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Abstract

Neural Radiance Fields (NeRF) have achieved remarkable results in novel view syn-
thesis, typically using sRGB images for supervision. However, little attention has been
paid to the color space in which the network is learning the radiance field representation.
Inspired by the Bi-Illuminant Dichromatic Reflection (BIDR) model, which suggests that
a logarithmic transformation simplifies the separation of illumination and reflectance, we
hypothesize that log-RGB space enables NeRF to learn a more compact and effective
representation of scene appearance.

To test this, we captured approximately 30 videos using a GoPro camera, ensuring
linear data recovery through inverse encoding. We trained NeRF models under vari-
ous color space interpretations—linear, sRGB, GPLog, and log RGB—by converting
each network output to a common color space before rendering and loss computation,
enforcing representation learning in different color spaces. Quantitative and qualitative
evaluations demonstrate that using a log RGB color space consistently improves render-
ing quality, exhibits greater robustness across scenes, and performs particularly well in
low-light conditions while using the same bit-depth input images. Further analysis across
different network sizes and NeRF variants confirms the generalization and stability of the
log-space advantage.

1 Introduction
Neural Radiance Fields (NeRF) are a popular technique for novel view synthesis and 3D
scene representation [21]. NeRF methods use a multi-layer perceptron (MLP) to learn a
continuous representation of a scene’s volumetric structure and appearance from a set of
training images. For a single query, the input to the NeRF network is a 3D coordinate (x, y,
z) and a 2D viewing direction (θ , φ ), typically combined with a positional encoding. The
MLP then outputs a single color value (R, G, B) and a scalar volume density σ for that
specific point and direction. To render a novel high-resolution view, a volumetric renderer
will sample multiple points along each camera ray, querying the network at each point to
gather a set of colors and densities. It then integrates the values along the ray to compute a
final color for each pixel.
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There are many variations on NeRF models that have explored a wide variety of issues
that arise when trying to model the light field of a scene. With a few exceptions that have
used RAW image data (e.g. [22]), NeRF work to date has focused on either synthetic data
or data captured with consumer devices and processed for human viewing. The implied
assumption in most prior work is that the network representing the light field is learning it in
the input color space, also assumed to be the output color space, which is generally sRGB.

One reason that most NeRF work has used videos processed for human viewing is that
obtaining linear RGB videos has been challenging without high-end video cameras. While
capturing single images in RAW mode is possible with most consumer devices, capturing
RAW video has not been as simple (though it is becoming easier [1]). Recently, however,
GoPro released consumer cameras that can capture video in their GPLog encoding format,
which is a 10-bit transformation of the linear RGB data. The transformation is invertible into
linear RGB without significant loss, which enables transformations into other spaces like log
RGB and sRGB. This makes it possible to easily capture linearizable videos appropriate for
NeRF processing. While more time-consuming than capturing a scene with video, it is also
possible to linearize a large set of photos of a scene taken with any camera that can capture
RAW data. However, pose estimation can be more difficult compared to video sequences.

In this work, we explore whether the representation space in which the network learns
the radiance field impacts the training, compactness, robustness, dynamic range, and quality
of the NeRF process. For each of these characteristics, we execute a series of experiments
and compare the GPLog encoding, sRGB, linear RGB, and log RGB. In order to achieve fair
comparisons, the training data in all cases is sRGB derived from the GPLog encoded video,
and losses are computed in the sRGB color space.

To make our work replicable, we use the BiLaRF NeRF model as the basis for all of
our experiments [31]. We control the radiance field color space implicitly using two small
modifications. First, we use a hard-coded transformation from the implicit color space to
linear space between the radiance field MLP and the differentiable renderer. We then execute
an sRGB transform on the linear renderer output in order to compute losses in sRGB.

We explore compactness by evaluating the relationship between the learned space, net-
work size, network training time, and Peak Signal-to Noise Ratio (PSNR). We explore ro-
bustness by executing multiple training runs using each color space and computing statistics
on performance. We compare dynamic range by evaluating each space on a video with
controlled variation in intensity. Finally, we compare quality through PSNR for the output
images and a qualitative comparison of the depth maps learned by the network on a range of
real videos taken indoors and outdoors with both simple and complex lighting situations.

In all of these metrics we found that log RGB outperformed the other color spaces, in
many cases by a significant margin using the same base architecture and training procedure.
In order to determine the extent to which log RGB is special, we also tested similar, but not
exactly log functions. Only true log RGB demonstrated improvement over the other spaces.

