
Published in Transactions on Machine Learning Research (05/2025)

Knowing What Not to Do: Leverage Language Model In-
sights for Action Space Pruning in Multi-agent Reinforcement
Learning

Zhihao Liu1,4*, Xianliang Yang2, Zichuan Liu3, Yifan Xia3, Wei Jiang5, Yuanyu Zhang6,
Lijuan Li1, Guoliang Fan1, Lei Song2, Jiang Bian2†

1The Key Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of
Automation, Chinese Academy of Sciences
2Microsoft Research Asia
3Nanjing University
4University of Chinese Academy of Sciences
5University of Illinois Urbana-Champaign
6Guizhou University

*Work done during internship at Microsoft Research Asia.
†Corresponding author.

Reviewed on OpenReview: https://openreview.net/forum?id=T49vPTkIt5

Abstract

Multi-agent reinforcement learning (MARL) is employed to develop autonomous agents
that can learn to adopt cooperative or competitive strategies within complex environments.
However, the linear increase in the number of agents leads to a combinatorial explosion
of the action space, which may result in algorithmic instability, difficulty in convergence,
or entrapment in local optima. While researchers have designed a variety of effective
algorithms to compress the action space, these methods also introduce new challenges,
such as the need for manually designed prior knowledge or reliance on the structure of the
problem, which diminishes the applicability of these techniques. In this paper, we introduce
Evolutionary action SPAce Reduction with Knowledge (eSpark), an exploration function
generation framework driven by large language models (LLMs) to boost exploration and
prune unnecessary actions in MARL. Using just a basic prompt that outlines the overall task
and setting, eSpark is capable of generating exploration functions in a zero-shot manner,
identifying and pruning redundant or irrelevant state-action pairs, and then achieving
autonomous improvement from policy feedback. In reinforcement learning tasks involving
inventory management and traffic light control encompassing a total of 15 scenarios, eSpark
consistently outperforms the combined MARL algorithm in all scenarios, achieving an average
performance gain of 34.4% and 9.9% in the two types of tasks respectively. Additionally,
eSpark has proven to be capable of managing situations with a large number of agents,
securing a 29.7% improvement in scalability challenges that featured over 500 agents. The
code can be found in https://github.com/LiuZhihao2022/eSpark.

1 Introduction

Multi-agent reinforcement learning (MARL) has emerged as a powerful paradigm for solving complex and
dynamic problems that involve multiple decision-makers Zhang et al. (2021); Wang et al. (2021). However, the
intricacies of agent interplay and the exponential expansion of state and action spaces render the solution of
MARL problems difficult. Researchers have proposed the Centralized Training with Decentralized Execution
(CTDE) framework Oliehoek et al. (2008) and parameter sharing methods, decomposing the value or policy

1

https://openreview.net/forum?id=T49vPTkIt5
https://github.com/LiuZhihao2022/eSpark

Published in Transactions on Machine Learning Research (05/2025)

functions of a multi-agent system into individual agents and sharing model parameters among all agents.
As experimentally verified by many of the most prominent MARL algorithms such as Multi-agent PPO
(MAPPO) Yu et al. (2022), QMIX Rashid et al. (2020), QPLEX Wang et al. (2021) or QTRAN Son et al.
(2019), these methodologies have been demonstrated to be robust strategies for surmounting the challenges
posed by MARL. MARL methods based on parameter sharing and CTDE have achieved notable success in a
variety of well-established tasks, including StarCraft Multi-Agent Challenge (SMAC) Li et al. (2023a); Wang
et al. (2020), the Multi-Agent Particle Environment (MPE) Lowe et al. (2017), and Simulation of Urban
MObility (SUMO) Wei et al. (2019); Lu et al. (2023).

Despite the great success of parameter-sharing CTDE methods, their practicality dwindles in real-world tasks
involving large number of agents, such as large-scale traffic signal control Mousavi et al. (2017), wireless
communication networks Zocca (2019), and humanitarian assistance and disaster response Meier (2015), where
centralized training becomes impractical due to large problem scale Munir et al. (2021). Fully Decentralized
Training and Execution (DTDE) methods, such as Independent PPO (IPPO) de Witt et al. (2020), offer a
scalable solution where resource consumption does not escalate drastically with an increase in the number
of agents. However, due to the lack of consideration for agent interactions, they often struggle to find
optimal solutions and fall into local optima. Current strategies for addressing large-scale MARL tasks involve
introducing task-specific structures to model agent interactions or dividing agents into smaller, independently
trained groups Ying et al. (2023); Chen et al. (2020). These methods, however, are constrained by their
dependence on task-related structuring, limiting their applicability to a narrow range of problems.

Additionally, the "curse of dimensionality" presents a significant challenge in multi-agent systems Hao et al.
(2022b;a), where agents are required to navigate through an expansive action space saturated with numerous
actions that are either irrelevant or markedly suboptimal (relative to states). While humans can deftly
employ contextual cues and prior knowledge to sidestep such challenges, MARL algorithms typically engage
in the exploration of superfluous and extraneous suboptimal actions Zahavy et al. (2018). Besides, prevailing
parameter sharing can exacerbate this exploratory dilemma, as will be elucidated in Proposition 2. The
issue occurs primarily because agents with shared parameters often prefer suboptimal policies that present
short-term advantages, rather than exploring policies that may potentially deliver higher long-term returns.

Exploration is crucial for overcoming local optima, as it encourages agents to discover potentially better
states thus refining their policies. While single-agent exploration techniques like the Upper Confidence Bound
(UCB) Auer (2002), entropy regularization Haarnoja et al. (2018), and curiosity-based exploration Groth
et al. (2021); Pathak et al. (2017) have shown promising results, they struggle with the escalated complexity
in MARL scenarios, compounded by issues like deceptive rewards and the "Noisy-TV" problem Burda et al.
(2018). Integrating domain knowledge into exploration could significantly enhance exploration efficiency,
by helping identify critical elements and problem structures, thereby aiding in the selection of optimal
actions Simon (1956). However, the integration of knowledge into a data-driven framework poses significant
challenges, particularly when manual input from domain experts is required, thus reducing its practicality.

Recently, Large Language Models (LLMs) such as GPT-4 Achiam et al. (2023) have shown formidable skills
in language comprehension, strategic planning, and logical reasoning across various tasks Yao et al. (2023);
Zhu et al. (2023). Although not always directly solving complex, dynamic problems, their inferential and
error-learning abilities facilitate progressively better solutions through iterative feedback Ma et al. (2024).
The integration of LLMs with MARL presents a promising new avenue by facilitating exploration through
the pruning of redundant actions. In this paper, we introduce Evolutionary action SPAce Reduction
with Knowledge (eSpark), a novel approach that utilizes LLMs to improve MARL training via optimized
exploration functions, which are used to prune the action space. eSpark begins by using LLMs to generate
exploration functions from task descriptions and environmental rules in a zero-shot fashion. It then applies
evolutionary search within MARL to pinpoint the best performing policy. Finally, by analyzing the feedback
on the performance of this policy, eSpark reflects and proposes a set of new exploration functions, and
iteratively optimizes them according to the aforementioned steps. This process enhances the MARL policy
by continuously adapting and refining exploration. To summarize, our contributions are as follows:

1. We introduce the eSpark framework, which harnesses the intrinsic prior knowledge and encoding
capability of LLMs to design exploration functions for action space pruning, thus guiding the explo-

2

Published in Transactions on Machine Learning Research (05/2025)

ration and learning process of MARL algorithms. eSpark requires no complex prompt engineering
and can be easily combined with MARL algorithms.

2. We validate the performance of eSpark across 15 different environments within the inventory
management task MABIM Yang et al. (2023) and the traffic signal control task SUMO Behrisch et al.
(2011). Combined with IPPO, eSpark outperforms IPPO in all scenarios, realizing an average profit
increase of 34.4% in the MABIM and improving multiple metrics in SUMO by an average of 9.9%.
Even in the face of scalability challenges where the DTDE methods typically encounter limitations,
eSpark elevates the performance of IPPO by 29.7%.

3. We conduct controlled experiments and ablation studies to analyze the effectiveness of each compo-
nent within the eSpark framework. We first validate the advantages of knowledge-based pruning.
Subsequently, we conduct ablation studies to demonstrate that both retention training and LLM
pruning techniques contribute to the performance of eSpark. These effects are even more pronounced
in the more complex MABIM environment. Finally, we confirme the significance of the LLM checker
and comprehensive feedback in enhancing code generation and exploration function improvement.

2 Related works

LLMs for code generation. LLMs have demonstrated remarkable advancements in automated code
generation, enabling natural-language-to-code (NL2Code) translation with unprecedented accuracy and
efficiency Chen et al. (2021). Recent research has explored various enhancements to LLM-based code
generation, including instruction tuning Wei et al. (2021), reinforcement learning with feedback Le et al.
(2022), retrieval-augmented approaches Gou et al. (2024), and repository-level code generation Liu et al.
(2023). Moreover, specialized code LLMs such as StarCoder Li et al. (2023b), CodeLlama Roziere et al. (2023),
and DeepSeek-Coder Zhu et al. (2024) have been developed to improve performance on coding benchmarks
like HumanEval and MBPP Chen et al. (2021); Austin et al. (2021).

LLMs for RL and MARL. The integration of LLMs into RL and MARL has sparked considerable research
interest Sharma et al. (2022); Kwon et al. (2023); Li et al. (2024). Some works Hill et al. (2020); Chan
et al. (2019) incorporate the goal descriptions of language models that help in enhancing the generalization
capabilities of agents designed to follow instructions. Another work serves LLM as a reward designer for robot
control Ma et al. (2024). Further studies have extended this approach to complex tasks involving reasoning
and planning Huang et al. (2023; 2022b). Moreover, LLMs have been employed to guide exploration and boost
RL efficiency Du et al. (2023); Chang et al. (2023); Hu & Sadigh (2023). However, scaling to high-complexity,
real-time, multi-agent settings remains a challenge. Our method mitigates this by generating exploration
functions to navigate the policy space, thus facilitating the application to complex MARL scenarios without
direct LLM-agent decision-making interaction.

Action space pruning in RL and MARL. Pruning the action space has been shown to be effective
in guiding agent behaviors in complex environments Lipton et al. (2016); Fulda et al. (2017). Techniques
include learning an elimination signal to discard unnecessary actions Zahavy et al. (2018), and employing
transfer learning that pre-trains agents to isolate useful experiences for later action refinement Shirali et al.
(2023); Lan et al. (2022); Ammanabrolu & Riedl (2018). Some works transform action space pruning into a
state-dependent action selection problem, making decisions within the reduced space Sun & Wang (2022);
Huang et al. (2022a). Further works use manually designed data structures based on prior knowledge to
filter actions Dulac-Arnold et al. (2015); Padullaparthi et al. (2022); Nagarathinam et al. (2020). However,
training pruning signals or applying transfer learning is inherently difficult with many agents, and the need
for expert knowledge in manual pruning rules hampers their transferability, limiting the applicability of
current methods. We harness the abundant knowledge embedded within LLMs for action space pruning,
demonstrating universal applicability across a multitude of scenarios.

3

Published in Transactions on Machine Learning Research (05/2025)

3 Preliminaries

3.1 Problem formulation and notations

Markov game framework. In our study, we explore a Markov game framework, formally defined by
the tuple ⟨N,S, O, A, P, R, γ⟩. Here N represents the total number of participating agents, S denotes a
well-defined state space, and O =

∏N
k=1Ok constitutes the combined observation space, A =

∏N
k=1Ak is the

joint action space for all agents involved. The transition dynamics are captured by the probability function
P : S ×A× S → [0, 1], the reward function R : S ×A→ R maps state-action pairs to real-valued rewards.
The discount factor is denoted by γ ∈ [0, 1]. All the notations used are summarized in Appendix A.

At each discrete time step t, the environment is in state st ∈ S. Each agent k ∈ [1, 2, . . . , N] receives an
observation ot

k ∈ Ok and draws an action from at
k ∼ πk(· | ot

k), where πk : Ok × Ak → [0, 1] denotes the
policy of agent k, and

∑
at

k
∈Ak

πk(at
k | ot

k) = 1. The joint actions of all agents at = (at
1, at

2, . . . , at
N) is drawn

from the joint policy π(· | st) =
∏N

k=1 πk(· | ot
k). Subsequently, a reward rt = R(st, at) is given based on the

current state and joint action. The state transition is determined by st+1 ∼ P (· | st, at).

In this paper, we focus on a fully cooperative scenario where all agents share a common reward signal. The
collective objective is to maximize the expected cumulative reward, starting from an initial state distribution
ρ0. This collaborative approach emphasizes the alignment of individual agent strategies towards maximizing
a unified reward J(π):

J(π) = Es0∼ρ0,a0:∞∼π,s1:∞∼P

[∞∑
t=0

γtrt

]
.

