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ABSTRACT

Stochastic Variational Inference is a powerful framework for learning large-scale
probabilistic latent variable models. However, typical assumptions on the fac-
torization or independence of the latent variables can substantially restrict its ca-
pacity for inference and generative modeling. A major line of active research
aims at building more expressive variational models by designing deep hierar-
chies of interdependent latent variables. Although these models exhibit superior
performance and enable richer latent representations, we show that they incur di-
minishing returns: adding more stochastic layers to an already very deep model
yields small predictive improvement while substantially increasing the inference
and training time. Moreover, the architecture for this class of models favors proxi-
mate interactions among the latent variables between neighboring layers when de-
signing the conditioning factors of the involved distributions. This is the first work
that proposes attention mechanisms to build more expressive variational distribu-
tions in deep probabilistic models by explicitly modeling both nearby and distant
interactions in the latent space. Specifically, we propose deep attentive variational
autoencoder and test it on a variety of established datasets. We show it achieves
state-of-the-art log-likelihoods while using fewer latent layers and requiring less
training time than existing models. The proposed holistic inference reduces com-
putational footprint by alleviating the need for deep hierarchies. Project code:
https://github.com/ifiaposto/Deep_Attentive_VI

1 INTRODUCTION

A core line of research in both supervised and unsupervised learning relies on deep probabilistic
models. This class of models uses deep neural networks to model distributions that express hy-
potheses about the way in which the data have been generated. Such architectures are preferred due
to their capacity to express complex, non-linear relationships between the random variables of inter-
est while enabling tractable inference and sampling. Latent variable probabilistic models augment
the set of the observed variables with auxiliary latent variables. They are characterized by a posterior
distribution over the latent variables, one which is generally intractable and typically approximated
by closed-form alternatives. They provide an explicit parametric specification of the joint distribu-
tions over the expanded random variable space, while the distribution of the observed variables is
computed by marginalizing over the latent variables. The Variational Autoencoder (VAE) (Kingma
& Welling, 2014) belongs to this model category. The VAE uses neural networks for learning the
parametrization of both the inference network (which defines the posterior distribution of the latent
variables) and the generative network (which defines the prior distribution of the latent variables and
the conditional data distribution given the latent variables). Their parameters are jointly learned via
stochastic variational inference (Paisley et al., 2012; Hoffman et al., 2013).

Early VAE architectures (Rezende et al., 2014) make strong assumptions about the posterior
distribution—specifically, it is standard to assume that the posterior is approximately factorial. Since
then, research has progressed on learning more expressive latent variable models. For example,
Rezende & Mohamed (2015); Kingma et al. (2016); Chen et al. (2017) aim at modeling more com-
plex posterior distributions, constructed with autoregressive layers. Theoretical research focuses on
deriving tighter bounds (Burda et al., 2016; Li & Turner, 2016; Masrani et al., 2019) or building
more informative latent variables by mitigating posterior collapse (Razavi et al., 2019a; Lucas et al.,
2019). Sinha & Dieng (2021) improve generalization by enforcing regularization in the latent space

1

https://github.com/ifiaposto/Deep_Attentive_VI


Published as a conference paper at ICLR 2022

for semantics-preserving transformations of the data. Taking a different approach, hierarchical VAEs
(Gulrajani et al., 2017; Sønderby et al., 2016; Maaløe et al., 2019; Vahdat & Kautz, 2020; Child,
2020) leverage increasingly deep and interdependent layers of latent variables, similar to how sub-
sequent layers in a discriminative network are believed to learn increasingly abstract representations
of the data. These architectures exhibit superior generative and reconstructive capabilities since they
allow for modeling of much richer structures in the latent space.

Previous work overlooks the effect of long-range correlations among the latent variables. In this
work, we propose to restructure common hierarchical, convolutional VAE architectures in order to
increase the receptive field of the variational distributions. We first provide experimental evidence
that conditional dependencies in deep probabilistic hierarchies may be implicitly disregarded by
current models. Subsequently, we propose a decomposed, attention-guided scheme that allows a
long-range flow of both the latent and the observed information both across different, potentially
far apart, stochastic layers and within the same layer and we investigate the importance of each
proposed change through extensive ablation studies. Finally, we demonstrate that our model is both
computationally more economical and can attain state-of-the-art performance across a diverse set of
benchmark datasets.

