
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

REACT: Residual-Adaptive Contextual Tuning for Fast Model
Adaptation in Threat Detection

Anonymous Author(s)∗

Abstract

Web andmobile systems show constant distribution shifts due to the
evolvement of services, users, and threats, severely degrading the
performance of threat detection models trained on prior distribu-
tions. Fast model adaptation with minimal data from new distribu-
tions is essential for maintaining reliable security measures. A key
challenge in this context is the lack of ground truth, which under-
mines the ability of existing solutions to align classes across shifted
distributions. Moreover, the limited new data often fails to represent
the underlying distribution, providing sparse and potentially noisy
information for adaptation. In this paper, we propose REACT, a
novel framework that adapts the model using a few unlabeled data
and contextual insights. We leverage the inherent data imbalance in
threat detection and meta-train weights on diverse unlabeled sub-
sets to generalize majority patterns across distributions, eliminating
the reliance on labels for alignment. REACT decomposes a neural
network into two complementary components: meta weights as
a shared foundation of general knowledge, and residual adaptive
weights as adjustments for specific shifts. To compensate for the
limited availability of new data, REACT trains a hypernetwork to
predict adaptive weights based on data and contextual information,
enabling knowledge sharing across distributions. The meta weights
and the hypernetwork are updated alternately, maximizing both
generalization and adaptability. REACT is model-agnostic, applica-
ble to various neural networks. We provide convergence analysis
and conduct extensive experiments across multiple datasets and
models. REACT improves AUROC by 14.85% over models without
adaptation, outperforming the state-of-the-art.

Keywords

Threat detection, Distribution shift, Model adaptation, Meta learn-
ing, Hypernetwork

ACM Reference Format:

Anonymous Author(s). 2025. REACT: Residual-Adaptive Contextual Tun-
ing for Fast Model Adaptation in Threat Detection. In Proceedings of (WWW

’25).ACM,NewYork, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Threat detection is an essential component in web and mobile sys-
tems that identifies malicious activities across networks, endpoints,
and software, defending against security risks. Cyber environments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, Sydney, Australia,

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

undergo continual distribution shifts due to various factors, includ-
ing users joining and leaving the network, user behavior changes,
and software updates. These shifts severely degrade the perfor-
mance of threat detection models trained on prior distributions.
For example, during special events on the Web, such as major sales
promotions, there is often a surge in users visiting the site and sub-
scribing to services, and many of them may cancel the subscription
and reduce their activity after the event, causing abrupt shifts in
network traffic. Threat detection models trained on typical traffics
are less effective in these scenarios. Adapting model weights after
minimal exposure to new data is crucial for timely and effectively
identifying threats in dynamic and adversarial environments.

A critical challenge in managing distribution shifts in threat
detection is the lack of ground truth, as this requires user reports
or detailed inspections by domain experts. Traditional methods [5,
18, 48, 60, 61, 63, 71], which rely on labels from either source or
target domains to align classes across shifted distributions, fail to
address this scenario. Moreover, the limited new data often does not
fully represent the underlying distribution, providing sparse and
potentially noisy information for adaptation. Existing methods [16,
38, 40, 43] fine-tune models exclusively on these limited data. They
may exhibit large variations in performance and are sensitive to
the quality of the observed data, often prone to overfitting [29, 69,
76, 77]. The problem setting is illustrated in Figure 1.

Despite label scarcity, threat detection often exhibits extreme
data imbalance, with a few suspicious activities (e.g., unauthorized
access attempts, anomalous traffic, malware) hidden among a vast
majority of beign behaviors. This imbalance presents an opportu-
nity to address distribution shifts. Instead of learning the exact be-
nign and suspicious behaviors and matching them across domains,
models could learn to generalize majority patterns for various dis-
tributions. Samples that deviate from such patterns are regarded
as potential threats [1, 28]. Therefore, we apply meta-learning on
diverse unlabeled subsets dominated by benign samples. These sub-
sets are sampled according to underlying shifts, e.g., time-based
sampling for temporal shifts. After being meta-trained on various
scenarios, the model can quickly adapt to new distributions by
adjusting the learned pattern using a few unlabeled samples.

To compensate for the limited new data, we utilize contextual
information to model correlations among distributions. For exam-
ple, in network intrusion detection, a newly deployed service like a
microservices-based API can find similarities with common web
servers (e.g., Apache and Tomcat) based on their intrinsic char-
acteristics of services and deployment environments (e.g., service
configuration, user role). By modeling these contexts, we can rec-
ognize relationships across distributions and transfer knowledge
from mature systems to newly deployed ones.

Building on these insights, we introduceREACT (Residual-Adaptive
Contextual Tuning), a novel framework adapting models with a
few unlabeled new data and contextual insights. Given a neural

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, Sydney, Australia,
Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

5

subsets

underlying benign space (unknown) unlabeled sample

adapt model weights

limited
unlabeled dataunlabeled data

pattern pattern

training distribution new distribution

fine-
tunetrain

Figure 1: Illstration of our problem setting.

network, REACT decomposes its weights into the sum of two com-
ponents: meta weights, which are meta-trained to form a solid
foundation of general knowledge and shared globally, and adaptive
weights, which are the residual component fine-tuned to specific
distributions. We leverage a hypernetwork [26] to generate adap-
tive weights based on data and contextual information. Intuitively,
the hypernetwork maps its inputs onto a low-dimensional mani-
fold within the parameter space [13, 59]. This mapping positions
adaptive weights for similar contexts and data patterns close to
each other, enabling knowledge transfer across different distribu-
tions. During training, REACT optimizes the meta weights and
the hypernetwork alternately through meta-learning on subsets
sampled according to underlying shifts. At inference, the adaptive
weights are fine-tuned from the prediction given by the trained
hypernetwork, while the meta weights are fixed, preserving the
generalizability of the model [14, 41, 50, 66]

We theoretically analyze the convergence of REACT on linear
models, showing the parameters converge at a linear rate charac-
terized by the eigenvalues of the sample matrices and other hyper-
parameters in REACT. Our framework is model-agnostic, broadly
applicable to various neural networks and loss functions. We eval-
uate REACT on three datasets with different backbone models.
Compared to models without adaptation, REACT improves the AU-
ROC by 14.85% with few fine-tuning efforts (e.g., update 1 to 10
gradient steps on 10 to 100 samples). Ablation studies and sensitiv-
ity analyses show that REACT is robust to variations in the number
of samples, the number of fine-tuning steps, and contamination in
training data. We further showcase the capability of REACT for
parameter-efficient fine-tuning, achieving 5.75% higher AUROC
with 94.3% fewer parameters updated compared to full fine-tuning,
highlighting its efficiency. Our contributions are as follows:
• We study the problem of fast model adaptation under distribution

shift in threat detection, focusing on a practical yet challenging
scenario where labels are unavailable and only limited data from
new distributions are observed.

• We introduce REACT, a novel adaptation framework using a
few unlabeled data and contextual insights. REACT decomposes
model weights into meta and adaptive components and updates
them through meta-learning alternately. It employs a hypernet-
work to generate adaptive weights based on data and contexts,
enabling knowledge transfer across distributions.

• We establish the convergence rate of REACT through theoretical
analysis. Moreover, we conduct extensive evaluations onmultiple
model architectures and datasets, demonstrating that REACT
consistently outperforms various state-of-the-art methods.

2 Related Work

Threat Detection. Threat detection [6, 47, 62, 73] aims to identify
security risks in systems and networks, such as insider threat [47,
73], intrusion attacks [15], malware [42]. Typically, the ground
truths for benign and malicious activities are not available, as they
require user reports or inspections by domain experts. As a re-
sult, threat detection follows unsupervised or semi-supervised ap-
proaches in anomaly detection based on different assumptions of
data distribution [1, 28]. These methods assume the majority of
data belong to a “normal” class, while anomalies deviate from this
norm, e.g., lying in low-density regions (Deep Gaussian Mixture
Model [78]), being far from normal data clusters (DeepSVDD [56]),
or showing high reconstruction errors from the latent space of nor-
mal data (AutoEncoder [1]). These methods are designed for static
environments and are not robust to distribution shifts. Changes in
data distributions can significantly degrade model performance.
Distribution Shifts in General Machine Learning. Distribution
shift means the distributions of the training and testing data are dif-
ferent, leading to poor model generalization to unseen data [23]. To
address the challenge, adaptation methods have been proposed [18,
48, 71]. We focus on works designed for unsupervised or semi-
supervised scenarios due to the data specificity in threat detection.
Unsupervised domain adaptation [5] is a closely related topic, which
adapts models to target domains that have no labeled data. Methods
include invariant representation learning [61], prototype-oriented
conditional transport [63], contrastive pre-training [60]. However,
these methods assume the availability of labels from source data to
guide adaptation, falling short in threat detection where labels in
source domains are also unavailable.
Model Adaptation in Threat Detection. Distribution shifts are
observed in threat detection, such as malware detection [34], net-
work intrusion detection [11, 72], and log anomaly detection [33].
Traditional supervised approaches [4, 34, 51] require extensive la-
beling, making them impractical for real-world deployment. Recent
efforts have recognized this limitation and have been exploring
adaptation approaches without relying on labels. Unsupervised
domain adaptation methods, like learning domain-invariant repre-
sentations [10] have been extended. However, they typically require
simultaneous training on source and target domains, making them
less suitable for emerging domains. Test-time adaptation, such as
batch normalization updates [40], energy-based models [70], and
trend estimation [35], updates models during inference without gra-
dient descent. Though efficient, they are limited to minor shifts [24]
or sequential shifts that display continuous patterns [35]. To ad-
dress more severe and random shift, meta-learning [19, 65] is a
promising approach that trains a meta model on a variety of learn-
ing tasks, enabling adaptation to new distributions with a small
amount of data. Prior works have applied meta-learning to graph
neural networks [16] and autoencoders [38] for few-shot detection,
and introduced prototype-oriented optimal transport for adapting
models to new multivariate time-series [43]. However, these meth-
ods fine-tune models solely on limited data from new distributions,
leading to variations in adaptation performance. In contrast, our
method considers contextual information about shifts to under-
stand correlations among distributions and transfer knowledge,
improving adaptability.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

REACT: Residual-Adaptive Contextual Tuning for Fast Model Adaptation in Threat Detection
WWW ’25, Sydney, Australia,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3 Preliminaries

3.1 Problem Definition

Distribution shifts in threat detection involve changes in the proba-
bility distribution of data over time or across domains (e.g., users,
services). These shifts can affect the marginal feature distribution
P(𝑥), the conditional distribution P(𝑦 |𝑥), or both. Consider a
threat detection model 𝑓 (·;𝜃) trained on a dataset D = {𝑥𝑖 }𝑁𝑖=1
drawn from a distribution P. The dataset D is unlabeled and is
dominated by samples from the benign class. The model param-
eters 𝜃 are optimized by minimizing a loss function L. Common
choices for L include reconstruction loss in autoencoders or con-
trastive loss in self-supervised learning. The objective is: 𝜃∗ =

argmin𝜃 E𝑥∼PL(𝑓 (𝑥 ;𝜃)).
Our goal is to develop an adaptation method that updates model

parameters to 𝜃 ′ using a few examples from the new distribution
P′. The observed dataset D′ from distribution P′ is unlabeled, and
its size is small |D′ | = 𝑘 ≪ |D|.