Policy with exploration function. In the configuration of our study, we introduce the exploration
function E : Ok ×Ak → {0, 1}, indicating whether an action is selectable by agent k. For a given policy πk

of agent k and an exploration function E, we define a new policy πE
k as follows:

πE
k (· | ot

k) = πk(· | ot
k) · E(ot

k, ·)∑
at

k
∈Ak

πk(at
k | ot

k) · E(ot
k, at

k)

if
∑

at
k

∈Ak
πk(at

k | ot
k) ·E(ot

k, at
k) > 0; otherwise, πE

k (· | ot
k) = πk(· | ot

k). Consequently, the joint policy for all
agents under the guidance of E is defined as:

πE(· | st) =
N∏

k=1
πE

k (· | ot
k).

We define the set of all joint policies as {π} and the set of all exploration functions as {E}. Let {πE} denote
the set of joint policies when subjected to an exploration function E ∈ {E}. An exploration function E is
non-trivial if it assigns a zero probability to at least one observation-action pair. The following proposition
naturally arises from the definition:
Proposition 1.

1. For any E ∈ {E}, {πE} ⊆ {π}. If E is non-trivial, then {πE} ⊂ {π}.

2. For any π ∈ {π}, there exists a non-trivial E ∈ {E} such that J(πE) ≥ J(π).

An intelligent choice of exploration functions does not diminish our ability to discover optimal policies;
instead, it allows us to refine the policy space, thereby enhancing the efficiency of the learning process. The
proof of this proposition can be found in Appendix B.

3.2 Challenges and motivations

The intricate relationships among multiple agents make it extremely difficult to search for the optimal solution
in MARL. Without powerful exploration methods, it is nearly impossible to avoid suboptimal outcomes. We
will elaborate on this with an example from the following proposition:

4

Published in Transactions on Machine Learning Research (05/2025)

Proposition 2. Let’s consider a fully cooperative game with N agents, one state, and the joint action space
{0, 1}N , where the reward is given by r(00, 1N) = r1 and r(0N−m, 1m) = −mr2 for all m ̸= N , r1, r2 are
positive real numbers. We suppose the initial policy is randomly and uniformly initialized, and the policy is
optimized in the form of gradient descent. Let p be the probability that the shared policy converges to the best
policy, then:

p = 1− N−1

√
r2

r1 + Nr2
.

Detailed proof is provided in Appendix B. In the above example, we show that the increase in the number of
agents makes it more difficult for MARL algorithms to reach the optimal solution. However, based on the
problem context, humans can understand problems from a high-level semantic perspective, and quickly find
optimal solutions. As LLMs have demonstrated surprising abilities in semantic understanding, reasoning, and
planning across various tasks Yuan et al. (2023); Wang et al. (2023), we conduct a simple experiment to test
GPT-4’s capability for the issue in Proposition 2, and here is GPT-4’s response:
In a fully cooperative game, all agents work together to maximize the total reward. There are two distinct
reward conditions:

1. When all agents choose action 1, the reward is r1, a positive real number.

2. When there is any number of agents m (where 0 < m < N) choosing action 1, the reward is −mr2, where
r2 is a positive real number.

All agents should act in a way that avoids the negative reward scenario. The negative reward scenario happens
anytime there is a mix of 0’s and 1’s in the action space, which means some agents are choosing 1 and others
are choosing 0. Therefore, the optimal joint action for all agents is to all choose 1.

GPT-4 exhibits reasoning abilities on par with those of humans and directly solves the problem in
Proposition 2. Propositions 1 has already shown that an intelligent exploration function can not only
reduce the searching space but also improve the final performance. This makes us think about the
probability of applying the powerful LLMs to prune the redundant action space and thereby guide
the exploration in MARL. In Appendix C, we designed a more complex sequential decision-making

Algorithm 1 eSpark

1: Input: Initial prompt prom, LLM checker LLMc, LLM
code generator LLMg, the evolution iteration number N ,
and sample batch size K

2: Initialize: policies ϕ1
1, ϕ1

2, . . . , ϕ1
K

3: for i = 1 to N do
4: // Exploration Function Generation
5: E1, . . . , EK ∼ LLMc(prom, LLMg(prom))
6: // Retention training
7: if i ̸= 1 then
8: ϕi

1, ϕi
2, . . . , ϕi

K ← ϕi−1
best

9: end if
10: // Evolutionary search
11: G1, F1 = ϕ(E1), . . . , GK , FK = ϕ(EK)
12: // Reflection and Feedback
13: best← arg maxk(G1, G2, . . . , GK)
14: prom← prom : Reflection(Ebest, Fbest)
15: end for
16: Output: ϕN

best

example which demonstrates GPT-4 can ef-
fectively leverage its reasoning capacity to
generate code for pruning redundant action
spaces. In the following sections, we propose
the eSpark framework, which integrates the
prior knowledge and inferential capability of
LLMs to boost the exploration in MARL.

4 Method

In this section, we introduce a novel frame-
work, eSpark, which integrates robust prior
knowledge encapsulated in LLMs. It improves
iteratively through a cycle of trial and error,
leveraging the capability of LLMs. Figure 1 il-
lustrates the overall training procedure. eSpark
is composed of three components: (i) zero-shot
generation of exploration functions, (ii) evo-
lutionary search for best performing MARL
policy, and (iii) detailed feedback of the policy
to improve the generation of exploration func-
tions. We denote the performance of policy i
as Gi and the policy feedback as Fi (defined in
Section 4.3), and the pseudocode is shown in
Algorithm 1.

5

Published in Transactions on Machine Learning Research (05/2025)

4.1 Exploration function generation

LLMs have been demonstrated to possess exceptional capabilities in both code comprehension and generation.
To this end, we employ a LLM as LLM code generator, denoted as LLMg, whose task is to understand the
objectives of the current environment, and output an exploration function:

1. Exploration function generation

Exploration
function 1

Exploration
function 2

Exploration
function K

…

2. Evolutionary search

…

… Performance i
(best)

Feedback i

Performance 1

Feedback 1

Performance K

Feedback K

…

LLMc

LLMg

3. Reflection

Generate

Exploration
functions

Feedback

Environment

…

Binary action mask

RL policy

state

state

action

Figure 1: eSpark firstly generates K exploration functions via zero-shot creation. Each exploration function is
then used to guide an independent policy, and the evolutionary search is performed to find the best-performing
policy. Finally, eSpark reflects on the feedback from the best performance policy, refines and regenerates the
exploration functions for the next iteration.

E1, . . . , EK ∼ LLMg(prom), (1)

where prom is the prompt for LLMg, and the generation of K exploration functions is to circumvent the
suboptimality that may arise from single-sample generation. The initial prom includes an RL formulation
describing the reward system, state items, transitions, and the action space, alongside a task description that
specifies the task objectives, expected outputs, and formatting rules. Details on the initial prom are provided
in Appendix K. We use code for the RL formulation as it effectively captures the physical transition dynamics
crucial to RL problems, which are always difficult to express precisely through the text alone, especially when
environmental complexity increases. Code contexts also improve code generation and clarify environmental
semantics and variable roles Ma et al. (2024). In Appendix H, we discuss the impact of different forms of RL
formulation on the final performance of eSpark when the environment code is unavailable.

During the code generation, however, LLMg may incorrectly interpret variables and produce logically flawed
code. This kind of flawed logic could persist if it is added to the prompt context for the next generation.
As research has shown that collaboration among multiple LLMs can enhance the quality and efficacy of the
generated contents Chen et al. (2023); Zhang et al. (2023), we introduce the LLM checker denoted as LLMc,
which reviews LLMg’s output to pursue an enhanced generation. LLMc uses the same prompt as LLMg but
is prompted to focus on verifying the accuracy of code relative to environmental transitions and variable
specifications. If inconsistencies are found, LLMc signals the error, prompting LLMg to regenerate the code.
The reasons for introducing LLMc are further discussed in Section 5.5. Finally, exploration functions are
generated by:

6

Published in Transactions on Machine Learning Research (05/2025)

E1, . . . , EK ∼ LLMc (prom, LLMg(prom)) . (2)

Exploration functions are applied only during the training phase to guide the exploration of MARL. During
the execution phase, all exploration functions are removed.

4.2 Evolutionary search

During the generation, however, it should be noted that the initially generated exploration function may
not always guarantee executability and effectiveness. To address this, eSpark performs an evolutionary
search paradigm that selects the best-performing policy in one iteration and uses its feedback for subsequent
generation Ma et al. (2024). Specifically, eSpark samples a batch of K exploration functions in each generation
to ensure there are enough candidates for successful code execution. Performance is assessed at regular
checkpoints within an iteration, with the final evaluation based on the average of the last few checkpoints.
The policy achieving the highest performance is selected, and the feedback obtained from this policy is
integrated to optimize the exploration functions in the following steps.

Due to the dynamic nature of exploration, the exploration function generated based on feedback from the
best-performing policy may not be applicable to other policies. As the proof of Proposition 1 demonstrates,
when an exploration function is incapable of intelligently pruning, it may even impair the performance of the
policy. To this end, we utilize retention training to maintain continuity of exploration. Let ϕi−1

best represent
best-performing policy from the (i− 1)-th iteration. For the i-th iteration except for the first, at the start of
the iteration, we set:

ϕi
1, ϕi

2, . . . , ϕi
K ← ϕi−1

best. (3)

This allows us to match exploration functions with their corresponding policies, subsequently refining
performance incrementally. We will verify the impact of retention training in Section 5.4.

4.3 Reflection and feedback

Feedback from the environment can significantly enhance the quality of the generated output by LLMs Nasci-
mento et al. (2023); Du et al. (2023). In eSpark, we leverage policy feedback, which contains the evaluation
of policy performance from various aspects, to enhance the generation of LLMs. This policy feedback may
either come from experts or be automatically constructed from the environment, as long as it encompasses
insights into the aspects where the current algorithm performs well and areas where it requires improve-
ment. As illustrated in Equation 4, by correlating the best-performing policy feedback Fbest and the most
effective exploration function Ebest, LLMs introspect, update the prompt prom, and gear up for the ensuing
evolutionary cycle.

prom← prom : Reflection(Ebest, Fbest). (4)

In our experiments, we generate automated policy feedback from environmental reward signals, as domain
experts in relevant fields are not available. We acknowledge that obtaining feedback from human experts
can be expensive. Nevertheless, it is important to note that within our framework, the number of rounds
for feedback collection is specified by a predefined hyperparameter, which is typically kept low (in our
experiments, it is set to 10). Therefore, in scenarios where human experts are accessible, incorporating their
insights is feasible and can potentially enhance performance.

5 Experiments

5.1 Experiment settings

For a comprehensive evaluation of eSpark’s capabilities, we perform detailed validations within two distinct
industrial environments: the inventory management environment MABIM and the traffic signal control
environment SUMO.

7

Published in Transactions on Machine Learning Research (05/2025)

• MABIM setting: MABIM simulates multi-echelon inventory management by modeling each
stock-keeping unit (SKU) as an agent, mirroring real-world operations and profits within the
MARL framework. The total reward is composed of multiple reward components. We utilize the
total reward to identify the best-performing policy, while those components evaluate the policy’s
multifaceted performance to generate policy feedback. We focus on three key challenges within
inventory management: multiple echelons, capacity constraints and scalability, selecting corresponding
scenarios for experiments.

• SUMO setting: SUMO is a traffic signal control environment in which each intersection is represented
as an agent. It offers a variety of reward functions, and we use "the number of stopped vehicles" as
the reward for evolutionary search, while other rewards are for policy feedback. The Average Delay,
Average Trip Time, and Average Waiting Time metrics are chosen for evaluation Lu et al. (2023).
We employ GESA Jiang et al. (2024) to standardize intersections into 4-arm configurations. Each
simulation spans 3600 seconds, with decisions at 15-second intervals.

• Model setting: We use IPPO as the base MARL framework for eSpark due to its DTDE structure,
which is suitable for large-scale challenges. But note that our approach can also be applied as a plugin
in other MARL methods. We select GPT-4 for the LLMc and LLMg due to its superior comprehension
and generation abilities. The performance of different LLMs can be found in Appendix G. For each
scenario, we conduct three runs with a batch size of K = 16. eSpark has the same number of training
steps as the compared MARL baselines, with 10 iterations evenly selected throughout the training
process for feedback, reflection, and exploration function editing.

All training jobs are executed with an Intel(R) Xeon(R) Gold 6348 CPU and 4 NVIDIA RTX A6000 GPUs. In
Appendix D, we provide a detailed introduction and setting for the environments and model. In Appendix E,
we give hyperparameter configurations and descriptions of each baseline method.

5.2 Experiment results

In this section, we present the key findings for eSpark in the MABIM and SUMO, highlighting the best and
second best results in bold and underline. More detailed results and computational costs are presented in
Appendix F.

5.2.1 Performance on MABIM

Figure 2 illustrates the performance of eSpark and the MARL baselines throughout the training process,
with the detailed final results presented in Table 1. It can be observed that eSpark continuously improves its
performance and stabilizes within 10 iterations. With IPPO as the base MARL algorithm, eSpark not only
outperforms IPPO in all scenarios but also exceeds the performance of all compared baselines in 4 out of 5
scenarios. For an in-depth analysis, we discuss the policy differences between IPPO and eSpark in Appendix I,
along with eSpark’s reflective mechanism and exploration function adjustments in Appendix L. While IPPO
struggles to learn the intricate interplay among SKUs, eSpark excels particularly in navigating cooperation
among SKUs and refining its search in a broad space, leading to marked improvements in managing capacity
constraints and multi-echelon coordination.

