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Abstract
Vision-language (VL) understanding tasks eval-
uate models’ comprehension of complex vi-
sual scenes through multiple-choice questions.
However, we have identified two dataset biases
that models can exploit as shortcuts to resolve
various VL tasks correctly without proper un-
derstanding. The first type of dataset bias is
Unbalanced Matching bias, where the correct
answer overlaps the question and image more
than the incorrect answers. The second type of
dataset bias is Distractor Similarity bias, where
incorrect answers are overly dissimilar to the
correct answer but significantly similar to other
incorrect answers within the same sample. To
address these dataset biases, we first propose
Adversarial Data Synthesis (ADS) to generate
synthetic training and debiased evaluation data.
We then introduce Intra-sample Counterfactual
Training (ICT) to assist models in utilizing the
synthesized training data, particularly the coun-
terfactual data, via focusing on intra-sample
differentiation. Extensive experiments demon-
strate the effectiveness of ADS and ICT in con-
sistently improving model performance across
different benchmarks, even in domain-shifted
scenarios.

1 Introduction
Visual Question Answering (VQA) is a challeng-
ing vision-language task that requires reasoning
with integrated information from visual and text
modalities (Antol et al., 2015; Zellers et al., 2019;
Lei et al., 2020; Ren et al., 2015; Lu et al.,
2021; Tapaswi et al., 2016; Schwenk et al., 2022).
VQA benchmarks (Zellers et al., 2019; Lei et al.,
2020; Tapaswi et al., 2016; Lei et al., 2018, 2019)
present complex scenarios with multiple entities
in a multiple-choice question format, where the
model selects the correct answer from multiple
long, context-dependent candidate answers.

Previous studies have examined dataset bias
in VQA benchmarks with short-phrase answers
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Figure 1: (a): Prior studies examined dataset bias in
the distribution of short-phrase answers (e.g., “white”
is often the answer when asking about color). (b): Our
work investigates the biases in VQA with long answer
choices, where the correct answer has more n-grams
overlapped with the image and question (orange and
green). Meanwhile, the incorrect answers contain more
irrelevant n-grams to the scene (blue).

(VQA-Short) (Chen et al., 2020a; Dancette et al.,
2021; Gokhale et al., 2020; Gupta et al., 2022; Niu
et al., 2021; Ramakrishnan et al., 2018). These
benchmarks typically consist of simple questions
that can be answered using one or two words, fo-
cusing primarily on visual perception. However, as
the demand for complex reasoning capabilities has
increased, VLU benchmarks incorporating rich text
annotation as contextual information have gained
popularity, leaning towards the annotation of long
answers. In this paper, we uncover dataset biases
in VQA-Long, which employs long answer for-
mats. We contend that these biases pose greater
challenges for mitigation and have a significant
impact on the training and evaluation process of
supervised models. Specifically, we identify two
prominent types of biases in VQA-Long. The first
is Unbalanced Matching (UM) bias, characterized
by an uneven distribution of n-gram matches be-



tween the answer choices and premise (i.e., image
and question). The correct answer often exhibits
a higher n-gram overlap with the question or men-
tions more objects in the image than distracting op-
tions, which frequently contain unrelated N-grams.
The second type, termed Distractor Similarity (DS)
bias, occurs when the model can identify the cor-
rect answer without considering the question and
image. This bias arises when the correct answer
distinctly differs from the distractors, which are
highly similar amongst themselves.

The two biases we have identified are also not
limited to VQA-Long; they are also present in
other VLU benchmarks, including SNLI-VE (Xie
et al., 2019) and VLEP (Lei et al., 2020). Capitaliz-
ing on these biases, we design a simple algorithm
based on heuristic rules without any training. Sur-
prisingly, it yields high-performance comparable
to supervised models: 66.29% Q2A accuracy on
VCR, a long-form VQA problem on visual com-
monsense reasoning, 69.77% accuracy on SNLI-
VE, and 48.85% on VLEP. These results raise ques-
tions about if the existing models truly comprehend
the context or rely on shortcuts to answer questions.

Different from the biases identified in VQA-
short, the dataset biases we identified in these
text-rich datasets are significantly harder to re-
move. They are affected by several reasons, cross-
modal correlations, open-ended text generation,
and heavy reliance on human artifacts during an-
notation. These biases in VQA-Long with rich
context are more likely to be text-dependent, caus-
ing models to under-utilize visual information and
potentially develop false visual dependencies.

In terms of mitigating dataset biases, prior data
synthesis approaches (Chen et al., 2020a; Dancette
et al., 2021; Gokhale et al., 2020; Gupta et al., 2022;
Niu et al., 2021; Ramakrishnan et al., 2018) have
demonstrated their effectiveness for VQA-Short;
however, they are not suitable for VQA-Long. Ad-
ditionally, some well-known methods (Chen et al.,
2020a; Liang et al., 2020) disrupt the data distribu-
tion through superficial text masking or image oc-
clusions (see Figure 2). To overcome these limita-
tions, we propose a novel Adversarial Data Synthe-
sis (ADS) method to mitigate biases in VQA-Long,
addressing the under-utilization of visual informa-
tion and incorrect visual dependency in models.
ADS generates synthetic factual and counterfac-
tual text data using ADS-T and synthesizes images
using ADS-I. Specifically, ADS-T generates long
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Figure 2: A comparison of image-text data. (a) lists the
original VCR question, answer choices, and image data.
(b) lists our synthesized factual (I+, A+) and counter-
factual (I-, A-) image-text data. (c) shows an example
of modifying a sample of VCR data using the former
solutions (Chen et al., 2020a; Liang et al., 2020).

sentence answers and distractors directly, while
ADS-I generates images that closely resemble real
images with minimal disturbance to the data.

Furthermore, previous debiasing methods di-
rectly incorporate the synthesized counterfactual
questions and images into the models’ training in-
put (Figure 2c). However, these methods are not
applicable to VQA-Long, as it requires an exact-
matched ground truth long answer and distinct dis-
tracting options for constructing a multiple-choice
question. To address this limitation, we introduce
Intra-sample Contrastive Training (ICT), which em-
ploys a loss function to promote the models’ focus
on intra-sample disparities among the synthesized
factual, and counterfactual images. This approach
guides models to learn the appropriate visual de-
pendency pertaining to the query.

Through extensive comparisons over VCR,
SNLI-VE, VLEP, and even VQA-Short datasets,
we empirically demonstrate the effectiveness of our
methods in improving model performance under
both standard evaluation and domain-shifted sce-
narios. To further assess models’ robustness against
dataset bias, we create domain-shifted evaluation
benchmarks based on VCR using ADS. These
benchmarks are validated by human annotators to
guarantee high quality. While our analysis and
experiments primarily focus on VCR, SNLI-VE,
and VLEP, it is important to note that these dataset
biases frequently appear in other VLU tasks with
rich contextual information.

In summary, our contributions are three-fold:
• We conduct the first comprehensive study on



data biases in VQA-Long, uncovering two preva-
lent biases in VLU benchmarks.
• We propose a data synthesis method (ADS)

and a training strategy (ICT) to address these biases.
ADS generates factual and counterfactual image-
text data to mitigate biases, while ICT aids models
in utilizing this synthesized data during training.
• We introduce evaluation benchmarks to eval-

uate the robustness of VL models against dataset
biases, establishing a more fair comparison for ex-
isting and future models.

2 Related Work

Biases in VL Benchmarks. Previous studies have
predominantly focused on biases in VQA-Short (Li
et al., 2018; Hudson and Manning, 2019; Lu et al.,
2021; Ren et al., 2015; Johnson et al., 2017). These
benchmarks lack sample-specific candidate options,
resulting in VL models being supervised to clas-
sify image-question pairs using shared class la-
bels consisting of short answers. In these datasets,
researchers have pointed out that models often
downplay visual information and instead focus on
learning biases in the text (Agrawal et al., 2018;
Dancette et al., 2021; Zhang et al., 2016; Manju-
natha et al., 2019). This is exemplified by mod-
els directly learning the shallow mapping between
prior question words and shared class labels in the
absence of sample-specific contextualized candi-
date options. Consequently, models develop false
visual dependency (Cao et al., 2020; Wang et al.,
2022b) as they may succeed in resolving VQA
tasks (Selvaraju et al., 2016; Chen et al., 2020a;
Gupta et al., 2022) utilizing irrelevant visual cues.

