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Abstract

We prove that the medial axis of closed sets is Hausdorff stable in the following1

sense: Let S ⊆ Rd be a fixed closed set that contains a bounding sphere. Consider2

the space of C1,1 diffeomorphisms of Rd to itself, which keep the bounding3

sphere invariant. The map from this space of diffeomorphisms (endowed with a4

Banach norm) to the space of closed subsets of Rd (endowed with the Hausdorff5

distance), mapping a diffeomorphism F to the closure of the medial axis of F (S),6

is Lipschitz.7

This extends a previous stability result of Chazal and Soufflet on the stability of8

the medial axis of C2 manifolds under C2 ambient diffeomorphisms.9

1 Introduction10

In [19], Federer introduced the reach of a (closed) set S ⊂ Rd as the infimum over all points in S of11

the distance from these points to the medial axis ax(S), the set of points in Rd for which the closest12

point in S is not unique. Federer also introduced the reach at a point p ∈ S to be the distance from p13

to the medial axis of S. We now call this quantity the local feature size [3] and denote it by lfs(p).14

Federer proved that the reach is stable under C1,1 diffeomorphisms of the ambient space. Here, a15

C1,1 map is a C1 map whose derivative is Lipschitz, and a C1,1 diffeomorphism is a C1,1 bijective16

map whose inverse is also C1,1. Chazal and Soufflet [13] proved that the medial axis is stable with17

respect to the Hausdorff distance under ambient diffeomorphisms, but under stronger assumptions18

than the work of Federer, namely assuming that S is a C2 manifold and the distortion is a C2 diffeo-19

morphism of the ambient space. Chazal and Soufflet based their work on earlier results by Blaschke20

[9], which were not as strong as Federer’s.21

In this paper we extend the stability result of the medial axis. More concretely, we generalize the22

result of Chazal and Soufflet [13] to arbitrary closed sets and C1,1 diffeomorphisms of the ambient23

space; we show that the Hausdorff distance between the medial axes of the closed set and its image is24

bounded in terms of Lipschitz constants stemming from the diffeomorphism of the ambient space.25

Our result follows from the work of Federer [19] and in fact shortens the proof in [13] significantly.26

Our bounds on the Hausdorff distance say nothing about the topology of the medial axis, which is27

known to be highly unstable (see e.g. [5]), although it preserves the homotopy type (see [28]).28

Contribution and related work Our work differs from the majority of the literature in three29

essential ways:30

Firstly, we make no assumptions on the set we consider apart from that it is closed. The stability of31

the medial axis of (piecewise) smooth manifolds has been the object of intense study, see for example32
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[13, 15–17, 24, 30, 37–40]. However, the manifold assumption is impossible to achieve in many33

applications — such as in the context of astrophysics, one of the main motivations of this paper.34

Secondly, we achieve stability without pruning the medial axis. This contrasts with a large body of35

work, such as [6, 12, 16, 29]. Not having to prune the medial axis is a significant advantage. On the36

downside, we limit the changes of the considered set to those induced by ambient diffeomorphisms.37

Nevertheless, given the standard examples of the instability of the medial axis — see for example [5]38

— we believe these limitations are near to the weakest assumptions necessary for Hausdorff stability.39

Within the context of ambient homeomorphisms, the results we obtain are close to optimal, as we40

specify in Remark 4.2.41

Thirdly, our results hold for sets in arbitrary dimensions and are not sensitive to the dimension of the42

set itself. A large part of the related work only investigates sets of low dimensions or codimension43

one manifolds, although there are some notable exceptions such as [39], see also [17], and [12, 29].44

Motivation The medial axis has many real world applications — among others, in robot motion45

planning [27], triangulation algorithms [4], graphics [35], and shape recognition, segmentation, and46

learning [10, 18, 25, 33, 41]. See also the overviews [32, 35]. The reach — the distance between a47

set and its medial axis — is a central concept in manifold learning [1, 2, 20–22, 34].48

