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Abstract. In medical imaging, accurate and efficient segmentation is
crucial for diagnostics, treatment planning, and monitoring disease pro-
gression. Traditional methods, while capable of providing reliable re-
sults, often require substantial computational resources, which may not
be feasible on devices with limited capabilities such as standard CPUs
and limited RAM. To address this challenge, we present an optimized
universal segmentation framework that leverages a lightweight image en-
coder RepViT-M0.6, distilled from Swin-T. Our comprehensive analysis
of the online validation set shows that our method surpasses the baseline
LiteMedSAM model. We achieve a Dice Similarity Coefficient (DSC) of
84.68% and a Normalized Surface Dice (NSD) of 85.28%. Furthermore,
the method achieves a more than threefold increase in inference speed,
making it viable for real-time applications on devices with limited com-
putational power. This demonstrates that our adaptation significantly
enhances processing speed and resource efficiency without sacrificing ac-
curacy.

Keywords: Segment Anything · Lightweight Model · Medical Imaging
Segmentation · Computational Efficiency.

1 Introduction

Segmentation plays a crucial role in medical imaging analysis, involving the iden-
tification and delineation of regions of interest (ROI) within medical images. The
precision of segmentation is crucial for numerous clinical tasks, including disease
diagnosis, treatment planning, and monitoring disease progression [13, 50]. Tra-
ditionally, manual segmentation has been regarded as the standard for precisely
defining anatomical and pathological regions. However, this method is highly
time and labor-consuming and demands significant expertise. To overcome these



2 Songxiao Yang et al.

limitations, automatic segmentation techniques have been introduced. These ad-
vanced methods greatly reduce the required time and effort, improve consistency,
and enable the efficient analysis of large-scale medical datasets [63].

Recently, deep-learning techniques for image segmentation have shown promis-
ing results by training networks to understand intricate image features and pro-
duce accurate segmentations [7]. However, many existing models designed for
medical image segmentation face a significant limitation that they are tailored
for specific tasks and may not perform well when applied to new tasks or different
datasets [47]. This task-specific nature poses a challenge to the widespread use
of these models in clinical settings. Conversely, recent advancements in natural
image segmentation have introduced foundation models, like the segment any-
thing (SAM) [34] and segment everything everywhere all at once [72], showing
exceptional adaptability and performance across a range of segmentation tasks.
Moreover, the development of MedSAM [42] aims to address the challenge of
limited generalizability in medical image segmentation by facilitating universal
segmentation across diverse medical imaging tasks.

Despite their strong performance, these methods often utilize large-scale im-
age encoders, leading to high computational demands that limit their practi-
cality. To address this issue and speed up inference while conserving resources,
various approaches have been explored to replace the image encoder of SAM
with lightweight models. For instance, MobileSAM [69] distills the knowledge of
SAM’s ViT-H model into a compact vision transformer, while EdgeSAM [71] em-
ploys a CNN-based model trained to mimic ViT-H, incorporating a meticulous
distillation strategy with the prompt encoder and mask decoder. Additionally,
EfficientSAM [66] leverages the MAE pretraining method to enhance perfor-
mance. However, these methods typically suffer from significant performance
drops.

In our work, we propose a solution to further accelerate inference and reduce
resource usage while maintaining high performance. Firstly, we enhance the per-
formance of the original LiteMedSAM by replacing its image encoder with Swin-
T. Subsequently, to make the encoder lightweight, we distill a RepViT-M0.6 from
Swin-T and substitute the encoder of Swin-T with the distilled RepViT-M0.6
image encoder, achieving higher speed and reduced resource consumption while
preserving performance.

We extensively evaluate our proposal on the online validation set and compare
it with the baseline model (LiteMedSAM). Our results demonstrate improved
performance, with the evaluation metric DSC increasing by approximately 2%
and NSD by around 1%. Furthermore, we achieve over three times faster infer-
ence speed on devices equipped with a CPU and 8GB of RAM.

