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Abstract
Large Language Models (LLMs) have excelled in1

natural language processing tasks, but their appli-2

cation in tabular data classification has been limited3

compared to traditional machine learning models4

(TMLs) like XGBoost. However, LLMs hold po-5

tential in this area due to their ability to interpret6

context between variables using pre-trained knowl-7

edge, which is particularly useful in out-of-variable8

(OOV) tasks—situations with numerous missing9

values or new variables. We propose the Language-10

Based-Classifier (LBC) methodology, which ex-11

cels in handling OOV tasks by converting tabular12

data into natural language prompts and leveraging13

pre-trained knowledge for better inference. LBC14

uses three strategies: 1) Categorical adjustments15

for model compatibility, 2) Enhanced data repre-16

sentation through advanced order and indicators,17

and 3) Logit score mapping to classes via a verbal-18

izer. These strategies highlight LBC’s effectiveness19

in OOV tasks, making it the first study to apply an20

LLM-based model in this context, with empirical21

and theoretical validation of its superiority.22

1 Introduction23

The development of language models (LMs) marks a sig-24

nificant advancement in natural language processing. From25

early LMs, through recurrent neural networks (RNNs) and26

long short-term memory (LSTM), to transformer-based mod-27

els, LMs have evolved to excel in various NLP tasks.28

Transformer-based Large Language Models (LLMs) leverage29

extensive pre-trained knowledge and fine-tuning to achieve30

powerful performance. Recently, LLMs have been applied31

to tabular data. Language-Interfaced-Fine-Tuning (LIFT)32

demonstrated LLMs’ capability in tabular tasks without al-33

tering their structure. Building on this, we propose the34

Language-Based-Classifier (LBC) to tackle out-of-variable35

(OOV) tasks, where new variables appear in testing not seen36

during training.37

OOV tasks are crucial and widely studied, but LLM appli-38

cations to tabular data in an OOV context are rare. Real-world39

constraints, such as privacy and regulatory issues in health-40

care, highlight the importance of OOV tasks. For example,41

a model trained on data from Hospital A cannot access data 42

from Hospital B, limiting adaptation to new variables spe- 43

cific to Hospital B. Similarly, emerging biomarkers in medi- 44

cal research may become OOVs if excluded from the training 45

dataset. 46

LBC’s strengths in handling OOV tasks are twofold. First, 47

converting tabular data to natural language prompts simpli- 48

fies handling OOVs, overcoming traditional machine learning 49

models’ (TMLs) limitations. Second, LBC leverages LLMs’ 50

extensive pre-trained knowledge, enabling better handling of 51

unseen data points. We empirically verified that LBC im- 52

proves the probability of correct classification by utilizing 53

pre-trained knowledge for OOVs. 54

In tabular data classification, previous methods relied on 55

LLMs’ output text as classifier predictions, introducing vari- 56

ability. We enhance performance by focusing on logit scores 57

instead. Using a verbalizer, we map LLM logit scores to de- 58

sired class scores. Additionally, we fine-tune the classifier 59

with LOw-Rank Adaptation (LoRA), shown to approximate 60

arbitrary target models effectively. 61

To our knowledge, LBC is the first study to apply an LLM- 62

based classifier to OOV tasks, with both empirical and theo- 63

retical validation of its superiority. 64

2 Preliminary 65

2.1 Basic Dataset Conversion 66

This section explains how tabular data is converted into 67

prompts for LBC input. Our model relies on a pre-trained 68

LLM, making prompt conversion crucial. An instance of tab- 69

ular data with n features is represented as: 70

[[V1 : x1] , [V2 : x2] , . . . , [VN : xN ] , [class : y]]

where Vn is the nth variable name and xn is the nth vari- 71

able value. We need a clear distinction between dataset vari- 72

ables and class output in the prompts. Our conversion tech- 73

nique marks the end of the prompt and the beginning of the 74

response, as follows: 75

prompt: V1 is x1, V2 is x2, . . . , VN is xN .

what is the class? ###

answer: y@@@



This scheme, developed by OpenAI [OpenAI(2021)], uses76

‘###’ to denote the end of the prompt and ‘@@@’ to limit77

the answer to the class label, ensuring clarity and structure in78

training and inference.79

2.2 Fine-tuning LLM80

Converting prompts into LBC input yields a vector of vocab-81

ulary sizes, producing logits for each word. We fine-tune the82

LLM using these logits. Let Logit be the logit vector for83

a single input. During fine-tuning, the loss L is computed84

against the true labels. Let Label be the one-hot encoded85

true label vector. The loss function J is defined as:86

J(Logit,Label) = CE(Logit,Label)