However, the biases previously examined may
not apply to VQA-Long due to its unique character-
istics, such as the absence of shared class labels, the
presence of sample-specific candidate options, and
the diverse question types. Consequently, it is chal-
lenging for models to conclude the question types
and determine the most popular answer choices
for each question type. Given its difficulty and
complex visual scenes, VQA-Long has gained pop-
ularity in recent years (Zellers et al., 2019; Tapaswi
et al., 2016; Schwenk et al., 2022; Zhu et al., 2016;
Li et al., 2020), but bias analysis in this specific
context has not been explored extensively. While
a recent study (Ye and Kovashka, 2021) briefly ad-
dressed bias issues in VCR, it only focused on the
exact matching of pronoun words. In contrast, our
research delves into a comprehensive analysis of

biases across all textual components, cross-modal
correlations in the input, and the process of gen-
erating distractors. We identify more general bias
problems and demonstrate their prevalence.
Debiasing Methods. Various approaches were pro-
posed to counter biases but only focus on VQA-
Short. They can be categorized into two directions,
training strategies and Data Synthesis (DS), and all
suffer from various constraints. For instance, train-
ing strategies like (Gupta et al., 2022; Niu et al.,
2021) and DS solutions, (Ray et al., 2019; Sel-
varaju et al., 2020; Ribeiro et al., 2019; Wang et al.,
2022d) only focus on a single modality. Debiased
training like (Wang et al., 2022b; Niu and Zhang,
2021; Zhang et al., 2021b) require constraints of
either a specific model structure or doubling the
models’ complexity. Other methods (Chen et al.,
2020a; Liang et al., 2020) apply occlusion boxes or
maskings on images or questions and thus drasti-
cally disturb data distribution, leading to nonsensi-
cal synthesized answers. Gokhale et al. (2020) tries
to improve the synthesized image and text quality
but is limited to two specific question types. Most
importantly, all of them cannot generalize to VQA-
Long. Only a few works, (Wang et al., 2022b,d; Ye
and Kovashka, 2021), are related to VQA-Long but
still fail to identify specific bias issues.

3 Bias Analysis in VQA-Long

In this section, we identify and analyze two distinct
types of biases that commonly occur in VQA-Long
and other VLU benchmarks.

3.1 Unbalanced-Matching Dataset Bias
Inspired by (Ye and Kovashka, 2021), we con-
ducted a comprehensive analysis of matching n-
grams within candidate options against the text
premise (question), t, and visual premise (image)1,
v. We calculate the percentage of samples, Cp

c (Cp
d )

as following, where correct (incorrect) answers ac

(ad) have more matched n-grams (n ≤ 3) against
the premise information p ∈ {v, t} than the other:

O(a, p) = # matched n-grams between a and p

Cp
c =

1

N

∑N
i=11{O(ac

i , pi) > maxad
i ∈Ai−ac

i
(O(ad

i , pi))},

Cp
d =

1

N

∑N
i=11{maxad

i ∈Ai−ac
i
(O(ad

i , pi)) > O(ac
i , pi)},

where for each sample i, Ai represents all the
paired candidate options for sample i, aci is the
correct answer, adi is one of the three distractors

1For matching n-grams against the visual premise, we
extract object labels from images.



(incorrect answers), and pi is the premise (either
image or question). O(a, p) is the count of matched
n-grams, and N is the total number of samples.

Our analysis reveals that the correct answer of-
ten has the highest number of matched n-grams
against the question and image among candidate
answer options. Specifically, for the Q2A task2

in VCR, Ct
c can be as high as 66.29%, which is

much higher than the percentage of distractors,
Ct
d, at 29.16%. When using image as premise,

Cv
c is 42.75% , which is also higher than Cv

d , at
40.23%. This unbalance also persists in other VLU
benchmarks. For example, Ct

c is 48.85% (higher
than Ct

d, 36.19%) in VLEP and 69.77% (higher
than Ct

d, 45.40%) in SNLI-VE. Besides containing
fewer n-gram overlaps against the premise, we ob-
served that distractors even contain more irrelevant
n-grams to the given context (Details in A.8), as in
Figure 5.

3.2 Distractor Similarity Dataset Bias

Many benchmarks (Zellers et al., 2019; Williams
et al., 2022; Lei et al., 2020; Li et al., 2020; Liu
et al., 2020) rely on automated Adversarial Match-
ing (AM) for generating distractors, aiming to min-
imize costs. AM generates distractors by reusing
answers from other questions. It selects answers
related to the given question while dissimilar to
the correct answer. However, prior works tend to
overly emphasize the dissimilarity to the correct
answer and thus irrelevance to the context using
stylistic models (Details in A.7). Additionally, a
significant issue arises from generating distractors
without considering visual information in AM (Lei
et al., 2020; Zellers et al., 2019; Li et al., 2020). Sur-
prisingly, even in manual annotation settings (Xie
et al., 2019; Do et al., 2020; Kayser et al., 2021),
annotators are tasked with generating distracting
candidates (distractors) without access to the im-
age, forcing them to imagine and create excessively
dissimilar distractors to avoid ambiguity. Addition-
ally, insufficient premise can also cause limited
diversity of generated distractors. In contrast, cor-
rect answers are consistently generated with visual
and textual information, ensuring accuracy. Con-
sequently, the dissimilarity between correct and
incorrect answers becomes exaggerated due to the
different premise information used for their gener-
ation.

2Results about QA2R and Q2AR tasks are in A.6.

4 Biases Mitigation in VQA-Long
This section introduces (1) Adversarial Data Syn-
thesis (ADS) to synthesize factual and counterfac-
tual data; (2) Intra-sample Counterfactual Training
(ICT) method to exploit the data.

4.1 Adversarial Data Synthesis

ADS has two components, ADS-Text (ADS-T) for
generating less biased answers and ADS-Image
(ADS-I) for images.

4.1.1 ADS-T
ADS-T generates synthesized options for a sample,
A+ and A−, to alleviate the dataset biases.
Multimodal Distractor Generation. To improve
distractors’ diversity and relevance to the given
context and correct answers, we incorporate visual
premise information to improve Adversarial Match-
ing (AM).

For given dataset examples, {(pi, ai)}Ki=1, pi rep-
resents the premise (visual or textual), ai denotes
the answer and K is the total number of samples.
Following AM, we utilize the first term in Eq. (1)
to measure the relevance of the candidate answer,
aj from other questions, against the premise and
the second term to measure the similarity between
ai and aj . Both St-rel and Ssim are approximated
by stylish models5. Further, for every example,
(pi, ai), we can obtain a distractor by performing
maximum-weight bipartite matching on a weight
matrix W ∈ RN×N , given by:

Wi,j = log (St-rel (pi,aj)) + λ log (1− Ssim (ai,aj)) ,
(1)

where λ is a hyperparameter. Different from previ-
ous works that only include text as the premise, we
bring in visual object regions, vki , to enrich the ref-
erence, where k ∈ [0,D] and D is the total number
of object regions extracted from the image Ii. We
further employ a pre-trained CLIP (Radford et al.,
2021) to measure the visual relevance of candidate
answers against all of the object regions and only
reserve the maximum score, max (Svrel (vi,aj)).
Thus, the first term in Eq. (1) will be substituted
by: α log (St-rel (qi,aj) + max (Sv-rel (vi,aj)))

5,
where α is a hyperparameter.

Distractor Refinement. Despite the improve-
ment of our Multimodal Distractor Generation,
distractors generated solely based on a few noisy
scores or heuristic rules still fall short of perfection.
To address this, we conducted in-house annotation
of over 100 samples to explore how humans can



further refine answer candidates from Multimodal
Distractor Generation. We established specific cri-
teria for quality distractors and hired experienced
annotators for iterative refinement (Details in A.3).

Recognizing the improved quality through hu-
man refinement, we leverage the largely pre-trained
ChatGPT (OpenAI, 2023) to mimic the human re-
finement process. With rich context and 5 human-
annotated examples as input, the model can gener-
alize for large-scale annotations5.