2 Method

2.1 Pre-processing

We first conducted a statistical analysis of the challenge dataset. As shown in
Table 1, Computed Tomography (CT) is the predominant modality, compris-
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ing 76.70% of the dataset with 1,219,765 slices. Magnetic Resonance (MR) im-
ages are also well-represented, making up 13.55% with 214,454 slices. Positron
Emission Tomography (PET) accounts for 4.03%, contributing 64,163 slices.
Endoscopy and X-Ray images constitute smaller portions at 2.82% and 1.91%
respectively, providing 44,804 and 30,360 slices. Other modalities such as Ultra-
sound(US), Dermoscopy, Microscopy, Optical Coherence Tomography (OCT),
Mammography, and Fundus Photography each contribute less than 1%.

During the pre-processing of the external public datasets (the list of external
public datasets is shown in Table 10), we initially excluded all slices or images
lacking targets or containing extremely small targets (smaller than 20 pixels) to
ensure each slice or image had at least one target for segmentation. Subsequently,
we normalized all slices/images to a range of [0, 1] and stored each slice/image
along with its corresponding ground truth in a single npy file to facilitate faster
I/O operations.

In the training phase, all grayscale images were converted to 3-channel images
by replicating the image three times along the channel dimension. We resized
the longer side of all images to 256 pixels while maintaining the original aspect
ratio and then padded them to 256× 256 pixels to meet the input requirements
of the encoder. If an image had multiple labels, one label was randomly selected.
Random data augmentation was applied to both images and their corresponding
ground truths. Additionally, we utilized multiple worker processes to accelerate
data loading.

Table 1. Statistical analysis of the dataset.

Modality Proportion Num. Slices
CT 76.70% 1219765
MR 13.55% 215454
PET 4.03% 64163
Endoscopy 2.82% 44804
X-Ray 1.91% 30360
US 0.40% 6318
Dermoscopy 0.24% 3874
Microscopy 0.11% 1627
OCT 0.09% 1436
Mammography 0.08% 1233
Fundus 0.07% 1100
Total 1590134

2.2 Proposed Method

The proposed method employs a 2-stage training protocol for a teacher-student
model. In the first stage, we train a strong teacher model by replacing MedSAM’s
image encoder with a Swin-T-based encoder. In the second stage, we distill the
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features to a RepViT-M0.6-based MedSAM. The following sections will provide
details of our model structures and the training & inference strategies.

Teacher Model As previous studies have shown [66,69,70], the image encoder
is the heaviest and most parameter-intensive part of the SAM [34], significantly
affecting segmentation performance. Thus, selecting a strong yet efficient image
encoder is crucial. The default encoder for SAM is ViT-H [17], known for its
strong capabilities. However, training SAM with ViT-H requires 68 hours on 256
A100 GPUs as mentioned in [34], posing a significant challenge for reproducibility
or improvement.

To address this, we opt for the Swin-T image encoder [39], a small but ef-
fective hierarchical Transformer that uses shifted windows to limit self-attention
computation to non-overlapping local windows while allowing cross-window con-
nections. This architecture is efficient, modeling at various scales with linear com-
putational complexity relative to image size, thus reducing the computational
burden compared to ViT.

We replace lightweight MedSAM’s original image encoder with Swin-T and
train the entire pipeline from scratch. The Swin-T-based lightweight MedSAM
shows significant improvement over the TinyViT-based lightweight MedSAM
provided by the competition. Although Swin-T is the smallest Swin Transformer,
it is still not efficient enough for fast inference on a laptop CPU. Therefore, we
will use this model as a strong teacher model in the next section and distill its
features into a smaller student model for much faster inference on a laptop CPU.

Swin-T (teacher)
Image Encoder

RepViT-M0.6 (student)
Image Encoder

Image 
Embedding

Image 
Embedding

Prompt-guided 
Mask Decoder

Prompt-guided 
Mask Decoder

mask

mask

distillation copy

Fixed

Fig. 1. Proposed teacher-student model architecture. For the teacher model (top), we
use a Swin-T image encoder to replace the image encoder in the MedSAM and train
the entire pipeline from scratch. For the student model (bottom), which is based on the
RepViT-M0.6 image encoder, we distill the features from the teacher image encoder to
the student image encoder. The prompt-guided mask decoder is directly copied from
the teacher model and not finetuned.