3.2 Meta-Learning

Meta-learning trains models that can quickly adapt to new tasks
using only a few examples. A task T𝑖 is defined as an independent
learning problem with a dataset following a specific distribution
P𝑖 and a learning objective which is to find the optimal parameters
𝜃∗
𝑖
that minimize the expected loss 𝜃∗

𝑖
= argmin𝜃 E𝑥∼P𝑖L(𝑓 (𝑥 ;𝜃)).

The dataset D𝑖 for task T𝑖 is divided into a support set D𝑖support and
a query set D𝑖query. D𝑖support is used to fine-tune the model to learn
task-specific parameters for T𝑖 , while D𝑖query evaluates how well
the model generalizes the learned task-specific knowledge.

One of the most representative algorithm is Model-Agnostic
Meta-Learning (MAML) [19], which optimizes the initial model
parameters 𝜃 so that after fine-tuning, the model performs well
across various tasks, minimizing the average loss. For each task
T𝑖 , the parameters are fine-tuned using the support set D𝑖support:
𝜃∗
𝑖
= argmin𝜃

∑
𝑥∈D𝑖

support
L(𝑓 (𝑥 ;𝜃)). The weight initialization 𝜃 is

optimized using the query sets:

𝜃∗ = argmin𝜃
∑︁
T𝑖

∑︁
𝑥∈D𝑖

query

L(𝑓 (𝑥 ;𝜃∗𝑖)) .

During inference, the model is fine-tuned on a few samples from
the new distribution, and then applied to all testing samples.

3.3 HyperNetwork

A hypernetwork [26] is a neural network that predicts the weights
of another neural network (i.e., target network). By training a sin-
gle hypernetwork to predict weights across multiple tasks rather
than optimizing each one independently, hypernetworks offer a
parameter-efficient solution for model adaptation. It has shown
effective in improving learning efficiency through parameter shar-
ing [2, 8, 49, 74, 75]. Let ℎ represent the hypernetwork with param-
eters 𝜙 , and let 𝑓 denote the target network. Given a representation
V𝑖 for describing task T𝑖 , the hypernetwork generates the model
weights 𝜃𝑖 = ℎ(V𝑖 ;𝜙), which are loaded into 𝑓 for the downstream
task. Given multiple tasks T𝑖 and the corresponding task represen-
tations V𝑖 , the learning objective is to optimize the hypernetwork’s

Algorithm 1: Training Procedure of REACT
Input: Task distribution P(T), target network 𝑓 ,

hypernetwork ℎ
Output:Meta weights 𝜃meta, hypernetwork weights 𝜙

1 Initialize model weights 𝜃meta and 𝜙 ;
2 while not converged do

// Update meta weights.

3 Sample a set of tasks {T𝑖 }𝑀𝑖=1 ∼ P(T);
4 for each task T𝑖 do
5 Form support set D𝑖support and query set D𝑖query and

extract contextual information 𝑐𝑖 ;
6 Generate adaptive weights:

𝜃𝑖adapt = ℎ(D
𝑖
support, 𝑐𝑖 ;𝜙);

7 Fine-tune 𝜃𝑖adapt on D𝑖support following Eq. 1;

8 Update 𝜃meta following Eq. 2;

// Update hypernetwork.

9 Sample a set of tasks {T𝑗 }𝑀𝑗=1 ∼ P(T);
10 for each task T𝑗 do
11 Form support set D𝑗support and query set D𝑗query, and

extract contextual information 𝑐 𝑗 ;
12 Generate adaptive weights:

𝜃
𝑗

adapt = ℎ(D
𝑗
support, 𝑐 𝑗 ;𝜙);

13 Update 𝜙 following Eq. 3;

parameters 𝜙 to minimize the loss L across these tasks:

𝜙∗ = argmin
𝜙

∑︁
T𝑖

∑︁
𝑥∈D𝑖

L[𝑓 (𝑥 ;ℎ(V𝑖 ;𝜙))] .

4 The REACT Framework

We approach the problem from both meta-training and fine-tuning
perspectives. Throughmeta-training, themodel establishes a strong,
generalizable foundation that can be applied to most scenarios.
Then, through fine-tuning, the model weights are slightly adjusted
for specific shifts. We propose a framework that decomposes model
weights into two components and alternately optimizes them to
address both perspectives. Algorithm 1 provides the pseudo-code.

4.1 Weight Decomposition

Given a neural network, we decompose its weights into two com-
plementary components: meta weights 𝜃meta and adaptive weights
𝜃adapt. Metaweights capture global patterns that are common across
different distributions, representing the core knowledge acquired
during meta-learning. Adaptive weights, on the other hand, serve as
a small “residual” component that allows the model to be fine-tuned
to the unique characteristics of specific data distributions, while still
leveraging the global patterns encoded in the meta weights. The full
model weights are then formed by adding the two components to-
gether: 𝜃 = 𝜃meta+𝜃adapt. By applying a small residual update to the
pretrained meta weights, the model can adapt to new distributions
without overwriting the essential pretrained knowledge.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, Sydney, Australia,
Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4

target NNs for
individual tasks

data
encoder avg

linear

linear

linear

linear

support data

context
encoder

context context embedding

data representation

Hypernetwork

adaptive
weights

generation

+=
neuron weight meta adaptive

Figure 2: Architecture of the proposed hypernetwork.

4.2 Residual-Adaptive Weight Generation with

Hypernetwork

We incorporate a hypernetwork to generate adaptive weights based
on data characteristics and contextual information. The architecture
of the hypernetwork is presented in Figure 2.
Data Encoding. Our hypernetwork includes a data encoder that
processes data from the support set to produce feature represen-
tations. These representations are averaged and passed through a
series of linear layers, with each layer producing the weights for a
corresponding layer in the target network.
Context Encoding. To enhance the hypernetwork’s ability to han-
dle varying distributions, we integrate the contextual information
𝑐𝑖 about distribution P𝑖 as an additional input. This context of-
fers semantic insights into the shifts and helps capture similarities
across distributions. We incorporate a context encoder in the hy-
pernetwork to transform contexts into embeddings, which are then
added to the data representations for weight generation. The choice
of context depends on the type of shift. For example, we use time
information for temporal shifts, with positional encoding [67] gen-
erating embeddings. Details about context modeling for different
tasks can be found in Section 6.1.

4.3 Alternating Optimization

We design an alternating optimization scheme to iteratively update
the meta weights and the hypernetwork. This approach balances
the learning dynamics and prevents mutual interference between
the two components. Figure 3 illustrates the process.
Task Sampling for Meta Learning. To let the model learn how
to adapt to new distributions, we first create a diverse set of tasks
that reflect the expected variations in the application. We sample
tasks from training set by simulating the underlying data shifts. For
instance, if the goal of adaptation is to address distribution shifts
over time, the data can be grouped according to temporal factors
such as day or month, with each time period forming a separate
task. If the focus is on handling shifts across different users, the
data can be grouped by users, with each user forming a task.
Update of Meta Component. Let 𝜃𝑖adapt denote the adaptive
weights of task T𝑖 . In each iteration, we begin by updating the
meta weights. We sample a set of tasks {T𝑖 }𝑀𝑖=1 and contextual in-
formation {𝑐𝑖 }𝑀𝑖=1. The hypernetwork ℎ(·;𝜙) is fixed and used to
generate adaptive weights, 𝜃𝑖adapt = ℎ(D

𝑖
support, 𝑐𝑖 ;𝜙). The gener-

ated adaptive weights are then fine-tuned to derive the optimal
model weight 𝜃𝑖,∗adapt for task T𝑖 by minimizing the empirical loss

9

hypernet
support set

context
(e.g., time, user) ⑤ query loss (Eq. 3)

④ predict

hypernet
support set

context
(e.g., time, user)

fine-tune (Eq. 1)

support set

①
predict

I. Update meta weights

II. Update hypernetwork

forward backward
②

②

①

④

query loss (Eq. 2)
③

-"#$%

-%&%'$!

query set
③

-"#$%

-%&%'$!,∗

query set
⑤

-"#$%

-%&%'$!

