lines 8–9), at each iteration, we replace parts
of the training data with the newly collected data, and hence some optimal labels are thrown away, which are costly
to obtain. An alternative choice is to augment data directly, i.e., setting Si = Ŝi

⋃
Si−1 in line 9. Numerically, we

observe that this choice gives similar performance to the version used in Algorithm 1, which suggests that so far the
dropped data provides little value for training. But it is still possible to find smarter ways to utilize them to improve
performance. We also need to evaluate the IVP enhanced sampling method for problems with other features like
state/control constraints. Furthermore, the IVP enhanced sampling method can be straightforwardly applied to learn-
ing general dynamics from multiple trajectories as the controlled system under the optimal policy can be viewed as a
special dynamical system. It is of interest to investigate its performance in such general settings. Finally, theoretical
analysis beyond the LQR setting is also an interesting and important problem.
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A Detailed Analysis of the LQR Example

In this section, we give the detailed settings for the comparison in Section 5 and the detailed statement and proof of
Theorems 1, 2. Through this section, all symbols having a hat are open-loop optimal paths sampled for training, e.g.
ûj , x̂j , û

i
j , x̂

i
j . Let x̃ denote a single state instead of a state trajectory. The clean symbol x without hat or tilde is

the IVP solution generated by specific controllers which are specified in the subscript; e.g. xo, xv, xa are trajectories
generated by uo, uv, ua which are optimal, vanilla, and IVP enhanced controllers, respectively. The positive integer
j in the subscript always denotes the index of the optimal path. Symbols with superscript i are related to the i-th
iteration of the IVP enhanced sampling method.

For the vanilla method, we first randomly sampleNT initial states {x̃j}NT
j=1 from a standard normal distribution where

N is a positive integer (recalling T is a positive integer). Then NT approximated optimal paths are collected starting
at t0 = 0:

ûj(t) = − T

T 2 + 1 x̃j + ϵZj , x̂j(t) = T (T − t) + 1
T 2 + 1 x̃j + ϵtZj , (9)

where {Zj}NT
j=1 are i.i.d. normal random variables with mean m and variance σ2, and independent of initial states.

Finally, the parameters θ are learned by solving the following least square problems:

min
θ

∫ T

0

NT∑
j=1

|ûj(t) − uθ(t, x̂j(t))|2dt. (10)

Optimizing θt independently for each t, we have

θt = arg min
b

NT∑
j=1

|ûj(t) + T

T (T − t) + 1 x̂j(t) − b|2 or θt = arg min
(a,b)

NT∑
j=1

|ûj(t) − ax̂j(t) − b|2

for the first and second models, respectively. We will use uv to denote the closed-loop controller determined in this
way.

For the IVP enhanced sampling method, we choose K = T and the temporal grid points ti = i for 0 ≤ i ≤ K. We
first sample N initial points {x̃0

j}N
j=1 from the normal standard distribution, denote the parameters optimized at i-th

iteration as θi and initialize θ−1 = 0. At the i-th iteration (0 ≤ i ≤ T − 1), we use uθi−1 to solve the IVPs on the time
horizon [0, i]

ẋi
j(t) = uθi−1(t, xi

j(t)), xi
j(0) = x̃0

j , 1 ≤ j ≤ N, (11)

and collect {x̃i
j}N

j=1 as x̃i
j := xi

j(i). Here we omit the controller subscript a for simplicity, i.e. xi
j = xi

a,j . We then
compute N approximated optimal paths starting from {x̃i

j}N
j=1 at ti = i:

ûi
j(t) = − T

T (T − i) + 1 x̃
i
j + ϵZi

j , x̂
i
j(t) = T (T − t) + 1

T (T − i) + 1 x̃
i
j + (t− i)ϵZi

j , t ∈ [i, T ] (12)
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where {Zi
j}0≤i≤T −1,1≤j≤N are i.i.d. normal random variables with mean m and variance σ2, and independent of

{x̃0
j}N

j=1. Note that ûi
j and x̂i

j are only defined in t ∈ [i, T ] (for i ≥ 1), we then fill their values in interval [0, i) with
values from previous iteration,

ûi
j(t) = ûi−1

j (t), x̂i
j(t) = x̂i−1

j (t), t ∈ [0, i). (13)

Finally, we solve the least square problems to determine θi:

min
θ

∫ T

0

N∑
j=1

|ûi
j(t) − uθ(t, x̂i

j(t))|2dt. (14)

We will use ua to denote the closed-loop controller uθT −1 , the closed-loop controller generated in the (T − 1)-th
iteration by the IVP enhanced sampling method. The theorem below gives the performance of uv and ua when using
Model 1 (4).