2 PROPOSED MODEL

2.1 DEEP VARIATIONAL INFERENCE

A latent variable generative model defines the joint distribution of a set of observed variables, x ∈
RD, and auxiliary latent variables, z, coming from a prior distribution p(z). To perform inference,
the marginal likelihood of the distribution of interest, p(x), can be computed by integrating out the
latent variables:

p(x) =

∫
p(x, z) dz. (1)

Since this integration is generally intractable, a lower bound on the marginal likelihood is maximized
instead. This is done by introducing an approximate posterior distribution q(z | x) and applying
Jensen’s inequality:

log p(x) = log

∫
p(x, z) dz = log

∫
q(z | x)
q(z | x)

p(x, z) dz ≥
∫

q(z | x) log
[
p(x | z)p(z)
q(z | x)

]
dz

=⇒ log p(x) ≥ Eq(z|x)[log p(x | z)]−DKL(q(z | x) ∥ p(z)), (2)
where θ, ϕ parameterize p(x, z;θ) and q(z | x;ϕ) respectively. For ease of notation, we omit
θ,ϕ in the derivations. This objective is called the Evidence Lower BOund (ELBO) and can be
optimized efficiently for continuous z via stochastic gradient descent (Kingma & Welling, 2014;
Rezende et al., 2014).

For ease of implementation, it is common to assume that both q(z | z) and p(z) are fully factorized
Gaussian distributions. However, this assumption may be too limiting in cases of complex under-
lying distributions. To compensate for this modeling constraint, many works focus on stacking and
improving the stability of multiple layers of stochastic latent features which are partitioned in groups
such that z = {z1, z2, . . . ,zL}, where L is the number of such groups (Rezende et al., 2014; Gul-
rajani et al., 2017; Kingma et al., 2016; Sønderby et al., 2016; Maaløe et al., 2019; Vahdat & Kautz,
2020; Child, 2020). Our work builds on architectures of bidirectional inference with a deterministic
bottom-up pass. The schematic diagram of a stochastic layer in such a deep variational model is
depicted in Figure 1. In a bidirectional inference architecture with a deterministic bottom-up pass
(left part in Figure 1a), posterior sampling is preceded by a sequence of non-linear transformations,
T q
l , of the evidence, x, i.e., hl = T q

l (hl+1), with hL+1 = x. The inference q(z | x) and generative
p(z) network decompose in an identical topological ordering: q(z | x) =

∏
l q(zl | x, z<l) and

p(z) =
∏

l p(zl | z<l). The top-down pass (right part in Figure 1a) generates the posterior samples
z that feed the conditional data distribution p(x | z).

2.2 MOTIVATION

Kingma et al. (2016) proposed a strongly connected directed probabilistic graphical model for the
generative and inference network, so that each variable depends on all the previous in the hierarchy:
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(a) Locally connected variational layer. (b) Strongly connected variational layer (Ours).

Figure 1: Computational graph of the l-th variational layer in a hierarchy. The numbers denote
the order of the computations. The inference path forms the posterior q(zl | x, z<l) given the
condition cql . The generative path forms the prior p(zl | z<l) given the condition cpl . cpl represents
context information that consists of both deterministic features and latent samples with cp0 being
a constant. hl represents hidden features of the data with hL+1 ≡ x. Multiple such blocks are
stacked. p(x | z) receives the sample zL and the context cpL of the last layer. The⊕ symbol denotes
a module responsible for combining two streams of features. In Figure 1a, the layer is connected
only with the adjacent layers in the hierarchy. Latent information of earlier layers z<l−1 is carried
through cpl−1. In Figure 1b, the layer is connected with all the layers below (above) at the bottom-
up pass (top-down pass). The ResNet transformations are extended to produce key k and query
s feature maps. The generative network queries the layers of the generative network (inference
network) above (below) to identify the most relevant conditioning factors of the prior (posterior)
according to attention scores computed by the attention modules (see Figure 2).

p(zl | z<l). Similarly, for the inference model: q(zl | x, z<l). This is in contrast to other
works (Sønderby et al., 2016) that consider statistical dependencies between successive layers only,
i.e., p(zl | zl−1). Maaløe et al. (2019) also highlight the importance of this modification. The long-
range conditional dependencies are implicitly enforced via deterministic features that are mixed with
the latent variables and propagated through the hierarchy (see feature cpl in Figure 1a).