Overall, our contributions are as follows: (1) we explore the impact of the internal repre-
sentation space for radiance fields, (2) we demonstrate how to control the implicit represen-
tation space of a NeRF network, (3) we show that log RGB outperforms other color spaces
on multiple metrics, (4) we show that log RGB is special; similar transforms do not show the
same benefits, and (5) we contribute a new set of NeRF videos in GPLog encoding format
along with a process for linearizing them.

The idea of learning radiance fields in a different color space seems simple. But the
impacts of this small change are profound across multiple metrics and methods of evaluation.
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2 Related and Prior Work

Novel View Synthesis (NeRFs) Novel view synthesis aims to construct scene representa-
tions capable of rendering new viewpoints from a set of images and camera poses. Early
methods relied on dense sampling and direct pixel interpolation [9] [11]. Recent deep learn-
ing approaches have shifted towards volumetric scene representations [7, 13, 34]. Neural
Radiance Fields (NeRF) [21] pioneered the use of neural volumetric scene representations
optimized through gradient descent on a rendering loss. Subsequent extensions enhanced
NeRF’s capabilities, addressing varying lighting conditions [16], incorporating depth [5, 10,
32], utilizing time-of-flight data [2], and integrating semantic segmentation [33].

A recent innovation in NeRF is the use of a 3D bilateral grid to model per-frame camera
processing such as gain or color balance changes representable using a 3x4 affine transfor-
mation of the color space [31]. The BiLaRF implementation is publicly available and we
use it as the basis for our analysis of color spaces. However, we actually turn off the 3-D
bilaterial grid used during training to avoid clipping, simplifying the model.

RawNeRF [22] has demonstrated the potential of incorporating raw HDR data into NeRF
frameworks. By training on raw linear data instead of tone-mapped sRGB images, RawNeRF
can handle high dynamic range scenes and produce HDR novel views. This approach has
shown remarkable robustness to high noise levels, effectively functioning as a multi-image
denoiser for wide-baseline static scenes. We show that using log RGB doesn’t require higher
bit depths to achieve high quality results on darker sequences.

Logarithmic RGB (log RGB) representations have been explored in various computer
vision applications due to their illumination-invariant properties. In particular, differences
in log space are ratios in linear space and are not sensitive to overall intensity. Log RGB
has been utilized for illumination-invariant feature extraction [30], material prior compu-
tation [25], and the creation of illumination-invariant color spaces [15] [6] [17]. These
techniques have proven valuable in tasks such as skin lesion detection [24] [14], color con-
stancy [29], intrinsic image decomposition [12], and shadow removal [18]. The log transfor-
mation aligns with the human eye’s logarithmic response to light [26], suggesting potential
benefits for computational models.

Recent advancements have explored the use of log RGB in deep neural networks for
classical vision tasks. Equivariant networks have been proposed to achieve invariance to
input data offsets [4], while other studies have demonstrated the effectiveness of log RGB
in providing robustness to intensity and color variations without modifying network archi-
tectures [8] [19] [20]. These findings suggest that log RGB representations can enhance the
performance and generalization capabilities of deep learning models. However, to date, this
has not been evaluated for learning radiance fields.

3 Methods and Experimental Design

3.1 Data Capture and Pre-processing

The videos were captured using a GoPro Hero 13 Black. Each video consists of a 360-
degree rotation around a specific object, recorded under varying lighting conditions. In total,
approximately 30 videos were collected for training and testing our method. Each video has
a duration of 20–30 seconds. To reverse-engineer the GoPro-log color representation, we
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referred to the official documentation on GPLog 10-bit encoding and validated our interpre-
tation using a color checker.

We used COLMAP to extract camera poses from video frames. However, for some very
dark videos, COLMAP reported a low percentage of successfully registered frames. To ad-
dress this, we converted the videos from GPLog to TrueLog color space, effectively bright-
ening the images. Among the 13 videos with initially low pose recovery rates, 3 showed
no improvement due to scenes being nearly completely dark, another 3 improved but still
failed to reach the 100% registration required by the network, and the remaining 7 videos
successfully reached full registration after applying COLMAP in the log color space.

3.2 Color Space Analysis

Much of the light from a scene captured by a camera is reflected light that is a result of the
interaction of illumination and materials. The Dichromatic Reflection Model, suitable for
many natural and human-made materials, divides this into two types of reflection: body
reflection and surface reflection [28]. The Bi-Illuminant Dichromatic Reflection Model
(BIDR) extends the Dichromatic model and separates the ambient light A from the direct
illuminant D, allowing them to be different colors, as occurs in most natural scenes (e.g.
blue skylight and yellow sunlight) [17].