Figure 3: Alternating optimization in REACT. In each train-

ing iteration, we sample a set of tasks to update the meta

weights, then sample another set to train the hypernetwork.

over the support set D𝑖support:

𝜃
𝑖,∗
adapt = argmin

𝜃adapt

∑︁
𝑥∈D𝑖

support

L(𝑓 (𝑥 ;𝜃meta, 𝜃adapt)) . (1)

We then fix these fine-tuned adaptive weights and update the
meta model by minimizing the loss on the query set D𝑖query. Let
𝜂meta be the learning rate for updating meta weights. The update
of meta weight after one gradient step is as follows:

𝜃meta ← 𝜃meta − 𝜂meta∇𝜃meta

∑
T𝑖

∑
𝑥∈D𝑖

query

L(𝑓 (𝑥 ;𝜃meta, 𝜃
𝑖,∗
adapt)). (2)

Update of Hypernetwork. Next, we sample another set of tasks
{T𝑗 }𝑀𝑖=1, fix the meta weights learned in the previous step, and up-
date the hypernetwork using the query sets. Let 𝜂ℎ be the learning
rate for updating the hypernetwork. The weight update of hyper-
network after one gradient step is as follows:

𝜙 ← 𝜙 − 𝜂ℎ∇𝜙
∑︁
T𝑗

∑︁
𝑥∈D𝑗

query

L(𝑓 (𝑥 ;𝜃meta, ℎ(D𝑗support, 𝑐 𝑗 ;𝜙))). (3)

Regularization.Weapply L2 regularization to the adaptiveweights
generated by the hypernetwork, encouraging them to act as resid-
uals to the globally shared meta weights. The query loss for opti-
mizing the hypernetwork, denoted as L𝑖query, is combined with the
regularization as L = L𝑖query + 𝜆∥𝜃𝑖adapt∥

2
2, where 𝜆 is the hyperpa-

rameter to control the regularization strength.

4.4 Adapting to New Distributions

When doing inference on a new distribution P𝑗 , the meta weights
and the hypernetwork are fixed. This ensures the pre-trained knowl-
edge are not “forgotten” during fine-tuning [14, 41, 50, 66], pre-
serving generalizability of the model. A small number of support
data D𝑗support from P𝑗 along with its contextual information 𝑐 𝑗
are fed into the hypernetwork to predict the adaptive weights
𝜃
𝑗

adapt = ℎ(D𝑗support, 𝑐 𝑗 ;𝜙). With this initialization, the adaptive

weights are then fine-tuned on D𝑗support following Equation 1. Fi-
nally, the two parts of the weights are merged by summing them as

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

REACT: Residual-Adaptive Contextual Tuning for Fast Model Adaptation in Threat Detection
WWW ’25, Sydney, Australia,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Experiment configurations and dataset statistics af-

ter preprocessing.

Dataset # Train/Test # Train/Test tasks 𝑘 Shift by Model

AnoShift 1.3M / 1.8M 50 / 110 100 Time AutoEncoder
NSL-KDD 28K / 6K 8 / 6 10 Service GOAD
Malware 15K / 5K 36 / 12 10 Time DeepSVDD

if there is only one target network. The merged weights are used
for inference on data from the new distribution P𝑗 .

5 Analysis

We provide convergence analysis of REACT on linear models. Let
𝑋 𝑖 be thematrixwhose rows are the samples from the dataset of task
𝑖 ∈ {1, ..., 𝑀}, i.e., D𝑖 . The data matrix 𝑋 𝑖 can be split into support
set 𝑋 𝑖𝑠 and query set 𝑋 𝑖𝑞 . We assume that the relevant datasets are
sampled at the beginning of the algorithm. Given linear model1

ℎ(𝑋 ;𝜙) = 𝑋𝜙, 𝑓 (𝑋 ;𝜃meta, 𝜃adapt) = 𝑋 (𝜃meta + 𝜃adapt), (4)

Theorem 1 provides convergence guarantees for REACT.

Theorem 1. Consider REACT on the linear model in (4)with Eq. (1)
being solved exactly. Let 𝑋 𝑖𝑠 and 𝑋

𝑖
𝑞 satisfy (𝑋 𝑖𝑠)⊤𝑋 𝑖𝑠 = (𝑋 𝑖𝑞)⊤𝑋 𝑖𝑞 =

𝜎𝑖 𝐼 for each task 𝑖 ∈ {1, .., 𝑀}, where 𝜎𝑖 are the variances and 𝐼 is the
identitymatrix. Learning rates are chosen as𝜂meta < 1/∑𝑀

𝑖=1 𝜎𝑖𝜆/(𝜎𝑖+
𝜆) and𝜂ℎ < 1/max

(∑𝑛ℎ
𝑗=1 𝜎 𝑗 (𝜎 𝑗 + 𝜆), ∥X𝑠 ∥

)
whereX𝑠 =

∑𝑀
𝑗=1 𝜎 𝑗 (𝑋

𝑗
𝑠)⊤.

Then, for any 𝜀 > 0, there exists

𝐾 = O
(
log1/𝜌meta

(1/𝜀) + log1/𝜌ℎ (1/𝜀)
)

for 𝜌meta = 1−𝜂meta

∑𝑀
𝑖=1 𝜎𝑖𝜆/(𝜎𝑖 +𝜆) and 𝜌ℎ = 1−𝜂ℎ

∑𝑀
𝑗=1 𝜎 𝑗 (𝜎 𝑗 +

𝜆) such that the 𝐾-iteration of Algorithm 1 satisfies

∥𝜃𝐾 − 𝜃∗∥ ≤ 𝜀, and ∥𝜙𝐾 − 𝜙∗∥ ≤ 𝜀,
where 𝜃∗ and 𝜙∗ are stationary points of the algorithm.

The proof is provided in Appendix A.2. Our results suggest that
𝜃meta and 𝜙 converge to stationary points at a linear rate which can
be characterized based on the eigenvalues of the sample matrices
in each task and hyperparameters considered in REACT.

6 Experiments

6.1 Experiment Setup

Datasets and Backbone Models. Our evaluation focuses on two
key applications in cybersecurity, network intrusion detection and
malware detection, and targets both temporal and domain shifts.
REACT is compatible with various neural network architectures.
To assess its performance across different models, we employ three
representative architectures, AutoEncoder (AE) [1], DeepSVDD
(DSVDD) [56], and GOAD [7], paired with the following datasets:
• AnoShift [17] is a benchmark for network intrusion detection

under distribution shifts. It collects traffic logs from a university
network between 2006 and 2015. Data shifts occur over time due
to reasons such as user behavior changes and software updates.

1We note that we abuse the notation and set ℎ (𝑋,𝑐𝑖 ;𝜙) = ℎ (𝑋,𝜙) , i.e., the context
information is part of the input data

Each sample has 15 features (9 numerical and 6 categorical) and
a label of whether it is an attack. We use the train-test split
provided by the dataset, including training subsets from 2006 to
2010 and test subsets from 2006 to 2015. Each month is regarded
as a separate task. AutoEncoder is used as the backbone model.

• Malware [30] contains executables collected between 2010 and
2014 from VirusShare2, an online malware analysis platform.
Data shifts happen along time. Each executable has 482 counting
features and a risk score (ranging from 0 to 1) indicating the
probability of it being malware. These risk scores are converted
to binary labels using shresholding, with executables labeled as
malicious if the score is greater than 0.6 and benign if the score
is less than 0.4 [30]. Following previous work [40], the dataset is
split into training data from 2011 to 2013, validation data from
2010, and testing data from 2014. Each month is treated as a
separate task. DeepSVDD is used as the backbone model.

• NSL-KDD [64] is another dataset for evaluating network in-
trusion detection. Each sample has 40 attributes describing the
network traffic, with 6 categorical and 34 numerical features. We
simulate domain shifts by grouping data according to services
(e.g., HTTP, Telnet) and randomly assigning half of the services
as training tasks and the other half as test tasks. We use the offi-
cial train-test split provided by the dataset and remove services
not selected for the respective splits. Besides, services with fewer
than 20 benign samples are excluded to ensure sufficient unseen
data for testing. GOAD is used as the backbone model.

We sample the datasets to form a 10% ratio of threat samples for
both training and testing. In Section 6.4, we vary this ratio to test
the robustness of REACT to the contamination of training data. For
the NSL-KDD dataset, since GOAD is a semi-supervised method
that trains only on benign data, we remove attack samples from the
training set. Table 1 summarizes the statistics and configurations
of the datasets and backbone models in the experiments. Further
details on the backbone models are provided in Appendix A.1.
Baselines. We compare REACT with unsupervised methods from
the anomaly detection benchmark [28], including linear and statisti-
cal models: ECOD [45], COPOD [44], OCSVM [57]; distance- and
proximity-based methods: LOF [9], KNN [54]; ensemble methods:
LODA [52], IForest [46]; and neural networks:AE [1],DSVDD [56],
LUNAR [22]. These methods assume static environments and do
not account for distribution shifts. In addition, we compare REACT
with training from scratch, fine-tuning strategies, and state-of-the-
art model adaptation methods. Brief descriptions are as follows:
• w/o adaptation: The model is trained on the training data and

directly tested on each test task. This serves as the pretrained
model, denoted as A.

• Train-from-scratch: For each task, a model is trained from
scratch using 𝑘 samples and is used for evaluation.

• Fine-tuning: For each task, the model is fine-tuned using 𝑘
samples from the task based on the pretrained model A.

• Continual learning: Starting fromA, we sequentially fine-tune
the latest updated model using 𝑘 samples from each task.

• Experience Replay (ER) [12] is a method to mitigate cata-
strophic forgetting in continual learning. We maintain a memory
buffer to store historical data. In each fine-tuning iteration, we

2https://virusshare.com/

5

https://virusshare.com/

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, Sydney, Australia,
Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Main experiment results (averaged over 5 runs). The left sub-table reports the performance of static methods, while the

right focuses on fine-tuning and adaptation across three backbone models. REACT consistently outperforms all other methods.��D′
𝑖

��
denotes the number of samples observed from each test task for fine-tuning or training from scratch.