Table 1: − log p(x) for
varying depth L (bits/dim).

Depth (L) bits/dim ↓ ∆(·)%
2 3.50 −
4 3.26 −6.8
8 3.06 −6.1
16 2.96 −3.2
30 2.91 −1.7

State-of-the-art models (Vahdat & Kautz, 2020; Child, 2020)
leverage this fully-connected factorization and rely on the in-
creased depth to improve performance and deliver results com-
parable to that of autoregressive models (Salimans et al., 2017).
However, by construction, very deep VAE architectures favor
only proximate dependencies in the latent space, limiting long-
range conditional dependencies between zl and z<l−1 as depth
increases. This means that in practice the network may no longer
respect the factorization of the variational distributions p(z) =∏

l p(zl | z<l) and q(z | x) =
∏

l q(zl | x, z<l), leading to sub-optimal performance.

Table 1 reports the absolute and relative decrease in the negative log-likelihood (in bits per dimen-
sion) as one increases the number of stochastic layers in an NVAE (Vahdat & Kautz, 2020). We
observe that the predictive gains diminish as depth increases. We hypothesize that this may be be-
cause the effect of the latent variables of earlier layers diminishes as the context feature cpl traverses
the hierarchy and is updated with latent information from subsequent layers.
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In this work, we improve the flexibility of the prior p(z) and posterior q(z | x) by designing more
informative representations for the conditioning factors of the conditional distributions p(zl | z<l)
and q(zl | x, z<l). We do this by designing a hierarchy of densely connected stochastic layers that
learn to attend to latent and observed information most critical to inference. Figure 1b is a graphical
illustration of the proposed model.

2.3 DEPTH-WISE ATTENTION

Figure 2: Attend(c<l, sl, k<l)− a depth-wise
attention block. c<l, k<l are the sequences of
l − 1 contexts and corresponding keys with C
and Q feature maps accordingly, while sl is the
query feature. The multiplication is applied to
the inner matrix dimensions. The normalization
of the softmax is applied to the last dimension,
treating each pixel independently from the others.
α<l = {αm→l}l−1

m=1 are the attention scores.

We first introduce depth-wise attention. This
is the technical tool that allows our model to
realize the strong couplings presented in Figure
1b and motivated in Section 2.2. The problem
can be formulated as follows:

Given a sequence c<l = {cm}l−1
m=1 of l − 1

contexts, we need to construct a feature ĉl that
summarizes the information in c<l that is most
critical for a given task. ĉl and cm are features
of the same dimensionality: ĉl ∈ RH×W×C ,
and cm ∈ RH×W×C .

In our framework, this task is the construction
of either prior (Section 2.4) or posterior (Sec-
tion 2.5) beliefs of a variational layer in a deep
VAE. Therefore, our architecture must be able
to handle long context sequences of large di-
mensions H and W .

The task is characterized by a query feature
sl ∈ RH×W×Q of dimensionality Q with Q≪
C. Similarly, cm is represented by a key feature
km ∈ RH×W×Q. To reduce computational re-
quirements, we treat each pixel independently
from the rest. This can equivalently be interpreted as concurrent processing of H ×W indepen-
dent sequences of C-dimensional features. The feature maps ĉl(i, j) ∈ RC for pixels (i, j), with
1 ≤ i ≤ H , 1 ≤ j ≤W , are computed in parallel. ĉl(i, j) depends only on pixel instances in c<l at
the same location (i, j), i.e, cm(i, j) with m < l, and is given by:

ĉl(i, j) =
∑
m<l

αm→l(i, j)cm(i, j), (3)

αm→l(i, j) =
exp(sTl (i, j)km(i, j))∑

m<l exp(s
T
l (i, j)km(i, j))

. (4)

In words, feature sl(i, j) ∈ RQ queries the significance of feature cm(i, j) ∈ RC , repre-
sented by km(i, j) ∈ RQ, to form ĉl(i, j) ∈ RC . αm→l(i, j) ∈ R, is the resulting relevance
metric of the m−th term, with m < l, at pixel (i, j). The overall procedure is denoted as
ĉ = Attend(c<l, sl, k<l), and is illustrated in Figure 2.