The BIDR model represents the body reflection as I = RB(A+ γD), where I is the cap-
tured color, RB is the body reflectance, A is the ambient illumination, D is the direct illumi-
nant, and γ ∈ [0,1] is the fraction of the direct illuminant incident on the surface point. In
linear RGB space, the line or cylinder representing each material under varying illumination
starts at a unique point RBA, points in a unique direction defined by by RBD, and is of a
unique length, also defined by RBD. Therefore, each material requires two colors to define
it: RBA and RBD, and these colors conflate material and illumination.

In log RGB space, however, the reflectance and illumination terms separate.

log I = logRB(A+ γD) = logRB + log(A+ γD) (1)

The cylinder representing each material’s body reflection under varying illumination still
starts in a unique location. However, the illumination term remains the same across materials
lit by the same ambient/direct illumination pair. All of the body cylinders in that set point
in the same direction and are the same length. From a representational point of view, in log
RGB each material is defined by a single point RB, all materials in shadow share the offset
log(A) and the body cylinders of all materials move from shadow to lit along the vector
defined by log(A+ γD)− log(A). Therefore, it is possible to represent all body reflection
with one material color per pixel, one ambient color for the scene, and one illumination ratio
vector for the scene, almost half the information required in linear space.

In sRGB space, which is approximated by a gamma-correction with a factor of 2.2 ap-
plied to linear RGB, the body reflection across varying illumination forms a curve, and each
material requires learning a different curve of different length. As defining a curve is more
complex than defining a line, we hypothesize that sRGB space requires more information to
represent a single material under varying illumination than linear RGB.

The GoPro-log encoding is an intermediate space that is closer to linear than to sRGB
or log RGB. As such, it likely requires at least as much information as linear RGB space in
order to represent the appearance of a material under varying illumination.
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Figure 1: Modified BiLaRF NeRF architecture

3.3 Network Modifications
We use the BiLaRF code base from [31] as the base architecture for all experiments. They all
train using a batch size of 16,384, a Charbonnier loss function with significant Total Variation
regularization, and a learning rate scheduled to decay from 0.01 to 0.001 over 25,000 epochs.
As shown in Figure 1, we added three components: (A) the representation space transform,
(B) the sRGB transform, and (C) an input data transform. The representation space trans-
form converts from the implicit representation space learned by the NeRF network into linear
RGB space, which is the most appropriate space for the differentiable renderer. The sRGB
transform converts the linear RGB signal into sRGB. The input data transform modifies the
input data format (e.g. GPLog or Linear) into sRGB using the standard sRGB transforma-
tion.

We adopt four different color spaces as implicit representations within the network:
GoPro-log (GPLog), linear RGB, sRGB, and true log RGB (TrueLog). All conversions
between color spaces are performed in two steps: the source space is first transformed into
linear RGB, followed by a mapping from linear RGB to the target space. Below, we define
the forward transformations from linear RGB to each of the three non-linear spaces. The
inverse transformations are simply the analytical inverses of these mappings.

GPLog: We approximate the logarithmic encoding used by GoPro cameras with (2)

GPLog(x) = ln(x · (e−1)+1) (2)

sRGB: We approximate the sRGB transformation using a gamma correction of 2.22.

sRGB(x) = x
1

2.22 (3)

TrueLog: The TrueLog transformation is defined in (4).

f (x) = ln

(
eln(max(255x,1))−1 ·255

e−1

)
(4)

The TrueLog transform converts a linear signal in the range [0, 1] to a log signal in the
range [0, 1]. To constrain the output of this function to the range [0,1] and avoid mathemati-
cal instability, we apply the further normalization step:

TrueLog(x) =
f (x)− f (xmin)

f (xmax)− f (xmin)
(5)
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Video ID PSNRGPLog PSNRlinear PSNRsRGB PSNRTrueLog ∆ PSNR
GX010032 27.47 25.4 25.35 34.43 9.08
GX010055 34.55 34.56 34.57 39.54 4.97
GX010059 33.85 33.89 33.87 37.19 3.32
GX010108 26.11 24.11 24.83 27.55 2.72
GX010650 26.43 26.42 26.43 28.31 1.88
GX010101 29.72 29.73 29.74 30.9 1.16
GX010025 41.54 41.54 41.54 41.54 1.04
GX010090 31.08 31.06 31.08 32.09 1.01
GX010097 27.23 27.43 27.44 28.29 0.85
GX010103 28.19 28.18 28.2 28.84 0.64

Table 1: Overall PSNR results of captured videos (sampled)

where xmin =
1

255 and xmax = 1 correspond to the lower and upper bounds of the input domain.
For all of our experiments we turned off the bilarf_grid flag and set the padding

to zero to ensure the intermediate network results were in the range [0, 1] to facilitate the
representation space transformations. The bilateral grid can cause clipping to occur, losing
information and corrupting the implicit log representation of the network.