Method
AnoShift Malware NSL-KDD

AUROC AUPR AUROC AUPR AUROC AUPR

KNN [54] 0.6714 0.4062 0.2732 0.1040 0.5323 0.2956
LOF [9] 0.6107 0.2873 0.2781 0.1101 0.4150 0.1827
OCSVM [57] 0.6903 0.3157 0.3880 0.1190 0.6649 0.3492
IForest [46] 0.6658 0.2830 0.2660 0.0722 0.7809 0.4798
LODA [52] 0.5723 0.2111 0.5190 0.1368 0.5207 0.2532
AE [1] 0.7110 0.3204 0.3789 0.1156 0.6057 0.2678
DSVDD [56] 0.7716 0.3895 0.5165 0.1644 0.6006 0.2848
COPOD [44] 0.7664 0.3831 0.4450 0.1102 0.7849 0.4471
ECOD [45] 0.7461 0.3727 0.5403 0.1390 0.8100 0.4706
LUNAR [22] 0.4449 0.2450 0.2719 0.0880 0.5243 0.2350

Method
��D′
𝑖

�� AnoShift Malware NSL-KDD

AUROC AUPR AUROC AUPR AUROC AUPR

train-from-scratch all 0.7681 0.3689 0.6010 0.1822 0.9308 0.7107

w/o adaptation (A) - 0.7110 0.3204 0.5165 0.1644 0.7420 0.5110
train-from-scratch 𝑘 0.7398 0.3398 0.3659 0.1337 0.7382 0.4219
fine-tuning 𝑘 0.7039 0.3333 0.5678 0.1797 0.8175 0.5098
continual learning 𝑘 0.6087 0.3063 0.5879 0.1873 0.8285 0.5188
ER [12] 𝑘 0.6144 0.2996 0.6022 0.1932 0.8356 0.5114
ACR [40] - 0.7634 0.3753 0.5798 0.1794 0.7513 0.4658
OC-MAML [20] 𝑘 0.7770 0.3811 0.6779 0.2334 0.8547 0.5504

REACT (ours) 𝑘 0.8226 0.4376 0.7252 0.2750 0.8673 0.5559

sample a batch from this buffer and compute its loss. This loss is
then weighted and combined with the loss from the new batch.

• ACR [40] is a zero-shot adaptation which adopts meta-learning
to train themodel and update the batch normalization layers with
the batch statistics during inference. We add batch normalization
layer after each linear or convolutional layer in the model.

• OC-MAML [20] is a few-shot one-class classification method. It
extends MAML by modifying the episodic data sampling strategy
by forming one-class support sets to optimize the meta model.

Training and Adaptation Configurations. The size of support
data 𝑘 during training and adaptation is set based on the data
quantity, with 𝑘 = 100 for AnoShift and 𝑘 = 10 for Malware and
NSL-KDD. The size of query data varies proportionally, with 1000
for AnoShift and 100 for Malware and NSL-KDD. In each meta-
training iteration, we sample 𝑀 = 5 tasks for Malware and NSL-
KDD, and𝑀 = 1 for AnoShift. The number of fine-tuning epochs 𝐸
is determined by the convergence rate of the learning task, with
𝐸 = 10 epochs for AnoShift and Malware, and 𝐸 = 1 for NSL-
KDD due to its faster convergence. Section 6.4 provide sensitivity
analyses on 𝑘 and 𝐸 to assess the robustness of our model.
Choices of Contexts. For AnoShift and Malware whose shifts oc-
cur along time, we use time index as the context, which is modeled
by positional encoding [67] to generate contextual embedding for
each task. For NSL-KDD dataset whose shifts occur across services,
we first feed these services names to a large language model with
the prompt “please briefly describe each of these web services, in-
cluding the normal and anomalous patterns”. Then, we use Sentence
Transformer3 to generate embeddings for the descriptions.
Evaluation Metrics. For each test task, we adapt the model and
evaluate its performance using AUROC and AUPR scores. All ex-
periments are repeated for five times with the same set of random
seeds, and the results are averaged across all test tasks and runs.

6.2 Main Results and Analysis

The results are presented in Table 2, where the left sub-table shows
the performance of static methods and the right one focuses on

3https://huggingface.co/sentence-transformers

fine-tuning and adaptation methods across three backbone models.
The static methods (left table) generally show lower performance
than models with adaptation (right table), highlighting the negative
impact of distribution shifts on model performance. The right table
also includes the performance of train-from-scratch using all data
from each individual test task (in grey). When sufficient data is
available from the new tasks, training a model from scratch yields
better performance than using a pretrained model without adapta-
tion. When comparing the models trained from scratch, fine-tuning,
and continual learning, it is shown that the pretrained modelA can
be a poor initialization for shifted distributions, e.g., AnoShift. We
also observe that experience replay slightly improves performance
compared to continual learning without any strategy to prevent
catastrophic forgetting. However, this improvement is limited.

REACT consistently outperforms the baselines and even sur-
passes the model trained from scratch using all data from individual
tasks on two datasets. This is because REACT adapts from a model
meta-trained on a larger and more diverse training set than each
individual task, providing a stronger foundation for adaptation. Fur-
thermore, the training data in AnoShift and Malware contains noise
(10% threat ratio). Training a model on all data from an individual
task increases the likelihood of exposing the model to many threat
samples within that distribution, which, due to the specific training
objectives of AutoEncoder and DSVDD, may cause the models to
mistakenly learn malicious patterns as benign ones. In contrast,
REACT is less prone to such overfitting as it utilizes the meta model
and only updates the adaptiveweights on a small set of new data.We
note that on NSL-KDD, GOAD achieves high scores when trained
from scratch using all data since it is trained on benign data only,
but such training is impractical in the real world. When compared
to other baselines using the same 𝑘 samples from new tasks, RE-
ACT achieves the highest scores. Among state-of-the-art methods,
ACR, which performs test-time adaptation, shows relatively lower
performance as it does not apply gradient updates during inference,
limiting its adaptation ability. OC-MAML achieves the second-best
performance, demonstrating the strength of meta-learning. How-
ever, REACT outperforms OC-MAML by weight decomposition
and incorporating a hypernetwork for contextual tuning. These

6

https://huggingface.co/sentence-transformers

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

REACT: Residual-Adaptive Contextual Tuning for Fast Model Adaptation in Threat Detection
WWW ’25, Sydney, Australia,

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Ablation study. The results demonstrate that every

component in our framework contributes to the overall per-

formance improvement.

Method
AnoShift Malware NSL-KDD

AUROC AUPR AUROC AUPR AUROC AUPR

w/o adaptation (A) 0.7110 0.3204 0.5165 0.1644 0.7420 0.5110
fine-tuning 0.7039 0.3333 0.5678 0.1797 0.8175 0.5098

REACT (ours) 0.8226 0.4376 0.7252 0.2750 0.8673 0.5559

w/o fine-tuning 0.7873 0.3977 0.7159 0.2696 0.7282 0.4838
w/o hypernetwork 0.7770 0.3811 0.6779 0.2334 0.8547 0.5504
w/o context 0.7865 0.3838 0.6772 0.2325 0.8503 0.5323
w/ random context 0.7922 0.3888 0.6892 0.2426 0.8597 0.5522
w/o regularization 0.6541 0.3379 0.6326 0.2001 0.8045 0.4705

designs help maintain generalizability and enhance adaptability
beyond meta-learning alone.

6.3 Ablation Studies

We crafted five ablated versions of REACT by systematically re-
moving each key component: (1) We remove the hypernetwork and
perform meta-learning on the meta weights only, denoted as w/o

hypernetwork. (2) We disable fine-tuning during inference and
use the merged weights from meta weights and the hypernetwork’s
prediction to do the inference directly, denoted asw/o fine-tuning.
(3) We remove the use of context and only provide the support
data for hypernetwork, denoted as w/o context. (4) We replace
the context with randomly-generated embeddings, denoted as w/

random context. (5) We remove the regularization term on the
hypernetwork’s prediction, denoted as w/o regularization.

The results in Table 3 show that every component in REACT
contributes to performance improvement. Integrating the hypernet-
work has a significant impact, as contextual information comple-
ments limited new data and facilitates knowledge transfer across
distributions. Fine-tuning and regularization also have notable im-
pacts. REACT w/o fine-tuning shows competitive performance on
AnoShift and Malware compared to the baselines, indicating its
potential for zero-shot adaptation. However, with just a few gradi-
ent updates, performance can be largely improved. Besides, adding
regularization ensures the adaptive weights predicted by the hy-
pernetwork do not overpower the full model, maintaining model
generalizability. REACT w/o context learns distribution patterns
solely from the support data, which is less effective than incorporat-
ing contexts since the support data is limited and might not provide
sufficient insights. REACT w/ random context can recognize new
tasks as the random context indicates whether the task has been
seen during training, thus mitigating overfitting. Therefore, it per-
forms slightly better than w/o context. However, these random
contexts do not provide task-specific knowledge to capture mean-
ingful patterns. With additional information about tasks, REACT
can model similarity among distributions more effectively.

6.4 Sensitivity Analyses

Number of Support Samples. We vary the number of support
samples 𝑘 for each task from 5 to 100 and compare REACT with the

5 10 20 50 100
Number of Support Data

0.4

0.5

0.6

0.7

0.8

A
U

R
O

C

Malware

REACT
Fine-Tuning

5 10 20 50 100
Number of Support Data

0.7

0.8

0.9

1.0

A
U

R
O

C

NSL-KDD

REACT
Fine-Tuning

5 10 20 50 100
Number of Support Data

0.4

0.6

0.8

1.0

A
U

R
O

C

AnoShift

REACT
Fine-Tuning

5 10 20 50 100
Number of Support Data

0.0

0.1

0.2

0.3

A
U

PR

REACT
Fine-Tuning

5 10 20 50 100
Number of Support Data

0.3

0.4

0.5

0.6

0.7

A
U

PR

REACT
Fine-Tuning

5 10 20 50 100
Number of Support Data

0.2

0.3

0.4

0.5

A
U

PR

REACT
Fine-Tuning

Figure 4: Sensitivity analysis: number of support samples (𝑘).

1 3 5 7 10
Fine-Tuning Epochs

0.2

0.4

0.6

0.8

A
U

R
O

C

Malware

REACT
Fine-Tuning

1 3 5 7 10
Fine-Tuning Epochs

0.7

0.8

0.9

1.0

A
U

R
O

C

NSL-KDD

REACT
Fine-Tuning

1 3 5 7 10
Fine-Tuning Epochs

0.4

0.6

0.8

1.0

A
U

R
O

C

AnoShift

REACT
Fine-Tuning

1 3 5 7 10
Fine-Tuning Epochs

0.0

0.1

0.2

0.3

A
U

PR

REACT
Fine-Tuning

1 3 5 7 10
Fine-Tuning Epochs

0.3

0.4

0.5

0.6

0.7

A
U

PR

REACT
Fine-Tuning

1 3 5 7 10
Fine-Tuning Epochs

0.1

0.2

0.3

0.4

0.5

A
U

PR

REACT
Fine-Tuning

Figure 5: Sensitivity analysis: number of fine-tuning epochs.