The motivation of this paper is twofold: Firstly, we tackle the following challenge from the processing49

of images collected with optical devices which use lenses — such as cameras or telescopes. A shape50

extracted from such an image may be imprecise due to the imperfection of the lenses. Our result51

implies that the medial axis of such a shape is stable under these imperfections. As a consequence,52

the outcome of any shape recognition or shape segmentation algorithm based on the medial axis will53

be stable.54

In addition to the disciplines listed above, such stability is sought after in astrophysics, in particular55

for shape analysis and automated shape identification in observational astronomy. Observational56

astronomers are interested in reconstructing objects like stars or galaxies, and their place in the57

universe from data gathered by telescopes. They can deduce the distance from the object to the58

observer thanks to so-called standard candles or red shift [14, 23, 31]. However, the image gets59

distorted due to optical effects — either through gravitational lensing ([7]) or lensing inside the60

telescope itself ([36]).61

Such a distortion can be modeled as a diffeomorphism of the ambient space. At the same time, this62

problem cannot be tackled using the result by Chazal and Soufflet [13], since the observed objects63

might not be smooth — for example due to interactions with shock waves or jets. In addition, with64

our method astrophysicists can not only reconstruct objects in space (3D), but also in spacetime (4D).65

The second motivation is more formal in nature: The stability of the medial axis is instrumental in66

establishing its computability. Indeed, when proving properties of algorithms based on the medial67

axis, authors generally assume the real RAM model.1 However, as was recently argued in [29], the68

medial axis needs to be stable in order to be computable in more realistic models of computation.69

There is a more practical component to this formal question: It is not a priori clear if using possibly70

noisy real world data or the output of other computer programs as input for these algorithms yields71

answers that are close to the ground truth. To be able to prove that the output is correct, we need72

(numerical) stability of the medial axis.73

Outline After revisiting preliminaries and known results in Section 2, we state the main stability74

result in Section 3. In Section 4 we reformulate this result in terms of norms on Banach spaces. This75

also exhibits the fact that the stability of the medial axis is Lipschitz in the following sense: We think76

of the set S as fixed and consider the map from the space of diffeomorphisms (endowed with a norm77

which makes it a Banach space) to the space of closed subsets of Rd (endowed with the Hausdorff78

distance), mapping each diffeomorphism F : Rd → Rd to the closure of the medial axis of F (S).79

The Lipschitz constant then only depends on the diameter of the bounding sphere of the set S.80

1The real RAM model is a standard, albeit non-realistic, assumption in Computational Geometry. It assumes
one can calculate precisely with real numbers, instead of using 0s and 1s (which is the usual assumption in
computer science).
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We only include proof sketches of the two main theorems in this article. The full proofs of the81

theorems and of the supporting lemmas, can be found in the supplementary material.82

2 Preliminaries: Sets of positive reach and the closest point projection83

In this section we recall some definitions and results concerning the medial axis and sets of positive84

reach. Essentially, we need three ingredients from the literature to prove our main theorem: the85

notions related to the closest point projection, the properties of the generalized normal and tangent86

spaces, and Federer’s result on the stability of the reach under ambient diffeomorphisms.87

We write d(·, ·) for the Euclidean distance between two points, and the distance between a point and88

a set. That is, for any closed set S and point p,89

d(p,S) = inf
q∈S

d(p, q).

We denote the Hausdorff distance between two sets A,B ⊆ Rd by dH(A,B):90

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
.

We write B(c, r), resp. S(c, r), to denote balls, resp. spheres, with centre c and radius r. Lastly, |·|91

denotes the Euclidean norm, and ∥·∥ an operator norm.92

The closest point projection and related notions The projection of points in the ambient space93

Rd to the (set of) closest point(s) of the set S ⊆ Rd is denoted by πS , and illustrated in Figure 1.94

Figure 1: The closest point projection to the set S of four points in R2. When a point lies on the medial axis
ax(S), the closest point projection consists of more points.

The medial axis of S is the set of all points p ∈ Rd where the set πS(p) consists of more than one95

point:96

ax(S) =
{
p ∈ Rd | #πS(p) > 1

}
.