20000 40000
Episode

5

0

5

Pr
of

it

×105 Standard

20000 40000
Episode

0

1

2

Pr
of

it

×106 2 echelons

20000 40000
Episode

0

1

2

Pr
of

it

×106 3 echelons

20000 40000
Episode

4
2
0
2
4

Pr
of

it

×105 Lower

20000 40000
Episode

4
2
0
2
4

Pr
of

it

×105 Lowest
eSpark MAPPO QTRAN IPPO QPLEX

Figure 2: The performance of eSpark and MARL baselines in the MABIM 100 SKUs scenarios. ◦ indicates
eSpark collects feedback here and regenerates the exploration function. The solid line represents the median,
while the shaded region indicates the range between the maximum and minimum values.

8

Published in Transactions on Machine Learning Research (05/2025)

Table 1: Performance in MABIM, a higher profit indicates a better performance. The "Standard" scenario
features a single echelon with sufficient capacity. The "2/3 echelons" involves challenges of multi-echelon
cooperation. The "Lower/Lowest" scenarios are the challenges where SKUs compete for insufficient capacity,
while "500 SKUs scenarios" assess scalability. The ‘-’ indicates CTDE algorithms are not researched in the
scalability challenges.

Method
Avg. profits (K)

100 SKUs scenarios 500 SKUs scenarios
Standard 2 echelons 3 echelons Lower Lowest Standard 2 echelons 3 echelons Lower Lowest

IPPO 690.6 1412.5 1502.9 431.1 287.6 3021.2 7052.0 7945.7 3535.9 2347.4
QTRAN 529.6 1595.3 2012.2 70.1 19.5 - - - - -
QPLEX 358.9 1580.7 704.2 379.8 259.3 - - - - -
MAPPO 719.8 1513.8 1905.4 478.3 265.8 - - - - -
BS static 563.7 1666.6 2338.9 390.7 -1757.5 3818.5 8151.2 11926.3 3115.1 -9063.8

BS dynamic 684.2 1554.2 2378.2 660.6 -97.1 4015.7 8399.3 11611.1 3957.5 2008.6
(S, s) 737.8 1660.8 1725.2 556.9 203.7 4439.4 9952.1 10935.7 3769.3 2212.4

eSpark 823.7 1811.4 2598.7 579.5 405.0 4468.6 9437.3 12134.2 3775.7 2519.5

In Table 1, we also present the performance outcomes of the eSpark algorithm in the scaling-up 500 SKUs
scenarios. Due to the centralized nature of the CTDE methods, they struggle to scale to large-scale problems
and therefore are not presented in the table. Despite IPPO’s markedly inferior performance on scenarios when
problems scale up, eSpark exhibits significant enhancements and consistently achieves optimal results across
multiple scenarios. We attribute this improvement to eSpark’s action space pruning strategy, which effectively
addresses the heightened exploration needs in scenarios with many agents, providing a clear advantage in
such complex environments.

5.2.2 Performance on SUMO

To further assess eSpark’s capabilities across different tasks, we have compiled a summary of results in
Table 2 based on the SUMO environment. Similar to the outcomes in MABIM, eSpark consistently enhances
the performance of the IPPO in all scenarios, and it has outperformed the CTDE baselines as well as
domain-specific MARL baselines to achieve the best performance. Notably, even when IPPO alone is capable
of good results (as seen in scenarios such as Grid 4×4 and Cologne8), the pruning method designed in eSpark
does not compromise the effectiveness of IPPO. We will delve further into the analysis of exploration functions
produced by eSpark in Section 5.3.

5.3 eSpark learns intelligent pruning methods

Given that eSpark employs the prior knowledge of the LLMs to craft its exploration function, our study
aimed to investigate two critical aspects: (1) the validity of action space pruning via prior knowledge, and (2)
the potential advantages of this method over rule-based heuristic pruning.

To address the questions raised, we devise two pruning strategies. First, we implement a random pruning
method, wherein agents randomly exclude a portion of actions during decision-making to test the validity
of knowledge-based pruning. Secondly, we utilize domain-related OR algorithms to implement heuristic
pruning methods. For MABIM, actions are pruned using the (S, s) policy and unbound limit, while for
SUMO, pruning relies on MaxPressure to keep only a few actions with the highest pressure. The details of
these methods are presented in Appendix E.3. Just like eSpark, these pruning strategies are integrated with
IPPO during training but not execution. We conducted experiments under the same setting in Section 5.1,
with results presented in Tables 3 and Table 4.

As shown in the tables, random pruning marginally affects performance by merely altering exploration rates
without providing new insights. Heuristic pruning’s impact varies with its design and context. In MABIM,
(S, s) pruning is less effective in the 100 SKUs scenario, as it restricts the already effective IPPO’s exploration
in smaller scales. However, it proves beneficial in the 500 SKUs scenario, where it guides the exploration and
leads to better results. Upbound pruning consistently underperforms due to its overly simplistic heuristic.

9

Published in Transactions on Machine Learning Research (05/2025)

Table 2: Performance in SUMO, including the mean and standard deviation. A lower time indicates a better
performance.

Method Metric Grid 4×4 Arterial 4×4 Grid 5×5 Cologne8 Ingolstadt21

FTC
Delay 161.14±3.77 1229.68±16.79 820.88±24.36 85.27±1.21 224.96±11.91

Trip time 291.48±4.45 676.77±13.70 584.54±24.17 145.93±0.84 352.06±9.29
Wait time 155.66±3.42 521.86±13.33 441.63±21.13 58.92±0.68 161.22±7.88

MaxPressure
Delay 63.39±1.34 995.23±77.02 242.85±16.04 31.63±0.61 228.64±15.83

Trip time 174.68±2.05 702.09±23.61 269.35±9.62 95.67±0.62 352.30±15.06
Wait time 37.37±1.06 511.06±22.55 114.36±6.48 11.03±0.28 159.44±13.34

IPPO
Delay 48.40±0.45 884.73±38.94 228.78±11.59 27.60±1.70 342.97±43.61

Trip time 160.12±0.60 506.18±10.39 238.03±7.10 91.41±1.60 464.50±43.30
Wait time 22.69±0.38 435.44±77.54 91.84±6.31 7.70±0.82 267.51±40.53

MAPPO
Delay 51.25±0.58 958.43±181.72 221.62±20.73 32.55±4.66 347.59±47.59

Trip time 160.01±0.54 757.40±242.00 247.56±3.71 94.31±1.77 480.66±49.46
Wait time 25.41±0.54 609.80±255.22 97.10±5.22 9.39±1.53 283.59±43.20

MPLight
Delay 63.51±0.64 1142.98±79.65 223.44±16.18 37.93±0.45 196.74±9.88

Trip time 172.47±0.89 583.21±45.84 255.49±6.26 110.56±1.18 331.42±11.79
Wait time 40.32±0.96 366.27±58.03 126.42±5.31 12.98±0.57 126.09±13.60

CoLight
Delay 53.40±1.89 820.67±58.65 339.66±48.55 27.48±1.30 296.47±106.82

Trip time 165.77±1.89 470.33±12.34 305.41±44.43 91.66±1.29 410.59±97.29
Wait time 27.25±1.64 312.47±16.63 157.65±35.69 9.35±1.09 215.98±90.62

eSpark
Delay 48.36±0.32 854.22±68.21 209.49±13.98 25.39±1.27 243.92±15.81

Trip time 159.74±0.44 484.87±58.21 235.20±6.80 89.50±1.36 367.57±15.03
Wait time 22.58±0.29 328.82±61.70 88.38±4.41 6.94±0.38 180.09±13.84

Table 3: Average performance changes on
MABIM. All changes are relative to IPPO.

Method Avg. profits change ratio (%)
100 SKUs 500 SKUs

Random pruning 2.1 -0.5
(S, s) pruning -25.9 15.5

Upbound pruning -23.2 -32.7
eSpark 39.1 29.7

Table 4: Average performance changes on SUMO.
All changes are relative to IPPO.

Method Avg. time change ratio (%)
Delay Trip time Wait time

Random pruning -0.1 2.2 -2.5
MaxPressure pruning -0.5 1.5 -0.1

eSpark -9.7 -5.7 -14.3

For SUMO, pressure-based pruning does not offer significant benefits. Nevertheless, eSpark demonstrates
remarkable adaptability across all testing tasks, adeptly selecting pruning methods that substantially enhance
results. Its knowledge-based generative technique and evolution capability enable it to master intelligent
pruning strategies.

0 0.5 1
(mean demand)

2 3 6 12

Actions

IPPO
Random pruning

(S,s) pruning
Upbound pruning

eSpark

Me
th

od
s

1e-1

1e-2

1e-3

Fr
eq

ue
nc

y

Figure 3: Action selection frequency for IPPO and various pruning methods on the 100 SKUs Lowest scenario.
"Actions" represents the replenishment quantity is a multiple of the mean demand within the sliding window.
eSpark learns not only to minimize restocking but also to diversify with small purchases below the mean
demand, balancing demand fulfillment and overflow prevention.

Figure 3 presents a frequency heatmap of action selection for IPPO and various pruning methods in the
100 SKUs Lowest scenario. IPPO learns a minimally restocking strategy, risking unmet demand. Random
pruning chooses actions more uniformly yet mirrors IPPO’s pattern. (S, s) pruning excessively exceeds mean
demand, ignoring no-restock actions and leading to significant overflow. Upbound pruning typically avoids

10

Published in Transactions on Machine Learning Research (05/2025)

restocking, but prefers to purchase near the mean demand, which could result in overflow costs. In contrast,
eSpark adopts a balanced policy, avoiding overstocking while diversifying its minor restocking strategies to
meet demand without causing overflow.

5.4 eSpark benefits from retention training and action space reduction

Extensive research has underscored the importance of reflection in LLM-driven content generation Ma et al.
(2024); Nascimento et al. (2023). Herein, we focus on the effects of retention training and action pruning on
eSpark’s performance.

We first design an ablation experiment, which we refer to as the eSpark w/o retention. The model
parameters are initialized when an iteration is finished, and the newly generated exploration functions are
equipped, after which the training starts from scratch. Given that the initialized model needs a more extensive
number of steps to converge, we accordingly triple the training steps per iteration in comparison to the
standard eSpark. Another ablation retains the retention training, while the only difference is that the LLMs
and reflection are removed. We name this experiment eSpark w/o LLM. The comparative analysis of these
two ablations is delineated in Table 5 and Table 6. The detailed results are shown in Appendix F.3.

Table 5: Average performance change across 100
SKU scenarios in the MABIM environment. All
changes are relative to IPPO.

Method Avg. profits change ratio (%)
eSpark 39.1

eSpark w/o retention 24.0
eSpark w/o LLM -2.8

Table 6: Average performance change in the
SUMO environment. All changes are relative
to IPPO.

Method Avg. time change ratio (%)
Delay Trip time Wait time

eSpark -9.7 -5.7 -14.3
eSpark w/o retention -9.6 -4.6 -11.2

eSpark w/o LLM -9.1 -5.0 -12.8

The removal of retention training and LLMs both result in a decline in the performance of the eSpark. In the
SUMO scenario, the performance gap between the two ablations and the complete eSpark is relatively small,
whereas it is more pronounced in the MABIM scenarios. This can be attributed to the fact that MABIM
involves a greater number of agents and a more complex observation space action space, where a superior
pruning can significantly enhance the performance of MARL methods. Additionally, we observe that the
lack of LLMs leads to a significant decrease in performance on MABIM, emphasizing the central role of
knowledge-based action space pruning within the eSpark.

5.5 LLM checker and detailed reward feedback promotes the performance of eSpark

We go deeper to investigate the impact of feedback prompt design and the LLM checker on the performance
of eSpark. eSpark utilizes detailed reward factors to evaluate policy performance comprehensively. To
elaborate on the significance of this design, we perform an ablation experiment, eSpark w/o r factors, in
which the reward factors are removed, leaving only the total reward.

The introduction of LLM checker comes from the following observations: LLM code generator occasionally
produces flawed exploration functions (e.g., variable misuse, misaligned task logic). Although these are
usually eliminated during evolutionary search, when the pool of executable exploration functions is small,
flawed yet executable functions may still be selected as editing templates, thus hindering further refinement.
We conduct the second ablation eSpark w/o checker by removing the LLM checker. Both ablations are
performed in the MABIM (100 SKUs) and SUMO environments, with the performance averaged in respective
environments and presented in Table 7 and Table 8. The detailed results are shown in Appendix F.3.

After removing detailed reward information, eSpark showed a significant performance decline in both the
MABIM and SUMO environments, particularly in MABIM, where complex transition logic and variable usage
exacerbated the impact. Without detailed reward factors, eSpark struggled to analyze policy performance
and propose targeted improvements, leading to a diminished ability to refine the action space. We provide
examples of eSpark’s responses with and without reward factors in Appendix J to offer more insights into

11

Published in Transactions on Machine Learning Research (05/2025)

Table 7: Average performance change across 100
SKU scenarios in the MABIM environment. All
changes are relative to IPPO.