4.1.2 ADS-I
With UM and DS biases appearing to be dominant
in text information, existing VL models are encour-
aged to learn shortcuts in text and under-utilize
the visual information leading to false visual de-
pendency, as in Figure 6a (Cao et al., 2020; Wang
et al., 2022c; Dancette et al., 2021; Chen et al.,
2020a). To assist models in mitigating UM and
DS biases, we design ADS-I to synthesize positive
images I+ and negative images I- to assist models’
training and emphasize the correct question-related
visual dependency. We introduce ADS-I in three
components: region selection, coarse-to-fine region
removal, and finetuning region remover.

Region Selection. To generate the synthetic
factual images, denoted as I+, ADS-I identifies
and eliminates irrelevant visual regions referenced
to the question-answer pair. Conversely, relevant
image regions are removed to create I-. Following
the procedures outlined in previous work (Chen
et al., 2020a), we determine the relevance of image
regions based on exact matching and soft scoring
of the question-answer pair5.

Coarse-to-Fine Region Removal. Previous
studies (Chen et al., 2020a; Liang et al., 2020; Ye
and Kovashka, 2021) introduce occlusion boxes
or masking tokens, leading to disruptive changes
in data distribution and resulting in excessive ar-
tifacts, as illustrated in Figure 2(c). In contrast,
we propose an innovative approach that transforms
the data synthesis task into a visual inpainting task
to generate photorealistic synthesized images. To
achieve this, we leverage the SPL visual inpaint-
ing model (Zhang et al., 2021a) as the base model,
comprising two components: SPLp, pretrained on
a large generalized dataset (Zhang et al., 2021a),
and SPLf , finetuned on the specific downstream
dataset. Our objective is to implement an effective
coarse-to-refine framework utilizing both models
to remove image regions iteratively.

To create I+ by removing a selected irrelevant

object, we apply a masking technique using the
minimum circumscribed rectangles around its re-
gion. The masked image is then fed into the two
SPL models for inference. Similarly, for generat-
ing I-, we employ similar maskings over the rele-
vant regions and infer to remove the corresponding
objects. The reconstructed images from the two
SPL models can be observed in Figure 2(b). To
ensure fine-grained images and avoid superficial
artifacts as addressed in prior works (Chen et al.,
2020a; Liang et al., 2020; Gokhale et al., 2020),
we adopt a coarse-to-refine framework. After the
first stage of inpainting with SPLp, we employ a
tri-pass autoregression strategy during the infer-
ence with SPLf . The masked input is iteratively
passed through SPLf three times in an autoregres-
sive manner, with smaller maskings applied in each
subsequent pass. (c.f., Figure 3(a))

Finetuning Region Remover. When finetuning
SPLf , we first identify two kinds of visual regions:
1) regions within objects with no other objects on
top; 2) regions in the background with no objects
on top. Then, inside either kind of these regions,
we create rectangular maskings of various sizes.
During finetuning, we apply those maskings over
input images and supervise SPLf to reconstruct or
inpaint the masked regions based on their neighbor-
ing pixels and patterns (Details in A.4)).

4.2 Intra-sample Counterfactual Training
We propose ICT to enhance models’ training with
counterfactual data to facilitate models to focus on
intra-sample differentiation, which it is essential in
VQA-Long and other VLU tasks with rich context.

4.2.1 XE Training
It is common to model VQA tasks as maximizing
a probability of answer label selection condition-
ing on the given image and question, P̂ (a | I,Q).
Thence, models are often supervised to this proba-
bility distribution with cross-entropy (XE) loss:

LXE = −
∑K

i
yi log

(
σ
(
P̂ (a | I,Q)

))
, (2)

where yi is the ground truth label, and σ is the
softmax function. With XE loss, we can directly
bring I+, A+, and A− into training along with the
original data.

4.2.2 Answer-focused ICT
Unlike VQA-Short, which focuses on global inter-
sample differentiation, VQA-Long tasks empha-
size local intra-sample differentiation. The task
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focuses on mapping the given premise informa-
tion to the correct answer among sample-specific
candidate options. For instance, in VCR, models
learn the local IQ → A mapping, each (ii, qi)
pair against four specific answers, (ai1, ..., ai4); In
SNLI-VE, the mapping exists between each image
and specific candidate hypotheses. Unfortunately,
the former methods do not address situations with
sample-specific counterfactual candidate options.
To incorporate them in VQA-Long tasks, we pro-
pose to use InfoNCE (Van den Oord et al., 2018) to
measure the intra-sample contrastive loss, LA−ICT

between each (ii, qi) against (ai, ai+, ai−):

− log
exp (Φ (z,zp) /τ)

exp (Φ (z,zp) /τ) + exp (Φ (z,zn) /τ)
, (3)

where Φ measures the cosine distance, τ is a hy-
perparameter temperature, zp is the [CLS] token
feature for a positive pair, (I,Q,A) or (I,Q,A+),
and zn is for a negative pair, is (I,Q,A−).

Synthesized answer candidates can have more
balanced matched n-grams and more diverse dis-
tractor distributions, requiring a stronger model
capacity to distinguish (Figure 3(b)). Therefore,
Answer-focus ICT can encourage models to focus
on this challenging intra-sample differentiation.

4.2.3 Image-focused ICT
To be aware, the direct augmentation of counter-
factual images, I- in training through the afore-
mentioned two training losses still remains unclear,
as we cannot find the paired answer choices for
I-. Previous approaches in VQA v2 (Goyal et al.,
2017) require generating new pseudo or soft answer
labels (Chen et al., 2020a; Gokhale et al., 2020) for
I-. However, they are not feasible for VQA-Long
tasks such as VCR, which require sample-specific
sentence answer options.

We address this issue by transforming the IQ →
A mapping problem into a QA → I mapping
problem, which we further narrow to the intra-
sample pairing between each (qi, ai) pair and
(ii, ii+, ii−), similarly utilizing Eq. (3). Existing
VL models often underuse visual information, lead-
ing to poor visual explainability. By contrasting
sample-specific (ii, ii+, ii−), we highlight the sig-
nificance of relevant visual regions to the question-
answer pair. This approach, exemplified in Figure
2, promotes recognition of relevant entities, like the
“bottle”, and fosters the learning of correct visual
dependencies linked to the question-answer pair.

Finally, after combing LA−ICT and LI−ICT , the
overall objective is:

L = δ1LXE + δ2 (LA−ICT + LI−ICT ) , (4)

where δ1 and δ2 are hyperparameter weights.
5 Experiment
Base models. Since ADS-ICT is generalizable and
can be applied to various models, we evaluated it on
several backbones: UNITERL (Chen et al., 2020b),
VL-BERTL (Su et al., 2019), VILLAL (Gan et al.,
2020) and LMH (Clark et al., 2019).

Datasets. We conduct bias analysis and valida-
tion experiments over VCR (Zellers et al., 2019),
SNLI-VE (Xie et al., 2019)3. Our identified bias
problems also apply to other VLU benchmarks
with long candidate options, and our methods can
even generalize to VQA-Short datasets like VQA
v2 and VQA CP2 v2.
5.1 Bias Verification
This analysis verifies how the aforementioned two
biases affect models’ learning and to what extent
existing models can take the shortcut for advantage.

3Results over VLEP (Lei et al., 2020) are provided in the
appendix.



Models VCR SNLI-VE
Val. Fair Adv. Val Test

Heuristics-Only 66.29 48.70 43.93 69.77 69.30
VL-BERT 75.51 72.84 70.46 74.66 74.71
+Answer Masking 75.89 73.48 71.59 75.09 75.21
+Question Masking 75.67 73.14 71.10
+ADS-T 76.23 73.69 72.18 75.52 75.60
+Occlusion Box ⋆ 76.07 73.67 71.83 75.24 75.52
+ADS-I ⋆ 76.88 75.03 73.00 75.90 75.96
+CSS 75.94 73.85 71.35
+CC 76.04 74.29 71.72
+ADS-ICT 77.33 76.12 73.72 76.27 76.33
UNITER 76.72 74.99 72.48 79.02 79.19
+ADS-ICT 78.23 77.36 74.74 80.14 80.23
VILLA 78.28 76.67 74.05 79.64 79.32
+ADS-ICT 78.98 77.93 75.38 80.87 80.28

Table 1: Accuracies (%) on VCR (Q2A) and SNLI-VE
based on our re-implementation. “Val” indicates the
validation set of VCR. ⋆ indicates training with ICT to
utilize counterfactual images. The results of Heuristics-
Only are obtained by taking the best performance from
a mix of heuristic rules utilizing the two biases, e.g.,
the method always selects the option with the most
matching n-grams.