Here, #πS(p) denotes the cardinality of the set πS(p).97

For a point p ∈ S, the local feature size of p is the distance from p to the medial axis of the set S:98

lfs(p) = d(p, ax(S)).
Finally, the reach of the set S is the infimum of the local feature size over all its points:99

rch(S) = inf
p∈S

lfs(p) = inf
p∈S

d(p, ax(S)).

Throughout this paper we assume that S ⊆ Rd is a closed set. We shall further assume that the set100

S as well as its medial axis are bounded, and that the bounding sphere of S is contained in S itself.101
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More specifically, we assume that there exists a closed ball B of positive radius such that S ⊆ B,102

and ∂B ⊆ S. We call ∂B the bounding sphere of S.103

The addition of the bounding sphere ∂B to the set S is necessary to obtain the desired bound on104

the Hausdorff distance between the two medial axes of the set S and its image under the ambient105

diffeomorphism. Indeed, consider the following example, illustrated in Figure 2.106

Let the set S consist of two points in the plane, S = {p, q} ⊆ R2. The medial axis of S is then the107

bisector line of p and q. After a generic perturbation F of p and q — that is, not a translation and not a108

perturbation in the direction ±(p− q) — the bisector line ax(F (S)) of the perturbed points intersects109

the bisector ax(S) of the original pair. The Hausdorff distance between these two non-parallel lines110

is infinite, and thus unboundable.111

Figure 2: In black the set S and its medial axis, in light blue the perturbed set and its medial axis. The Hausdorff
distance between ax(S) and ax(F (S)) is infinite.

At the same time, the addition of the bounding sphere ∂B to the considered set S is not a restriction.112

Indeed,113

Remark 2.1 The medial axes of S and S \ ∂B coincide in the interior of the ball B sufficiently far114

away from its boundary ∂B. More precisely:115

• Any point x ∈ ax(S), such that πS(x) ∩ ∂B = ∅, lies on the medial axis ax(S \ ∂B).116

• Conversely, if a point x lies on the medial axis ax(S \ ∂B), and any (and thus every) point117

q ∈ πS\∂B(x) satisfies d(x, q) < d(x, ∂B), then x ∈ ax(S).118

Thus, the medial axis is locally stable if the ambient diffeomorphism is close to the identity.2119

A recurring strategy in this article is to start at a point p on the set S , move away from this point in a120

‘normal’ direction, and see if by projecting using the closest point projection πS we get back to p. To121

this end, we define the projection range.122

Definition 2.2 (Projection range) Let p ∈ S be a point and v ∈ Rd a vector. The projection range123

d(p, v, πS) in direction v is the maximal distance one can travel from p along v such that the closest124

point projection yields only the point p:125

d(p, v, πS) = sup{λ ∈ R | πS(p+ λv) = {p}}.

Since πS(p) = {p}, the projection range is canonically non-negative. Furthermore, the directions for126

which the range is positive are key to our study, because of the following property:127

Lemma 2.3 (Theorem 4.8 (6) of [19]) Consider a point p ∈ S and a vector v ∈ Rd. If128

0 < d(p, v, πS) < ∞,

then p+ d(p, v, πS) · v ∈ ax(S).129

We call these special directions v back projection vectors:130

Definition 2.4 (Unit back projection vectors) For a point p ∈ S, UBP(p,S) is the set of unit131

vectors with a positive projection range:132

UBP(p,S) =
{
u ∈ Rd | |u| = 1 and 0 < d(p, u, πS) < ∞

}
.

We further define133

UBP(S) =
{
(p, u) ∈ S × Rd

∣∣u ∈ UBP(p,S)
}
,

BP(S) =
{
(p, λu) ∈ S × Rd

∣∣ (p, u) ∈ UBP(S), λ ≥ 0
}
.

2The bounding sphere does allow one to give a relatively clean mathematical statement, see Section 4.
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Thanks to Lemma 2.3, the following map is well-defined:134

πax,S : UBP(S) → ax(S), (p, u) 7→ p+ d(p, u, πS)u. (1)

The generalized tangent and normal space Back projection vectors are intricately related to the135

generalized tangent and normal spaces.136

Definition 2.5 (Definitions 4.3 and 4.4 of [19]) Let p ∈ S. The generalized tangent space137

Tan(p,S) is the set of vectors u ∈ Rd, such that either u = 0 or, for every ε > 0 there exists138

a point q ∈ S with139

0 <|q − p| < ε and
∣∣∣∣ q − p

|q − p|
− u

|u|

∣∣∣∣ < ε.