Method Avg. profits change ratio (%)
eSpark 39.1

eSpark w/o r factors 17.8
eSpark w/o checker 26.2

Table 8: Average performance change in the
SUMO environment. All changes are relative
to IPPO.

Method Avg. time change ratio (%)
Delay Trip time Wait time

eSpark -9.7 -5.7 -14.3
eSpark w/o r factors -9.4 -4.8 -13.5
eSpark w/o checker -8.1 -3.1 -10.8

these results. Additionally, the ablation experiment on the LLM checker revealed its critical role in preventing
flawed exploration functions from being selected as editing templates, further demonstrating the importance
of both detailed reward feedback and the LLM checker in maintaining eSpark’s overall performance.

6 Conclusions, limitations and future work

We present eSpark, a novel framework for generating exploration functions, leveraging the advanced capa-
bilities of LLMs to integrate prior knowledge, generate code and reflect, thereby refining the exploration in
MARL. eSpark has surpassed its base MARL algorithm across all scenarios in both MABIM and SUMO
environments. In terms of pruning strategies, pruning based on the prior knowledge from LLMs outshines
both random and heuristic approaches. Ablation experiments demonstrate the indispensable role of retention
training in accurately improving exploration functions based on policy flaws and enhancing sample efficiency.
The LLM checker and detailed policy feedback prompt design together ensure the superior performance of
eSpark.

Nevertheless, eSpark also has certain limitations. First, currently eSpark is only applicable to tasks involving
homogeneous agents. For heterogeneous agents, a potential method could be to generate distinct exploration
functions for each agent; however, this approach becomes impractical when the number of agents is too
large. Moreover, eSpark benefits from policy feedback to refine the exploration functions. When feedback is
not informative regarding how to modify the exploration (e.g., in tasks with sparse rewards, end-of-episode
feedback alone is too limited to develop automated feedback), eSpark may struggle to improve and need
extra expert input for effective reflection.

Future work encompasses numerous potential directions. Existing research advocates for assigning different
roles or categories to agents Christianos et al. (2021); Wang et al. (2020), which could offer a compromise for
the application of eSpark in heterogeneous multi-agent systems. Furthermore, state-specific feedback for more
granular improvement represents an intriguing avenue Subramanian et al. (2016). Our future endeavors will
investigate these questions, striving to develop algorithms that are robust and exhibit strong generalizability.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Prithviraj Ammanabrolu and Mark O Riedl. Playing text-adventure games with graph-based deep reinforce-
ment learning. arXiv preprint arXiv:1812.01628, 2018.

Kenneth J Arrow, Theodore Harris, and Jacob Marschak. Optimal inventory policy. Econometrica: Journal
of the Econometric Society, pp. 250–272, 1951.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning
Research, pp. 397–422, 2002.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

12

Published in Transactions on Machine Learning Research (05/2025)

Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. Sumo–simulation of urban mobility:
an overview. In SIMUL, 2011.

Alan S Blinder. Inventory theory and consumer behavior. Harvester Wheatsheaf, 1990.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation.
In ICLR, pp. 1–17, 2018.

Harris Chan, Yuhuai Wu, Jamie Kiros, Sanja Fidler, and Jimmy Ba. Actrce: Augmenting experience via
teacher’s advice for multi-goal reinforcement learning. arXiv preprint arXiv:1902.04546, 2019.

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy, Dipendra Misra, and Wen Sun. Learning to
generate better than your llm. arXiv preprint arXiv:2306.11816, 2023.

Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui Li.
Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control.
In AAAI, pp. 3414–3421, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin,
Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848, 2023.

Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht. Scaling
multi-agent reinforcement learning with selective parameter sharing. In ICML, pp. 1989–1998, 2021.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS Torr, Mingfei
Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft multi-agent challenge?
arXiv preprint arXiv:2011.09533, 2020.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek Gupta, and
Jacob Andreas. Guiding pretraining in reinforcement learning with large language models. In ICML, pp.
8657–8677, 2023.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan Hunt,
Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Nancy Fulda, Daniel Ricks, Ben Murdoch, and David Wingate. What can you do with a rock? affordance
extraction via word embeddings. arXiv preprint arXiv:1703.03429, 2017.

Qianwen Gou, Yunwei Dong, Yujiao Wu, and Qiao Ke. Rrgcode: Deep hierarchical search-based code
generation. Journal of Systems and Software, 211:111982, 2024.

Oliver Groth, Markus Wulfmeier, Giulia Vezzani, Vibhavari Dasagi, Tim Hertweck, Roland Hafner, Nicolas
Heess, and Martin Riedmiller. Is curiosity all you need? on the utility of emergent behaviours from curious
exploration. arXiv preprint arXiv:2109.08603, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In ICML, pp. 1861–1870, 2018.

Jianye Hao, Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang, Dong Li, Yan Zheng, and Zhen
Wang. Boosting multiagent reinforcement learning via permutation invariant and permutation equivariant
networks. In ICLR, 2022a.

Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang, Dong Li, Yan Zheng, Zhen Wang, and Jianye Hao.
Breaking the curse of dimensionality in multiagent state space: A unified agent permutation framework.
arXiv preprint arXiv:2203.05285, 2022b.

13

Published in Transactions on Machine Learning Research (05/2025)

Felix Hill, Sona Mokra, Nathaniel Wong, and Tim Harley. Human instruction-following with deep reinforcement
learning via transfer-learning from text. arXiv preprint arXiv:2005.09382, 2020.

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordination. In
ICML, pp. 13584–13598, 2023.

Biwei Huang, Chaochao Lu, Liu Leqi, José Miguel Hernández-Lobato, Clark Glymour, Bernhard Schölkopf,
and Kun Zhang. Action-sufficient state representation learning for control with structural constraints. In
International Conference on Machine Learning, pp. 9260–9279. PMLR, 2022a.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In ICML, pp. 9118–9147, 2022b.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through planning with
language models. In CoRL, pp. 1769–1782, 2023.

Haoyuan Jiang, Ziyue Li, Zhishuai Li, Lei Bai, Hangyu Mao, Wolfgang Ketter, and Rui Zhao. A general
scenario-agnostic reinforcement learning for traffic signal control. IEEE Transactions on Intelligent
Transportation Systems, 2024.

Anastasios Kouvelas, Jennie Lioris, S Alireza Fayazi, and Pravin Varaiya. Maximum pressure controller for
stabilizing queues in signalized arterial networks. Transportation Research Record, 2421(1):133–141, 2014.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language models.
In ICLR, 2023.

Yixing Lan, Xin Xu, Qiang Fang, Yujun Zeng, Xinwang Liu, and Xianjian Zhang. Transfer reinforcement
learning via meta-knowledge extraction using auto-pruned decision trees. Knowledge-Based Systems, 242:
108221, 2022.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314–21328, 2022.

Dapeng Li, Zhiwei Xu, Bin Zhang, and Guoliang Fan. From explicit communication to tacit cooperation: A
novel paradigm for cooperative marl. arXiv preprint arXiv:2304.14656, 2023a.

Dapeng Li, Hang Dong, Lu Wang, Bo Qiao, Si Qin, Qingwei Lin, Dongmei Zhang, Qi Zhang, Zhiwei Xu, Bin
Zhang, et al. Verco: Learning coordinated verbal communication for multi-agent reinforcement learning.
arXiv preprint arXiv:2404.17780, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161, 2023b.

Zachary C Lipton, Kamyar Azizzadenesheli, Abhishek Kumar, Lihong Li, Jianfeng Gao, and Li Deng.
Combating reinforcement learning’s sisyphean curse with intrinsic fear. arXiv preprint arXiv:1611.01211,
2016.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code auto-
completion systems. arXiv preprint arXiv:2306.03091, 2023.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. In NeurIPS, 2017.

Jiaming Lu, Jingqing Ruan, Haoyuan Jiang, Ziyue Li, Hangyu Mao, and Rui Zhao. Dualight: Enhanc-
ing traffic signal control by leveraging scenario-specific and scenario-shared knowledge. arXiv preprint
arXiv:2312.14532, 2023.

14

Published in Transactions on Machine Learning Research (05/2025)

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding large language
models. In ICLR, pp. 1–39, 2024.

Patrick Meier. Digital humanitarians: how big data is changing the face of humanitarian response. Crc Press,
2015.

Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. Traffic light control using deep policy-gradient
and value-function-based reinforcement learning. IET Intelligent Transport Systems, 11(7):417–423, 2017.

Md Shirajum Munir, Nguyen H Tran, Walid Saad, and Choong Seon Hong. Multi-agent meta-reinforcement
learning for self-powered and sustainable edge computing systems. IEEE Transactions on Network and
Service Management, 18(3):3353–3374, 2021.

Srinarayana Nagarathinam, Vishnu Menon, Arunchandar Vasan, and Anand Sivasubramaniam. Marco -
multi-agent reinforcement learning based control of building hvac systems. In ACM e-Energy, 2020.

Nathalia Nascimento, Paulo Alencar, and Donald Cowan. Gpt-in-the-loop: Adaptive decision-making for
multiagent systems. arXiv preprint arXiv:2308.10435, 2023.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate Q-value functions for
decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Venkata Ramakrishna Padullaparthi, Srinarayana Nagarathinam, Arunchandar Vasan, Vishnu Menon, and
Depak Sudarsanam. Falcon-farm level control for wind turbines using multi-agent deep reinforcement
learning. Renewable Energy, 181:445–456, 2022.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, pp. 2778–2787, 2017.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement learning.
Journal of Machine Learning Research, 21(1):7234–7284, 2020.

Roger P Roess, Elena S Prassas, and William R McShane. Traffic engineering. Pearson/Prentice Hall, 2004.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with latent language.
In ACL, pp. 1713–1726, 2022.

Ali Shirali, Alexander Schubert, and Ahmed Alaa. Pruning the way to reliable policies: A multi-objective
deep q-learning approach to critical care. arXiv preprint arXiv:2306.08044, 2023.

Herbert A Simon. Rational choice and the structure of the environment. Psychological review, 63(2):129,
1956.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In ICML, pp. 5887–5896,
2019.

Kaushik Subramanian, Charles L Isbell Jr, and Andrea L Thomaz. Exploration from demonstration for
interactive reinforcement learning. In AAMAS, pp. 447–456, 2016.

Hao Sun and Taiyi Wang. Toward causal-aware rl: State-wise action-refined temporal difference. arXiv
preprint arXiv:2201.00354, 2022.

15

Published in Transactions on Machine Learning Research (05/2025)

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex dueling multi-agent
Q-learning. In ICLR, pp. 1–27, 2021.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforcement learning
with emergent roles. arXiv preprint arXiv:2003.08039, 2020.

Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang, Yanmin Zhu,
Kai Xu, and Zhenhui Li. Colight: Learning network-level cooperation for traffic signal control. In CIKM,
pp. 1913–1922, 2019.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and Tao
Yu. Text2reward: Automated dense reward function generation for reinforcement learning. arXiv preprint
arXiv:2309.11489, 2023.

Xianliang Yang, Zhihao Liu, Wei Jiang, Chuheng Zhang, Li Zhao, Lei Song, and Jiang Bian. A versatile
multi-agent reinforcement learning benchmark for inventory management. arXiv preprint arXiv:2306.07542,
2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. In ICLR, pp. 1–33, 2023.

Donghao Ying, Yunkai Zhang, Yuhao Ding, Alec Koppel, and Javad Lavaei. Scalable primal-dual actor-critic
method for safe multi-agent RL with general utilities. In NeurIPS, 2023.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative multi-agent games. In NeurIPS, pp. 24611–24624, 2022.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing Lu. Plan4mc:
Skill reinforcement learning and planning for open-world minecraft tasks. arXiv preprint arXiv:2303.16563,
2023.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Mannor. Learn what not to learn:
Action elimination with deep reinforcement learning. In NeurIPS, 2018.

Bin Zhang, Hangyu Mao, Jingqing Ruan, Ying Wen, Yang Li, Shao Zhang, Zhiwei Xu, Dapeng Li, Ziyue
Li, Rui Zhao, et al. Controlling large language model-based agents for large-scale decision-making: An
actor-critic approach. arXiv preprint arXiv:2311.13884, 2023.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective overview
of theories and algorithms. Handbook of Reinforcement Learning and Control, pp. 321–384, 2021.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo Gao,
Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models in code intelligence.
arXiv preprint arXiv:2406.11931, 2024.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu,
Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world enviroments via
large language models with text-based knowledge and memory. arXiv preprint arXiv:2305.17144, 2023.

Alessandro Zocca. Temporal starvation in multi-channel csma networks: an analytical framework. ACM
SIGMETRICS Performance Evaluation Review, 46(3):52–53, 2019.

16

Published in Transactions on Machine Learning Research (05/2025)

A Notations

All the notations used are summarized in Table 9.