Student Model With a well-trained teacher model, our next step is to select
an efficient student model and effectively distill the teacher model’s features into
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it. For the student model, we choose RepViT-M0.6 [62], the smallest version
of RepViT, as the image encoder for the student MedSAM model. RepViT is
a series of lightweight CNNs redesigned from a ViT perspective, emphasizing
their suitability for mobile devices. It builds on the mobile-friendly design of
MobileNetV3 [28] and incorporates efficient architectural features of lightweight
ViTs.

RepViT, being purely CNN-based, achieves very low latency and memory
usage without the computational burden of attentions. After testing various
RepViT variants, we found that RepViT-M0.6 offers sufficient performance for
feature distillation with the highest inference speed on a CPU.

Feature Distillation to Student Model Next, we discuss the feature distilla-
tion from the teacher model to the student model. Following the practice in [69],
SAM model distillation methods are classified into fully-coupled, semi-coupled,
and decoupled distillation. The first two methods add supervision to the model’s
final output, i.e., the mask output, while decoupled distillation only distills the
image encoder part.

Since the performance bottleneck mainly depends on the image encoder, it is
reasonable to fix the prompt-guided mask decoder, which has a small number of
parameters, and only distill the image encoder from the feature level. Therefore,
we follow this practice and distill the image encoder part, as shown in Fig. 1,
using a simple MSE loss between the outputs of the Swin-T encoder and the
RepViT encoder. This simple distillation method works surprisingly well, with
the student model’s performance being comparable to the teacher model.

As mentioned in [69], finetuning the prompt-guided mask decoder after distill-
ing the image encoder might potentially improve overall performance. However,
in our case, the small image encoder with RepViT-M0.6 sufficiently matches the
Swin-T in the feature level. Thus, finetuning the prompt-guided mask decoder
with mask loss did not provide a performance boost.

Loss functions. For the teacher MedSAM model with Swin-T, we train the
entire pipeline from scratch using a combination of Dice loss, cross-entropy loss,
and MSE loss. This compound loss function is robust for various medical image
segmentation tasks [41]. For the student MedSAM model with RepViT-M0.6,
we distill only the image encoder part. We compute the MSE loss between the
feature outputs of the teacher and student models’ image encoders.

Strategies to Accelerate CPU Inference Our student model with RepViT-
M0.6 is already fast on CPU inference. However, we explored quantization for
potential benefits. We tried Pytorch FX Graph Quantization [6] and ONNX
Runtime [15] for Int8 quantization, but observed significant performance loss
even after calibration. Therefore, we abandoned quantization. Instead, we used
"torch.jit" to increase the model loading speed, contributing to the speed boost
in the Docker test.
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2.3 Post-processing

First, as the model outputs are logits, we first convert the logits to probabilities
using a sigmoid function. The masks are then cropped to match the shape of
the image, which has been resized to have a longest side of 256 pixels, without
being padded to 256 × 256 pixels. Following this, the masks are resized back
to the original image dimensions using bilinear interpolation, ensuring proper
alignment and smooth transitions. The resulting tensor is then converted to a
NumPy array on the CPU. Finally, a threshold is applied to generate a binary
segmentation mask, where values greater than 0.5 indicate the presence of the
target object. This comprehensive process ensures that the model’s raw outputs
are accurately transformed into a practical segmentation format.

3 Experiments

3.1 Dataset and evaluation measures

We use the challenge dataset and external public datasets for network training,
as shown in the supplementary Table 10.

The evaluation metrics include two accuracy measures—Dice Similarity Coef-
ficient (DSC) and Normalized Surface Dice (NSD)—and the running time for ef-
ficiency measurement. These metrics collectively contribute to the ranking com-
putation.

3.2 Environment settings

The details of our environment are presented in Table 2. We use Ubuntu 22.04.4
LTS as our operating system. Our system is equipped with an Intel(R) Core(TM)
i9-13900KF CPU and 64GB of RAM. Additionally, we utilize an NVIDIA RTX
4090 GPU with 24GB of memory.

Table 2. Development environments and requirements.