Finally, to improve training of models with very long sequences, we adopt the following variant of
the normalization scheme proposed by Chen et al. (2020):

c<l ← c<l +Gelu(LayerNorm(c<l)), (5)
ĉl ← ĉl +Gelu(LayerNorm(ĉl)), (6)

where Gelu is the GELU non-linearity (Hendrycks & Gimpel, 2016) and LayerNorm a layer nor-
malization operation (Ba et al., 2016).

2.4 GENERATIVE MODEL

As shown in Figure 1a, the conditioning factor of the prior distribution at variational layer l is
represented by context feature cpl ∈ RH×W×C . A convolution is applied on cpl to obtain parameters
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θ defining the prior. cpl is a non-linear transformation of the immediately previous latent information
zl−1 and prior context c<l−1 containing latent information from distant layers z<l−1, such that cpl =
T p
l (zl−1 ⊕ cpl−1). T

p
l (·) is typically implemented as a cascade of ResNet cells (He et al., 2016a;b)

and corresponds to the blue ResNet module in Figure 1a. The operator ⊕ combines information
from two branches in the network (e.g. by summation or concatenation). zl−1, cpl−1 are passed in
from the previous layer.

Due to the locality of the architecture, the signal from cpl may be dominated by that of zl−1. To pre-
vent this, we adopt direct connections between each pair of stochastic layers, as shown in Figure 1b.
That is, variational layer l has direct access to prior context of all previous layers cp<l accompanied
by keys kp

<l. This means each variational layer can actively determine the most important latent
contexts when evaluating its prior beliefs. During training, the context, query, and key are jointly
learned:

[cpl , s
p
l , k

p
l ]← T p

l (zl−1 ⊕ cpl−1). (7)

We initially let variational layer l rely on nearby dependencies captured by cpl . During training, the
prior is progressively updated with the holistic context ĉpl via a residual connection (Wang et al.,
2018; Bachlechner et al., 2021):

ĉpl ← Attend(cp<l, s
p
l , k

p
<l), (8)

ĉpl ← cpl + γp
l ĉ

p
l , (9)

where γp
l ∈ R is a learnable scalar parameter initialized to zero, cp<l = {cpm}l−1

m=1 with cpm ∈
RH×W×C , spl ∈ RH×W×Q, kp

<l = {kp
m}l−1

m=1 with kp
m ∈ RH×W×Q, and Q≪ C.

2.5 INFERENCE MODEL

As shown in Figure 1a, the conditioning context cql of the posterior distribution results from com-
bining deterministic factor hl and stochastic factor cpl provided by the decoder: cql = hl ⊕ cpl . To
improve inference, we let layer’s l encoder use both its own hl and all subsequent hidden represen-
tations h>l, as shown in Figure 1b. This modification can also be viewed as skip connections which
selectively connect each layer with representations closer to the data helping deep signal propa-
gation. As in the generative model, the bottom-up path is extended to emit low dimensional key
features kq

l which represent hidden features hl:
[hl, k

q
l ]← T q

l (hl+1 ⊕ kq
l+1). (10)

Prior works (Sønderby et al., 2016; Vahdat & Kautz, 2020) have sought to mitigate against exploding
DKL in Equation 2 by using parametric coordination between the prior and posterior distributions.
Motivated by this insight, we seek to establish further communication between them. We accomplish
this by allowing the generative model to choose the most explanatory features in h≥l by generating
query feature sql . Finally, the holistic conditioning factor for the posterior is:

ĉql ← Attend(h≥l, s
q
l , k

q
≥l). (11)

The detailed description is deferred to Appendix A.1. Inference on the model is also summarized in
Appendix A.3.