Theorem 1’. Under Model 1 (4), define the IVPs generated by uo = u∗, uv and ua as follows:
ẋo(t) = uo(t) = uo(t, xo(t)), xo(0) = x̃init, 0 ≤ t ≤ T,

ẋv(t) = uv(t) = uv(t, xv(t)), xv(0) = x̃init, 0 ≤ t ≤ T,

ẋa(t) = ua(t) = ua(t, xa(t)), xa(0) = x̃init, 0 ≤ t ≤ T.

1. If x̃init is a random variable following a standard normal distribution, which is independent of the initial points
{x̃j}NT

j=1 /{x̃0
j}N

j=1 and noises {Zj}NT
j=1/ {Zi

j}0≤i≤T −1,1≤j≤N in the training process, the state variables
x̂j(t) in the training data and xv(t) in the IVP from the vanilla method follow normal distributions and
satisfy:

Ex̂j(t) = Exv(t), |E|x̂j(t)|2 − E|xv(t)|2| = σ2(1 − 1
NT

)ϵ2t2. (15)

On the other hand, the state variables x̂T −1
j in the training data and xa(t) in the IVP from the IVP enhanced

sampling method also follow and satisfy:

Ex̂T −1
j (t) = Exa(t), |E|x̂T −1

j (t)|2 − E|xa(t)|2| = σ2ϵ2(t− i)2(1 − 1
N

) ≤ σ2ϵ2. (16)

2. If x̃init is a fixed initial point, define the total cost

Jo = 1
T

∫ T

0
|uo(t)|2dt+ |xo(T )|2,

Jv = 1
T

∫ T

0
|uv(t)|2dt+ |xv(T )|2,

Ja = 1
T

∫ T

0
|ua(t)|2dt+ |xa(T )|2.

Then,

EJv − Jo = (T 2 + 1)(m2 + σ2

NT
)ϵ2, (17)

EJa − Jo ≤ 3(m2 + σ2

N
)ϵ2. (18)

Proof. We first give the closed-form expressions of uv and ua using Model 1 (4). Recalling ûj(t) and x̂j(t) given in
equation (9), we have

ûj(t) = − T

T (T − t) + 1 x̂j(t) + T 2 + 1
T (T − t) + 1ϵZj , 1 ≤ j ≤ NT.
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Therefore, recalling uv is learned through the least square problem (10), we have

uv(t, x) = − T

T (T − t) + 1x+ T 2 + 1
T (T − t) + 1ϵZ̄v, (19)

where

Z̄v = 1
NT

NT∑
j=1

Zj .

To compute ua, recalling equations (12) and (13), when 0 ≤ i ≤ T − 1, 1 ≤ j ≤ N and t ∈ [i, i+ 1), we have

ûT −1
j (t) = ûi

j(t) = − T

T (T − i) + 1 x̃
i
j + ϵZi

j ,

x̂T −1
j (t) = x̂i

j(t) = T (T − t) + 1
T (T − i) + 1 x̃

i
j + (t− i)ϵZi

j . (20)

Therefore,

ûT −1
j (t) = − T

T (T − t) + 1 x̂
T −1
j (t) + T (T − i) + 1

T (T − t) + 1ϵZ
i
j .

Hence, recalling ua is learned through the least square problem (14), we have, when t ∈ [i, i+ 1)

ua(t, x) = − T

T (T − t) + 1x+ T (T − i) + 1
T (T − t) + 1ϵZ̄

i
a, (21)

where

Z̄i
a = 1

N

N∑
j=1

Zi
j , 0 ≤ i ≤ T − 1.

Equation (21) also holds when i = T − 1 and t = T .