System Ubuntu 22.04.4 LTS
CPU Intel(R) Core(TM) i9-13900KF CPU@3.00GHz
RAM 4×16GB; 2.67MT/s
GPU (number and type) One NVIDIA RTX 4090 24G
CUDA version 12.1
Programming language Python 3.10
Deep learning framework torch 2.1.2, torchvision 0.16.2
Specific dependencies N/A
Code GitHub

https://github.com/YSongxiao/MedSAMonLaptop_RepViT


A Light-weight Universal Medical Segmentation Network for Laptops 7

3.3 Training protocols of LiteMedSAM with Swin-T image encoder

In training LiteMedSAM with the Swin-T image encoder, we initially apply data
augmentation techniques to enhance model robustness. These techniques include
random horizontal and vertical flips. To avoid overfitting to the data sequence,
we randomly select images from the dataset. For images with multiple labels,
we randomly choose one label per image. The bounding box is generated by
calculating the coordinates of the top-left and bottom-right corners of the label
and applying a slight perturbation to them. A validation set is constructed by
randomly selecting approximately 5% of the entire training dataset.

As shown in Table 3, during training, images are pre-processed to 3× 256×
256. The network is trained from scratch over 100 epochs. We employ a combina-
tion of Dice Loss, Cross Entropy Loss, and Mean Squared Error Loss (MSELoss)
as the loss function. The initial learning rate is set to 0.005. We use AdamW
as the optimizer and ReduceLROnPlateau as the learning rate scheduler, which
reduces the learning rate by a factor of 0.9 whenever the validation loss does not
decrease for five consecutive epochs. We assess the model’s performance on the
validation set at the end of each epoch and save the model that records the best
performance on the validation set.

Table 3. Training protocols of LiteMedSAM with Swin-T image encoder.

Pre-trained Model N/A
Batch size 8
Patch size 3×256×256
Total epochs 100
Optimizer AdamW
Initial learning rate (lr) 0.005
Lr decay schedule ReduceLROnPlateau(reduction ratio 0.9)
Training time 1200 hours
Loss function Dice Loss, Cross Entropy Loss, MSE Loss
Number of model parameters 14.55M
Number of flops 42.85G
CO2eq 848 Kg

3.4 Training protocols for the knowledge distillation of
RepViT-M0.6 image encoder from Swin-T image encoder

For the knowledge distillation of the RepViT-M0.6 image encoder from the Swin-
T image encoder, the training process is similar to the training of LiteMedSAM
with Swin-T. The data is processed by data augmentation and shuffled before
input into the network. We maintain the same dataset split as used in the training
of LiteMedSAM with Swin-T. During training, images are pre-processed to 3×
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256 × 256 and we conduct the distillation of the RepViT-M0.6 from the Swin-
T image encoder over 50 epochs, as illustrated in Table 4. To minimize the
difference in the image embedding outputs between RepViT-M0.6 and Swin-
T, we calculate MSELoss. We utilize AdamW as the optimizer with an initial
learning rate of 0.005 and ReduceLROnPlateau as the learning rate scheduler,
which reduces the learning rate by a factor of 0.9 whenever the validation loss
does not decrease for five epochs. We evaluate the model on the validation set
after each epoch and save the model version that achieved the lowest validation
loss.

Table 4. Training protocols for the knowledge distillation of RepViT-M0.6 image
encoder from Swin-T image encoder.

Pre-trained Teacher Model Swin-T Image Encoder
Pre-trained Student Model N/A
Batch size 8
Patch size 3×256×256
Total epochs 50
Optimizer AdamW
Initial learning rate (lr) 0.005
Lr decay schedule ReduceLROnPlateau(reduction ratio 0.9)
Training time 400 hours
Loss function MSE Loss
Number of model parameters 2.32M
Number of flops 9.00G
CO2eq 99 Kg

4 Results and discussion

4.1 Quantitative results on online validation set

In Table 5, we compare three methods: the baseline, LiteMedSAM with Swin-
T, and our proposed LiteMedSAM with RepViT-M0.6 image encoder, which is
distilled from the Swin-T model. We evaluate their performance on the online
validation set using the DSC and NSD evaluation metrics.