2.6 SPATIALLY ATTENTIVE VARIATIONAL LAYERS

In Sections 2.4 and 2.5, we allowed the perceptive field of each pixel at layer l to encompass only
pixels at the same locations in earlier layers during inference. In order to fully capture distant depen-
dencies in the latent space, we still need to coordinate portions of information in the spatial domain.
To increase the computational efficiency of our model, this occurs at a second stage. Conceptually,
this two-step procedure resembles the factorized attention of efficient transformers (Child et al.,
2019), albeit deep variational models are inherently amenable to a different, inter-layer and intra-
layer, decomposition. This observation decreases the time and memory complexity of the long-range
operations for computing the attention scores from O(L3 ×W 2 ×H2) to O(L2 +L×W 2 ×H2),
while still providing inference with holistic information. To accomplish this, we interleave spatially
non-local blocks (Wang et al., 2018) with the convolutions in the residual cells of the ResNet mod-
ules in Figure 1, as shown in Figure 3 in Appendix. The exact formulation is similar to that of Wang
et al. (2018) and is provided in Appendix A.2.
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3 EXPERIMENTAL STUDIES

We conduct three series of experiments. In the first set of experiments (Section 3.1.1), we apply the
attentive variational path proposed in this paper on VAEs that are trained on two datasets of binary
images: the dynamically binarized MNIST and OMNIGLOT. In Section 3.1.2, we investigate the
effectiveness of the proposed techniques on large-scale latent spaces that are used for generating the
CIFAR-10 natural images. Qualitative results are provided in Appendices E (plot of KL divergence
per layer), F (visualization of attention patterns), and G (novel samples and image reconstructions).
Finally, in Section 3.2 we conduct an ablation study and report the benefits of each proposed at-
tention module separately. All hyperparameters for experiments are available in Appendix B. We
note here that we choose to not use spectral regularization, and we find this does not compromise
training stability of our model (in contrast to results reported by Vahdat & Kautz (2020)). The fact
that our model is able to achieve better performance without this regularization may indicate that the
attention operations help stabilize training.

3.1 MAIN QUANTITATIVE RESULTS

3.1.1 APPLICATION ON BINARY IMAGES

Datasets. We evaluate the models on two benchmark datasets: MNIST (LeCun et al., 1998), a
dataset of 28 × 28 images of handwritten digits, and OMNIGLOT (Lake et al., 2013), an alphabet
recognition dataset of 28 × 28 images. For convenience, we add two zero pixels to each border of the
training images. In both cases, the observations are dynamically binarized by being resampled from
the normalized real values using a Bernoulli distribution after each epoch, as suggested by Burda
et al. (2016), which prevents over-fitting. We use the standard splits of MNIST into 60,000 training
and 10,000 test examples, and of OMNIGLOT into 24,345 training and 8,070 test examples.

Set-up. For both datasets, we use a hierarchy of L = 15 variational layers. We use a Bernoulli
distribution in the image decoder. In the generative model a non-local block is inserted at the end of
the module responsible for combining the context with the latent sample provided by the previous
layer. In the inference layer, a non-local block is inserted at the end of the module responsible
for concatenating the deterministic, data-dependent features of the bottom-up pass and the context
containing latent information that is provided by the generative model. Non-local blocks are also
inserted at the post-processing cells, at the end of the variational hierarchy and right before the layers
that implement the data distribution (see Appendix B for details). MNIST images are downsampled
twice before being passed to the hierarchy leading to latent spaces of spatial dimension 8× 8 while
the OMNIGLOT images are downsampled only once resulting to 16× 16 latent spaces.

Results. Table 2 reports the estimated marginal likelihood of our model along with the performance
achieved by state-of-the-art models. We observe that in both datasets, holistic variational inference
consistently improves performance. More importantly, our model outperforms models that increase
the flexibility of the variational posterior by making use of normalizing flows (Kingma et al., 2016)
or the data distribution by making use of autoregressive decoders (Chen et al., 2017). The use
of autoregressive layers is a model refinement orthogonal to ours and it could potentially further
improve the results presented in Table 2. The architecture closest to ours is NVAE (Vahdat & Kautz,
2020), and the performance gap can be solely attributed to long-range inference operations described
in Sections 2.4, 2.5, and 2.6.