We then compute the starting points {x̃i
j}0≤i≤T −1,1≤j≤N in the IVP enhanced sampling method. By equation (13),

we know that when 1 ≤ i ≤ i′ ≤ T − 1 and 0 ≤ t < ti, θi
t = θi′

t . Together with equation (11), we know that when
0 ≤ i ≤ T − 2, uθi(t, x) = uθT −1(t, x) = ua(t, x) for t ∈ [i, i+ 1), and xi+1

j (t) ≡ xi
j(t) for t ∈ [0, i], which implies

xi+1
j (i) = xi

j(i) = x̃i
j . Therefore, for 1 ≤ j ≤ N , when 0 ≤ i ≤ T − 2, we have
ẋi+1

j (t) = uθi(t, xi+1
j (t)) = ua(t, xi+1

j (t))

= − T

T (T − t) + 1x
i+1
j (t) + T (T − i) + 1

T (T − t) + 1ϵZ̄
i
a, t ∈ [i, i+ 1],

xi+1
j (i) = x̃i

j .

Solving the above ODE, we get the solution

xi+1
j (t) = T (T − t) + 1

T (T − i) + 1 x̃
i
j + (t− i)ϵZ̄i

a, t ∈ [i, i+ 1].

Hence, by definition, for 0 ≤ i ≤ T − 2,

x̃i+1
j = xi+1

j (i+ 1) = T (T − i− 1) + 1
T (T − i) + 1 x̃i

j + ϵZ̄i
a.

Utilizing the above recursive relationship, we obtain, for 0 ≤ i ≤ T − 11,

x̃i
j = T (T − i) + 1

T 2 + 1 x̃0
j +

i−1∑
k=0

T (T − i) + 1
T (T − k − 1) + 1ϵZ̄

k
a . (22)

1In this section, we take by convention that summation
∑n

k=m
ck = 0 if m > n.
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Now we are ready to prove the main results of the Theorem. First, for equation (15), using the control (19), we have

ẋv(t) = − T

T (T − t) + 1xv(t) + T 2 + 1
T (T − t) + 1ϵZ̄v, xv(0) = x̃init.

Solving this ODE gives

xv(t) = T (T − t) + 1
T 2 + 1 x̃init + ϵtZ̄v. (23)

Combining the last equation with the fact that

x̂j(t) = T (T − t) + 1
T 2 + 1 x̃j + ϵtZj ,

x̃j , x̃init and {Zj}NT
j=1 are independent normal random variables and

x̃j , x̃init ∼ N (0, 1), Zj ∼ N (m,σ2),

we know that x̂j(t) and xv(t) are normal random variables with

Ex̂j(t) = Exv(t), |E|x̂j(t)|2 − E|xv(t)|2| = σ2(1 − 1
NT

)ϵ2t2.

Next, we prove the equation (16). for 0 ≤ i ≤ T − 1 and t ∈ [i, i+ 1), using the control (21), we have

ẋa(t) = − T

T (T − t) + 1xa(t) + T (T − i) + 1
T (T − t) + 1ϵZ̄

i
a.

Solving the above ODE with the initial condition xa(0) = x̃init, we can get the solution

xa(t) = T (T − t) + 1
T 2 + 1 x̃init +

i−1∑
k=0

T (T − t) + 1
T (T − k − 1) + 1ϵZ̄

k
a + (t− i)ϵZ̄i

a, (24)

when 0 ≤ i ≤ T − 1 and t ∈ [i, i+ 1). The above equation also holds when i = T − 1 and t = T .

On the other hand, combining equations (20) and (22), we know that when 0 ≤ i ≤ T − 1 and t ∈ [i, i + 1) or
i = T − 1 and t = T ,

x̂T −1
j (t) = T (T − t) + 1

T (T − i) + 1 x̃
i
j + (t− i)ϵZi

j

= T (T − t) + 1
T 2 + 1 x̃0

j +
i−1∑
k=0

T (T − t) + 1
T (T − k − 1) + 1ϵZ̄

k
a + (t− i)ϵZi

j .

The above equation also holds when i = T − 1 and t = T .

Combining the last equation with equation (24) and the fact that x̃0
j ,x̃init and {Zi

j}0≤i≤T −1,1≤j≤N are independent
normal random variables and

x̃0
j , x̃init ∼ N (0, 1), Zi

j ∼ N (m,σ2),

we know that x̂T −1
j (t) and xa(t) are normal random variables with

Ex̂T −1
j (t) = Exa(t), |E|x̂T −1

j (t)|2 − E|xa(t)|2| = σ2ϵ2(t− i)2(1 − 1
N

) ≤ σ2ϵ2.