The LiteMedSAM with Swin-T (without knowledge distillation) demonstrates
an average improvement of approximately 2% in both DSC and NSD compared
to the baseline. This improvement is observed across most modalities, with the
exception of a slight decrease in Endoscopy and Fundus. Furthermore, when em-
ploying knowledge distillation, there is only a minor decline in the average DSC
and NSD, yet still shows a clear improvement compared to the baseline.
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Table 5. Quantitative evaluation results on online validation set.

Target Baseline w/o Knowledge
Distillation Proposed

DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)
CT 89.53 91.82 89.94 91.85 92.65 95.06
MR 78.75 81.87 81.35 84.36 86.09 89.34
PET 68.91 55.43 71.00 55.95 62.38 38.58
US 81.34 87.12 81.60 86.74 82.45 87.54
X-Ray 70.23 76.58 78.39 84.49 79.13 85.11
Dermoscopy 92.65 94.14 93.58 95.08 93.45 94.96
Endoscopy 94.87 97.38 93.87 96.43 93.48 96.23
Fundus 95.85 97.48 95.47 97.11 94.68 96.36
Microscopy 71.79 76.95 77.27 83.88 77.80 84.38
Average 82.66 84.31 84.72 86.21 84.68 85.28

Table 6. Quantitative evaluation of segmentation efficiency in terms of running time
(s).

Case ID Size Num.
Objects Baseline w/o Knowledge

Distillation Proposed

3DBox_CT_0566 (287, 512, 512) 6 206.4344 212.4705 48.5365
3DBox_CT_0888 (237, 512, 512) 6 55.7089 55.686 13.6685
3DBox_CT_0860 (246, 512, 512) 1 7.7789 7.6037 2.502
3DBox_MR_0621 (115, 400, 400) 6 101.7202 89.6444 20.3509
3DBox_MR_0121 (64, 290, 320) 6 58.291 50.8915 13.5169
3DBox_MR_0179 (84, 512, 512) 1 8.1488 7.0312 1.9713
3DBox_PET_0001 (264, 200, 200) 1 5.511 3.8106 1.3485
2DBox_US_0525 (256, 256, 3) 1 0.4136 0.4332 0.1382
2DBox_X-Ray_0053 (320, 640, 3) 34 1.3110 1.3009 1.271
2DBox_Dermoscopy_0003 (3024, 4032, 3) 1 0.7331 0.6091 0.4595
2DBox_Endoscopy_0086 (480, 560, 3) 1 0.4311 0.4164 0.1533
2DBox_Fundus_0003 (2048, 2048, 3) 1 0.4785 0.3656 0.1998
2DBox_Microscope_0008 (1536, 2040, 3) 19 0.9869 0.9626 0.6367
2DBox_Microscope_0016 (1920, 2560, 3) 241 8.7242 8.6334 8.1791
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4.2 Qualitative results on online validation set

Image Proposed Ground Truth

Fig. 2. The examples of good segmentation results.

In this section, we present examples of both good and bad segmentation
results to further analyze the performance of our proposed method. Generally,
our method performs well with images that exhibit high contrast, simple back-
grounds, and regular shapes. However, it encounters challenges with images that
contain overlapping textures and irregular shapes and borders.

As illustrated in Fig 2, in the first row, the brain MR image showcases high
contrast against a simple background, while in the second row, the chest X-ray
displays the lung in regular shapes, which our model can accurately segment.
Conversely, as depicted in Fig 3, the X-ray image exhibits overlapping textures,
and the targets within the box are irregularly shaped in both the first and second
rows, posing difficulties for accurate segmentation with our method.

4.3 Segmentation efficiency results on online validation set

An important challenge for this task is the constraint of the target device, which
is equipped with only a CPU and limited memory (8GB RAM), making segmen-
tation efficiency crucial. We present some challenging cases that require longer
processing times in Table 6. Our proposed method consistently demonstrates a
significant reduction in running time across almost all cases compared to both the
baseline and the LiteMedSAM with Swin-T. This improvement is particularly
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Image Proposed Ground Truth

Fig. 3. The examples of bad segmentation results.

notable in complex 3D imaging cases. For instance, in the 3DBox_CT_0566
case, the proposed method reduces the running time from over 200 seconds
in the baseline to just 48.54 seconds. Similarly, in the 3DBox_CT_0888 and
3DBox_CT_0860 cases, the running times decrease from 55.71 and 7.78 sec-
onds in the baseline to 13.67 and 2.50 seconds, respectively.