3.1.2 APPLICATION ON NATURAL IMAGES

Dataset. CIFAR-10 is a dataset of 32 × 32 natural images. The raw pixel values are first scaled to
[−1, 1].
Set-up. For CIFAR-10, we use a hierarchy of L = 16 variational layers. We use a mixture of dis-
cretized Logistic distributions (Salimans et al., 2017) for the data distribution. We use the spatially
non-local residual cells of Figure 3 in both the generative and inference network of each layer. Non-
local blocks are also inserted at the pre-processing blocks, at the beginning of the bottom-up pass
(see Appendix B for details). CIFAR-10 images are downsampled only once resulting to 16 × 16
latent spaces. We note that it helps optimization if we bound the log of the prior standard deviation
such that log σp ≥ −1.0, yielding less confident prior assumptions. We also empirically find that
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Table 2: Dynamically binarized MNIST (Burda et al., 2016) and OMNIGLOT (Lake et al., 2013)
performance on the test set. All models except for IWAE are trained with a single importance
sample. IWAE is trained with 50 importance samples. The marginal loglikelihood is estimated
with 500 importance samples. Attentive VAE outperforms all state-of-the-art VAEs with or without
autoregressive components.

Model log p(x) ≥ ↑
MNIST OMNIGLOT

Attentive VAE (ours) −77.63 −89.50
NVAE (Vahdat & Kautz, 2020) −78.01 −90.18
MAE (Ma et al., 2019) −77.98 −
BIVA (Maaløe et al., 2019) −78.41 −93.54
PixelVAE++ (Sadeghi et al., 2019) −78.00 −
DVAE++ (Vahdat et al., 2018) −78.49 −
VampPrior (Tomczak & Welling, 2018) −78.45 −89.76
SA-VAE (Kim et al., 2018) − −90.05
Lossy VAE (Chen et al., 2017) −78.53 −89.83
Ladder VAE (Sønderby et al., 2016) −81.74 −102.11
IAF-VAE (Kingma et al., 2016) −79.10 −
DVAE (Rolfe, 2017) −81.01 −97.43
Conv DRAW (Gregor et al., 2016) − −91.00
IWAE (Burda et al., 2016) −82.90 −103.38

adding Gaussian noise with σnoise = 0.001 in both the log of the prior scale log σp and the posterior
scale log σq helps network’s generalization.

Results. Table 3 shows the performance of the proposed model both among other VAEs and other
purely generative models. As we can see, attention-guided variational inference is conducive to
building more informative latent spaces, rendering the model the best performing in its class. This
claim is further corroborated by qualitative results in Appendix E. We can see there that the attention-
driven skip connections mitigate posterior collapse by activating early layers in the hierarchy. More-
over, our model closes the performance gap between VAEs and expensive generative models that
rely on fully-autoregressive distributions. Finally, it is possible our results in Table 3 could be im-
proved by considering deeper hierarchies.

Table 3: CIFAR-10 (Krizhevsky et al., 2009) performance on the test set. The marginal log-
likelihood is estimated with 100 importance samples. A shallower Attentive VAE outperforms all
state-of-the-art VAEs with or without autoregressive components. Attentive VAE performs on par
with fully autoregressive generative models. However, it permits fast sampling that requires a single
network evaluation per sample as opposed to D, where D the dimension of the data distribution.

Model VAE Depth (L) Autoregressive Decoder − log p(x) ≤ (bits/dim) ↓
Attentive VAE (ours) trained for 400 epochs ✓ 16 ✗ 2.82
Attentive VAE (ours) trained for 500 epochs ✓ 16 ✗ 2.81
Attentive VAE (ours) trained for 900 epochs ✓ 16 ✗ 2.79
Very Deep VAE (Child, 2020) ✓ 45 ✗ 2.87
NVAE (Vahdat & Kautz, 2020) ✓ 30 ✗ 2.91
BIVA (Maaløe et al., 2019) ✓ 15 ✗ 3.08
IAF-VAE (Kingma et al., 2016) ✓ 12 ✗ 3.11
δ-VAE (Razavi et al., 2019a) ✓ ✓ 2.83
PixelVAE++ (Sadeghi et al., 2019) ✓ ✓ 2.90
Lossy VAE (Chen et al., 2017) ✓ ✓ 2.95
MAE (Ma et al., 2019) ✓ ✓ 2.95
PixelCNN++ (Salimans et al., 2017) ✗ ✓ 2.92
PixelSNAIL (Chen et al., 2018) ✗ ✓ 2.85
Image Transformer (Parmar et al., 2018) ✗ ✓ 2.90
Sparse Transformer (Child et al., 2019) ✗ ✓ 2.80