We then prove equations (17) and (18). First, with the optimal solution

uo(t) = − T

T 2 + 1 x̃init, xo(T ) = 1
T 2 + 1 x̃init,

24
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we have

Jo = 1
T

∫ T

0

∣∣∣∣ T

T 2 + 1 x̃init

∣∣∣∣2
dt+

∣∣∣∣ 1
T 2 + 1 x̃init

∣∣∣∣2
= 1
T 2 + 1 |x̃init|2.

Recalling equation (23) and plugging (23) into (19), we know that

xv(T ) = 1
T 2 + 1 x̃init + ϵT Z̄v,

uv(t) = − T

T 2 + 1 x̃init + ϵZ̄v.

Hence,

Jv = ϵ2|Z̄v|2 − 2T
T 2 + 1 x̃initϵZ̄v + ϵ2T 2|Z̄v|2 + 2T

T 2 + 1 x̃initϵZ̄v + 1
T 2 + 1 |x̃init|2,

which gives

EJv − Jo = (T 2 + 1)(m2 + σ2

NT
)ϵ2.

On the other hand, recalling equation (24) and plugging (24) into (21), we know that

xa(T ) = 1
T 2 + 1 x̃init +

T −1∑
k=0

1
T (T − k − 1) + 1ϵZ̄

k
a ,

ua(t) = − T

T 2 + 1 x̃init −
i−1∑
k=0

T

T (T − k − 1) + 1ϵZ̄
k
a + ϵZ̄i

a, 0 ≤ i ≤ T − 1, t ∈ [i, i+ 1).

To compute the difference between Ja and Jo, we first notice that

EJa − Jo =
[

1
T

∫ T

0
Var(ua(t))dt+ Var(xa(T ))

]
+

[
1
T

∫ T

0
|Eua(t)|2dt+ |Exa(T )|2 − Jo

]
:= I1 + I2.

By the independence of {Z̄i
a}T −1

i=0 , we know that

I1 = σ2ϵ2

NT

T −1∑
i=0

i−1∑
k=0

T 2

[T (T − k − 1) + 1]2 + σ2ϵ2

N
+

T −1∑
k=0

1
[T (T − k − 1) + 1]2

σ2ϵ2

N

= σ2ϵ2

N

1 +
T −1∑
i=0

i−1∑
k=0

T

[T (T − k − 1) + 1]2 +
T −1∑
k=0

1
[T (T − k − 1) + 1]2


= σ2ϵ2

N

1 +
T −2∑
k=0

T −1∑
i=k+1

T

[T (T − k − 1) + 1]2 +
T −1∑
k=0

1
[T (T − k − 1) + 1]2


= σ2ϵ2

N

1 +
T −1∑
k=0

T (T − k − 1) + 1
[T (T − k − 1) + 1]2


= σ2ϵ2

N

1 +
T −1∑
k=0

1
Tk + 1


≤ 3σ2ϵ2

N
.
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Meanwhile, noticing that

Exa(T ) = 1
T 2 + 1 x̃init +

T −1∑
k=0

1
T (T − k − 1) + 1ϵm,

Eua(t) = − T

T 2 + 1 x̃init −
i−1∑
k=0

T

T (T − k − 1) + 1ϵm+ ϵm,

it is straightforward to compute that

I2 = 2ϵmx̃init

T 2 + 1 I3 + ϵ2m2(I4 + 1),

where

I3 =
T −1∑
k=0

1
T (T − k − 1) + 1 +

T −1∑
i=0

i−1∑
k=0

T

T (T − k − 1) + 1 − T

=
T −1∑
k=0

1
T (T − k − 1) + 1 +

T −1∑
k=0

T −1∑
i=k+1

T

T (T − k − 1) + 1 − T

=
T −1∑
k=0

T (T − k − 1) + 1
T (T − k − 1) + 1 − T = 0,

and

I4 = (
T −1∑
k=0

1
T (T − k − 1) + 1)2 + T

T −1∑
i=0

(
i−1∑
k=0

1
T (T − k − 1) + 1)2 −

T −1∑
i=0

i−1∑
k=0

2
T (T − k − 1) + 1

=
T −1∑
k=0

1 + T (T − k − 1)
[1 + T (T − k − 1)]2 + 2

T −1∑
i=0

i−1∑
k=0

T (T − i− 1) + 1
[T (T − k − 1) + 1][T (T − i− 1) + 1]