Table 4: Sensitivity analysis: AUROC scores across different

contamination levels.

Method
Malware AnoShift

1% 5% 10% 20% 1% 5% 10% 20%

w/o adaptation (A) 0.506 0.513 0.517 0.567 0.764 0.753 0.711 0.634
train-from-scratch 0.366 0.368 0.366 0.377 0.818 0.791 0.740 0.740
fine-tuning 0.550 0.545 0.568 0.580 0.812 0.765 0.704 0.605
continual learning 0.562 0.559 0.588 0.590 0.683 0.572 0.609 0.453
ER 0.582 0.585 0.602 0.602 0.734 0.669 0.614 0.577
ACR 0.544 0.570 0.580 0.570 0.785 0.774 0.763 0.773
OC-MAML 0.683 0.688 0.678 0.687 0.827 0.803 0.777 0.755

REACT (ours) 0.725 0.738 0.725 0.719 0.832 0.813 0.823 0.775

fine-tuning baseline. Figure 4 shows that REACT consistently out-
performs the fine-tuning baseline across all datasets. This demon-
strates REACT’s robustness in data-scarce scenarios and highlights
its ability to efficiently leverage available data for fast adaptation.
Number of Fine-Tuning Epochs. We vary the number of fine-
tuning epochs for each new task from 1 to 10 and compare the
performance of REACT with the fine-tuning baseline. Figure 5
shows that REACT outperforms the baseline in all settings. The
improvement from additional fine-tuning epochs is less significant
in the Malware and NSL-KDD datasets, as these two datasets are
simpler and the model is able to adapt to them with fewer epochs.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, Sydney, Australia,
Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.6

0.7

0.8

A
U

R
O

C

0.2

0.3

0.4

A
U

PR

w/o Adaptation (100%)
Fine-Tuning (100%)

REACT-Inner (5.70%)
REACT-Outer (94.30%)

REACT-Full (100%)

Figure 6: Results of parameter-efficient fine-tuning. Both

REACT-Inner and REACT-Outer outperform the baselines.

Contamination on Training Data.We evaluate the robustness
of our system against contamination in the training data when
applying to AutoEcoder and DeepSVDD models on AnoShift and
Malware respectively—both unsupervised methods. We note that
GOAD is a semi-supervised method trained solely on benign data
(as applied to the NSL-KDD dataset) thus the evaluation is trivial to
it. We fix the number of benign samples while varying the ratio of
threat samples from 1% to 20%. Table 4 shows the AUROC scores.
REACT consistently achieves higher AUROC scores across different
contamination rates than the fine-tuning baseline, showing that it
is robust to noise in training data.

6.5 Parameter-Efficient Fine-Tuning

Our framework supports parameter-efficient fine-tuning, which is
especially useful when working with large models. By incorporat-
ing adaptive weights into only a subset of the model’s parameters
and having the hypernetwork predict this subset of weights, we
can reduce the number of parameters to be fine-tuned. We con-
ducted experiments using an AutoEncoder on the AnoShift dataset
to showcase REACT’s ability in parameter-efficient fine-tuning.
Specifically, we predicted adaptive weights for either the two sym-
metric linear layers closest to the input (denoted as REACT-Inner)
or those closest to the latent representations (denoted as REACT-
Outer). Full fine-tuning of REACT is denoted as REACT-Full.
The results are shown in Figure 6. Both methods achieve better
performance compared to the baselines, although they slightly un-
derperformed compared to REACT-Full which fine-tunes all layers.
Notably, REACT-Inner achieved a 5.75% higher AUCwhile updating
94.3% fewer parameters compared to conventional full fine-tuning,
highlighting its efficiency.

6.6 Case Study

To understand how well REACT leverages contextual information,
we analyze the weights generated by the trained hypernetworks.
Specifically, we compare the adaptive biases of the last layer in
the AutoEncoder for AnoShift across different months and cal-
culate their cosine similarities. The results are presented in Fig-
ure 7 A, with warmer colors indicating higher similarity. The high
similarities around the diagonal indicate the weights generated
for each month are similar to those of nearby months. This sug-
gests that REACT effectively captures the temporal dynamics and

Cosine similarity of adaptive weights
generated by the hypernetwork

Distances between data subsets of each year(A) (B)

Figure 7: Case Study. The adaptive weights generated for each

month are similar to those of nearby months, reflecting the

data shift pattern.

smoothly adapts model weights over time. As a reference for how
data shifts, we follow the analyses in [17] to calculate distances
between data subsets of each year. Specifically, we measure the
Jeffrey’s Divergence [31] averaged over categorical features and the
Optimal Transport Dataset Distance (OTDD) [3] across all features.
As shown in Figure 7 B, data from adjacent years exhibit smaller
distances (in red). Besides, it presents block patterns where data
from 2006–2010, 2011–2013, and 2014–2015 are more similar within
their respective groups than with other years. This temporal shift
corresponds with trends in weight similarity over time. The obser-
vations also hint at the potential for detecting shifts, a research
question actively discussed in the literature [27, 37, 53]—by moni-
toring deviations in the hypernetwork’s predictions compared to
prior tasks, we may identify moments where shifts occur.

7 Conclusions

Our work sheds light on how to approach the distribution shift prob-
lem—from both meta-learning and fine-tuning perspectives. We
propose a novel framework, REACT, that decomposes the weights
of a neural network into the sum of meta and adaptive components,
following a meta-learning paradigm to train the components. By
integrating a hypernetwork to generate adaptive weights, REACT
enables knowledge sharing and adjusts weights for new distri-
butions with minimal fine-tuning effort. The framework is model-
agnostic, generally applicable to arbitrary neural networks. It works
effectively with unlabeled and imbalanced data, making it broadly
applicable to various threat detection models and objectives.

While focused on cybersecurity, the principles and methods de-
veloped in our research can be adapted to other fields facing similar
distribution shift challenges, such as finance [21, 25, 68] and health-
care [32, 36, 58]. Our study provides insights for studies in the
general machine learning community, fostering a more comprehen-
sive understanding of adaptation and fine-tuning by showcasing
applications in cybersecurity. One of the future directions is to
incorporate a lightweight mechanism for updating the meta model
within our framework. A potential solution could involve applying
aggregation of the predicted adaptive weights into the meta model.
This approach could enhance the framework’s ability to continu-
ously adapt to evolving distributions, especially for scenarios with
significant distribution shifts over long period of time.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

REACT: Residual-Adaptive Contextual Tuning for Fast Model Adaptation in Threat Detection
WWW ’25, Sydney, Australia,

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Charu C Aggarwal and Charu C Aggarwal. 2017. An introduction to outlier

analysis. Springer.
[2] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and Amit Bermano. 2022.

Hyperstyle: Stylegan inversion with hypernetworks for real image editing. In
Proceedings of the IEEE/CVF conference on computer Vision and pattern recognition.
18511–18521.

[3] David Alvarez-Melis and Nicolo Fusi. 2020. Geometric dataset distances via
optimal transport. Advances in Neural Information Processing Systems 33 (2020),
21428–21439.

[4] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.
2022. Transcending transcend: Revisiting malware classification in the presence
of concept drift. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
805–823.

[5] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,
and Jennifer Wortman Vaughan. 2010. A theory of learning from different
domains. Machine learning 79 (2010), 151–175.

[6] Sidahmed Benabderrahmane, Ghita Berrada, James Cheney, and Petko Valtchev.
2021. A rule mining-based advanced persistent threats detection system. arXiv
preprint arXiv:2105.10053 (2021).

[7] Liron Bergman and Yedid Hoshen. 2020. Classification-based anomaly detection
for general data. arXiv preprint arXiv:2005.02359 (2020).

[8] David Bonet, Daniel Mas Montserrat, Xavier Giró-i Nieto, and Alexander G
Ioannidis. 2024. HyperFast: Instant Classification for Tabular Data. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 38. 11114–11123.

[9] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.
LOF: identifying density-based local outliers. In Proceedings of the 2000 ACM

SIGMOD international conference on Management of data. 93–104.
[10] João Carvalho, Mengtao Zhang, Robin Geyer, Carlos Cotrini, and Joachim M

Buhmann. 2023. Invariant anomaly detection under distribution shifts: a causal
perspective. Advances in Neural Information Processing Systems 36 (2023).

[11] Sumohana Channappayya, Bheemarjuna Reddy Tamma, et al. 2024. Augmented
Memory Replay-based Continual Learning Approaches for Network Intrusion
Detection. Advances in Neural Information Processing Systems 36 (2024).

[12] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajan-
than, Puneet K Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. 2019. On
tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486
(2019).

[13] Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A
Clifton. 2023. A brief review of hypernetworks in deep learning. arXiv preprint
arXiv:2306.06955 (2023).

[14] Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan
Yu. 2020. Recall and learn: Fine-tuning deep pretrained language models with
less forgetting. arXiv preprint arXiv:2004.12651 (2020).

[15] Hua Ding, Lixing Chen, Shenghong Li, Yang Bai, Pan Zhou, and Zhe Qu. 2024.
Divide, Conquer, and Coalesce: Meta Parallel Graph Neural Network for IoT
Intrusion Detection at Scale. In Proceedings of the ACM on Web Conference 2024.
1656–1667.

[16] Kaize Ding, Qinghai Zhou, Hanghang Tong, and Huan Liu. 2021. Few-shot
network anomaly detection via cross-network meta-learning. In Proceedings of

the Web Conference 2021. 2448–2456.
[17] Marius Drăgoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin

Brad. 2022. AnoShift: A Distribution Shift Benchmark for Unsupervised Anom-
aly Detection. Neural Information Processing Systems NeurIPS, Datasets and

Benchmarks Track (2022).
[18] Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. 2021.

A brief review of domain adaptation. Advances in data science and information

engineering: proceedings from ICDATA 2020 and IKE 2020 (2021), 877–894.
[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-

learning for fast adaptation of deep networks. In International conference on

machine learning. PMLR, 1126–1135.
[20] Ahmed Frikha, Denis Krompaß, Hans-Georg Köpken, and Volker Tresp. 2021.