4 Experiments and Results
Overall Quality: We assess the quality of our network using PSNR, color renderings, and
depth map visualizations. To balance reconstruction quality and training efficiency, we em-
pirically found that 5000 training iterations provides consistently good results. To ensure
robustness, we ran each experiment at least five times and report the best PSNR.

The results in Table 1 are uniformly sampled from a total of 28 processed videos and
ordered by the difference PSNRTrueLog −PSNRsRGB from highest to lowest. They demon-
strate consistent improvements across diverse scenes. The most significant gain is observed
in one of the darkest recordings. As shown in the color renderings in Figure 2 and depth map
visualizations Figure 3, the TrueLog representation preserves scene details more effectively
than other color spaces under low-light conditions. Note, in particular, the reconstruction of
the objects on the table in video GX010032.

Even in cases with minimal PSNR improvement, such as video GX010103 in Figure 2,
the TrueLog renderings reveal more visual detail, particularly in the foliage, compared to
the blurrier outputs from other color spaces. The corresponding depth maps in Figure 3 col-
umn GX010103 appear largely similar across all color spaces, indicating that the perceptual
advantage of TrueLog in this case is primarily in appearance rather than geometry.

Illumination Sensitivity and Dynamic Range: To study the effect of illumination, we
recorded videos of the same scene at different times of day to simulate varying lighting
conditions (video IDs: GX010090 to GX010109). Each video was processed using all four
color spaces. If an exception occurred during training, the experiment was rerun to ensure
valid results. To quantify brightness, we computed average luminance from a randomly
sampled 25% of the frames, using the Y weighting: I = 0.299 ·R+0.587 ·G+0.114 ·B

Figure 4 plots the PSNR improvement of TrueLog over sRGB as a function of scene
brightness. We observe that TrueLog provides significant gains in extremely low or high
illumination conditions, while improvements are more modest under well-balanced lighting.
Notably, in one of the darkest scenes (GX010109), the TrueLog representation reveals much
finer details in both the RGB rendering in Figure 2 and the depth map in Figure 3 compared
to other color spaces, similar to the types of results reported by RAWNeRF.
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Color Space GX010032 GX010103 GX010109

GPLog

linear

sRGB

TrueLog

Ground Truth
Figure 2: RGB renderings and ground truth of three videos

Robustness: We conducted experiments on nine videos using four different color spaces.
For each video–color space pair, we ran the training process 10 times and report the mean,
minimum, maximum, and standard deviation of the PSNR values. Representative results of
four of the videos are summarized in Table 2, with the remainder in the supplemental.

While some color spaces exhibit instability, the TrueLog representation consistently
demonstrates equal or superior robustness across diverse videos and scenes. Notably, in
darker videos such as GX010098, GX010099, and GX010109, TrueLog yields lower stan-
dard deviations, indicating more stable performance compared to the other color spaces.

Effect of Training Iterations: We analyzed how training duration affects model perfor-
mance across color spaces by training two representative videos (GX010106 and GX010405)
using seven iteration settings: 500, 1000, 2000, 5000, 10000, 20000, and 25000. For one
video, we trained to 30000 iterations but observed negligible change (∼ 0.01 dB PSNR).

Figure 5 demonstrates distinct convergence patterns across color spaces. TrueLog out-
performs others throughout the training process, with stable improvement across iterations.
GPLog maintains relatively stable performance, but the linear and sRGB color spaces exhibit
instability in the second dataset (GX010405), with degradation after initial peaks.

Our findings suggest that TrueLog provides the optimal balance between computational
efficiency and reconstruction quality, with particularly strong performance emerging at ap-
proximately 5000 iterations. This represents an important efficiency finding, as it indicates
that high-quality results can be achieved with fewer iterations than previously assumed.