− 2
T −1∑
i=0

i−1∑
k=0

1
T (T − k − 1) + 1

=
T −1∑
k=0

1
1 + T (T − k − 1) =

T −1∑
k=0

1
Tk + 1 ≤ 2.

Therefore,

EJa − Jo = I1 + 2ϵmx̃init

T 2 + 1 I3 + ϵ2m2(I4 + 1) ≤ 3(m2 + σ2

N
)ϵ2.

Next we restate Theorem 2 estimating the cost achieved by DAGGER and give its proof.

Theorem 2. Under Model 1 (4), define IVP generated by ud:

ẋd(t) = ud(t) = ud(t, xd(t)), xd(t) = x̃init, 0 ≤ t ≤ T (25)

and the total cost:

Jd = 1
T

∫ T

0
|ud(t)|2dt+ |xd(T )|2.

If x̃init is a fixed point, then

EJd − Jo ≥ (T
2m2

4 + Tσ2

3N )ϵ2.

26



Under review as submission to TMLR

Proof. With the same approach of computing uv in (19), we have

u0(t, x) = − T

T (T − t) + 1x+ T 2 + 1
T (T − t) + 1ϵZ̄

0
d ,

where

Z̄0
d = 1

N

N∑
j=1

Z0
j .

Recalling the definition of x0
j in equation (6), we have

x0
j (t) = T (T − t) + 1

T 2 + 1 x̃0
j + ϵtZ̄0

d .

Hence, for 0 ≤ i ≤ T − 1, we have

x̃i
j = x0

j (i) = T (T − i) + 1
T 2 + 1 x̃0

j + ϵiZ̄0
d .

Plugging the last equation into equation (7), we have that for t ∈ [i, T ]

ûi
j(t) = − T

T 2 + 1 x̃
0
j − ϵ

T i

T (T − i) + 1 Z̄
0
d + ϵZi

j ,

x̂i
j(t) = T (T − t) + 1

T 2 + 1 x̃0
j + ϵ

iT (T − t) + i

T (T − i) + 1 Z̄
0
d + (t− i)ϵZi

j .

Therefore,

ûi
j(t) = − T

T (T − t) + 1 x̂
i
j(t) + T (T − i) + 1

T (T − t) + 1ϵZ
i
j .

We can then compute the least square problem (8) to obtain that for 0 ≤ i ≤ T − 1 and t ∈ [i, i+ 1), we have

ud(t, x) = − T

T (T − t) + 1x+ 1
i+ 1

i∑
k=0

T (T − k) + 1
T (T − t) + 1 ϵZ̄

k
d ,

where

Z̄i
d = 1

N

N∑
j=1

Zi
j ,

for 0 ≤ i ≤ T − 1. We can then solve the ODE (25), we have that when 0 ≤ i ≤ T − 1 and t ∈ [i, i+ 1)

xd(t) = T (T − t) + 1
T 2 + 1 x̃init +

i−1∑
k=0

F (t)
F (k + 1)F (k)

1
k + 1

k∑
l=0

ϵF (l)Z̄l
d + t− i

(i+ 1)F (i)

i∑
k=0

F (k)ϵZ̄k
d ,

where F (t) = T (T − t) + 1. Therefore, when 0 ≤ i ≤ T − 1 and t ∈ [i, i+ 1),

ud(t) = − T

T 2 + 1 x̃init −
i−1∑
k=0

T

(k + 1)F (k)F (k + 1)

k∑
l=0

ϵF (l)Z̄l
d + 1

(i+ 1)F (i)

i∑
k=0

F (k)ϵZ̄k
d .