Few-shot one-class classification via meta-learning. In Proceedings of the AAAI

conference on artificial intelligence, Vol. 35. 7448–7456.
[21] Isaac Gibbs and Emmanuel Candes. 2021. Adaptive conformal inference under

distribution shift. Advances in Neural Information Processing Systems 34 (2021),
1660–1672.

[22] Adam Goodge, Bryan Hooi, See-Kiong Ng, and Wee Siong Ng. 2022. Lunar: Uni-
fying local outlier detection methods via graph neural networks. In Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 36. 6737–6745.
[23] Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borg-

wardt, and Bernhard Schölkopf. 2008. Covariate shift by kernel mean matching.
(2008).

[24] Shurui Gui, Xiner Li, and Shuiwang Ji. 2024. Active test-time adaptation: Theo-
retical analyses and an algorithm. arXiv preprint arXiv:2404.05094 (2024).

[25] Yue Guo, Chenxi Hu, and Yi Yang. 2023. Predict the Future from the Past? On
the Temporal Data Distribution Shift in Financial Sentiment Classifications. In

Proceedings of the 2023 Conference on Empirical Methods in Natural Language

Processing. 1029–1038.
[26] David Ha, Andrew Dai, and Quoc V Le. 2016. Hypernetworks. arXiv preprint

arXiv:1609.09106 (2016).
[27] Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han

Zhang, Zhihua Wang, Minghui Jin, Jiahai Yang, et al. 2023. Anomaly Detection
in the Open World: Normality Shift Detection, Explanation, and Adaptation.. In
NDSS.

[28] Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. 2022. Ad-
bench: Anomaly detection benchmark. Advances in Neural Information Processing

Systems 35 (2022), 32142–32159.
[29] Zhongzhan Huang, Mingfu Liang, Shanshan Zhong, and Liang Lin. [n. d.]. AttNS:

Attention-Inspired Numerical Solving For Limited Data Scenarios. In Forty-first

International Conference on Machine Learning.
[30] Ngoc Anh Huynh, Wee Keong Ng, and Kanishka Ariyapala. 2017. A new adaptive

learning algorithm and its application to online malware detection. In Discovery

Science: 20th International Conference, DS 2017, Kyoto, Japan, October 15–17, 2017,

Proceedings 20. Springer, 18–32.
[31] Harold Jeffreys. 1946. An invariant form for the prior probability in estimation

problems. Proceedings of the Royal Society of London. Series A. Mathematical and

Physical Sciences 186, 1007 (1946), 453–461.
[32] Xiayan Ji, Hyonyoung Choi, Oleg Sokolsky, and Insup Lee. 2023. Incremental

anomaly detectionwith guarantee in the internet ofmedical things. In Proceedings
of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation.
327–339.

[33] Peng Jia, Shaofeng Cai, Beng Chin Ooi, Pinghui Wang, and Yiyuan Xiong. 2023.
Robust and transferable log-based anomaly detection. Proceedings of the ACM
on Management of Data 1, 1 (2023), 1–26.

[34] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting concept drift
in malware classification models. In 26th USENIX security symposium (USENIX

security 17). 625–642.
[35] Dongmin Kim, Sunghyun Park, and Jaegul Choo. 2024. When Model Meets

New Normals: Test-Time Adaptation for Unsupervised Time-Series Anomaly
Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38.
13113–13121.

[36] Leo Klarner, Tim GJ Rudner, Michael Reutlinger, Torsten Schindler, Garrett M
Morris, Charlotte Deane, and Yee Whye Teh. 2023. Drug discovery under covari-
ate shift with domain-informed prior distributions over functions. In International
Conference on Machine Learning. PMLR, 17176–17197.

[37] Sean Kulinski, Saurabh Bagchi, and David I. Inouye. 2021. Feature Shift Detection:
LocalizingWhich Features Have Shifted via Conditional Distribution Tests. ArXiv
abs/2107.06929 (2021). https://api.semanticscholar.org/CorpusID:224344377

[38] Atsutoshi Kumagai, Tomoharu Iwata, Hiroshi Takahashi, and Yasuhiro Fujiwara.
2023. Meta-learning for Robust Anomaly Detection. In International Conference

on Artificial Intelligence and Statistics. PMLR, 675–691.
[39] Yann LeCun, Koray Kavukcuoglu, and Clement Farabet. 2010. Convolutional

networks and applications in vision. In Proceedings of 2010 IEEE International

Symposium on Circuits and Systems. 253–256. https://doi.org/10.1109/ISCAS.
2010.5537907

[40] Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, and Stephan
Mandt. 2023. Zero-shot anomaly detection via batch normalization. Advances in
Neural Information Processing Systems 36 (2023).

[41] Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. 2024. Revisiting
Catastrophic Forgetting in Large Language Model Tuning. arXiv preprint

arXiv:2406.04836 (2024).
[42] Heng Li, Shiyao Zhou, Wei Yuan, Xiapu Luo, Cuiying Gao, and Shuiyan Chen.

2021. Robust android malware detection against adversarial example attacks. In
Proceedings of the Web Conference 2021. 3603–3612.

[43] Yuxin Li, Wenchao Chen, Bo Chen, Dongsheng Wang, Long Tian, and Mingyuan
Zhou. 2023. Prototype-oriented unsupervised anomaly detection for multivariate
time series. In International Conference onMachine Learning. PMLR, 19407–19424.

[44] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. 2020. COPOD:
copula-based outlier detection. In 2020 IEEE international conference on data

mining (ICDM). IEEE, 1118–1123.
[45] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George H

Chen. 2022. Ecod: Unsupervised outlier detection using empirical cumulative
distribution functions. IEEE Transactions on Knowledge and Data Engineering 35,
12 (2022), 12181–12193.

[46] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008

eighth ieee international conference on data mining. IEEE, 413–422.
[47] Liu Liu, Olivier De Vel, Chao Chen, Jun Zhang, and Yang Xiang. 2018. Anomaly-

based insider threat detection using deep autoencoders. In 2018 IEEE international
conference on data mining workshops (ICDMW). IEEE, 39–48.

[48] Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges El Fakhri, Je-
Won Kang, Jonghye Woo, et al. 2022. Deep unsupervised domain adaptation: A
review of recent advances and perspectives. APSIPA Transactions on Signal and

Information Processing 11, 1 (2022).

9

https://api.semanticscholar.org/CorpusID:224344377
https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1109/ISCAS.2010.5537907

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, Sydney, Australia,
Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[49] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Hen-
derson. 2021. Parameter-efficient multi-task fine-tuning for transformers via
shared hypernetworks. arXiv preprint arXiv:2106.04489 (2021).

[50] Yuren Mao, Yaobo Liang, Nan Duan, Haobo Wang, Kai Wang, Lu Chen, and
Yunjun Gao. 2022. Less-forgetting Multi-lingual Fine-tuning. Advances in Neural

Information Processing Systems 35 (2022), 14917–14928.
[51] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and

Lorenzo Cavallaro. 2019. {TESSERACT}: Eliminating experimental bias in
malware classification across space and time. In 28th USENIX security symposium

(USENIX Security 19). 729–746.
[52] Tomáš Pevnỳ. 2016. Loda: Lightweight on-line detector of anomalies. Machine

Learning 102 (2016), 275–304.
[53] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. 2019. Failing

loudly: An empirical study of methods for detecting dataset shift. Advances in
Neural Information Processing Systems 32 (2019).

[54] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient algo-
rithms for mining outliers from large data sets. In Proceedings of the 2000 ACM

SIGMOD international conference on Management of data. 427–438.
[55] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:

towards real-time object detection with region proposal networks. In Proceedings

of the 28th International Conference on Neural Information Processing Systems -

Volume 1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 91–99.
[56] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed

Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep
one-class classification. In International conference on machine learning. PMLR,
4393–4402.

[57] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. 2001. Estimating the support of a high-dimensional distribution.
Neural computation 13, 7 (2001), 1443–1471.

[58] Jessica Schrouff, Natalie Harris, Sanmi Koyejo, Ibrahim M Alabdulmohsin, Eva
Schnider, Krista Opsahl-Ong, Alexander Brown, Subhrajit Roy, Diana Mincu,
Christina Chen, et al. 2022. Diagnosing failures of fairness transfer across
distribution shift in real-world medical settings. Advances in Neural Information

Processing Systems 35 (2022), 19304–19318.
[59] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. 2021. Personalized

federated learning using hypernetworks. In International Conference on Machine

Learning. PMLR, 9489–9502.
[60] Kendrick Shen, Robbie M Jones, Ananya Kumar, Sang Michael Xie, Jeff Z

HaoChen, Tengyu Ma, and Percy Liang. 2022. Connect, not collapse: Explain-
ing contrastive learning for unsupervised domain adaptation. In International

conference on machine learning. PMLR, 19847–19878.
[61] Petar Stojanov, Zijian Li, Mingming Gong, Ruichu Cai, Jaime Carbonell, and Kun

Zhang. 2021. Domain adaptation with invariant representation learning: What
transformations to learn? Advances in Neural Information Processing Systems 34
(2021), 24791–24803.

[62] Zachariah Sutton, Peter Willett, and Yaakov Bar-Shalom. 2018. Modeling and
detection of evolving threats using random finite set statistics. In 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 4319–4323.

[63] Korawat Tanwisuth, Xinjie Fan, Huangjie Zheng, Shujian Zhang, Hao Zhang,
Bo Chen, and Mingyuan Zhou. 2021. A prototype-oriented framework for
unsupervised domain adaptation. Advances in Neural Information Processing

Systems 34 (2021), 17194–17208.
[64] Mahbod Tavallaee, EbrahimBagheri,Wei Lu, andAli AGhorbani. 2009. A detailed

analysis of the KDD CUP 99 data set. In 2009 IEEE symposium on computational

intelligence for security and defense applications. Ieee, 1–6.
[65] Sebastian Thrun and Lorien Pratt. 1998. Learning to learn: Introduction and

overview. In Learning to learn. Springer, 3–17.
[66] Cheng-Hao Tu, Hong-You Chen, Zheda Mai, Jike Zhong, Vardaan Pahuja, Tanya

Berger-Wolf, Song Gao, Charles Stewart, Yu Su, and Wei-Lun Harry Chao. 2024.
Holistic transfer: towards non-disruptive fine-tuning with partial target data.
Advances in Neural Information Processing Systems 36 (2024).