The generalized normal space Nor(p,S) consists of vectors v ∈ Rd such that ⟨v, u⟩ ≤ 0 for all140

u ∈ Tan(p,S). Vectors contained in the generalized tangent, resp. normal, space are called tangent,141

resp. normal, to S at p.142

The generalized tangent and normal spaces are illustrated in Figure 3.143

Figure 3: The (affine) generalized tangent and normal spaces of four points in the set S ⊂ R2, in light blue and
violet, respectively.

Stability of the reach under ambient diffeomorphisms Our last ingredient is the following result144

by Federer.145

Theorem 2.6 (Stability of the reach under ambient diffeomorphisms, Theorem 4.19 of [19])146

Pick two constants 0 < t < rch(S) and s > 0. If the map147

F : {x ∈ Rd | d(x,S) < s} → Rn

is injective and continuously differentiable, and the maps F , F−1, and DF are Lipschitz continuous148

with Lipschitz constants Lip(F ), Lip(F−1), Lip(DF ), respectively, then the reach rch(F (S)) of the149

image of the set S under the map F is lower-bounded by150

rch(F (S)) ≥ min

 s

Lip(F−1)
,

1(
Lip(F )

t + Lip(DF )
)
(Lip(F−1))

2

 .

3 Stability of the medial axis under ambient diffeomorphisms151

In this section we present the main result of this paper, Theorem 3.9. This theorem extends earlier152

work by Chazal and Soufflet [13]. Its proof relies on Federer’s result on the stability of the reach,153

Theorem 2.6. To give a more geometrical interpretation we introduce the concept of a weakly tangent154

sphere and ball, and a maximal empty weakly tangent ball.155
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Definition 3.1 (Weakly tangent sphere and ball) Let p ∈ S. A sphere is called weakly tangent156

to S at p if it contains the point p and its centre lies in the (translated) generalized normal space157

Nor(p,S) + p. In other words, spheres weakly tangent to S at p are spheres with centres p+ v and158

radii |v|, for a vector v ∈ Nor(p,S).159

A ball is called weakly tangent to S at p if its boundary sphere is weakly tangent to S at p.160

Remark 3.2 Using the definition of Nor(p,S), a weakly tangent ball can also be defined as follows:161

A ball B(c, r) is weakly tangent at p if and only if its centre c and radius r satisfy162

(p+Tan(S, p)) ∩B(c, r) = {p}.

We remark:163

Lemma 3.3 Let p ∈ S and v ∈ Rd, and suppose that for some λ > 0 we have πS(p+ λv) ̸= {p}.164

Then, for all λ′ ≥ λ, we have πS(p+ λ′v) ̸= {p} and for all λ′ > λ, that p /∈ πS(p+ λ′v).165

Figure 4: Two families of balls weakly tangent to the set S ⊂ R2 (in blue). Each family contains a unique
maximal empty ball (in purple). Notice that the centre of the maximal empty ball weakly tangent at the point p1
lies at the medial axis ax(S), while the centre of the maximal empty ball weakly tangent at the point p2 only
lies at its closure, ax(S).

Lemma 3.3 essentially tells us that a family of weakly tangent balls {B(p+ λv, λ|v|)}λ≥0 contains166

at most one which is maximal with respect to inclusion among those whose interior is disjoint from167

the set S. Two such families are illustrated in Figure 4.168

We call such balls maximal empty. For the purpose of this article, we define maximal empty balls in169

terms of unit back projection vectors (Definition 2.4). To see that each maximal empty ball is indeed170

weakly tangent, we emphasise:171

Lemma 3.4 If (p, v) ∈ BP(S), then (p, v) ∈ Nor(S). That is, BP(S) ⊆ Nor(S). In particular, for172

any pair (p, u) ∈ UBP(S) and radius λ ≥ 0, the ball B(p+ λu, λ) is weakly tangent to S.173