Notation Definition
π Combined policy of all agents
πk Policy of agent k
s Ground truth state
a Combined action of all agents
ak Action of agent k
o Combined observation of all agents
ok Partial observation of agent k
γ Discount factor
r Reward obtained from environment

P (·|s, a) Transition function of environment
E Exploration function generated by LLM
πE

k Policy of agent k under exploration function E
Fk Policy feedback from policy k
Gk Performance evaluation of policy k

Table 9: Notations and Definitions

B Proofs

Proposition 1.

1. For any E ∈ {E}, {πE} ⊆ {π}. If E is non-trivial, then {πE} ⊂ {π}.

2. For any π ∈ {π}, there exists a non-trivial E ∈ {E} such that J(πE) ≥ J(π).

Proof. We begin by offering the proof of the first statement in Proposition 1. We denote {πk} as the set of
all possible policies for agent k, with each πk satisfying the following two conditions:{

πk : Ok ×Ak → [0, 1]∑
ak∈Ak

πk(ak | ok) = 1 (5)

Let {πE
k } be the set of policies under an exploration function E. For every element in πE

k ∈ {πE
k }, one of the

two situations exists:

1. If E is trivial, then πE
k (· | ok) = πk(· | ok), hence πE

k ∈ {πk}.

2. If E is non-trivial, then πE
k (· | ok) = πk(·|ok)·E(ok,·)∑

ak∈Ak
πk(ak|ok)·E(ok,ak)

. It is clear that 0 ≤ πE
k (· | ok) ≤ 1 and∑

ak∈Ak
πE

k (ak | ok) = 1, thus πE
k ∈ {πk}.

Therefore, we know that:
{πE

k } ⊆ {πk}. (6)

Given that for ∀π(· | st) =
∏N

k=1 πk(· | ok), we have π ∈ {π}, where each πk belongs to {πk}. According to
Formula 6, it is known that for ∀πE(· | st) =

∏N
k=1 πE

k (· | ok), it belongs to {π}. Then:

{πE} ⊆ {π}. (7)

17

Published in Transactions on Machine Learning Research (05/2025)

When E is non-trivial, πE
k ∈ {πk} still holds, but πk ∈ {πE

k } may not be true (i.e., when πk(ak | ok) > 0 for
∀ak ∈ A, πk /∈ {πE

k }). Hence we can get:
{πE

k } ⊂ {πk}. (8)

In a similar manner, we can deduce that if there exists a k ∈ [1, 2, . . . , N] such that πk /∈ {πE
k }, then π /∈ {πE},

which means:
{πE} ⊂ {π}. (9)

Therefore, we finish the proof of the first statement.

To proof the second statement, it is necessary to introduce a series of variables. We define the value function
and state-action function for π as follows: Vπ(s) = Ea0:∞∼π,s1:∞∼P

[∑∞
t=0 γtrt | s0 = s

]
and Qπ(s, a) =

Ea1:∞∼π,s1:∞∼P

[∑∞
t=0 γtrt | s0 = s, a0 = a

]
. The advantage function is defined as Aπ(s, a) = Qπ(s, a)−Vπ(s).

The joint exploration function is introduced as E(s, ·) =
∏N

k=1 E(ok, ·). The relationship between Vπ(s) and
Qπ(s, a) can be formulated as:

Vπ(s) =
∑

a∈Ak

π(a | s)Qπ(s, a) (10)

For a non-trivial E, the value function of πE can be written as:

VπE (s) =
∑

a∈Ak

E(s, a)π(a | s)∑
a∈Ak

E(s, a)π(a | s)Qπ(s, a)

= 1∑
a∈Ak

E(s, a)π(a | s)
∑

a∈Ak

E(s, a)π(a | s)Qπ(s, a)

= 1∑
a∈Ak

E(s, a)π(a | s)

[
Vπ(s)−

∑
a∈Ak

(1−E(s, a)) π(a | s)Qπ(s, a)
]

.

(11)

Thus, we have:

VπE (s)− Vπ(s) =
Vπ(s)−

∑
a∈Ak

(1−E(s, a)) π(a | s)Qπ(s, a)∑
a∈Ak

E(s, a)π(a | s) − Vπ(s)

=
(
1−

∑
a∈Ak

E(s, a)π(a | s)
)

Vπ(s)−
∑

a∈Ak
(1−E(s, a)) π(a | s)Qπ(s, a)∑

a∈Ak
E(s, a)π(a | s)

=
∑

a∈Ak
(1−E(s, a)) π(a | s)Vπ(s)−

∑
a∈Ak

(1−E(s, a)) π(a | s)Qπ(s, a)∑
a∈Ak

E(s, a)π(a | s)

= −
∑

a∈Ak
(1−E(s, a)) π(a | s)Aπ(s, a)∑

a∈Ak
E(s, a)π(a | s) .

(12)

When −
∑

a∈Ak
(1−E(s, a)) π(a | s)Aπ(s, a) ≥ 0, which means the expectation of the advantage value for

the pruned actions is less than or equal to 0, then VπE (s) ≥ Vπ(s). Because for every s ∈ S,
∑

a∈Ak
Aπ(s, a) =∑

a∈Ak
Qπ(s, a)− Vπ(s) = 0, there always exist actions for which the advantage function values are less than

or equal to zero.

As J(πE)−J(π) = Es0∼ρ0
[
VπE (s0)− Vπ(s0)

]
, if an exploration function E can satisfy the condition that for

all states s ∈ S, the inequality −
∑

a∈Ak
(1−E(s, a)) π(a | s)Aπ(s, a) ≥ 0 holds, then it can be guaranteed

that J(πE) ≥ J(π).

Therefore, we finish the proof of the second statement.

Proposition 2. Let’s consider a fully cooperative game with N agents, one state, and the joint action space
{0, 1}N , where the reward is given by r(00, 1N) = r1 and r(0N−m, 1m) = −mr2 for all m ̸= N , r1, r2 are
positive real numbers. We suppose the initial policy is randomly and uniformly initialized, and the policy is

18

Published in Transactions on Machine Learning Research (05/2025)

optimized in the form of gradient descent. Let p be the probability that the shared policy converges to the best
policy, then:

p = 1− N−1

√
r2

r1 + Nr2
. (13)

Proof. Clearly, the best policy is the deterministic policy with joint action (00, 1N).

Now, let the shared policy be (1− θ, θ), where θ is the probability that an agent takes action 1. The expected
reward can be written as:

J(θ) = Pr
(
a1:N = (00, 1N)

)
· r1 −

N−1∑
t=0

Pr
(
a1:N = (0N−t, 1t)

)
· t · r2

= θN · r1 −
N−1∑
t=0

t · Ct
N θt(1− θ)N−t · r2

= θN · r1 −
N∑

t=0
t · Ct

N θt(1− θ)N−t · r2 + N · θN · r2,

(14)

where Ct
N is a combinatorial number. We need to simplify

∑N
t=0 t · Ct

N θt(1 − θ)N−t for further analysis.
Notice the structural similarity between the results and the binomial theorem:

((1− θ) + θ)N =
N∑

t=0
Ct

N θt(1− θ)N−t. (15)

We take the derivative of θ on both sides of Formula 15. Because the left side is constant, its derivative is 0.
Then:

0 = d
∑N

t=0 Ct
N θt(1− θ)N−t

dθ

=
N∑

t=0
Ct

N t · θt−1 · (1− θ)N−t + Ct
N (N − t) · (−1) · (1− θ)N−t−1 · θt

=
N∑

t=0
Ct

N (1− θ)N−t−1θt−1 ((1− θ)t− (N − t)θ)

=
N∑

t=0
Ct

N (1− θ)N−t−1θt−1(t−Nθ).

(16)

Thus, we have:

Nθ

N∑
t=0

Ct
N (1− θ)N−t−1θt−1 =

N∑
t=0

tCt
N (1− θ)N−t−1θt−1

Nθ

N∑
t=0

Ct
N (1− θ)N−tθt =

N∑
t=0

tCt
N (1− θ)N−tθt.

(17)

Notice that the left side of the equation is the expansion form of Formula 15, and the right side of the
equation is the desired Formula, we can get:

N∑
t=0

tCt
N (1− θ)N−tθt = Nθ. (18)

Bring Formula 18 back to Formula 14, we get:

J(θ) = θN · r1 −Nθr2 + N · θN · r2. (19)

19

Published in Transactions on Machine Learning Research (05/2025)

In order to maximise J(θ), we must maximise θN · (r1 + Nr2)−Nθr2. Since the policy optimization usually
adopts a gradient manner, we calculate the derivative of Formula 19 with respect to θ as:

dJ(θ)
dθ

= NθN−1(r1 + Nr2)−Nr2. (20)

the point θ∗ = N−1
√

r2
r1+Nr2

is the only zero of dJ(θ)
dθ . When θ ≤ θ∗, dJ(θ)

dθ ≤ 0; θ ≥ θ∗, dJ(θ)
dθ ≥ 0.

Remember we are trying to maximize J(θ) through a gradient way, and then the policy improves the
parameters in the direction of the gradient. As the initial policy is randomly and uniformly initialized, the θ
is uniformly distributed in the interval [0,1], then the probability that the shared policy converges to the best
policy is:

p = 1− N−1

√
r2

r1 + Nr2
. (21)

Therefore, we finish the proof of Proposition 2.

C An example of GPT performing action space pruning

In this section, we present a challenging sequential decision-making example to show GPT’s capability of
reasoning and code generation for pruning redundant action spaces.

GPT’s input:
Consider a resource allocation game with n agents. Each agent has a discrete action space {0, 1, 2, 3},
representing the amount of resources allocated in each step. The goal is to maximize the team’s cumulative
utility while satisfying dynamic constraints that evolves over time.

Game Rules:
1. Utility Function: The team’s cumulative utility is the sum of all agents’ contributions, defined as:
U(a1, a2, . . . , an) =

∑n

i=1 log(1 + ai)
2. Constraints: At each time step t, a global constraint Ct limits the total allocation

∑n

i=1 ai ≤ Ct

3. Penalty for Violations: If the total allocation exceeds Ct, a penalty proportional to the excess is
subtracted from the utility: P (excess) = −k · (excess)2, where k is a positive constant.

Please write an exploration function that masks invalid bids and bids likely to lead to inefficient budget
usage (e.g., overbidding when the reward is low) for each agent. The function signature is:

def compute_mask (current_allocations , actions_space , constraints):
return total_mask

current_allocations: Current resource allocation of all agents.
actions_space: Available actions for each agent.
constraints: The dynamic constraint Ct.

GPT’s output:
In this game, the exploration function must account for the following:
1. Dynamic Constraints: Predict whether an action will exceed Ct given the current state and other agents’
possible actions.
2. Utility Contribution: Estimate the marginal utility of each action and prioritize those with higher
expected contributions.
3. Penalty Avoidance: Mask actions likely to trigger penalties due to constraint violations.

import numpy as np
def compute_mask (current_allocations , actions_space , constraints):

total_mask = []
for action in actions_space :

20

Published in Transactions on Machine Learning Research (05/2025)

predicted_allocation = sum(current_allocations) + action

Check if the action violates the constraint
if predicted_allocation > constraints :

total_mask . append (0) # Mask the action
else:

Estimate marginal utility and penalize low contribution
marginal_utility = np.log (1 + action)
penalty = -0.1 * (predicted_allocation - constraints) ** 2 if

predicted_allocation > constraints else 0
Mask actions with low marginal utility or high penalties
if marginal_utility + penalty < 0.5: # Threshold chosen

heuristically
total_mask . append (0)

else:
total_mask . append (1)

return total_mask

D Detailed settings

D.1 MABIM details

MABIM is a simulation environment dedicated to leveraging MARL to tackle the challenges inherent in
inventory management problems. Within MABIM, each stock SKU at every echelon is represented as an
autonomous agent. The decision-making process of each agent reflects the procurement requirements for the
specific SKU at its corresponding echelon.

Product
... ...

Replenishment

Factory Warehouse Customer
Product

Replenishment

Figure 4: MABIM inventory model.

Each time step involves the agent making decisions regarding replenishment quantities for SKUs and
subsequently transitioning the environment to a new state. Let M ∈ Z+ be the total warehouses, with the
first one being closest to customers, and N ∈ Z+ the total SKUs. Given a variable X ∈ {D, S, L . . .}, Xt

i,j

represents its value for the j-th SKU in the i-th echelon at step t, with 0 ≤ i < M and 0 ≤ j < N . Given the
above notations, the main progression of a step can be described as follows:

Dt+1
i+1,j = Rt

i,j (Replenish)
St

i,j = min(Dt
i,j , It

i,j) (Sell)

At
i,j =

t−1∑
k=0

I(k + Lk
i,j == t) · St

i+1,j (Arrive)

γt
i = min

(
Wi −

∑
j It

i,j∑
j At

i,j

, 1
)

, Bt
i,j = ⌊At

i,j · γt
i⌋ (Receive)

It+1
i,j = It

i,j − St
i,j + Bt

i,j (Update)

Here, D, R, S, I, A, B ∈ Z+ and I(condition) is an indicator function that returns 1 if the condition is true,
and 0 otherwise. For the topmost echelon, orders are channeled to a super vendor capable of fulfilling all

21

Published in Transactions on Machine Learning Research (05/2025)

order demands at that level. Orders from other echelons are directed to their immediate upstream echelons,
where the demands are satisfied based on the inventory levels of the upper echelons. The demand at the
bottom echelon is derived from actual customer orders captured within real-world data sets. The reward
function within MABIM is meticulously calibrated based on the economic realities of inventory management,
integrating five fundamental elements: sales profit, order cost, holding cost, backlog cost, and excess cost.
The summation of these elements constitutes the reward value, thereby incentivizing agents to optimize
inventory control for enhanced profitability and operational efficacy.