In 2D imaging scenarios, such as 2DBox_US_0525 and 2DBox_X-Ray_0053,
the proposed method drastically reduces running times to 0.14 and 1.27 seconds
from 0.41 and 1.31 seconds in the baseline, respectively. The reductions are even
more striking in cases like 2DBox_Dermoscopy_0003 and 2DBox_Endoscopy_0086,
where the proposed method achieves running times of 0.46 and 0.15 seconds,
down from 0.73 and 0.43 seconds in the baseline. These results underscore the
effectiveness of our proposed method in enhancing the efficiency of segmentation
on devices with limited computational resources.

4.4 Results on final testing set

The final testing set comprises 9 modalities: CT, MR, Endoscopy, Ultrasound(US),
X-Ray, Fundus, Microscopy, PET, and OCT. Our proposed method is evaluated
based on two categories of metrics: segmentation accuracy and segmentation
efficiency. For accuracy, DSC and NSD are used, while segmentation efficiency
is assessed by measuring the running time in seconds. A rank-then-aggregate
strategy [65] is utilized for ranking. It includes the following three steps:

– Step 1: Compute the DSC, NSD, and running time for each test case.
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– Step 2: Rank the teams for each modality based on each metric.
– Step 3: Calculate the average of all these rankings.

A quantitative comparison of our proposed method with the baseline LiteMed-
SAM is presented in Table 7. Our method consistently outperforms LiteMedSAM
in DSC and NSD across most imaging modalities. Specifically, our method sig-
nificantly enhances NSD in US and Endoscopy, while markedly improving DSC
in X-Ray and Endoscopy modalities. Moreover, our method achieves a reduction
in running time for all modalities, thereby increasing both the efficiency and
effectiveness of the segmentation.

Overall, our method achieves an average DSC of 79.26% and an average
NSD of 81.16%, surpassing the baseline LiteMedSAM of 78.64% and 80.58%.
The average running time is also reduced from 14.69 seconds with LiteMedSAM
to 5.66 seconds, highlighting a substantial enhancement in processing speed.

Furthermore, our method scores an average ranking of 9.22, with a lower
score indicating better performance, placing it 5th overall in the final test set.

Table 7. Quantitative evaluation results on final testing set.

Target LiteMedSAM(Baseline) Proposed
DSC(%) NSD(%) RunTime(s) DSC(%) NSD(%) RunTime(s)

CT 55.75 58.48 38.78 71.04 74.64 11.33
MR 64.80 62.75 18.57 67.95 62.10 6.45
PET 76.94 66.98 14.90 79.26 69.09 6.30
US 85.24 89.73 8.96 87.81 92.44 4.57
X-Ray 85.51 94.40 9.95 75.59 86.61 4.68
Endoscopy 94.41 96.95 7.56 92.32 95.05 4.12
Fundus 87.47 89.58 8.77 89.55 91.71 4.22
Microscopy 84.36 86.15 16.34 69.75 71.45 4.64
OCT 73.31 80.20 8.39 80.06 87.38 4.64
Average 78.64 80.58 14.69 79.26 81.16 5.66

4.5 Limitation and future work

Although our proposed method has exhibited promising performance and ex-
cellent efficiency, it still encounters difficulties with cases characterized by low
contrast, irregular shapes, and overlapping textures, as mentioned in Section 4.2.
These challenges highlight areas for improvement in future work.

One potential avenue for addressing these issues could involve training a more
robust teacher model to provide better guidance during knowledge distillation.
Additionally, incorporating more diverse and challenging data into the training
process could help the model learn to handle such cases more effectively.
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5 Conclusion

In this study, we introduced an optimized segmentation framework leveraging
knowledge distillation techniques to enhance the efficiency of medical segmenta-
tion networks. By integrating knowledge distillation, notable reductions in infer-
ence time were achieved while preserving segmentation accuracy, thus demon-
strating promising prospects for real-time application in resource-constrained
environments. Specifically, our results indicate a significant threefold decrease
in processing time compared to the baseline model, along with improvements in
quantitative evaluation.