Remark 3.5 For general closed sets, the converse of Lemma 3.4, that is, Nor(S) ⊆ BP(S), is not174

true. One counter-example is the graph of the function x 7→ |x|3/2 at the origin. However, the175

inclusion Nor(S) ⊆ BP(S) holds for sets of positive reach, thanks to Theorem 4.8 (12) of [19]176

(recalled in the supplementary material).177

Definition 3.6 (Maximal empty weakly tangent ball) Let (p, u) ∈ UBP(S). A weakly tangent178

ball B(p+ λu, λ) is called maximal empty to S if λ = d(p, u, πS), or, equivalently, if πax,S(p, u) =179

p+ λu.180

(Maximal empty) weakly tangent balls satisfy the following properties. Let (p, u) ∈ UBP(S).181

• For any radius 0 < λ ≤ d(p, u, πS), the interior of the ball B(p+ λu, λ) is disjoint from182

the set S. This follows directly from Definition 3.6 and Lemma 3.3.183

• The centres of maximal empty weakly tangent balls lie on the closure of the medial axis of184

S. This is due to Lemma 2.3 and the definition of the map πax,S (equation (1)).185
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The following lemma moreover tells us, that each point on the medial axis is a centre of a maximal186

empty weakly tangent ball.187

Lemma 3.7 (Surjectivity on ax(S)) For any point x ∈ ax(S) and p ∈ πS(x), there exists a vector188

u ∈ UBP(p,S) such that πax,S(p, u) = x. In other words, B(x, |x − p|) is a maximally empty189

weakly tangent ball. Moreover, we have that190

ax(S) ⊆ πax,S (UBP(S)) ⊆ ax(S).

We are now almost ready to state our main theorem. Before phrasing the result, we walk the reader191

through the assumptions and fix the notation on the way. The assumptions are illustrated in Figure 5.

Figure 5: The setting of Theorem 3.9.
192

Assumption 3.8193

• We assume that the set S has a bounding sphere of radius r, which we denote by S(r).194

• We consider a C1 diffeomorphism F : Rd → Rd such that the Lipschitz constants of F and195

F−1 are bounded by LF , and the Lipschitz constants of the differentials DF and DF−1196

are bounded by LDF . We call such a diffeomorphism a C1,1 diffeomorphism.197

• We further assume that the map F leaves the bounding sphere S(r) invariant, that is,198

F (S(r)) = S(r).199

• We pick a point c ∈ ax(S), a point p ∈ πS(c), and write ρ = |c − p|. Observe that since200

S ∩ ax(S) = ∅, ρ is positive. By Lemma 3.7, the ball B(c, ρ) is a maximal empty weakly201

tangent ball to S at p. Moreover, we define u = c−p
|c−p| and note that u ∈ UBP(p,S).202

• We denote the tangent hyperplane to the boundary sphere of B(c, ρ) at p by p + T . The203

hyperplane T is the orthocomplement of the vector u: T = u⊥.204

• We work with the unit vector at F (p) that points inside the image of the ball B(c, ρ) and is205

orthogonal to the hyperplane DpF (T ). We denote this vector by u′.206

Theorem 3.9 Under the above assumptions, there exists a maximal empty weakly tangent ball207

B(c′, ρ′) to the set F (S), whose boundary sphere has an internal normal u′. In particular, the208

ball B(c′, ρ′) is tangent to the affine hyperplane F (p) + DpF (T ). Its radius ρ′ is bounded by209

ρ′ ∈
[

ρ
(LF )3+ρLDF (LF )2 ,

(LF )3ρ
1−ρLDF (LF )2

]
. Assume, moreover, that the distortions of both F and DF210

are bounded, that is, for all x ∈ Rd,211

|F (x)− x| ≤ ε1, ∥DFx − Id ∥ ≤ ε2 < 1, (2)

and r · LDF (LF )
2 ≤ 1/2. Define212

CL(r, LF , LDF , ε1, ε2) =

2r

√
1 + (LF )6 (1 + 4rLDF (LF )2)