A+ A- A-ICT I+ I- I-ICT V CRStd V CRFair

75.51 72.84
✓ 75.80 73.05
✓ ✓ 76.23 73.69
✓ ✓ ✓ 76.85 74.46
✓ ✓ ✓ ✓ 76.93 75.08
✓ ✓ ✓ ✓ ✓ ✓ 77.33 76.12

Table 2: Ablation study on UNITERL. A-ICT is answer-
focused ICT, and I-ICT is image-focused ICT.

Models VQA-CP v2 test
All Y/N Num Other

LMH 52.01 72.58 31.11 46.96
+CSS 58.95 84.37 49.42 48.21
+CC 59.18 86.99 49.89 47.16
+SimpleAug 53.70 74.79 34.32 47.97
+KDDAug 59.54 86.09 54.84 46.92
+ADS-ICT 61.03 87.94 57.02 48.29

Table 3: Accuracies (%) on VQA-CP v2. Our method
can generalize to VQA-Short tasks and consistently
improves over base models. ⋆ indicates we only apply
ADS-I and I-ICT over the base model.

UM bias. We train two separate UNITERB mod-
els in VCR: a Q-A model taking only questions and
answer options as input, and an I-A model taking
images and answer options as input. We find that
the Q-A model and I-A model can achieve Q2A
validation accuracy of 67.20% and 59.28%, respec-
tively, which is much higher than random guessing.
This validates the existence of shallow mappings
inside (Q,A) or (I,A). We extract a subset of data
where Q-A and I-A models have more than 90%
confidence in predictions and find that Ct

c and Cv
c

Models VQA v2 val
All Y/N Num Other

LMH 56.34 65.05 37.63 54.68
+CSS 59.91 73.25 39.77 55.11
+CC 57.29 67.27 38.40 54.71
+SimpleAug 62.63 79.31 41.71 55.48
+KDDAug 62.09 79.26 40.11 54.85
+ADS-ICT 62.40 79.55 41.93 55.29

Table 4: Accuracies (%) on VQA v2. Our method
can generalize to VQA-Short tasks and consistently
improves over base models. ⋆ indicates we only apply
ADS-I and I-ICT over the base model.

become extremely high at 78.11% and 64.05%.
DS bias. Like the identified hypothesis-only

bias in text-only benchmarks (Belinkov et al., 2019;
Stacey et al., 2020), DS bias enables models to at-
tain the ground-truth labels without visual and ques-
tion inputs. To verify it, we train an Answer-only
model, a RoBERTaB (Liu et al., 2019) with only
candidate options (both the correct and incorrect
answers) as input in VCR, and it achieves 51.84%
Q2A accuracy (69% on SNLI-VE, and 61% on
VLEP5). This verifies that the DS bias indeed exists.
Secondly, using a common feature space4 (Reimers
and Gurevych, 2019), we realize the average intra-
sample similarity score between the correct answer
and distractors within a sample is 0.31, and the av-
erage inter-sample similarity score of every correct
answer against its 1000th ranked similar answer
candidate (a correct answer from a different ques-
tion) is 0.34. Moreover, the average intra-sample
similarity score among distractors within the same
sample is 0.36. This implies that (1) the correct
answer can be overly dissimilar to the distractors
within the same sample but much more similar to
the correct answers to other questions; (2) distrac-
tors are also overly similar to each other within the
same sample.

5.2 Debiased Evaluation

Debiased Evaluation Setting. We inference
trained I-A, Q-A, and Answer-only models over the
VCR validation set and extract samples that meet
the following criteria: 1) None of the three models
can predict correctly with confidence higher than
25% 2) The correct and incorrect answer choices
have a similar number of matched n-grams. We
obtain a subset of approximately 2.7K image-text
pairs by filtering these conditions, and we consider
this subset as a debiased evaluation set, VCRFair,
without direct data augmentation. Lastly, we also

4https://github.com/UKPLab/sentence-transformers.



apply our ADS method on top of this subset so that,
on average, for each original {Q, I,A}, we can
generate four additional types of synthesized data,
i.e., {I + /−, A + /−}. This leads us to obtain
around 11K I-Q-A pairs for a domain-shifted eval-
uation set, VCRAdv. To ensure the integrity of the
data, we hired experienced MTurkers to verify the
correctness of every synthesized data in VCRAdv

5.
Bias Mitigation. We re-analyze UM and DS

biases to verify if the dataset biases are mitigated.
From Table 5, we observe that correct answers
have a much similar frequency of obtaining match-
ing n-grams than distractors against the premise
information in VCRFar. This improved balance
becomes more noticeable when ADS is applied in
VCRAdv. Moreover, the similarity between the
correct answers and distractors has also increased,
and the distractors become more diverse.

5.3 Debiased Training

Benchmark Comparison. Results from Table 8
indicate several key observations: (1) ADS-ICT
can generalize to various VL models and consis-
tently improve performance across different eval-
uation settings; (2) The addition of ADS-ICT can
bring even much more performance improvement
on domain-shifted and debiased settings.

Other Dataset. ADS-ICT can generalize to and
improve performance over VLU tasks with long
candidate options like SNLI-VE, as in Table 8, and
even VQA-Short tasks like VQA v2, as in Table 4.

Debiased Method Comparison. Despite that
former methods lack generalization to VQA-
Long tasks, we re-implement former techniques
like masking and occlusion boxes, and methods
like (Chen et al., 2021; Liang et al., 2020)5, as in
Table 8. To ensure fairness, we even apply ADS-
ICT over VQA v2 and VQA-CP v2 for a thorough
comparison, as in Table 4. We observe ADS-ICT
delivers more significant gains over both datasets.

Ablation Study. Table 2 verifies consistent im-
provement by adding components of our method.
Notably, we find that augmenting counterfactual
text data can bring greater improvement than fac-
tual ones. This also emphasizes the importance of
distractors in VQA-Long tasks.
5.4 Visual Explainability

We quantitatively and qualitatively verify the mod-
els’ visual explainability or dependency condi-

5To save space, more details are presented in the appendix.

Ct
c Ct

d Cv
c Cv

d Simc,d Simd,d

VCRStd 66.29 29.16 42.75 40.23 0.31 0.36
VCRFair 48.70 32.05 42.36 40.01 0.32 0.34
VCRAdv 43.93 41.09 39.28 38.94 0.35 0.33

Table 5: Analysis of UM and DS biases on VCR. Simc,d

indicates the average semantic similarity between the
correct answer and three distractors within a sample and
Simd,d indicates the similarity within the distractors
only, as in Sec. 5.1.

Baseline Baseline + ADS Baseline + ADS-ICT

Q:  Why is everyone on the porch staring at person6 ?
A1: There are many people outside to watch the sky.
A2: The street is cleaning.
A3: Everyone on the  porch are surprised to see person6.
A4: Person8 and others are outside.

Person6 Person8

Person10
0.3

0.2

0.1

0.0

Figure 4: An example from VCR and the paired visual
Grad-CAM (Selvaraju et al., 2016) result from a fine-
tuned VL-BERTL (Su et al., 2019). Based on the image,
question, and correct answer, the most relevant entities
are “person6” and then everyone on the porch.