Specialness of Log: We evaluated alternative scaled logarithmic conversions across four
videos to examine the uniqueness of TrueLog. Specifically, we evaluated (6) using k =
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Color Space GX010032 GX010103 GX010109

GPLog

linear

sRGB

TrueLog

Ground Truth
Figure 3: Depth map renderings of three videos

255×100 (Log100) and k = 255×0.1 (Log01).

ScaledLog(x) =
log(kx+1)
log(k+1)

(6)

As shown in Table 3, TrueLog consistently outperforms similar logarithmic transforma-
tions with different scaling coefficients. The performance gap demonstrates that log space is
special for this task, and it does not generalize to other similar transformations.

Network Compactness Analysis: We evaluated compactness using the BiLaRF archi-
tecture by reducing MLP widths from 256 to 16 neurons (Figure 6 A). TrueLog consistently
outperformed other color spaces by 2-3 dB PSNR, demonstrating stronger scaling with in-
creased width. Grid encoder size reduction experiments from 8192 to 256) revealed that

20 40 60 80 100 120 140 160
mean image intensity

1

2

3

4

 P
SN

R

Figure 4: PSNR improvement of TrueLog over sRGB as a function of scene brightness
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Video ID Color StdDev Avg Min Max

GX010090

GPLog 0.01 31.08 31.08 31.09
linear 0.01 31.06 31.05 31.07
sRGB 0.01 31.07 31.05 31.09

TrueLog 0.02 32.09 32.06 32.12

GX010098

GPLog 4.15 24.98 13.95 26.78
linear 0.03 27.52 27.48 27.56
sRGB 0.11 27.42 27.19 27.5

TrueLog 0.04 28.31 28.25 28.38

GX010099

GPLog 0.07 25.56 25.45 25.67
linear 2.55 22.95 17.63 25.42
sRGB 4.09 22.60 11.36 24.75

TrueLog 0.04 27.87 27.83 27.94

GX010109

GPLog 0.26 26.45 25.85 26.68
linear 2.01 23.42 20.11 25.41
sRGB 2.83 21.83 16.55 25.01

TrueLog 0.03 29.07 29.03 29.13
Table 2: Consistency of training results across representation spaces

0 5000 10000 15000 20000 25000
Iterations

15

20

25

PS
NR

GPLog
linear
sRGB
TrueLog

0 5000 10000 15000 20000 25000 30000
Iterations

26

28

30
PS

NR

GPLog
linear
sRGB
TrueLog

(A) (B)
Figure 5: PSNR values across training iterations for videos (A) GX010106 & (B) GX010405.

while GPLog, linear, and sRGB maintained around 28 dB performance across all configu-
rations, TrueLog scaled more effectively, reaching optimal performance (around 31 dB) at
size 2048 (Figure 6 B) . Despite longer training times and less refined outputs compared to
BiLaRF, TrueLog consistently produced sharper, less blurry results in both Mip-NeRF [3]
and Robust-NeRF [27] (Figures 7) [23]. This result shows the potential generalization of
TrueLog representation to other NeRF implementations.

5 Discussion and Summary
Our experiments show that using a log representation space during NeRF training yields
consistent improvement over other color spaces, including linear, sRGB, and GPLog. Quan-
titatively, TrueLog improves PSNR by an average of 10% across various scenes for the same
data and network. Qualitatively, it produces sharper edges, clearer visualizations, and more

Video TrueLog Log100 Log01
GX010032 38.06 26.41 26.67
GX010099 27.83 25.27 12.23
GX010109 29.05 24.93 27.03
GX010405 31.07 27.75 27.93

Table 3: PSNR results comparing TrueLog against two scaled log conversions
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Network Width
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(A) (B)
Figure 6: Network complexity versus PSNR for video GX010405. (A) shows the impact of
changes in network width, (B) shows the impact of changes in the grid encoder size.

Mip-NeRF Robust NeRF
Figure 7: Video GX010405 trained with different NeRF approaches

accurate depth maps, particularly in challenging lighting conditions. While the BiLaRF
framework provides a strong foundation for efficient training and fast convergence, incorpo-
rating log-space representations further enhances the network’s performance and stability.

For future work, we plan to extend our investigation of log-space generalization to a
broader range of NeRF architectures and tasks. Although preliminary tests on mip-NeRF
and robust-NeRF suggest that TrueLog maintains its advantages, exploring other approaches
could provide additional insights. Additionally, being able to directly visualize the network’s
output in its native color space before sRGB conversion would be valuable for analyzing how
different representations influence learning dynamics.
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