In Table 4, we compare the computing demands for training our model with the one of the other two
most competitive VAEs presented in Table 3. As we see, our 16-layer VAE requires almost 3/5 of the
GPU hours needed for training a 30-layer NVAE, while still outperforming the more efficient VAE
of Child (2020). In this work, we implement full rank matrices for the self-attention scores of the
spatially non-local residual cells. Efficient attention approximations such as those proposed by Child
et al. (2019) and Choromanski et al. (2021) could further reduce the computational requirements
of our models and are left as future work. This suggestion is also bolstered by our findings in
Appendix F, where we observe that the spatial attention maps are sparse and highly structured.
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Table 4: Comparison of the computational requirements for training deep state-of-the-art VAE
models. All models are trained on 32GB V100 GPUs. The additional cost for computing the
attention scores is compensated by the smaller number of stochastic layers in the hierarchy without
sacrificing the generative capacity of the model, see Table 3.

Model batch size / GPU # GPUs Training Time Total GPU hours
Attentive VAE (ours), 400 epochs 32 4 68 hours 272
Attentive VAE (ours), 500 epochs 32 4 84 hours 336
Attentive VAE (ours), 900 epochs 32 4 152 hours 608
NVAE 32 8 55 hours 440
Very Deep VAE 32 2 6 days 288

3.2 ABLATION STUDY

To verify the effectiveness on the performance of the different attention schemes proposed in Sec-
tion 2, we conduct comprehensive ablation studies on architectures of a variable number of stochastic
layers on the CIFAR-10 dataset. We incrementally add different combinations of the proposed at-
tention components of Sections 2.4, 2.5, 2.6 in the NVAE architecture and we evaluate their impact
on the estimated marginal likelihood reported in bits per dimension. Our results are shown in Table
5. We make the following observations:

• Regardless of the number of stochastic layers in the hierarchy, we observe improvement
over the baseline model (Case 1 vs Case 8 and Case 9 vs Case 16 in Table 5).

• We notice that a 8-layer architecture that employs an attention mechanism in both the gener-
ative network and the inference counterpart of the model (Case 8 in Table 5) almost reaches
the performance level of the baseline 16-layer architecture (Case 9 in Table 5). This fact
indicates that our model results in a better utilization of the latent space. This is orthogonal
to other works which aim at improvement by stabilizing deeper architectures instead.

• The effect of the spatially attentive stochastic layers is larger in the shallower architec-
ture (Case 1 vs Case 2 and Case 9 vs Case 10 in Table 5). This may be because some
loss of the latent information is compensated by additional layers. However, the total im-
provement yielded by the depth-wise attention modules is larger in the deeper architecture,
highlighting the importance of the inter-layer connectivity when constructing the prior and
the posterior of each layer. The inter-layer connectivity is also visualized in Figures 10, 11
in Appendix F, where it is confirmed that the model learns to attend to context information
that lies in distant layers of the model to improve performance.

Finally, supplementary ablations on other architectural choices of our model are provided in Ap-
pendix D.

Table 5: A comparison of the effect of the attention operations in a deep variational model on
the CIFAR-10 dataset. The NVAE (Vahdat & Kautz, 2020) is used as a baseline case (no attention
operation).

Depth (L) Case Depth-wise generative
Section 2.4

Depth-wise inference
Section 2.5

Non-local residual cells
Section 2.6 # Parameters (×106) − log p(x) ≤ (bits/dim) ↓

8

1. ✗ ✗ ✗ 39.473 3.062
2. ✗ ✗ ✓ 44.585 2.998
3. ✗ ✓ ✗ 44.716 3.019
4. ✗ ✓ ✓ 50.471 2.98
5. ✓ ✗ ✗ 46.3 3.034
6. ✓ ✗ ✓ 52.151 2.985
7. ✓ ✓ ✗ 51.925 2.986
8. ✓ ✓ ✓ 58.451 2.963

16

9. ✗ ✗ ✗ 79.206 2.939
10. ✗ ✗ ✓ 89.602 2.912
11. ✗ ✓ ✗ 90.916 2.918
12. ✗ ✓ ✓ 102.744 2.872
13. ✓ ✗ ✗ 92.983 2.92
14. ✓ ✗ ✓ 104.882 2.905
15. ✓ ✓ ✗ 105.541 2.861
16. ✓ ✓ ✓ 118.966 2.823
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4 RELATED WORK AND DISCUSSION