[67] A Vaswani. 2017. Attention is all you need. Advances in Neural Information

Processing Systems (2017).
[68] Chen Wang, Ziwei Fan, Liangwei Yang, Mingdai Yang, Xiaolong Liu, Zhiwei Liu,

and Philip Yu. 2024. Pre-Training with Transferable Attention for Addressing
Market Shifts in Cross-Market Sequential Recommendation. In Proceedings of

the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
2970–2979.

[69] Hao Wang. 2024. Improving Neural Network Generalization on Data-limited
Regression with Doubly-Robust Boosting. In Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 38. 20821–20829.
[70] Ze Wang, Yipin Zhou, Rui Wang, Tsung-Yu Lin, Ashish Shah, and Ser Nam Lim.

2022. Few-shot fast-adaptive anomaly detection. Advances in Neural Information

Processing Systems 35 (2022), 4957–4970.
[71] Garrett Wilson and Diane J Cook. 2020. A survey of unsupervised deep domain

adaptation. ACM Transactions on Intelligent Systems and Technology (TIST) 11, 5
(2020), 1–46.

[72] Shuo Yang, Xinran Zheng, Jinze Li, Jinfeng Xu, XingjunWang, and Edith CHNgai.
2024. ReCDA: Concept Drift Adaptation with Representation Enhancement for
Network Intrusion Detection. In Proceedings of the 30th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining. 3818–3828.
[73] Shuhan Yuan, Panpan Zheng, Xintao Wu, and Hanghang Tong. 2020. Few-shot

insider threat detection. In Proceedings of the 29th ACM International Conference

on Information & Knowledge Management. 2289–2292.
[74] Hai Zhang, Chunwei Wu, Guitao Cao, Hailing Wang, and Wenming Cao. 2024.

HyperEditor: Achieving Both Authenticity and Cross-Domain Capability in
Image Editing via Hypernetworks. In Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 38. 7051–7059.
[75] Jiayun Zhang, Shuheng Li, Haiyu Huang, Zihan Wang, Xiaohan Fu, Dezhi Hong,

Rajesh K Gupta, and Jingbo Shang. 2024. How Few Davids Improve One Goliath:
Federated Learning in Resource-Skewed Edge Computing Environments. In
Proceedings of the ACM on Web Conference 2024. 2976–2985.

[76] Jiayun Zhang, Xinyang Zhang, Dezhi Hong, Rajesh K Gupta, and Jingbo Shang.
2023. Minimally Supervised Contextual Inference from Human Mobility: An
Iterative Collaborative Distillation Framework.. In IJCAI. 2450–2458.

[77] Yong Zhong, Hongtao Liu, Xiaodong Liu, Fan Bao, Weiran Shen, and Chongxuan
Li. 2022. Deep generative modeling on limited data with regularization by
nontransferable pre-trained models. arXiv preprint arXiv:2208.14133 (2022).

[78] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model
for unsupervised anomaly detection. In International conference on learning

representations.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

REACT: Residual-Adaptive Contextual Tuning for Fast Model Adaptation in Threat Detection
WWW ’25, Sydney, Australia,

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A Appendix

A.1 Backbone Models and Implementation

Details

• AutoEncoder (AE) [1]: is an unsupervised model trained to
reconstruct the input through an encoder-decoder structure. The
key idea is that, threat samples, appearing less frequently, tend to
have larger reconstruction losses, making them distinguishable
by observing the loss. We implement the AutoEncoder with four
linear layers followed by ReLU activation. These layers project
the data into [64, 32, 64]-dimensional features and finally map
the features to the original data dimension. Cross-entropy loss
is applied to categorical features, and mean-square error is used
for numerical features.

• DeepSVDD (DSVDD) [56]: is an unsupervised model which
encodes data into feature representations and measures their
distances from a learnable center. The encoder is a multi-layer
perception (MLP) consists of two linear layers with ReLU acti-
vation, mapping data to representations of dimension [64, 32].
Similar to the AutoEncoder, threat samples tend to have larger
distances from the center. The smooth L1 loss [55] is used to
measure the distances for its robustness against outliers.

• GOAD [7]: is a semi-supervised model that applies multiple
transformations to the input data and uses a convolutional neu-
ral network (CNN) [39] to extract feature representations. We
implement a 5-layer CNN with kernel size of 1. The loss function
has two components: a center triplet loss, which measures the
distance between the learned representations and their mean,
and a cross-entropy loss for predicting which transformation
was applied to the data.

A.2 Convergence Analysis On REACT

In this section, we provide convergence analysis of REACT on linear
models under the premise of Theorem 1. That the models ℎ and
𝑓 admit the form (4), the adaptive weights are updated by exactly
solving Eq. 1 and relevant datasets are sampled at the beginning of
the algorithm and fixed throughout the iterations.

Based on Eq. (4), we consider the following objective function in
the analysis.

L(𝑓 (𝑋 ;𝜃meta, 𝜃adapt)) =
1
2
∥ 𝑓 (𝑋 ;𝜃meta, 𝜃adapt) −𝑌 ∥2 +

𝜆

2
∥𝜃adapt∥2,

which consists of a mean squared error and a L2 regularization for
the adaptive weights (see Section 4.2). 𝑌 is the target associated
with the input data in the loss function. It can have different forms
according to the underlying target model. For example, it can be the
input data for reconstruction loss, center of samples for methods
like DeepSVDD, or labels of samples in cases of supervised or semi-
supervised learning.

Without loss of generality we are going to set 𝜃 ∈ R𝑑1 and
𝜙 ∈ R𝑑2 for some 𝑑1, 𝑑2 > 0. Notice that this assumption can be
generalized by considering vectorization of the matrix product and
hence our results in this proof can easily be extended to more
generic output spaces. We also note that the assumption that the
datasets have uncorrelated constant variance, i.e. (𝑋 𝑖)⊤ (𝑋 𝑖) = 𝜎𝑖 𝐼
is to make the computations in the proof easier. The results in the

proof can be relaxed to bounded norm, i.e. ∥𝑋 𝑖 ∥2 ≤ 𝜎𝑖 where ∥ .∥2
is L-2 norm on the matrix space.

We restate the theorem here.

Theorem 1. Consider REACT on the linear model in (4)with Eq. (1)
being solved exactly. Let 𝑋 𝑖𝑠 and 𝑋

𝑖
𝑞 satisfy (𝑋 𝑖𝑠)⊤𝑋 𝑖𝑠 = (𝑋 𝑖𝑞)⊤𝑋 𝑖𝑞 =

𝜎𝑖 𝐼 for each task 𝑖 ∈ {1, .., 𝑀}, where 𝜎𝑖 are the variances and 𝐼 is the
identitymatrix. Learning rates are chosen as𝜂meta < 1/∑𝑀

𝑖=1 𝜎𝑖𝜆/(𝜎𝑖+
𝜆) and𝜂ℎ < 1/max

(∑𝑛ℎ
𝑗=1 𝜎 𝑗 (𝜎 𝑗 + 𝜆), ∥X𝑠 ∥

)
whereX𝑠 =

∑𝑀
𝑗=1 𝜎 𝑗 (𝑋

𝑗
𝑠)⊤.

Then, for any 𝜀 > 0, there exists

𝐾 = O
(
log1/𝜌meta

(1/𝜀) + log1/𝜌ℎ (1/𝜀)
)

for 𝜌meta = 1−𝜂meta

∑𝑀
𝑖=1 𝜎𝑖𝜆/(𝜎𝑖 +𝜆) and 𝜌ℎ = 1−𝜂ℎ

∑𝑀
𝑗=1 𝜎 𝑗 (𝜎 𝑗 +

𝜆) such that the 𝐾-iteration of Algorithm 1 satisfies

∥𝜃𝐾 − 𝜃∗∥ ≤ 𝜀, and ∥𝜙𝐾 − 𝜙∗∥ ≤ 𝜀,

where 𝜃∗ and 𝜙∗ are stationary points of the algorithm.

Proof. We prove the result following the steps in Algorithm 1.
Let 𝜃𝑖,𝑘adapt be the fine-tuned adaptive weights of task 𝑖 computed

by REACT algorithm at 𝑘-th iteration and similarly, 𝜙𝑘 denote
the hypernetwork parameters, and 𝜃𝑘meta be the meta weights at
iteration 𝑘 of REACT.
Task fine-tuning: The exact intermediate updates defined in (1)
can be rewritten as follows.

𝜃
𝑖,𝑘+1
adapt = argmin

𝜃

1
2
∥𝑋 𝑖𝑠 (𝜃𝑘meta + 𝜃) − 𝑌 𝑖𝑠 ∥2 +

𝜆

2
∥𝜃 ∥2

Setting gradient to zero, we have

0 = (𝑋 𝑖𝑠)⊤𝑋 𝑖𝑠 (𝜃
𝑖,𝑘+1
adapt + 𝜃

𝑘
meta) − (𝑋 𝑖𝑠)⊤𝑌 𝑖𝑠 + 𝜆𝜃

𝑖,𝑘+1
adapt,

where 0 is the vector of all zeros. This implies

𝜃
𝑖,𝑘+1
adapt =

1
𝜎𝑖 + 𝜆

(𝑋 𝑖𝑠)⊤𝑌 𝑖𝑠 −
𝜎𝑖

𝜎𝑖 + 𝜆
𝜃𝑘meta, (5)

where we used the fact that (𝑋 𝑖𝑠)⊤𝑋 𝑖𝑠 = 𝜎𝑖 𝐼 .
Meta weight update: Next, we consider the gradient update of
meta weight in (2). The gradient with respect to 𝜃meta is

∇𝜃meta

∑︁
𝑥∈D𝑖

query

L
(
𝑓 (𝑥 ;𝜃meta, 𝜃

𝑖,𝑘+1
adapt)