Models Recall@1 Recall@2 Recall@3
VL-BERTL 46.83 59.35 67.75
+ADS-ICT 58.92 70.68 77.62

Table 6: Comparison of recall accuracy(%) for recog-
nizing the most question-related visual objects.

tioning on ADS-ICT. As in Figure 6, the Grad-
CAM (Selvaraju et al., 2016) result indicates that
the base model ignores the most relevant entity,
“person6”. However, after adding ADS-ICT, the
model relies more on the relevant regions like “per-
son6” and “person8”. We further calculate the re-
call accuracy of the model for retrieving the most
relevant entities by comparing its attention values
against object labels5. As in Table 12, we observe
that the recall accuracy is significantly increased
with ADS-ICT5, indicating that the model’s visual
explainability (dependency) has improved.

6 Time Consumption

Our coarse-to-fine region removal method is flex-
ible and generalizable as the number of runs of
the image inpainting process can be adjusted de-
pending on the scenarios to decrease the time con-
sumption. After selecting the region to be removed,
our proposed coarse-to-fine region removal will be
conducted by two main steps: 1) Initial one-pass
full region removal/inpainting by SPLp; 2) Triple-
pass autoregression region removal/inpainting by
SPLf . The triple-pass autoregression strategy en-



Exp Index # Runs of Time Consumption (ms) Accuracy (%)

SPLp SPLf (O +M +N ) 1st Pass (O) 2nd Pass (M ) 3rd Pass (N )

1 0 0 0 0 0 101 76.07
2 1 0 0 0 0 102 76.18
3 1 1 1 0 0 2× 102 76.30
4 1 14 1 3 9 1.3× 103 76.51
5 1 21 1 4 16 2.2× 103 76.88
6 1 30 1 4 25 3.5× 103 76.87
7 1 26 1 9 16 3× 103 76.88

Table 7: Time consumption comparison among variations of our coarse-to-fine region removal method. During this
comparison study, the base model is a VL-BERTL (Su et al., 2019) running on one NVIDIA TITAN RTX GPU of 24
GB. The input image is of size 224× 224.

sures fine-grained images and avoids superficial
artifacts, as addressed in prior works. After the 1st
run of full region inpainting by SPLf , we split the
region into smaller M regions evenly and run the
inpainting process for each smaller region, respec-
tively. A similar procedure applies to the third pass
of N runs. Triple-pass autoregression is a flexible
solution, as both M and N can be set to any arbi-
trary positive integers (2 ⩽ M ⩽ N ) depending
on the situation to decrease the overhead time con-
sumption. Hence, The total runs of the inpainting
process in the tr iple-pass strategy is 1 +M +N .

Based on Table 7, we have four observations: 1)
As in Exp 1, If we do not conduct coarse-to-fine
region removal (neither of the two steps will be
applied), we essentially apply an occlusion box
over the selected region. This is the same approach
as the prior works and will cause a relatively low
downstream QA accuracy of 76.07 %; 2) Com-
paring Exp 1-3, we observe that adding the image
inpainting process by SPLp and SPLf will both
consistently improve the downstream performance;
3) Based on Exp 3-5, we can see a performance im-
provement trend as we apply more refined region
inpainting via increasing the value of M and N ; 4)
Our method is tolerant to the variations of O, M
and N and can still achieve noticeable performance
improvement even when the overall number of runs
is low as 1 with time consumption of 2 × 102ms
for one image. In practice, we found that setting M
and N to 4 and 16, respectively, generally achieves
optimal performance while maintaining reasonable
inference time consumption of 2.2×103 ms for one
sample image However, as mentioned, the triple-
pass autoregression strategy is a flexible and gen-
eral solution. Thus, O, M and N can be adjusted
according to the actual situation to decrease time
consumption and our method can still provide sim-
ilar results.

7 Conclusion

This paper analyzed dataset biases and their un-
derlying causes in VQA-Long. Our findings shed
light on how these biases can impact the evaluation
of VL models and the importance of mitigation.
We hope our work will inspire future research in
developing rigorous data annotation processes and
strategies to mitigate the influence of dataset biases.

Limitations

First of all, our proposed method, ADS-I, is de-
signed to remove pertinent parts of visual regions
to generate synthetic factual images, I+, and irrel-
evant regions to create I-. We adopted techniques
from an existing study (Chen et al., 2020) to ac-
complish this. However, some noise still persists,
which might impact the accuracy of determining
the relevant region. A promising next step might
involve enhancing the quality of the generated im-
ages by addressing these noise issues.

Besides, to ensure the high quality of our con-
structed debiased evaluation benchmarks, we opted
for manual verification, which consequently in-
creased the overall cost of our research study. We
anticipate that some cost-efficient yet reliable pre-
selection procedure could be developed to mitigate
these costs. Additionally, the manual selection pro-
cess could introduce a certain level of subjectivity
into the dataset, which needs to be considered.

Ethics Statement

ChatGPT is pre-trained on the colossal corpus
which is likely to contain potential racial and gen-
der bias. Therefore, if someone finds our work
interesting and would like to use it in a specific en-
vironment, we strongly suggest the user check the
potential bias before usage. In addition, it is hard to
control the generation of LLMs like ChatGPT. We



should be aware of the potential problems caused
by incorrect predictions.
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A Appendix

A.1 Difference between VQA-Short
(Classification) and VQA-Long (MCQ)

Visual Question Answering (VQA) (Antol et al.,
2015; Zellers et al., 2019; Lei et al., 2020) is a pop-
ular VLU task where the premise information6 is
provided, and the objective is to answer the ques-
tion correctly. It is challenging as it requires rea-
soning with the integrated information from visual

6In this paper, “premise” refers to the given context or
arguments. For text-only QA, the premise is the question. But
for VQA, it consists of both the image and the question.



A1: Person1 is unhappy about something miserable in a relationship.

 Matching  v.s.Q Matching v.s.I Not Relevant to I-Q

Correct 4 4 0

Incorrect 1 0.25 0.5

Why is person2 looking down?

bottle

dining table

A2: Person2 is drunk and looking down at the dining table
after finishing a bottle of beer.
A3: Person2 is mourning the loss of a loved one at a ritual.
A4: He is contempating at what to type down on a computer.

person1 person2
What color is the truck?

Classification
with the SHORT answer (VQA, GQA, etc.)

Mulitple-choice question
with the LONG answer (VCR, VLEP, etc.)

Static Class Label List Consisted by
Short Phrase Answers

Matching
Score

White 

Red

...

(a) (b)

Figure 5: (a): Prior studies examined dataset bias in the distribution of short-phrase answers (e.g. “white” is often
the answer when asking about color). (b): Our work investigates the biases in VQA with long answer choices,
where the correct answer has more n-grams overlapped with the image and question (as shown in BurntOrange and
ForestGreen). Meanwhile, the incorrect answers contain more irrelevant n-grams to the scene (as shown in purple).

Baseline Baseline + ADS Baseline + ADS-ICT

Q:  Why is everyone on the porch staring at person6 ?
A1: There are many people outside to watch the sky.
A2: The street is cleaning.
A3: Everyone on the  porch are surprised to see person6.
A4: Person8 and others are outside.

Person6 Person8

Person10
0.3

0.2

0.1

0.0

Figure 6: An example from VCR and the paired visual Grad-CAM (Selvaraju et al., 2016) result from a finetuned
VL-BERTL (Su et al., 2019). Based on the image, question, and correct answer, the most relevant entities are “person6”
and then everyone on the porch. With training, we expect the VL model to integrate multimodal information and
commonsense when selecting the correct answer (labeled by a green check). For instance, to answer this question,
we expect the model to focus on [person6] on the left and people in the center. However, the model fails to pick up
the correct visual clue and focuses on the irrelevant entity, the window in the background. The orange words are the
overlapping words between the correct choice and the question.



and text modalities. Most of the existing VQA
benchmarks conventionally use either of the two
settings: 1) Classification: As in the top of Figure
5, in this setting, different questions share one set of
context-free answer choices, e.g. VQA v2 (Goyal
et al., 2017), GQA (Hudson and Manning, 2019),
and OK-VQA (Marino et al., 2019), and models
are supervised for classification using the shared
answer choices as fixed class labels. Accordingly,
to generate a common answer dictionary, the an-
swer choices are limited to be “short” words or
phrases, and the questions tend to focus on visual
perception. 2) Multiple-Choice Question (MCQ):
As in the bottom of Figure 5, every question has
a unique set of context-dependent answer choices,
e.g. four sample-specific sentence-level answer
choices in VCR. Models are trained with a general-
ized objective, cross-modality matching, predicting
the degree of match between each answer choice
and the premise information. This is similar to
other VLU tasks, such as visual reasoning (Suhr
et al., 2018) and visual entailment (Xie et al., 2019).
Due to this flexibility, the questions tend to be di-
verse, highly semantic, and centering around hu-
man activities , e.g. VCR (Zellers et al., 2019),
VLEP (Lei et al., 2020), MovieQA (Tapaswi et al.,
2016), TVQA (Lei et al., 2018), and TVQA+ (Lei
et al., 2019). Accordingly, the answer choices tend
to be “long” and include rich context, and the im-
ages are more complex with multiple entities and
diverse scenarios. The second setting is analogous
to the MCQ problems humans face and, thereupon,
can more likely generalize to real-world scenarios.
Recently, the field has advanced towards generating
highly semantic and challenging VL benchmarks
mimicking real-world challenges, and the second
setting is becoming increasingly important.