Our work builds on recent deep variational autoencoders (Vahdat & Kautz, 2020; Child, 2020),
which first perform a fully deterministic bottom-up pass followed by a top-down pass involving
both stochastic and deterministic features, as first proposed by Kingma et al. (2016). This hybrid
top-down pass enables fully connected factorizations of the joint prior and posterior distributions,
according to which the latent variables of each layer are conditioned on the latent variables of all
the layers above in the hierarchy. However, modeling such conditional dependencies relies on local
architectures which assume connectivity only between successive layers. We improve on prior work
by introducing attention-guided mechanisms to actively discover long-range statistical dependencies
in the latent space. We build on top of NVAE (Vahdat & Kautz, 2020) to demonstrate our method,
but our suggestions are generic and could be applied to deeper and thinner hierarchies such as that
of Child (2020), or the BIVA hierarchy which extends the deterministic bottom-up pass to latent
variables (Maaløe et al., 2019). These configurations could further improve the results reported
in Tables 2, 3. Moreover, the proposed model is amenable to other tools for improved variational
inference such as the use of an autoregressive posterior (or prior) distribution (Kingma et al., 2016),
a second-stage ancenstral sampling by an auxiliary VAE that learns the aggregated posterior (Dai &
Wipf, 2019), or regularization techniques that promote congruence between latent representations
of the original and transformed inputs (Sinha & Dieng, 2021).

Vector Quantized Variational Autoencoders (VQ-VAEs) (Oord et al., 2017; Razavi et al., 2019b)
learn discrete latent representations. However, the training objective of these models does not for-
mally constitute a lower bound on the marginal log-likelihood. Although VQ-VAEs have exhibited
high-quality generative capability on high-resolution images, they base their performance on fully
autoregressive PixelCNN priors (Van Den Oord et al., 2016) which render them too slow to sample
from in case of large latent spaces. Most related to ours is the work of Esser et al. (2021). The
authors use a fully autoregressive transformer in the latent space. However, they manage to handle
low-dimensional latent spaces, leading to log-likelihoods infererior to that of Razavi et al. (2019b).
Scaling this model to larger latent spaces, by leveraging the decomposed, attention-guided latent
hierarchy proposed in this work could be an interesting future research direction.

Several works on generative modeling leverage self-attention mechanisms (Parmar et al., 2018; Chen
et al., 2018; 2020; Child et al., 2019). However, these models are autoregressive, yielding condi-
tional per-pixel distributions, and apply attention in the pixel space. Therefore, as already discussed,
they are slow to sample from. Our work has log-likelihood performance comparable to that of these
works, while using a non-autoregressive data distribution. The work of Tulsiani & Gupta (2021)
uses a transformer-based encoder to learn pixel distributions conditioned on a small set of observed
pixel values at arbitrary locations. Diffusion models (Ho et al., 2019; Kingma et al., 2021) can be
viewed as VAEs and achieve impressive generative quality. However, similarly to the autoregressive
models, sampling from them requires multiple network evaluations. Morever, their performance
when trained with data augmentation (Kingma et al., 2021) can be similar to that of deep regu-
larized VAEs (Sinha & Dieng, 2021). Finally, the work by Zhang et al. (2019) boosts GANs by
incorporating non-local blocks (Wang et al., 2018) in the generator and the discriminator.

Future research includes investigating the effect of the proposed depth-wise attention mechanism
on ResNet architectures for different tasks and efficient attention approximations specific to deep
variational inference.

5 CONCLUSION

We have presented deep attentive VAE, the first attention-driven framework for variational inference
in deep probabilistic models. We argue that the expressivity of current deep probabilistic models
can be improved by selectively prioritizing statistical dependencies between latent variables that are
potentially distant from each other. We introduced a scalable factorized attention scheme that first
discovers intra-layer correlations, succeeded by inter-layer attention operations. Moreover, the gen-
erative model is allowed to query its posterior counterpart based on the available latent information
to identify the data-dependent representations most informative for inference. We extensively eval-
uated the proposed architecture on multiple public datasets and showed that our model outperforms
all existing deep VAEs, while requiring significantly less training time.
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To aid reproducibility of the results and methods presented in our paper, we made source code to
reproduce the main results of the paper publicly available, including detailed instructions; see our
github page: https://github.com/ifiaposto/Deep_Attentive_VI.
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