Define

ei = −
i−1∑
k=0

T

(k + 1)F (k)F (k + 1)

k∑
l=0

ϵF (l)Z̄l
d + 1

(i+ 1)F (i)

i∑
k=0

F (k)ϵZ̄k
d , 0 ≤ i ≤ T − 1

27
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then

Jd = 1
T

T −1∑
i=0

| − T

T 2 + 1 x̃init + ei|2 + |x̃init − T 2

T 2 + 1 x̃init +
T −1∑
i=0

ei|2

= T 2|xinit|2

(T 2 + 1)2 −
T −1∑
i=0

2x̃initei

T 2 + 1 + 1
T

T −1∑
i=0

|ei|2 + |x̃init|2

(T 2 + 1)2 +
T −1∑
i=0

2eix̃init

T 2 + 1 + |
T −1∑
i=0

ei|2

= |x̃init|2

T 2 + 1 + 1
T

T −1∑
i=0

|ei|2 + |
T −1∑
i=0

ei|2.

Therefore

EJd − Jo ≥ E|
T −1∑
i=0

ei|2 = (E
T −1∑
i=0

ei)2 + Var(
T −1∑
i=0

ei). (26)

We can then compute that

T −1∑
i=0

ei = −
T −1∑
i=0

i−1∑
k=0

k∑
l=0

ϵTF (l)Z̄l
d

(k + 1)F (k)F (k + 1) +
T −1∑
i=0

i∑
k=0

F (k)ϵZ̄k
d

(i+ 1)F (i)

=
T −1∑
i=0

i∑
k=0

F (k)ϵZ̄k
d

(i+ 1)F (i) −
T −1∑
k=0

k∑
l=0

T −1∑
i=k+1

ϵTF (l)Z̄l
d

(k + 1)F (k)F (k + 1)

=
T −1∑
i=0

i∑
k=0

F (k)ϵZ̄k
d

(i+ 1)F (i) −
T −1∑
i=0

i∑
k=0

ϵT (T − i− 1)F (k)Z̄k
d

(i+ 1)F (i)F (i+ 1)

=
T −1∑
i=0

i∑
k=0

F (k)ϵZ̄k
d

(i+ 1)F (i)F (i+ 1) .

Therefore,

E
T −1∑
i=0

ei = ϵm

T −1∑
i=0

i∑
k=0

F (k)
(i+ 1)F (i)F (i+ 1) (27)

= ϵm

T −1∑
i=0

(T 2 + 1)(i+ 1) − Ti(i+ 1)/2
(i+ 1)F (i)F (i+ 1)

= ϵm

T −1∑
i=0

T 2 + 1 − Ti/2
[T (T − i) + 1][T (T − i− 1) + 1]

≥ ϵm
T 2 + T + 2

2T

T −1∑
i=0

[ 1
T (T − i− 1) + 1 − 1

T (T − i) + 1]

= ϵm
T 2 + T + 2

2T (1 − 1
T 2 + 1) ≥ ϵmT

2 .

On the other hand, noticing that

T −1∑
i=0

ei =
T −1∑
k=0

T −1∑
i=k

F (k)ϵZ̄k
d

(i+ 1)F (i)F (i+ 1) ,

28
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we have

Var(
T −1∑
i=0

ei) = ϵ2σ2

N

T −1∑
k=0

F 2(k)(
T −1∑
i=k

1
(i+ 1)F (i)F (i+ 1))2 (28)

≥ ϵ2σ2

NT 4

T −1∑
k=0

[T (T − k) + 1]2(
T −1∑
i=k

1
T (T − i− 1) + 1 − 1

T (T − i) + 1)2

= ϵ2σ2

NT 4

T −1∑
k=0

[T (T − k) + 1]2[1 − 1
T (T − k) + 1]2

= ϵ2σ2

NT 2

T −1∑
k=0

(T −K)2 = ϵ2σ2

NT 2
T (T + 1)(2T + 1)

6 ≥ ϵ2σ2T

3N .

Combining equations (26), (27) and (28), we can conclude our result.

B Full Dynamics of Quadrotor

In this section, we introduce the full dynamics of quadrotor (Bouabdallah et al., 2004; Madani & Benallegue, 2006;
Mahony et al., 2012) that are considered in Section 6. The state variable of a quadrotor is x = (pT,vT

b ,η
T,wT

b )T ∈
R12 where p = (x, y, z) ∈ R3 is the position of quadrotor in Earth-fixed coordinates, vb ∈ R3 is the velocity in
body-fixed coordinates, η = (ϕ, θ, ψ) ∈ R3 (roll, pitch, yaw) is the attitude in terms of Euler angles in Earth-fixed
coordinates, and wb ∈ R3 is the angular velocity in body-fixed coordinates. Control u = (s, τx, τy, τz)T ∈ R4 is
composed of total thrust s and body torques (τx, τy, τz) from the four rotors. Then we can model the quadrotor’s
dynamics as 