Although recent VL models (Li et al., 2023,
2022; Wang et al., 2022a) can achieve good per-
formance on many above-mentioned benchmarks,
they still suffer from bias issues. Many studies have
discussed the bias issues in Classification-VQA
tasks (Chen et al., 2020a; Dancette et al., 2021;
Gokhale et al., 2020; Gupta et al., 2022; Niu et al.,
2021; Ramakrishnan et al., 2018), but none of them
investigate in the MCQ setting, with the exception
of a recent study (Ye and Kovashka, 2021). In the
classification setting, as in VQA v2, supervised
models do not actually see the answer choices at
all in the input but only the images and questions.
In other words, they are trained to classify image-

question pairs into a fixed list of class labels con-
sisting of short-word answers. Hence, they can
easily divert to capture shallow correlations focus-
ing on different question types and their mapped
label distributions for it is easier for models to learn
shallow correlations within the same modality, text.
As the analysis at the top of Figure 5, we find that
questions starting with “What color is the” will
often be classified to the label, “white” regardless
of the actual context in VQA v2 (Agrawal et al.,
2018).

However, these bias problems may not apply to
the MCQ setting. Some of the main reasons in-
clude the following: The questions are much more
diverse and difficult to be categorized into basic
types; The answer choices are not only dynamic
and context-dependent but also contain much more
information even than the questions. Thereupon,
they have to be in the input not as fixed class labels.
Yet, in this work, we argue that, in the MCQ setting,
some other bias-related problems are more likely
to form and supervised models are more vulnerable
. With more input types, i.e. (Image, Question, An-
swer), more implicit correlations in between may
likely form. On the other hand, the MCQ setting re-
quires generating long context-dependent incorrect
choices (distractors) for each sample, and this fur-
ther brings in much more complexity and artifacts.
As verified by our study, we discover that bias-
related problems in the MCQ setting are centered
around the answer choices and their relationships
against the premises. In addition, we believe it is
very important to encourage future works to focus
on analyzing the bias problems within VLU tasks
with the MCQ setting.

The former work (Ye and Kovashka, 2021)
points out that the correct answers have more exact
matching entities (mainly pronouns like “he/she,
’they’, etc.) against the questions in VCR, re-
ferred to the bottom of Figure 5 where the orange-
highlighted text represents the overlapping enti-
ties against the question. Despite how shallow
this may seem, we verified that a simple heuris-
tic rule of picking the choice with the most over-
lapping entities could deliver 66.15% Q2A accu-
racy and 63.04% QA2R accuracy on VCR. Nev-
ertheless, (Ye and Kovashka, 2021) is mainly con-
strained to resolve the explicit advantage of the
correct answers containing more exact matching
pronouns in the text modality solely (between ques-
tion and answer choices) of VCR. Therefore it does



not investigate and generalize to problems about
the correlation among general components in the
text, other cross-modal correlations between the
premise and ground-truth annotations(, e.g. the
green-underscored text at the bottom of Figure 5),
other VLU benchmarks with the MCQ setting and,
most importantly, the fundamental problems cen-
tering around the generation process of distractors.

To fix these issues, we first conduct a compre-
hensive analysis across several VLU benchmarks
i.e. VCR (Zellers et al., 2019), SNLI-VE (Xie
et al., 2019), and VLEP (Lei et al., 2020). Among
them, we identify two common but severe prob-
lems: (1) The Unbalanced Matching (UM) prob-
lem: Answer choices have an unbalanced matching
of n-grams against the premises. This includes the
problem of the correct answers containing more
matching nouns, adjectives, etc. and more n-grams
like phrases. On the other hand, distractors have
not only fewer matching n-grams but also much
more n-grams not related to the scene at all; (2)
The Answer-only Bias problem: We realize that
distractors are often generated without sufficient
visual premise as the correct answers, filtered by
simple metrics and modified by the same set of
heuristic rules, which leads to lack of diversity and
frequent usage of certain words or phrases. Con-
sequently, distractors are excessively dissimilar to
the correct answers and over-similar to other dis-
tractors within the same sample. We systematically
analyze these problems and their causes backed
with statistical evidence and further conduct experi-
ments to demonstrate their effect on models’ learn-
ing of biases. Furthermore, due to the bias-related
problems heavily centering around answer choices
and distractors also tend to reference entities or
concepts not related to the scene, we discover that
existing VL models may under-utilize visual infor-
mation and struggle to learn query-related visual
dependency, as shown in Figure. 6.

The former data synthesis approaches (Chen
et al., 2020a; Dancette et al., 2021; Gokhale et al.,
2020; Gupta et al., 2022; Niu et al., 2021; Ramakr-
ishnan et al., 2018) fail to address the bias problems
in the MCQ setting. Moreover, they either only fo-
cus on the text modality, cannot resolve problems
related to long-sentence distractors, or severely dis-
turbed the data distribution via superficial masking
on text or occlusions on images, as in the right
of Figure 2. Differently, to assist models in coun-
tering the bias problems centering around answer

choices and under-utilization of visual information
leading to incorrect visual dependencies, we pro-
pose a novel Adversarial VL Data Synthesis (ADS)
method consisting of ADS-T to generate synthetic
factual and counterfactual text data and ADS-I for
image data. ADS-T can directly assist the gen-
eration of long-sentence answers and distractors,
and ADS-I can generate synthesized images closer
to real images with minimized data distribution
via the semantic focus of the query. Addition-
ally, former debiasing methods (Chen et al., 2020a;
Dancette et al., 2021; Gokhale et al., 2020; Gupta
et al., 2022; Niu et al., 2021; Ramakrishnan et al.,
2018) directly augment the synthesized counterfac-
tual questions and images, as I− and Q− in Figure.
2, in the input for model training, as they do not
need to find explicit paired answers. However, this
does not apply to the MCQ setting because explicit
answer choices are required as the paired input data
for I− and Q−. Nonetheless, it is impossible to find
paired answer choices without additional manual
annotations, as referred to I− and Q− in Figure. 2.
In this work, we successfully resolve this challeng-
ing problem by proposing ICT strategy to utilize
the synthesized counterfactual data in the MCQ set-
ting. Lastly, with human verification, we employ
ADS to create domain-shifted evaluation bench-
marks based on VCR to test existing and future VL
models’ robustness. Although we primarily present
analysis and experiments across VCR, SNLI-VE,
and VLEP benchmarks, our identified problems
and proposed solutions can be generalized to other
VLU tasks with rich context.

A.2 Implementation Details

For object labels in VCR, we combine the provided
annotated object labels with the generated ones as
in (Anderson et al., 2018). When training SPLf

on downstream dataset, e.g. VCR(Zellers et al.,
2019), we skip visual regions whose area is smaller
than 1/64 of the whole image. In Eq. 1, λ is set to
be 1 and α would be set to be 0.4.

In training with ICT over our synthesized data,
for each (I,Q,A) pair, with ADS, each image
would result in an average of one positive and one
negative synthesized image; The original four an-
swer choices would also result in one synthesized
positive answer choice and three synthesized nega-
tive answer choices. As shown in Fig. 7, every orig-
inal (I,Q,A) sample data would result in seven
additional samples for training with classification



loss and three for contrastive loss.