2 − 2(LF )3 (1 + 4rLDF (LF )2)
√

1− (ε2)2 + ε1

then the map πax,S satisfies213

|πax,S(p, u)− πax,F (S)(F (p), u′)| ≤ CL(r, LF , LDF , ε1, ε2).
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Thus, the Hausdorff distance between the medial axes of S and its image F (S) is bounded by214

dH(ax(S), ax(F (S))) ≤ CL(r, LF , LDF , ε1, ε2). (3)

The bound |F (x)− x| ≤ ε1 is really necessary, because we want our theorem to accommodate for215

rotations and translations, which rotate and translate the medial axis without changing distances216

and hence have Lipschitz constant 1. We further stress that if the diffeomorphism F is close to the217

identity, its Lipschitz constant satisfies LF ≥ 1, because by assumption F leaves the bounding sphere218

S(r) invariant, and LDF is close to zero.219

Sketch of the proof of Theorem 3.9 The idea of the proof is depicted in Figure 5. Thanks to Federer’s220

result (Theorem 2.6), we know that the reach of the maximal empty weakly tangent ball B(c, ρ)221

does not change too much under the ambient diffeomorphism F . This gives a lower bound on the222

radius of every maximal empty weakly tangent ball of the image of this ball — the set F (B(c, ρ)).223

We show that in the interior of F (B(c, ρ)), the radii of the maximal empty weakly tangent balls224

of F (B(c, ρ)) are close to ρ. One of these balls is also empty weakly tangent to F (S) at F (p),225

though not necessarily maximal. We denote its centre by c′. Since we can apply the same argument226

for the map F−1, we find an upper and lower bound on the radius of the maximal weakly tangent227

ball B(c′, ρ′) of F (S) at F (p) that is also weakly tangent to F (B(c, ρ)), or equivalently tangent to228

DpF (T ).229

While this bound on the difference of the radii is essentially a bound on the distance ||c− p| − |c′ −230

F (p)|| between the points c− p and c′ − F (p), the bound ε2 on ∥DF − 1∥ allows one to bound the231

angle between the vectors c− p and c′ − F (p). With the assumption (2) we can then derive a bound232

the distance between the points c and c′. Finally, thanks to [19, Theorem 4.8 (6)] (Lemma 2.3) this233

induces a bound on the Hausdorff distance between the (closure of the) two medial axes ax(S) and234

ax(F (S)). □235

It was a surprise to the authors that no assumption on the set (apart from closedness) needed to be236

made, and that the techniques used were that simple and well established; they go back to Federer237

[19]. In fact, the authors at first envisioned a far more elaborate argument assuming the set had238

positive µ-reach [11].239

4 Quantifying C1,1 diffeomorphisms as deviations from identity240

In this section we reformulate the main result in terms of norms on Banach spaces. This reformulation241

offers a more theoretical insight, and we believe the reformulated bounds are easier to work with in242

certain applications. Indeed, in the context of practical numerical computations, a bound on the243

Lipschitz constant of an operator — or, at least, a modulus of continuity — allows to control the244

condition number. This control is particularly useful when we calculate with objects such as the245

medial axis,whose (numerical) stability is often problematic in practice.246

As we will see below, for this reformulation we somewhat strengthen our assumptions.247

We decompose a diffeomorphism F into the identity map 1Rd on Rd, and a displacement field φ:248

F = 1Rd + φ. For the choice of the displacement field, we restrict ourselves to the vector space U of249

all C1,1 maps φ from Rd to Rd whose restriction to the exterior Rd \B(r) of a certain bounding ball250

B(r) equals 0.3251

A natural norm associated to U is one that makes it a Banach space. A typical choice, inherited from252

general Banach spaces of C1,1 functions, would be for example, for φ ∈ U ,253

∥φ∥C1,1 = max (∥φ∥∞, ∥Dφ∥∞, Lip(Dφ) ) . (4)