MABIM incorporates challenges across five key categories: Scaling up, Cooperation, Competition, General-
ization, and Robustness. We concentrate on the challenges associated with Scaling up, Cooperation, and
Competition, as these challenges not only manifest in inventory management problems but also exist in a
broad range of MARL tasks. We catalog the number of agents, challenges and degrees of difficulty within all
the experimental scenarios in Table 10. The specific setting of each scenario is given in Table 11:

Table 10: Tasks and corresponding challenges. ‘+’ denotes the extent of the challenges.

Task name Agents number Challenge
Scaling up Cooperation Competition

Standard (100 SKUs) 100
2 echelons (100 SKUs) 200 +
3 echelons (100 SKUs) 300 ++

Lower capacity(100 SKUs) 100 +
Lowest capacity (100 SKUs) 100 ++

Standard (500 SKUs) 500 +
2 echelons (500 SKUs) 1000 + +
3 echelons (500 SKUs) 1500 + ++

Lower capacity (500 SKUs) 500 + +
Lowest capacity (500 SKUs) 500 + ++

Table 11: Experiments settings. "#SKU * N" indicates N times the number of SKUs.

Task name #Echelon #SKU Capacity per echelon
Standard (100 SKUs) 1 100 #SKU*100
2 echelons (100 SKUs) 2 100 #SKU*100
3 echelons (100 SKUs) 3 100 #SKU*100

Lower capacity(100 SKUs) 1 100 #SKU*50
Lowest capacity (100 SKUs) 1 100 #SKU*25

Standard (500 SKUs) 1 500 #SKU*100
2 echelons (500 SKUs) 2 500 #SKU*100
3 echelons (500 SKUs) 3 500 #SKU*100

Lower capacity (500 SKUs) 1 500 #SKU*50
Lowest capacity (500 SKUs) 1 500 #SKU*25

For each scenario, we carry out three independent runs. Performance is reported as average test set profits
from the top model in each run.

D.2 SUMO details

SUMO is an open-source, highly portable, microscopic and continuous road traffic simulation package designed
to handle large road networks. In the SUMO simulation environment, each intersection is conceptualized as
an autonomous agent equipped with an array of predefined traffic signal phases. These phases orchestrate

22

Published in Transactions on Machine Learning Research (05/2025)

the traffic flow across the intersection’s multiple approaches. The selection of these phases, driven by the
assessment of live traffic conditions, is aimed at attenuating road congestion and enhancing the fluidity
of vehicular movement through the network, thus contributing to the overall efficiency of urban traffic
management.

To conduct a thorough evaluation of each algorithm, we select a total of five scenarios from both synthetic
and real-world datasets. These datasets encompass a diverse array of intersections, varying in number and
type. The intersections are classified according to their configuration into three categories: bi-directional
(2-arm), tri-directional (3-arm), and quadri-directional (4-arm), indicating the number of exit points at each
junction. We summarize the type of each dataset, the number of intersections included, and the classification
of these intersections in Table 12.

Table 12: The categories of each SUMO dataset, along with the number and types of intersections included.

Dataset Category Intersections number 2-arm 3-arm 4-arm
Grid 4×4 synthesis 16 0 0 16

Arterial 4×4 synthesis 16 0 0 16
Grid 5×5 Lu et al. (2023) synthesis 25 0 0 25

Cologne8 real-world 8 1 3 4
Ingolstadt21 real-world 21 0 17 4

To facilitate a homogeneous observation and action space conducive to the deployment of various MARL
algorithms, we employ the GEneral Scenario-Agnostic (GESA) framework to parse each intersection into a
standardized 4-arm intersection with eight potential actions.

D.3 Model details

We employ IPPO as the base MARL algorithm for eSpark due to its ability to scale to large-scale MARL
challenges. We select GPT-4 as our LLMc and LLMg, specifically opting for the 2023-09-01-preview version.
The temperature of GPT-4 is set to 0.7, with no frequency penalty and presence penalty. For each scenario, we
conduct three runs, setting the batch size for each generation of exploration functions to K = 16. This batch
size is chosen because it guarantees that the initial generation contains at least one executable exploration
function for our environment. We limit the number of training iterations to 10, as we observe that the
performance for most scenarios tends to converge within this number of iterations.

E Baseline details

In our experiments, we employed three categories of baselines: OR baselines, MARL baselines and pruning
baselines. In Table E, we list the characteristics and environment of all the baselines utilized in our study. In
the rest of this section, we will elucidate the underlying principles of each OR baseline, articulate the design
of the pruning baselines, and present the hyperparameter for the MARL baselines.

E.1 OR baselines

E.1.1 Base stock algorithm

The base stock algorithm constitutes a streamlined and efficacious approach for inventory control, whereby
replenishment orders are initiated upon inventory below a predefined threshold level. This policy is traditionally
acknowledged as a fundamental benchmark, favored for its straightforwardness and rapid implementation.
The computation of the base stock level is facilitated through a programmatic methodology, as explicated in
Equation 22:

23

Published in Transactions on Machine Learning Research (05/2025)

Table 13: All the baselines used in the experiments

Algorithm name OR baseline MARL baseline Pruning baseline Used environment
CTDE DTDE MABIM SUMO

Base stock (BS) Arrow et al. (1951) ✓ ✓
(S, s) Blinder (1990) ✓ ✓

FTC Roess et al. (2004) ✓ ✓
MaxPressure Kouvelas et al. (2014) ✓ ✓

IPPO ✓ ✓ ✓
QTRAN ✓ ✓
QPLEX ✓ ✓
MAPPO ✓ ✓ ✓

MPLight Chen et al. (2020) ✓ ✓
CoLight Wei et al. (2019) ✓ ✓

Ramdom pruning ✓ ✓ ✓
(S, s) pruning ✓ ✓

Upbound pruning ✓ ✓
MaxPressure pruning ✓ ✓

max ot
i,j = p̄i,j · St

i,j − c̄i,j · St
i+1,j − h̄i,j · It+1

i,j − c̄i,j · T 0
i,j − c̄i,j · I0

i,j

s.t It+1
i,j = It

i,j + S
t−L̄i,j

i+1,j − St
i,j

T t+1
i,j = T t

i,j − S
t−L̄i,j

i+1,j + St
i+1,j

St
i,j = min(It

i,j , Rt
i,j)

T 0
i,j =

−1∑
t=−L̄i,j

St
i+1,j

zi,j = It+1
i,j + St

i+1,j + T t
i,j

zi,j ∈ R+.

(22)

In the above equations, i, j, and t are indexes for the warehouse, SKU, and discrete time, respectively. The
indicators p̄, c̄, h̄, and L̄ represent the average selling price, cost of procurement, cost of holding, and lead
time. The variables S, R, I, and T denote the quantities associated with sales, orders for replenishment,
inventory in stock and inventory in transit. ot

i,j describes the profit objective, while zi,j is indicative of the
base stock level.

We utilize two approaches for computing stock levels. The first approach, named BS static, involves
calculating all base stock levels with historical data from the training set, which are then applied consistently
to the test set. The levels remain unchanged during the test period. The second approach, termed as BS
dynamic, computes stock levels directly on the test set relying on historical data and updates on a regular
basis.

E.1.2 (S, s) algorithm

The (S, s) inventory policy serves as a robust framework for managing stock levels. Under this policy, a
restocking order is triggered once the inventory count falls below a predefined threshold, identified as s. The
objective of this replenishment is to elevate the stock to its upper limit, designated as S. Empirical analyses
have substantiated the efficacy of this protocol in optimizing inventory control processes. As a result, it is
adopted as a benchmark heuristic, with the aim of algorithmically ascertaining the most efficacious (S, s)
parameter for each discrete SKU in the given inventory dataset. In our implementation, we conduct a search

24

Published in Transactions on Machine Learning Research (05/2025)

on the training set to identify the optimal values of s and S, after which we apply these values consistently
to the test set.

E.1.3 Fixed-time control algorithm

The Fixed-Time Control (FTC) algorithm is a traditional traffic signal control strategy predicated on
predefined signal plans. These plans are typically designed based on historical traffic flow patterns and do
not adapt to real-time traffic conditions. The FTC operates on a static schedule where the signal phases at
intersections change at fixed intervals. This approach is straightforward and easy to implement but may not
be optimal under variable traffic conditions due to its lack of responsiveness to dynamic traffic demands.

In our implementation, the FTC follows a fixed sequence of signal phases: ’WT-ET’, ’NT-ST’, ’WL-EL’,
’NL-SL’, ’WL-WT’, ’EL-ET’, ’SL-ST’, ’NL-NT’. Here, ’W’, ’E’, ’N’, and ’S’ denote westbound, eastbound,
northbound, and southbound traffic, respectively, while ’T’ indicates through movement, and ’L’ signifies a
left turn. Each phase has a duration of 30 seconds

E.1.4 MaxPressure algorithm

The MaxPressure algorithm represents a more advanced traffic signal control strategy that dynamically
adjusts signal phases in response to real-time traffic conditions. It calculates the "pressure" at each intersection,
defined as the difference between the number of vehicles on the incoming and outgoing lanes. The algorithm
aims to optimize traffic flow by selecting signal phases that reduce the maximum pressure across the network,
thus alleviating congestion and enhancing network throughput. Unlike FTC, MaxPressure is adaptive and can
continuously optimize signal timing based on the current traffic state, making it more suitable for managing
fluctuating traffic volumes.

E.2 Hyperparameters settings for MARL baselines

The following table enumerates the hyperparameters employed during the training process for all MARL
baselines. For all test scenarios, training is performed with a uniform suite of hyperparameters that have not
undergone specialized fine-tuning.

Table 14: Hyperparameters of MARL Algorithms Used in MABIM and SUMO Environments. ‘-’ indicates
that the algorithm is not set or does not contain this hyperparameter.

Hyperparameter MABIM environment SUMO environment
IPPO QTRAN QPLEX MAPPO IPPO CoLight MPLight

Training steps 5020000 5020000 5020000 5020000 2400000 2400000 2400000
Discount rate 0.985 0.985 0.985 0.985 0.985 0.9 0.9

Optimizer Adam Adam Adam Adam Adam RMSProp RMSProp
Optimizer alpha 0.99 0.99 0.99 0.99 0.99 0.95 0.95
Optimizer eps 1e-5 1e-5 1e-5 1e-5 1e-5 1e-7 1e-7
Learning rate 5e-4 5e-4 5e-4 5e-4 5e-4 1e-3 1e-3

Grad norm clip 10 10 10 10 10 - -
Eps clip 0.2 - - 0.2 0.2 - -

Critic coef 0.5 - - 0.5 0.5 - -
Entropy coef 0 - - 0 0 - -

Accumulated episodes 4 8 8 4 4 10 10
Number of neighbors - - - - - 5 -

E.3 Pruning baselines

E.3.1 Random pruning

Random pruning is implemented by randomly masking a certain percentage of the available actions. During
the action selection process, each agent will have p percent of its available actions randomly masked. To

25

Published in Transactions on Machine Learning Research (05/2025)

balance the observability of the pruning’s impact with the preservation of the algorithm’s capacity to utilize
prior experience, we set p = 0.3.

E.3.2 (S, s) pruning

According to the (S, s) algorithm, for a given SKU, a replenishment quantity of ∆ = S − s is ordered when
the current inventory level falls below the threshold s; otherwise, no order is placed. We extend the reference
replenishment quantity ∆ to a range [r1 ×∆, r2 ×∆], where r1, r2 are both real numbers and 0 ≤ r1 ≤ 1 and
r2 ≥ 1. Actions within this interval are deemed available, while those outside of this range are masked. In
our implementation, we select r1 = 0.5 and r2 = 2.

E.3.3 MaxPressure pruning

The MaxPressure pruning method utilizes the heuristic concept of "pressure" at an intersection to prune
actions. We calculate the pressure associated with each action, and these pressures are then ranked. The
actions with the top-k highest pressures are rendered available for selection. Actions not meeting this threshold
are subsequently masked.

A standardized intersection warped through the GESA is modeled as a four-arm intersection comprising eight
potential actions. We empirically set k = 4 to ensure effective pruning while maintaining a sufficient number
of available actions.

F Additional results

F.1 Computational costs

We present the token assumption of eSpark in Table 15. Since we do not design specific prompts for different
scenario tasks within the same environment, we calculate the average token consumption for all scenarios
with each environment.