)���
𝜃𝑘meta

= (𝑋 𝑖𝑞)⊤𝑋 𝑖𝑞
(
𝜃𝑘meta + 𝜃

𝑖,𝑘+1
adapt

)
− (𝑋 𝑖𝑞)⊤𝑌 𝑖𝑞

= 𝜎𝑖

(
𝜆

𝜎𝑖 + 𝜆
𝜃𝑘meta +

1
𝜎𝑖 + 𝜆

(𝑋 𝑖𝑠)⊤𝑌 𝑖𝑠
)
− (𝑋 𝑖𝑞)⊤𝑌 𝑖𝑞,

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, Sydney, Australia,
Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

where the last equality is given by (5) and the assumption in data
covariance matrix. Therefore, the gradient update step is

𝜃𝑘+1meta = 𝜃
𝑘
meta − 𝜂meta

𝑀∑︁
𝑖=1

∑︁
𝑥∈D𝑖

query

∇𝜃metaL
(
𝑓 (𝑥 ;𝜃𝑘meta, 𝜃

𝑖,𝑘+1
adapt))

)
= 𝜃𝑘meta − 𝜂meta

𝑀∑︁
𝑖=1

𝜎𝑖

(
𝜆

𝜎𝑖 + 𝜆
𝜃𝑘meta +

1
𝜎𝑖 + 𝜆

(𝑋 𝑖𝑠)⊤𝑌 𝑖𝑠
)
− (𝑋 𝑖𝑞)⊤𝑌 𝑖𝑞

=

(
1 − 𝜂meta

𝑀∑︁
𝑖=1

𝜎𝑖𝜆

𝜎𝑖 + 𝜆

)
𝜃𝑘meta

− 𝜂meta

𝑀∑︁
𝑖=1

𝜎𝑖

𝜎𝑖 + 𝜆
(𝑋 𝑖𝑠)⊤𝑌 𝑖𝑠 − (𝑋 𝑖𝑞)⊤𝑌 𝑖𝑞

Let us introduce 𝜌meta = 1−𝜂meta
∑𝑀
𝑖=1 𝜎𝑖𝜆/(𝜎𝑖 +𝜆), and choose

learning rate 0 < 𝜂meta < 1/∑𝑀
𝑖=1 𝜎𝑖𝜆/(𝜎𝑖 +𝜆) so that 0 < 𝜌meta < 1.

The stationary point 𝜃∗meta should satisfy

𝜃∗meta =

(
1 − 𝜂meta

𝑀∑︁
𝑖=1

𝜎𝑖𝜆

𝜎𝑖 + 𝜆

)
𝜃∗meta

− 𝜂meta

𝑀∑︁
𝑖=1

𝜎𝑖

𝜎𝑖 + 𝜆
(𝑋 𝑖𝑠)⊤𝑌 𝑖𝑠 − (𝑋 𝑖𝑞)⊤𝑌 𝑖𝑞 .

Thus, we obtain

(𝜃𝑘+1meta − 𝜃∗meta) = 𝜌meta (𝜃𝑘meta − 𝜃∗meta)

yielding,

∥𝜃𝑘+1meta−𝜃∗meta∥ ≤ 𝜌meta∥𝜃𝑘meta−𝜃∗meta∥ ≤ · · · ≤ 𝜌𝑘+1meta∥𝜃0meta−𝜃∗meta∥.
(6)

Hypernetwork update: Lastly, the gradient of the objective func-
tion update with respect to 𝜙𝑘 is

∇𝜙
∑︁

𝑥∈D𝑗
query

L
(
𝑓 (𝑥 ;𝜃𝑘+1meta, ℎ(𝑋

𝑗
𝑠 ;𝜙))

)���
𝜙𝑘

=

(
𝑋
𝑗
𝑞𝑋

𝑗
𝑠

)⊤ (
𝑋
𝑗
𝑞𝑋

𝑗
𝑠 𝜙

𝑘 + 𝑋 𝑗𝑞𝜃𝑘+1meta

)
−

(
𝑋
𝑗
𝑞𝑋

𝑗
𝑠

)⊤
𝑌
𝑗
𝑞 + 𝜆(𝑋

𝑗
𝑠)⊤𝑋

𝑗
𝑠 𝜙

𝑘

= 𝜎 𝑗 (𝜎 𝑗 + 𝜆)𝜙𝑘 + 𝜎 𝑗 (𝑋 𝑗𝑠)⊤𝜃𝑘+1meta −
(
𝑋
𝑗
𝑞𝑋

𝑗
𝑠

)⊤
𝑌
𝑗
𝑞

Thus, the update (3) can be written as

𝜙𝑘+1 = 𝜙𝑘 − 𝜂ℎ
𝑛ℎ∑︁
𝑗=1

∑︁
𝑥∈D𝑗

query

∇𝜙L
(
𝑓 (𝑥 ;𝜃𝑘+1meta, ℎ(𝑋

𝑗
𝑠 ;𝜙))

)
= (1 − 𝜂ℎ

𝑀∑︁
𝑗=1

𝜎 𝑗 (𝜎 𝑗 + 𝜆))𝜙𝑘

− 𝜂ℎ

(
𝑀∑︁
𝑖=1

𝜎 𝑗 (𝑋 𝑗𝑠)⊤
)
𝜃𝑘+1meta + 𝜂ℎ

𝑀∑︁
𝑖=1

(
𝑋
𝑗
𝑞𝑋

𝑗
𝑠

)⊤
𝑌
𝑗
𝑞

where the last equality follows from (𝑋 𝑗𝑞)⊤𝑋
𝑗
𝑞 = (𝑋 𝑗𝑠)⊤𝑋

𝑗
𝑠 = 𝜎 𝑗 𝐼 .

Notice that the choice of learning rate 𝜂ℎ implies 0 < 𝜂ℎ <

1/max
(∑𝑛ℎ

𝑗=1 𝜎 𝑗 (𝜎 𝑗 + 𝜆), ∥X𝑠 ∥
)
so that the rate 𝜌ℎ and X𝑠 satisfy

0 < 𝜌ℎ < 1 and 0 < 𝜂ℎ ∥X𝑠 ∥ < 1. On the other hand, the stationary

points 𝜙∗ and 𝜃∗ satisfy

𝜙∗ = 𝜌ℎ𝜙
∗ − 𝜂ℎX𝑠𝜃∗meta + 𝜂ℎ

𝑀∑︁
𝑖=1

(
𝑋
𝑗
𝑞𝑋

𝑗
𝑠

)⊤
𝑌
𝑗
𝑞

yielding

𝜙𝑘+1 − 𝜙∗ = 𝜌ℎ (𝜙𝑘 − 𝜙∗) − 𝜂ℎX𝑠 (𝜃𝑘+1meta − 𝜃∗meta)
and

∥𝜙𝑘+1 − 𝜙∗∥ ≤ 𝜌ℎ ∥𝜙𝑘 − 𝜙∗∥ + 𝜂ℎ ∥X𝑠 ∥∥𝜃𝑘+1meta − 𝜃∗meta∥ (7)

Convergence: With (6), we can show that for 𝑘 ≥ 𝐾meta =

log1/𝜌𝑚 (1/𝜀) + log1/𝜌𝑚 (∥𝜃
0
meta − 𝜃∗meta∥), we have

∥𝜃𝑘meta − 𝜃∗meta∥ ≤ 𝜀.
Similarly, from (7), we get

∥𝜙𝑘 − 𝜙∗∥ ≤ 𝜌ℎ ∥𝜙𝑘−1 − 𝜙∗∥ + 𝜂ℎ ∥X𝑠 ∥∥𝜃𝑘meta − 𝜃∗meta∥

≤ 𝜌ℎ ∥𝜙𝑘−1 − 𝜙∗∥ + 𝜂ℎ ∥X𝑠 ∥𝜌𝑘meta∥𝜃0meta − 𝜃∗meta∥

≤ 𝜌2
ℎ
∥𝜙𝑘−2 − 𝜙∗∥ + 𝜂ℎ ∥X𝑠 ∥∥𝜃0meta − 𝜃∗meta∥

[
𝜌𝑘meta + 𝜌ℎ𝜌𝑘−1meta

]
. . .

≤ 𝜌𝑘
ℎ
∥𝜙0 − 𝜙∗∥ +

𝜌meta𝜂ℎ ∥X𝑠 ∥∥𝜃0meta − 𝜃∗meta∥
𝜌meta − 𝜌ℎ

(𝜌𝑘meta − 𝜌𝑘ℎ),

where we used (6) in the second inequality. Therefore, for any 𝑘
satisfies

𝑘 ≥ 𝐾ℎ
= log1/𝜌ℎ (2/𝜀) + log1/𝜌ℎ (∥𝜙

0 − 𝜙∗∥)

+ log1/𝜌ℎ (4/𝜀) + log1/𝜌ℎ

(
𝜌meta𝜂ℎ ∥X𝑠 ∥∥𝜃0meta − 𝜃∗meta∥

|𝜌meta − 𝜌ℎ |

)
+ log1/𝜌meta

(4/𝜀) + log1/𝜌meta

(
𝜌meta𝜂ℎ ∥X𝑠 ∥∥𝜃0meta − 𝜃∗meta∥

|𝜌meta − 𝜌ℎ |

)
,

we have
∥𝜙𝑘 − 𝜙∗∥ ≤ 𝜀

2
+ 𝜀
4
+ 𝜀
4
= 𝜀.

Therefore, we can choose

𝐾 = max (𝐾meta, 𝐾ℎ) = O
(
log1/𝜌meta

(1/𝜀) + log1/𝜌ℎ (1/𝜀)
)

This completes the proof.
□

12

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Meta-Learning
	3.3 HyperNetwork

	4 The REACT Framework
	4.1 Weight Decomposition
	4.2 Residual-Adaptive Weight Generation with Hypernetwork
	4.3 Alternating Optimization
	4.4 Adapting to New Distributions

	5 Analysis
	6 Experiments
	6.1 Experiment Setup
	6.2 Main Results and Analysis
	6.3 Ablation Studies
	6.4 Sensitivity Analyses
	6.5 Parameter-Efficient Fine-Tuning
	6.6 Case Study

	7 Conclusions
	References
	A Appendix
	A.1 Backbone Models and Implementation Details
	A.2 Convergence Analysis On REACT