ṗ = RT(η)vb,

v̇b = −wb × vb − R(η)g + 1
mAu,

η̇ = K(η)wb,

ẇb = −J−1wb × Jwb + J−1Bu,

with matrix A and B defined as

A =

0 0 0 0
0 0 0 0
1 0 0 0

 , B =

0 1 0 0
0 0 1 0
0 0 0 1

 .
The constant mass m and inertia matrix J = diag(Jx, Jy, Jz) are the parameters of the quadrotor, where Jx, Jy ,
and Jz are the moments of inertia of the quadrotor in the x-axis, y-axis, and z-axis, respectively. We set m = 2kg
and Jx = Jy = 1

2Jz = 1.2416kg · m2 which are the same system parameters as in (Madani & Benallegue, 2006).
The constants g = (0, 0, g)T denote the gravity vector where g = 9.81m/s2 is the acceleration of gravity on Earth.
The direction cosine matrix R(η) ∈ SO(3) represents the transformation from the Earth-fixed coordinates to the
body-fixed coordinates:

R(η) =

 cos θ cosψ cos θ sinψ − sin θ
sin θ cosψ sinϕ− sinψ cosϕ sin θ sinψ sinϕ+ cosψ cosϕ cos θ sinϕ
sin θ cosψ cosϕ+ sinψ sinϕ sin θ sinψ cosϕ− cosψ sinϕ cos θ cosϕ

 ,
and the attitude kinematic matrix K(η) relates the time derivative of the attitude representation with the associated
angular rate:

K(η) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

 ,
29
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Note that in practice the quadrotor is directly controlled by the individual rotor thrusts F = (F1, F2, F3, F4)T, and we
have the relation u = EF with

E =


1 1 1 1
0 l 0 −l

−l 0 l 0
c −c c −c

 ,
where l is the distance from the rotor to the UAV’s center of gravity and c is a constant that relates the rotor angular
momentum to the rotor thrust (normal force). So once we obtain the optimal control u∗, we are able to get the optimal
F ∗ immediately by the relation F ∗ = E−1u∗.

C PMP and Space Marching Method

In this section we introduce the open-loop optimal problem solver used for solving the optimal landing problem of
a quadrotor. The solver is based on Pontryagin’s minimum principle (PMP) (Pontryagin, 1987) and space-marching
method (Zang et al., 2022). The optimal landing problem is defined as

min
x,u

∫ T

0
L(x(τ),u(τ))dτ +M(x(T )),

s.t.

{
ẋ(t) = f(x(t),u(t)), t ∈ [0, T ],
x(0) = x0,

(29)

where x(t) : [0, T ] → R12 and u(t) : [0, T ] → R4 denote the state trajectory and control trajectory, respectively, and
f is the full dynamics of quadrotor introduced in Appendix B. By PMP, problem (29) can be solved through solving a
two-point boundary value problem (TPBVP). Introduce costate variable λ ∈ R12 and Hamiltonian

H(x,λ,u) = L(x,u) + λ · f(x,u).

The TPBVP is defined as {
ẋ(t) = ∂T

λH
(
x(t),λ(t),u∗(t)

)
,

λ̇(t) = −∂T
xH

(
x(t),λ(t),u∗(t)

)
.

(30)

We have the boundary conditions: {
x(0) = x0,
λ (T ) = ∇M

(
x (T )

)
,

and the optimal control u∗(t) should minimize Hamiltonian at each t :

u∗(t) = arg min
u

H(x(t),λ(t),u). (31)

We use solve_bvp function of scipy (Kierzenka & Shampine, 2001) to solve TPBVP (30)-(31) and set tolerance to
10−5, max_nodes to 5000. We note that when the initial state x0 is far from the target state xT , solving the TPBVP
directly often fails. Thus we use the space-marching method proposed in Zang et al. (2022). We uniformly select
K points in the line segment from xT to x0, and denote them as {x1

0,x
2
0, · · · ,xK

0 } according to their increasing
distances to xT (xK

0 = x0). These K TPBVPs will be solved in order and at every step we use the previous solution
as the initial guess to the current problem.
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