Table 15: Average token assumption for MABIM and SUMO.

Environment Token assumption (M)
MABIM 3.0
SUMO 2.6

The training time and GPU memory usage for eSpark and the baselines across different scenarios are presented
in Table 16 and Table 17.

Table 16: GPU memory usage of eSpark and MARL
baselines.

Method GPU memory usage (G)
Standard 2 echelons 3 echelons

eSpark 27.2 33.9 42.4
IPPO 2.3 3.4 4.4

QTRAN 4.2 6.5 8.7

Table 17: Running time of eSpark and MARL
baselines.

Method Running time (h)
Standard 2 echelons 3 echelons

eSpark 18 25 30
IPPO 6 8 12

QTRAN 9 15 21

F.2 Detailed results of the pruning methods

In this section, we provide the detailed results for multiple pruning baselines as discussed in Section 5.3,
along with results of eSpark for comparison.

26

Published in Transactions on Machine Learning Research (05/2025)

Table 18: Detailed performance of various pruning methods in MABIM.

Method
Avg. profits (K)

100 SKUs scenarios 500 SKUs scenarios
Standard 2 echelons 3 echelons Lower Lowest Standard 2 echelons 3 echelons Lower Lowest

Random pruning 733.0 1407.6 1426.6 511.6 262.0 2718.0 8667.4 9464.1 2535.5 2202.1
(S, s) pruning 394.4 832.3 933.4 441.1 258.3 3884.3 9248.3 10282.1 3517.9 2085.6

Upbound pruning 745.0 630.2 -2.2 557.7 294.7 3261.3 2473.6 1657.6 2833.0 2167.7
eSpark 823.7 1811.4 2598.7 579.5 405.0 4468.6 9437.3 12134.2 3775.7 2519.5

Table 19: Detailed performance of various pruning methods in SUMO, includes the mean and standard
deviation.

Method Metric Grid 4×4 Arterial 4×4 Grid 5×5 Cologne8 Ingolstadt21

Ramdom pruning
Delay 49.07±0.36 858.33±48.20 238.57±9.45 25.89±1.34 353.38±24.39

Trip time 160.13±0.58 548.08±61.84 241.92±9.60 89.75±1.26 478.53±22.54
Wait time 22.66±0.14 387.25±43.93 93.49±8.09 7.03±0.37 281.97±21.90

MaxPressure pruning
Delay 48.78±0.37 890.04±121.50 234.27±14.28 26.26±0.36 337.02±62.18

Trip time 160.72±0.17 533.36±78.08 253.68±17.68 90.36±0.88 448.11±65.32
Wait time 23.03±0.56 391.96±78.34 102.29±10.34 7.33±0.12 257.98±61.91

eSpark
Delay 48.36±0.32 854.22±68.21 209.49±13.98 25.39±1.27 243.92±15.81

Trip time 159.74±0.44 484.87±58.21 235.20±6.80 89.50±1.36 367.57±15.03
Wait time 22.58±0.29 328.82±61.70 88.38±4.41 6.94±0.38 180.09±13.84

F.3 Detailed results of the ablations

In this section, we provide the detailed results for ablations in Table 20 and Table 21, along with results of
eSpark for comparison.

Table 20: Detailed performance of ablations in MABIM.

Method Avg. profits (K)
Standard 2 echelons 3 echelons Lower Lowest

eSpark w/o retention 719.0 1806.1 2388.6 547.7 294.1
eSpark w/o LLM 754.7 1538.9 1109.9 536.7 198.5

eSpark w/o checker 780.7 1741.6 2037.6 494 295.3
eSpark w/o r factors 758.2 1688.1 2375.1 498.6 368.9

eSpark 823.7 1811.4 2598.7 579.5 405.0

G eSpark’s performance with different LLMs

We evaluated the performance of eSpark under different LLMs. Specifically, we selected the advanced
GPT-4o, the relatively less capable GPT-3.5, and the state-of-the-art open-source model DeepSeek-V3 (671B).
Experiments were conducted on two inventory management scenarios, and the results are summarized in
Table 22. The results indicate that eSpark with GPT-4o achieves performance comparable to that of GPT-4.
When using GPT-3.5, performance degrades slightly. Although DeepSeek-V3 can effectively support eSpark,
a performance gap remains compared to GPT-4.

We further assessed compact versions of state-of-the-art open-source LLMs, including DeepSeek-R1-70B and
Qwen2.5-72B. Unfortunately, these models performed poorly in task comprehension and failed to generate
executable exploration functions. While these compact models show promise, their current capabilities do not
yet match those of full-scale models required by eSpark. As shown in Figure 5 as example, the exploration
functions generated by Qwen2.5-72B exhibit issues such as variable misuse and logical inconsistencies,
highlighting their limited understanding of task requirements.

27

Published in Transactions on Machine Learning Research (05/2025)

Table 21: Detailed performance of ablations in SUMO, includes the mean and standard deviation.

Method Metric Grid 4×4 Arterial 4×4 Grid 5×5 Cologne8 Ingolstadt21

eSpark w/o retention
Delay 48.75±0.49 851.56±37.98 211.07±22.01 25.18±0.51 246.05±14.88

Trip time 160.42±0.54 487.05±65.66 248.96±15.04 89.23±0.49 363.28±14.83
Wait time 22.97±0.39 338.64±67.07 97.77±10.25 7.14±0.15 175.79±12.47

eSpark w/o LLM
Delay 48.67±0.48 854.10±63.38 212.25±16.13 24.70±0.56 257.14±40.50

Trip time 159.90±0.56 491.49±67.52 238.33±9.41 88.57±0.60 376.46±40.01
Wait time 22.99±0.43 342.62±73.88 90.89±6.60 6.69±0.23 188.14±37.03

eSpark w/o checker
Delay 48.29±0.53 872.6±94.89 215.58±11.29 25.22±0.69 258.39±14.44

Trip time 159.62±0.48 511.45±79.67 246.56±9.38 89.20±0.68 383.33±17.07
Wait time 22.59±0.48 347.43±68.39 95.95±6.33 6.92±0.28 192.96±15.37

eSpark w/o r factors
Delay 48.54±0.41 849.82±44.81 216.27±20.01 25.29±0.61 240.47±19.69

Trip time 159.89±0.63 479.29±57.12 247.28±8.30 89.25±0.62 373.32±21.19
Wait time 22.85±0.36 331.69±74.99 90.14±6.95 6.88±0.19 180.90±13.42

eSpark
Delay 48.36±0.32 854.22±68.21 209.49±13.98 25.39±1.27 243.92±15.81

Trip time 159.74±0.44 484.87±58.21 235.20±6.80 89.50±1.36 367.57±15.03
Wait time 22.58±0.29 328.82±61.70 88.38±4.41 6.94±0.38 180.09±13.84

Table 22: eSpark’s performance with different LLMs in MABIM.

Method Avg. profits (K)
Standard Lowest

GPT-4 823.7 405.0
GPT-4o 829.2 397.5
GPT-3.5 807.8 381.3

DeepSeek-V3 778.0 370.1

Figure 5: Exploration function generated by Qwen2.5-72B. The generated exploration functions exhibit
incorrect function signatures and invalid parameter. The function bodies fail to incorporate the required
variables, and misuse both the data structures and the expected usage patterns of those variables.

28

Published in Transactions on Machine Learning Research (05/2025)

Table 23 presents the token consumption across different LLMs. Token usage is relatively consistent across
tasks, enabling users to select an appropriate LLM based on their computational budget and performance
requirements.

Table 23: Average token assumption of eSpark with different LLMs.

Environment Token assumption (M)
GPT-4 3.0
GPT-4o 3.1
GPT-3.5 2.7

DeepSeek-V3 2.8

H eSpark’s performance with different RL formulation

When the environment code is unavailable, we consider manually adding descriptions for transitions and
rewards. We first introduce the ablation eSpark w/ lang, which replaces the environment codes with natural
language descriptions. We conduct experiments on selected scenarios in MABIM with 100 SKUs, and the
results are shown in Table 24 and Table 25. While the SUMO tasks remain largely unaffected, the MABIM
tasks experience noticeable performance declines. This is because the transition logic and variable usage in
SUMO are relatively simple, whereas MABIM involves more complex environment transitions and variable
interactions. While environment codes provide precise transition dynamics and variable meanings, natural
language often lacks this level of detail.

To further explore effective representation for improving performance in complex environments, we also
adopt a strategy similar to Text2reward Xie et al. (2023), where experts create a simplified Python-style
representation, referred to as eSpark w/ pyrep. As shown in Table 24, the kind of representation obtain
performance on par with eSpark, which indicates that as long as accurate details and sufficient information
are included, the language model can effectively understand the environment and eSpark can work well.

Table 24: Performance of eSpark and its ablations in the 100 SKUs setting of the MABIM environment.

Method Profits (K)
Standard 3 echelons Lowest

eSpark 823.7 2598.7 405.0
eSpark w/ lang 777.5 752.7 347.0

eSpark w/ pyrep 817.4 2522.2 409.7

Table 25: Performance of eSpark and its ablations in SUMO, includes the mean and standard deviation.

Method Metric Time usage (s)
Arterial 4×4 Ingolstadt21

eSpark
Delay 851.56±37.98 246.05±14.88

Trip time 484.84±58.21 367.57±15.03
Wait time 328.82±61.70 180.09±13.84

eSpark w/ lang
Delay 830.05±75.95 243.32±19.43

Trip time 495.18±18.60 365.65±21.48
Wait time 351.32±27.07 178.31±19.31

I Policy performance analysis

To gain a deeper understanding of the policy difference between eSpark and IPPO, we select the capacity
limit and multiple echelons challenges within the 100 SKUs scenario as representative cases, presenting in
Figure 6 the daily profit of eSpark and IPPO on the test dataset challenged with capacity limit and multiple

29

Published in Transactions on Machine Learning Research (05/2025)

echelons. In the capacity limit challenges, a high daily overflow ratio and low fulfillment ratio suggest that
IPPO falls short in mastering the adjustment of restocking quantities for individual agents when capacity
is limited, leading to overstocking and substantial overflow. Concurrently, this prevents SKUs required
by consumers from being accommodated, culminating in an exceedingly low fulfillment ratio. In multiple
echelon challenges, the fulfillment ratio at each echelon gradually decreases over time, indicating that IPPO
struggles to comprehend and learn the intricate interplay required for cooperation among various echelons,
thereby inadequately fulfilling the demands of each echelon. Such shortcomings not only diminish potential
profits but also subject the system to considerable backlog expenses. However, through action space pruning,
evolutionary search, and reflection, eSpark manages to reduce the search within the vast space, selecting the
most effective exploration functions and continuously improving. This approach significantly reduces overflow
in the capacity limit scenario and successfully learns suitable cooperation methods for multiple echelons.

0 20 40 600
20
40
60
80

100

Ra
tio

(%
)

Lower capacity
eSpark

Fulfillment Overflow

0 20 40 600
20
40
60
80

100 IPPO

0 20 40 600
20
40
60
80

100

2 echelons
eSpark

Downstream fulfillment Upstream fulfillment

0 20 40 600
20
40
60
80

100 IPPO

0 20 40 60
Days

0
20
40
60
80

100

Ra
tio

(%
)

Lowest capacity
Fulfillment Overflow

0 20 40 60
Days

0
20
40
60
80

100

0 20 40 60
Days

0
20
40
60
80

100

3 echelons
Downstream fulfillment Midstream fulfillment Upstream fulfillment

0 20 40 60
Days

0
20
40
60
80

100

Figure 6: The performance comparison between eSpark and IPPO in 100 SKUs scenarios. In capacity-limited
scenarios, eSpark strives to meet the demands while minimizing overflow costs, boasting a lower overflow
ratio and a higher fulfillment ratio. In the multiple-echelon challenge, eSpark achieves nuanced collaboration
across different echelons, ensuring high fulfillment ratios.

30

Published in Transactions on Machine Learning Research (05/2025)

J eSpark’s response with and without reward factors

We select the policy feedback from one iteration in the Lower scenario of the MABIM environment with 100
SKUs as an example. The complete policy feedback is shown in Figure 7. In the ablation experiment, all
reward factors (highlighted in red) are removed. Figure 8 and Figure 9 illustrate the differences in GPT-4’s
reflections with and without the reward components. After removing the reward feedback, GPT-4 struggles
to identify the reasons for poor performance and to thoroughly analyze ways to improve it.