Despite these advancements, challenges remain with low-contrast images,
irregular shapes, and overlapping textures. Future work will aim to address these
issues, enhancing the robustness and applicability of our proposed framework.

Acknowledgements We thank all the data owners for making the medical
images publicly available and CodaLab [67] for hosting the challenge platform.
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Table 8. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 5
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Figure 1
Pre-processing Page 2
Strategies to data augmentation Page 7
Strategies to improve model inference Page 5
Post-processing Page 6
Environment setting table is provided Table 2
Training protocol table is provided Table 3 4
Ablation study Page 9
Efficiency evaluation results are provided Table 6
Visualized segmentation example is provided Figure 2 3
Limitation and future work are presented Yes
Reference format is consistent. Yes
Main text >= 8 pages (not include references and appendix) Yes



20 Songxiao Yang et al.

Table 9. The challenge datasets we used for training.

Dataset Anatomy Modality
COVID-19-20 [56] Chest CT
AbdomenCT-1K [45] Abdomen CT
FDG-PET-CT-Lesions [20] Whole body CT
NSCLC Radiogenomics [8] Chest CT
NSCLC-Radiomics [1] Lung CT
CT Lymph Nodes [55] Abdomen, Mediastinum CT
NSCLC-PleuralEffusion [35] Chest CT
NSCLC-LungMSD-LUNG [7] Chest CT
KiTS23 [24] Kidney CT
CT-ORG [54] whole body CT
COVID-19-20-CTSEG [43] Chest CT
TotalSegmentator [64] whole body CT
AMOS [31] Abdomen CT, MR
LCTSC [68] Chest CT
HCC-TACE-Seg [48] Liver CT
Adrenal-ACC-Ki67-Seg [2] Abdomen CT
MSD [7] various CT, MR
ISLES [25] Brain MR
WMH [37] Brain MR
BraTS [46] Head MR
PROMISE12 [38] Prostate MR
MSD-Prostate [57] Prostate MR
NCI-ISBI [12] Prostate MR
Crossmoda [16] Brain MR
QIN-PROSTATE-Repeatability [18] Prostate MRI
CC-Tumor Heterogeneity [9] Cervical Cancer MR
COVID-19 Radiography Database [53] Lung CXR
COVID-QU-Ex [60] Lung CXR
Chest Xray Masks and Labels [29] Chest CXR
Chest X-Ray Images with Pneumothorax Masks Chest CXR
CDD-CESM [33] Breast Mammography
Intraretinal Cystoid Fluid [3] Eye OCT
ps-fh-aop-2023 [40] Head US
hc18 [26] Fetal Head US
Breast Ultrasound Images Dataset [4] Breast US
ISIC2018 [61] Skin Dermoscopy
CholecSeg8k [27] Abdominal Endoscopy
Kvasir-SEG [30] Abdominal Endoscopy
m2caiSeg Abdominal Endoscopy
PAPILA [36] Eye Fundus
IDRiD [52] Eye Fundus
NeurIPS CellSeg [44] Cells Microscopy
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Table 10. The external public datasets we used for training.

Dataset Anatomy Modality
CT Lung & Hearth & Trachea segmentation Chest CT
Seg.A. [49] Aorta CT
Figshare Brain Tumor Dataset [11] Brain MR
Uwaterloo skin cancer [21] Skin Dermoscopy
BKAI-IGH NeoPolyp [5] Abdominal Endoscopy
CT2USforKidneySeg [59] Kidney US
Ultrasound Nerve Segmentation Neck US
GlaS@MICCAI’2015: Gland Segmentation [58] ColonGland Microscopy
MM-WHS [19] Heart CT, MR
MMs-20-21 [10] Heart MR
FeTA [51] Brain MR
CHAOS [32] Abdomen CT, MR
Drive Eye Fundus
RAVIR [22,23] Eye Fundus
FetoPlac Fetus Microscopy
HMC-QU [14] Heart US
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