A.3 Multimodal Distractor Refinement.

After obtaining more diverse candidate answers
from Multimodal Distractor Generation, we con-
ducted an in-house study of over 100 samples to
test how humans can polish those candidate an-
swers into quality distractors. We determine the
criteria of quality distractors in each sample of
VQA-Long to be: (1) Similar to the correct answer
and containing a comparable amount of matched
n-grams; (2) Relevant to the given context and not
containing irrelevant n-grams to the scene; (3) Not
false negative to cause ambiguity; (4) Having de-
scent diversity to be different from each other. With
those criteria, for each sample, we have a group of
three experienced annotators and ask each to anno-
tate three quality distractors. Following, for each
annotated sample, we ask another group of 2 expe-
rienced annotators to rate the distractors based on
the four criteria and send back the unqualified ones
to the first group to redo the annotation until they
suffice. For each sample, we provide annotators
rich references as the input information, including
(1) The original sample image, question, and an-
swer; (2) The retrieved available caption for each
image; (3) The matched n-grams between the cor-
rect answer and the premise information; (4) The
top 10 most salient extracted object labels; (5) The
top 10 ranked answer candidates by Multimodal
Distractor Generation.

With this study, we realize that quality distractor
generation is challenging and much harder than
answer generation, as it requires complex common-
sense reasoning and knowledge. Thus it is diffi-
cult to rely on one or two noisy scores or heuristic
rules as the former solutions to secure quality dis-
tractors. With these insights, we employ a largely
pre-trained ChatGpt (OpenAI, 2023) and expect it
to mimic the generation process of humans. Ac-
cordingly, we provide the input with rich refer-
ences to the model as to humans via the prompt.
We also handpicked 30 human-annotated examples
and each time randomly select 5 of them as the
examples. Thence ChatGPT has the five types of
references as the input and the three qualified dis-
tractors as the output. With sufficient multimodal
references and examples as constraints, we find this
approach effective in generating quality distractors
with the two biases mitigated and can apply for
large-scale annotations.

A.4 Coarse-to-Fine Region Removal

After determining the relevant regions in images,
following the structure of SPL (Zhang et al.,
2021a), we design a framework to remove rele-
vant and irrelevant regions to generate realistic nat-
ural images, I+/-. In this framework, we reserve
two SPLs, an SPLp pretrained on Places2 (Zhou
et al., 2017) as in (Zhang et al., 2021a) and another
SPLf finetuned on VCR. We first retrieve the seg-
mented polygons (if the entity is provided by VCR
annotation) or bounding boxes (if generated) of the
selected relevant entities. After determining the
dimensions of the maximum inscribed rectangles
within the polygons or boxes, we create correspond-
ing rectangle maskings in ratios, (0.7, 0.5, 0.3) of
the maximum dimensions. Similarly, we also cal-
culate the maximum dimensions of inscribed rect-
angles in regions that have no entity overlapped on
top at all and create maskings of different ratios
within those regions. When fine-tuning SPLf on
the VCR training set, we input images with regions
masked by one of those maskings and supervise
SPLf to reconstruct the masked region. There-
fore, essentially SPLf is trained to reconstruct the
interior of either an entity or an open background
region based on its neighboring non-masked pixels
and patterns. In order to create I+, in inferencing,
we filter to irrelevant regions, R (si) /∈ R E L and
create maskings of the minimum circumscribed
rectangles around the boxes or polygons. We then
feed images masked by those maskings into SPLs
to remove the irrelevant entities. Similarly, For
creating I-, we create similar maskings over the
relevant regions from REL to inference to remove
the relevant entities. Some examples of the recon-
structed images by SPL are shown in 7.

In order to produce fine-grained images and
avoid drastically disturbing existing image distribu-
tion and bringing obvious artifacts/biases as occlu-
sion boxes do in (Chen et al., 2020a; Liang et al.,
2020; Gokhale et al., 2020), in practice, during in-
ferencing, we apply a coarse-to-refine strategy by
first passing the masked images into SPLp that
was pretrained on a larger dataset and then feed
the reconstructed output to SPLf that was fine-
tuned more specifically to refine the reconstruction.
As inferencing in SPLf , we additionally refine
the image via a triple-grid mechanism. As in Fig.
3, for a given masked region, we evenly split it
into M blocks and N blocks respectively where
2 < M < N . In the first pass, we allow SPLf to



Figure 7: Diagram of all the combinations of (I, Q, A) pairs utilized in training. The pairs from the top block are
utilized in QA classification training. The pairs in the bottom block are used in intra-sample contrastive learning. The
orange lines indicate the overlapping/repeated pairs. In practice, we only pass those pairs once in the feedforward
operations. Ac represents the correct choices. Ai represents the incorrect choices.



reconstruct the whole masked region in one pass
and then revisit the same region with smaller mask-
ings in the following two passes. In the second
pass, we take turns to turn each of the M blocks
in order into a smaller masking, from the top left
to the bottom right, and accordingly reconstruct
each masked region to refine. Note that when we
reconstruct the first block from the top left of M
blocks, the visual regions of the rest M − 1 blocks
are not masked but in-painted with results from
the former pass as placeholders. Therefore, we cu-
mulatively inference M times to refine the whole
region in the 2nd overall pass. A similar proce-
dure is carried out for the third pass with N blocks.
This method allows the framework to maintain the
global consistency in reconstructed visual patterns
while obtaining the flexibility in refining smaller
regions.

A.5 Domain-shift and Debiased Evaluation
Benchmarks

We first adopt the formerly published evaluation
setting via changes of pronouns (Ye and Kovashka,
2021), which we refer to as VCRPronoun−Shift.
Further, we then use previously finetuned stylish
models, I-A, Q-A, and A-only models, to perform
inference on the standard VCR validation set.Using
the confidence scores of these models, we extract
samples that meet the following criteria: 1) Neither
the I-A nor Q-A model can predict correctly with
confidence higher than 50% over these samples,
2) the A-only model also cannot predict correctly
with confidence higher than 25%, and 3) the cor-
rect and incorrect answer choices have a similar
number of matched n-grams. Filtering using these
three conditions, we get a subset of approximately
2.7K image-text pairs. This adversarial filtering
mitigates the effect of UM and Answer-Only bi-
ases on this subset, and we consider it as a debiased
evaluation setting, referred to as VCRFair without
direct domain shift.

Lastly, we apply our ADS method on
top of this subset so that, on average, for
each original {Q, I, (Ac, Ad)}, we can end
up with four combinations of synthetic data,
i.e. {Q, I, (A+, A−)}, {Q, I+, (Ac, Ad)},
{Q, I, (A+, Ad)}, {Q, I, (Ac, A−)}. This leads
us to obtain around 11K I-Q-A pairs for another
domain-shift evaluation, VCRAdv. To ensure
the integrity of the data, we hired experienced
Amazon Turkers to verify the correctness of

every synthesized data in VCRAdv to avoid any
superficial errors and artifacts.

A.6 Benchmark Evaluation
Referring to Table. 8.

A.7 Problem with Lexical Similarity in
Adversarial Matching

The difficulty of generating long sentence distrac-
tors is prominently higher than short noun dis-
tractors. For facilitating it, Adversarial Matching
(Zellers et al., 2019; Williams et al., 2022; Lei et al.,
2020), where positive answers are recycled to serve
as negatives for other questions, has been recently
adopted as a popular method. It generally leverages
the difference between two language models’ pre-
dicted probabilities to represent the relevance score,
Srel (p, r) of a response r against the text premise
p and the similarity score, Ssim (c, r) between the
response r against the correct answer c. The differ-
ence between these two would be used for the final
ranking, λ (f(Srel(p, r))− α · g(Ssim(c, r))), to
ensure the selected distractors dissimilar to the cor-
rect answer but relevant to the text premise, where
λ and α are hyper-parameters and f as well as g
are fixed functions.