We trained a RL policy using the provided exploration function code and tracked the values of the individual
components of the reward function as well as global policy metrics. We also compute the maximum, mean in the early
training stage, mean in the late training stage, mean in all the training stage, minimum values for reward and its
components after every {epoch_freq} epochs. Each element is a one-dimensional array of length n_warehouse,
representing the value of that component on different warehouses:

Please carefully analyze the policy feedback and provide a new, improved exploration function that can better solve
the task. Some helpful tips for analyzing the policy feedback:

(1) You can start with "let's think step by step", and then look at each reward individually and think about how
can you improve it

(2) If the total reward maintains in the same level or even reduce, then you must rewrite the entire exploration
function

(3) If the values for a certain reward component are near identical throughout, then this means RL is not able
to optimize this component as it is written. You may consider:

(a) Changing the temperature scale or value of the related mask component so that more action can be
explored

(b) Re-writing the related mask component
(c) Discarding the mask component or add a new mask component

metric_name: reward, Max: [435592.087], Min: [-1331893.335], Mean in the early training stage: [-212101.5832], Mean
in the late training stage: [338683.3766], Mean in all the training stage: [71512.5884375]
metric_name: profit, Max: [587080.], Min: [430897.], Mean in the early training stage: [493648.], Mean in the late training
stage: [564756.2], Mean in all the training stage: [527295.125]
metric_name: excess_cost, Max: [1648683.5], Min: [17213.5], Mean in the early training stage: [596130.9], Mean in the late
training stage: [123902.4], Mean in all the training stage: [349431.25]
metric_name: order_cost, Max: [60580.], Min: [56490.], Mean in the early training stage: [58864.], Mean in the late training
stage: [58758.], Mean in all the training stage: [58650.625]
metric_name: holding_cost, Max: [456.135], Min: [272.157], Mean in the early training stage: [390.6432], Mean in the late
training stage: [399.6234], Mean in all the training stage: [394.1803125]
metric_name: backlog_cost, Max: [56796.1], Min: [40408.7], Mean in the early training stage: [50364.04], Mean in the late
training stage: [43012.8], Mean in all the training stage: [47306.48125]

Figure 7: Policy feedback from last iteration in MABIM 100 SKUs Lower scenario.

From the policy feedback, we can identify a few key issues:

1. The total reward is negative in the early training stage and only becomes positive in the later training stages.
This suggests that the agent is not learning effective strategies early on, potentially due to a lack of exploration.
2. The excess cost is quite high, especially in the early training stages. This suggests that the agent is
overstocking the warehouse.
3. The holding cost remains high throughout the training, indicating that the agent is holding onto inventory for
too long.

Given these issues, we need to revise the exploration function to encourage the agent to explore actions that would
result in less overstocking. Here's an improved exploration function:

Figure 8: eSpark’s reflection with reward factors.

From the policy feedback, we can identify a few key issues:

1. The policy feedback indicates that the reward function has a wide range, with the minimum values being
significantly negative and the maximum being positive. The mean reward in the early stage is negative, while it
becomes positive in the late stage. This suggests that the policy improves over time but has considerable variability
in outcomes.
2. The high variance in reward components suggests that the exploration may be too aggressive, leading to
overstocking (incurring high holding costs and overflow costs) or understocking (incurring backlog costs).
3. The exploration function may be too restrictive or lenient, preventing the RL agent from effectively learning the
optimal policy.

We will modify the mask to include a temperature parameter, which will initially be set high to allow for broader
exploration and gradually decrease it as the training progresses. This change will help the agent explore a wider
range of actions early on and focus more on promising actions as it learns.

Figure 9: eSpark’s reflection without reward factors.

31

Published in Transactions on Machine Learning Research (05/2025)

K Full prompts

We reference the prompt design outlined in the Eureka Ma et al. (2024) and adapt it specifically for exploration
function generation. Our prompt provides general guidance on the design of exploration functions, specific
code formatting suggestions, feedback, and recommendations for improvement. We present our prompts for
MABIM below.

You are an expert in both inventory management learning and reinforcement learning. You will get some exploration
functions, which help mask some actions that are logically unlikely to be selected, to help the exploration in
reinforcement learning tasks as effective as possible.
Your goal is to evaluate whether the given exploration function matches the task description and whether it contains
any illogical errors in the code content, and evaluate whether it's possible to avoid some unreasonable actions,
help the exploration of reinforcement learning. You need to pay special attention to the meaning of each state item
and the logic of the task, making sure to detect
(1) All incorrect use of variables in code
(2) All the parts that don't follow logic.

The exploration function signature can be:
{task_exploration_signature_string}

Your advice can be text or snippets of code, but it should not be the full exploration function code. Most
importantly, remember that your response must begin with either "Code passes check." or "Code fails to pass check.".
Under no circumstance can you begin your answer with other content.

Figure 10: System prompt for LLMc.

Your goal is to write a exploration function for the agent that will mask the actions that's almost impossible to be
chosen in the task described in text.

The exploration function signature can be:
{task_exploration_signature_string}

Your exploration function should only use the variables from the argument list.
Please just give only the exploration function and don't put it in a class. Please make sure that the code is
compatible with numpy (e.g., use numpy array instead of torch tensor).

You are an expert in both inventory management learning and reinforcement learning. You are trying to write some
exploration functions, which helps mask some actions that are logically unlikely to be selected, to help exploration
in reinforcement learning tasks as effective as possible.

Figure 11: System prompt for LLMg.

Write a exploration function for the following task :
{task_introduction}

The definition of environment and transition are :
{transition_definition}

The agent and state definition is :
{state_definition}

The reward definition is :
{reward_definition}

Figure 12: Initial prompt for LLMg.

32

Published in Transactions on Machine Learning Research (05/2025)

Please carefully check the exploration function for the following task :
{task_introduction}

The definition of environment and transition are :
{transition_definition}

The agent and state definition is :
{state_definition}

The reward definition is :
{reward_definition}

The requirements of code :
{code_output_tip}

Figure 13: Initial prompt for LLMc.

Here is the latest exploration function and it's description:
{gpt_response}

Please carefully review this code, check whether it matches the task description and whether it contains any
illogical errors in the code content, and evaluate whether it's possible to improve the exploration and the
performance.

Figure 14: LLMg’s feedback to LLMc.

We discuss this code with experts, and the code is not approved by experts, and the comments of experts on this code
are as follows:

{checker_feedback}

Please refer to expert advice and combine your own knowledge, fix the problems and provide a new, improved
exploration function!

Figure 15: LLMc’s feedback to LLMg.

def compute_mask(agent_states: AgentStates, supply_chain: SupplyChain, action_space: list):
Here are some code you can refer to when you generate your exploration function.
...
return total_mask, {}

Figure 16: Signature of exploration function.

Please carefully analyze the policy feedback and provide a new, improved exploration function that can better solve
the task. Some helpful tips for analyzing the policy feedback:

(1) You can start with "let's think step by step", and then look at each reward individually and think about how
can you improve it

(2) If the total reward maintains in the same level or even reduce, then you must rewrite the entire exploration
function

(3) If the values for a certain reward component are near identical throughout, then this means RL is not able
to optimize this component as it is written. You may consider:

(a) Changing the temperature scale or value of the related mask component so that more action can be
explored

(b) Re-writing the related mask component
(c) Discarding the mask component or add a new mask component

Figure 17: Output and improvement tips for LLMg.

33

Published in Transactions on Machine Learning Research (05/2025)

The output of the exploration function should be a total mask (1 denote action is not masked and 0 otherwise). The
code output should be formatted as a python code string: "```python ... ```".

Some helpful tips for writing the exploration function code:
(1) Your total mask and its component should be a 3-D numpy array in [warehouse_name, sku_type, action_mask].

The masks of the actions that are available are set to 1, otherwise 0. No other elements are allowed to appear in
total mask.

(2) If you choose to transform a component mask, then you must also introduce a temperature parameter inside the
transformation function; this parameter must be a named variable in the mask function and it must not be an input
variable. Each transformed mask component should have its own temperature variable

(3) Make sure the type of each input variable is correctly specified; For example, a float input variable should
not be specified as torch.Tensor

(4) Most importantly, the exploration code's can only use variables defined in its arguments. Under no
circumstance can you introduce new input variables. You only need to give the definition of exploration function and
no other function or class should be defined.

Figure 18: Output format for LLMg.

Your output should contain two parts:
(1) Your response must begin with either "Code passes check." or "Code fails to pass check.". "Code passes

check." means you believe that there are no logical errors in the code and the variables are taken in accordance
with the description of the task. "Code fails to pass check." indicates the provided exploration function contains
logical errors, or you think the code is obviously flawed and you can point out how to facilitate more effective
exploration.

(2) If you begin with "Code fails to pass check.", you have to explain why the code fails to pass the check and
give your advice on fixing the problems; If you begin with "Code passes check.", you also have to state why each
part is logical and reasonable.

Some common logical errors include:
(1) Misunderstanding the meaning of the state items, or including syntax errors when using variables
(2) Illogically handling the state items
(3) Using multiple unrelated state items to calculate mask component
(4) The way of combining mask components into total mask is unreasonable

Figure 19: Output format for LLMc.

We trained a RL policy using the provided exploration function code and tracked the values of the individual
components of the reward function as well as global policy metrics. We also compute the maximum, mean in the early
training stage, mean in the late training stage, mean in all the training stage, minimum values for reward and its
components after every {epoch_freq} epochs. Each element is a one-dimensional array of length n_warehouse,
representing the value of that component on different warehouses:

<Reward Feedback Here>

Figure 20: Reward feedback and action feedback.

L eSpark’s exploration function editing

In this section, we demonstrate the reward editing capabilities of eSpark. eSpark is capable of reflecting
upon feedback to optimize the exploration for subsequent iterations.

34

Published in Transactions on Machine Learning Research (05/2025)

We trained a RL policy using the provided exploration function code and tracked the values of the individual
components of the reward function as well as global policy metrics. We also compute the maximum, mean in the early
training stage, mean in the late training stage, mean in all the training stage, minimum values for reward and its
components after every {epoch_freq} epochs. Each element is a one-dimensional array of length n_warehouse,
representing the value of that component on different warehouses:
metric_name: reward, Max: [435592.087], Min: [-1331893.335], Mean in the early training stage: [-212101.5832], Mean
in the late training stage: [338683.3766], Mean in all the training stage: [71512.5884375]
metric_name: profit, Max: [587080.], Min: [430897.], Mean in the early training stage: [493648.], Mean in the late
training stage: [564756.2], Mean in all the training stage: [527295.125]
metric_name: excess_cost, Max: [1648683.5], Min: [17213.5], Mean in the early training stage: [596130.9], Mean in
the late training stage: [123902.4], Mean in all the training stage: [349431.25]
metric_name: order_cost, Max: [60580.], Min: [56490.], Mean in the early training stage: [58864.], Mean in the late
training stage: [58758.], Mean in all the training stage: [58650.625]
metric_name: holding_cost, Max: [456.135], Min: [272.157], Mean in the early training stage: [390.6432], Mean in the
late training stage: [399.6234], Mean in all the training stage: [394.1803125]
metric_name: backlog_cost, Max: [56796.1], Min: [40408.7], Mean in the early training stage: [50364.04], Mean in the
late training stage: [43012.8], Mean in all the training stage: [47306.48125]

Please carefully analyze the policy feedback and provide a new, improved exploration function that can better solve
the task. Some helpful tips for analyzing the policy feedback:

(1) You can start with "let's think step by step", and then look at each reward individually and think about how
can you improve it

(2) If the total reward maintains in the same level or even reduce, then you must rewrite the entire exploration
function

(3) If the values for a certain reward component are near identical throughout, then this means RL is not able
to optimize this component as it is written. You may consider:

(a) Changing the temperature scale or value of the related mask component so that more action can be
explored

(b) Re-writing the related mask component
(c) Discarding the mask component or add a new mask component

Figure 21: Policy feedback from the last iteration.

From the policy feedback, we can identify a few key issues:

1. The total reward is negative in the early training stage and only becomes positive in the later training stages.
This suggests that the agent is not learning effective strategies early on, potentially due to a lack of exploration.
2. The excess cost is quite high, especially in the early training stages. This suggests that the agent is
overstocking the warehouse.
3. The holding cost remains high throughout the training, indicating that the agent is holding onto inventory for
too long.

Given these issues, we need to revise the exploration function to encourage the agent to explore actions that would
result in less overstocking. Here's an improved exploration function:

Figure 22: eSpark reflects upon the policy feedback and proposes the modification.

Figure 23: Comparison of exploration functions before and after editing.

35

	Introduction
	Related works
	Preliminaries
	Problem formulation and notations
	Challenges and motivations

	Method
	Exploration function generation
	Evolutionary search
	Reflection and feedback

	Experiments
	Experiment settings
	Experiment results
	Performance on MABIM
	Performance on SUMO

	eSpark learns intelligent pruning methods
	eSpark benefits from retention training and action space reduction
	LLM checker and detailed reward feedback promotes the performance of eSpark

	Conclusions, limitations and future work
	Notations
	Proofs
	An example of GPT performing action space pruning
	Detailed settings
	MABIM details
	SUMO details
	Model details

	Baseline details
	OR baselines
	Base stock algorithm
	(S,s) algorithm
	Fixed-time control algorithm
	MaxPressure algorithm

	Hyperparameters settings for MARL baselines
	Pruning baselines
	Random pruning
	(S,s) pruning
	MaxPressure pruning

	Additional results
	Computational costs
	Detailed results of the pruning methods
	Detailed results of the ablations

	eSpark's performance with different LLMs
	eSpark's performance with different RL formulation
	Policy performance analysis
	eSpark's response with and without reward factors
	Full prompts
	eSpark's exploration function editing