Here we used the following notation:254

• ∥φ∥∞ = supx∈Rd |φ(x)| denotes the sup norm on x 7→ |φ(x)|, where | · | is the Euclidean255

norm in Rd,256

• ∥Dφ∥∞ = supx∈Rd ∥Dφ(x)∥ denotes the sup norm on x 7→ ∥Dφ(x)∥ , where ∥Dφ(x)∥257

is the operator norm induced by the Euclidean norm on Rd.258

3This is more restrictive than assuming that the restriction to the bounding sphere S(r) is 0, but it simplifies
matters in this section.
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• We write Lip(Dφ) for the Lipschitz semi-norm of Dφ. The Lipschitz semi-norms of φ and259

Dφ are defined as260

Lip(φ) = sup
x,y∈Rd, x ̸=y

|φ(y)− φ(x)|
|y − x|

,

and261

Lip(Dφ) = sup
x,y∈Rd, x ̸=y

∥Dφ(y)−Dφ(x)∥
|y − x|

.

The norm defined in (4) makes U into a Banach space, since every Cauchy sequence in U has a limit262

in U . In addition, any function φ ∈ U satisfies:263

Lip(φ) = ∥Dφ∥∞, (5)
∥Dφ∥∞ ≤ r Lip(Dφ), (6)

∥φ∥∞ ≤ r Lip(φ) ≤ r2 Lip(Dφ), (7)

since the restriction of φ to Rd \ B(r) is 0. This in turn yields that Lip(Dφ) ≤ ∥φ∥C1,1 ≤264

max(1, r, r2) Lip(Dφ). Thus, in U , the norm φ 7→ Lip(Dφ) is equivalent to the norm φ 7→ ∥φ∥C1,1 .265

We can now state slightly less general version of Theorem 3.9 in terms of the Banach space (U , φ 7→266

Lip(Dφ) ).267

Theorem 4.1 Let S ⊆ Rd be bounded by the ball B(r) of radius r > 0, such that S(r) = ∂B(r) ⊆268

S. Let further F be a C1,1 diffeomorphism from Rd to itself that leaves the set Rd \B(r) invariant,269

and define two displacement fields φ, φ̃ ∈ U such that F = 1Rd + φ and270

(1Rd + φ̃) ◦ (1Rd + φ) = 1Rd .

Define ε = max (Lip(Dφ),Lip(Dφ̃)).271

If rε ≤ 1/4 , the Hausdorff distance between the medial axes of the set S and its im-272

age F (S) is bounded by dH(ax(S), ax(F (S))) ≤
(
1 +

√
50

)
r2ε + O

(
r3ε2

)
. In particular,273

dH(ax(S), ax(F (S)))= O
(
r2ε

)
.274

Sketch of the proof Essentially, the proof consists of rewriting Theorem 3.9 in terms of the language275

developed in this section. □276

Remark 4.2 Observe that the bound O
(
r2ε

)
is consistent with a scaling by factor λ: S 7→ λS,277

F (·) 7→ λF (·/λ). Under such a scaling, the radius r is multiplied by λ, while the Lipschitz278

constant Lip(Dφ) — and therefore ε — is divided by λ. Furthermore, the Hausdorff distance279

dH(ax(S), ax(F (S))) increases by a factor λ. By considering a diffeomorphism that translates the280

set S \ S(r) while keeping the bounding sphere S(r) fixed, we see that this bound is asymptotically281

optimal.282

5 Conclusion and future work283

We proved the Hausdorff stability of the medial axis of a closed set without any further assumption284

on it (as explained in Remark 2.1, the existence of the bounding sphere serves to formulate the main285

result in a clean way).286

With regard to applications, our result is the first step towards providing a provably correct image287

recognition in particular in the context of astrophysics. The next step is to produce physics-informed288

models for the medial axis as occurring in astronomical data.289

On the mathematical side, we conclude with a conjecture generalizing our result. We believe that our290

result generalizes to compact Riemannian manifolds with bounded curvature.291

Conjecture 5.1 Let M be a compact Riemannian manifold with bounded sectional curvature4 and292

S a closed subset of M. Then the medial axis (also called cut locus [26]) of S in M is Lipschitz293

stable under diffeomorphisms of M.294

4See [8] for definitions and a very pedagogical overview of the properties of these manifolds.
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