Despite the claimed effectiveness, profound
problems exist with this method. Insufficiency
of Scores: First of all, the two scores come from
different sources and are not normalized, thus ob-
viously causing integrity. Secondly, the scores are
not fine-grained and semantically reliable, as in
Fig. 8, for the false positives, despite the fact
they may possess critical conflicts against the text
premise, those high-quality distractors would be
eliminated. In contrast, the first false negative, para-
phrasing the original text premise, incorporates the
exact meanings but is deemed less "similar." To
avoid false negatives, in practice, the second term,
α · g(Ssim(c, r)) would be profoundly emphasized,
resulting in a specific selection window favoring
lower-ranked candidates and unavoidably eliminat-
ing high-quality distractors. Owing to the same
window’s origin, these distractors lean to share
similar traits, especially after the similar heuristic
modification with templates.

A.8 Bias Analysis
As shown in Table. 9, it is obvious that the iden-
tified two types of biases, UM and Answer-only
biases are common across benchmarks. With the
aid of ADS, we observe significant improvement



Model VCRStd VCRP−shift VCRFair VCRAdv SNLI-VE
Q2A QA2R Q2AR Q2A Val Test

Heuristics-Only 66.29 65.98 43.74 49.75 48.70 43.93 69.77 69.30
VL-BERTL 75.51 77.95 58.86 71.13 72.84 70.46 74.66 74.02
VL-BERTL + ADS-ICT 77.33 [+1.82] 79.93 [+1.98] 61.80 [+2.94] 74.26 [+3.13] 76.12 [+3.28] 73.72 [+3.26] 76.27 [+1.66] 76.33 [+2.31]
UNITERL 76.72 80.01 61.38 73.84 74.99 72.48 79.02 79.19
UNITERL + ADS-ICT 78.23 [+1.51] 82.29 [+2.27] 64.37 [+2.99] 76.81 [+2.97] 77.36 [+2.37] 74.74 [+2.26] 80.14 [+1.12] 80.23 [+1.04]
VILLAL 78.28 82.20 64.34 75.43 77.01 74.05 79.64 79.32
VILLAL + ADS-ICT 78.89 [+0.61] 82.77 [+0.57] 65.30 [+0.96] 76.80 [+1.37] 77.75 [+0.74] 75.38 [+1.33] 80.87 [+1.23] 80.28 [+0.96]

Table 8: Our comparisons against benchmark methods are based on our own re-implementation. QA accuracy
is adopted for VCR-related benchmarks over Q2A, QA2R, and Q2AR tasks. For the SNLI-VE benchmark, we
use accuracy based on classification over three labels: entailment, neutral, and contradiction. The results of
Heuristics-Only are obtained by taking the best performance from a mix of heuristic rules utilizing the two biases.
For example, the method always selects the option with the most matching n-grams

Dataset w/o ADS w/ ADS
Percentage of Highest Matching Tokens Avg. Matching Tokens Percentage of Highest Matching Tokens Avg. Matching Tokens

VCR
v.s. Question v.s. Image v.s. Question-Image v.s. Question v.s. Image v.s. Question-Image

Correct 66.29 42.75 2.02 43.93 39.28 1.95
Inoccrect 29.16 40.23 1.8 41.09 38.94 1.9

SNLI-VE
v.s. Caption v.s. Image v.s. Caption-Image v.s. Caption v.s. Image v.s. Caption-Image

Entail 69.77 57.77 4.11 57.41 52.59 3.82
Contradict-Neutral 45.4 36.16 3.23 48.93 39.72 3.63

VLEP
v.s. Subtitles

Correct 48.85 12.5 43.17 11.43
Inoccrect 36.19 11.76 39.01 11.26

Table 9: Bias Analysis over three benchmarks with ADS

Figure 8: Analysis over the lexical similarity between
hypotheses (answer choices) against an example image
from SNLI-VE.

Fashion Model Dataset w/o ADS w/ ADS

A-Only
VCR

51.84
(Q2A)

58.39
(QA2R)

46.52
(Q2A)

52.53
(QA2R)

SNLI-VE 69.36 54.22
VLEP 61.18 53.37

QA-Only VCR 67.21 69.4 61.98 63.89
SNLI-VE 76.93 68.66

IA-Only VCR 59.28 64.02 56.38 62.95

Table 10: Evaluation of fashion models over bench-
marks with ADS. A-Only stands for answer-only. QA-
Only stands for Question-Answer-Only. IA-Only stands
for Image-Answer-Only.

Dataset w/o ADS w/ ADS
# Irrelevant n-grams v.s. Premise

VCR Correct 0.18 0.18
Incorrect 1.14 0.8

SNLI-VE Entail 0.15 0.15
Contradict - neutral 1.49 0.74

VLEP Correct 0.68 0.68
Incorrect 1.03 0.75

Table 11: Analysis of irrelevant n-grams over bench-
marks with ADS

over the overlapping n-grams between the correct
answer choice and the incorrect ones against the
premise information (including both visual and text
premise information).

If we further re-train the three fashion models
across the three benchmarks as in Table. 10, the
performance of the three fashion models all drop
consistently. This further verifies the mitigation
effect of ADS over the two biases.



As in Table 11, we conduct a preliminary exper-
iment by first hiring three experienced annotators
and randomly sampling 100 samples for each of
the three benchmarks. For each sample with the vi-
sual and text premise (image and question in VCR)
and the answer choices, we extract all the possi-
ble n-grams from the answer choices. Following
this, we ask each annotator to judge how many
of the n-grams are relevant to the visual and text
premise information. The overall averaged result
is presented in Table 11.

Distractors Have More Irrelevant n-grams. In
addition to lower n-gram overlap with the premise,
we observed that distractors also contain more n-
grams that are irrelevant to the given context. As
shown in Figure 11, some n-grams, like “ritual”
and “computer”, have no clear association with
the image or question. Our analysis, employing
both human and pre-trained models, reveals that,
on average, distractors possess 1.14 n-grams that
are irrelevant to the premise, which is significantly
higher than the 0.18 n-grams for the correct answer

Distractors with Limited Diversity. Since dis-
tractors tend to be generated without visual premise
information in AM (Lei et al., 2020; Zellers et al.,
2019; Li et al., 2020) but only the text, there is
limited information as the reference for selecting
diverse distractors. This becomes more severe in
cases where the text premise has scarce informa-
tione.g., the questions with short stems in VCR
like “Why is person2 looking down?” in Figure
5 or “What is going to happen next?”. Besides,
in AM, the top selected candidate answers would
then be modified based on heuristic rules, evolving
token-level replacement, and these invariant rules
can further lead to over-similar production. On the
other hand, without being given the image in the
manual annotation in (Xie et al., 2019; Do et al.,
2020; Kayser et al., 2021), annotators are forced
to come up with imaginary content to add to the
distractors. The diversity solely relies on the anno-
tators’ discipline and imagination abilities with no
constraints, and this, unfortunately, leads to lazy
annotations with distractors containing repeated
and irrelevant n-grams.

A.9 Visual Explainability

Figure 6 visualizes the Grad-CAM (Selvaraju et al.,
2016) results of a base model. The Grad-CAM
result of the baseline model indicates that it does
not pay attention to the most relevant entity, “per-

son6”. After adding ADS, the model appears to rely
more on the regions of “person6” and “person8”.
If we further apply ICT, the model demonstrates a
more obvious (confident) visual dependency over
the most relevant entities. To quantify the improve-
ment in the model’s visual explainability and its
ability to capture correct visual dependency, we
calculate the recall accuracy of base models for rec-
ognizing the most question-related visual objects.
We retrieve the grounded entities in the questions
provided in VCR as the ground-truth labels, extract
the attention values of base models over each vi-
sual token in the last hidden layer’s output, and
compare the attention values against the labels to
calculate the recall accuracy. As shown in Table
12, we observe that the recall accuracy is signifi-
cantly increased with ADS-ICT5, indicating that
the model’s visual explainability has improved, and
it has learned the correct visual dependency.

Model Recall@1 Recall@2 Recall@3
VL-BERTL 46.83 59.35 67.75
VL-BERTL + ADS-ICT 58.92 70.68 77.62
UNITERL 49.93 66.86 71.55
UNITERL + ADS-ICT 60.90 75.93 80.47

Table 12: Visual explainability. We calculate the recall
of models by retrieving the most relevant entities in
response to a given image, question, and answer pair.