where CE is cross-entropy loss. The model’s parameters are87

updated using gradient descent:88

θ ← θ − η∇θJ

where θ represents model parameters, η is the learning rate,89

and∇θJ is the loss gradient with respect to the model param-90

eters.91

2.3 Prediction of LLM-based tabular data92

classification93

The previous approaches to LLM-based tabular data classi-94

fication tasks [Dinh et al.(2022)] rely on directly comparing95

the output text generated by the model with class texts such96

as ’no’ or ’yes.’ In this approach, if the prediction is an ex-97

act match, it is classified with the corresponding class text.98

Conversely, if the output text differs, the model’s prediction99

is marked as ’None’ and automatically classified as incor-100

rect. For example, if the model produces a result of ’yes’101

for a question with an answer class of ’Yes,’ this is mapped102

to ’None.’ There is potential for improvement by using the103

logit score to map directly to a specific class, rather than us-104

ing the model’s output texts. For this mapping process, the105

probability values for the synonyms of the class text that the106

logit score has can be further utilized.107

3 Methodology108

3.1 Categorical Change109

LBC interprets categorical variables better than numerical110

ones due to its LLM-based nature. However, many key111

variables in tabular data are numerical. When dealing with112

OOVs, numerical values cannot leverage pre-trained knowl-113

edge as effectively as categorical ones. To address this, we114

convert numerical variables to categorical types using quar-115

tiles, improving performance. Quartiles divide the dataset116

into four parts: Q1 (bottom 25%), Q2 (bottom 50%), and Q3117

(bottom 75%). Values less than Q1 are ”low,” between Q1118

and Q3 are ”medium,” and above Q3 are ”high.”119

3.2 Variable Order120

The order of variables in tabular data affects prompt genera-121

tion. Different prompts are generated based on variable order:122

Prompt 1: V1 is x1, V2 is x2, . . . , VN−1 is xN−1, VN is xN . . . .

Prompt 2: VN is xN , V5 is x5, . . . , Vn−1 is xn−1, V1 is x1. . . .

Prompt 3: V3 is x3, V2 is x2, . . . , VN is xN , V4 is x4. . . .

The total number of prompts generated by changing the 123

variable order is N !, and each different order impacts LBC’s 124

interpretation and performance. 125

3.3 Advanced Order and Indicator 126

To address variability in prompts, we standardize the format 127

for training and testing prompts: 128

Training Prompt: IV Indicator + IV part + Question

Test Prompt: OOV Indicator + OOV part + IV Indicator
+ IV part + Question

Positioning the OOV part at the front and maintaining the 129

same IV order as in training allows LBC to apply learned 130

relationships during testing. The indicator helps distinguish 131

between OOV and IV parts. Prompts using both categorical 132

change and advanced order are termed advanced prompts 133

(AP). An example of an AP is shown in Fig 1. 134

3.4 Generalization Ability of LBC: LoRA 135

According to [Zeng and Lee(2023)], a model fine-tuned with 136

LoRA can approximate the target model. We extend this the- 137

ory, proving that LLMs fine-tuned with LoRA approximate 138

arbitrary classifiers under certain assumptions, as shown in 139

Theorem 1. 140

Theorem 1. Let f(x) represents the ReLU neural network to 141

which LoRA is applied, with no activation function in the last 142

layer, and f̄(x) represents the target single-layer linear net- 143

work. Let g(x) is the logistic function (1 + e−x)−1. σ(W )i 144

is the i-th greatest singular value of W . W l and W are l-th 145

layer weight matrix of the frozen model and the weight matrix 146

of the target model, respectively. 147

E
∥∥g(f(x))− g(f̄(x))

∥∥2
2

≤ 1

16
∥E(xxT )∥F σ

2
(
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∏
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)
min(

∑L
l=1 Rl,RE)+1

.

where Rl, RE are Rank(Wl), Rank(W −
∏

W l), respec- 148

tively. L is the number of layers in f . 149

3.5 Verbalizer 150

The verbalizer addresses prediction weaknesses by using log- 151

its directly for classification rather than text output. Given a 152

vector Logit = lw1 , lw2 , . . . , lwV
, where V is the vocabulary 153

size and lwi is the score for word wi, LBC’s score for class 154

Ck is: 155

Score(Ck) = α1lk + α2

∑
w∈Sk

lw

where k is the central word representing class Ck, α1 and α2 156

are weights for the central word and synonyms, and Sk is the 157

set of synonyms. The probability for Ck is computed using 158

softmax: 159

P (Ck) =
exp(Score(Ck))∑

k′∈K exp(Score(Ck′))

where K is the set of central words of all classes. The loss 160

function is modified as: 161

J = α1CE(Logit, Lk) + α2

∑
w∈Sk

CE(Logit, Lw)



Figure 1: The overall process of an LBC performing an OOV task. LBC transforms tabular data into advanced prompts (AP) using strategies
like 1) Categorical change and 2) Advanced order and indicator. These APs are fed into an LLM fine-tuned with a LoRA adapter, deriving a
logit score for the answer token. The logit score is compared with the label to calculate loss, and during inference, the logit score is mapped
to a class via a 3) Verbalizer.

4 Experiments162

4.1 Experiments Settings163

Dataset164

To experiment with reliable datasets used in many studies, we165

only selected datasets that have been run a number of times in166

OpenML [Vanschoren et al.(2013)], Kaggle, or used in other167

benchmarks. Table 1 provides information about the eight168

datasets we used in our experiments.169

Table 1: Dataset Statistics

Dataset #Variable #Class #Instance

Blood [Yeh(2008)] 4 2 583
Breast Cancer [Zwitter and Soklic(1988)] 31 2 569
Creditcard [Quinlan([n. d.])] 15 2 690
German Credit [Hofmann(1994)] 20 2 1000+
ILPD [Ramana and Venkateswarlu(2012)] 11 2 583
Loan [Mirza(2023)] 10 2 615
Salary [Kohavi(1996)] 14 2 1000+
Steel Plate [Buscema et al.(2010)] 34 2 1000+

Evaluation170

Three main evaluation metrics were used to validate the171

model: Accuracy, F1 score, and AUC score. Collectively,172

these metrics ensure a general evaluation of LBC and TMLs.173

Accuracy measures the proportion of correct predictions and174

is defined as Accuracy = ncorrect
nsamples

. Here, ncorrect is the num-175

ber of correct predictions, and nsamples is the total number176

of samples. F1 score, a harmonic mean of Precision and Re-177

call, is calculated as F1 score = 2 × Precision×Recall
Precision+Recall , where178

Precision = TP
TP+FP and Recall = TP

TP+FN .179

AUC score represents the area under the ROC curve, which180

plots the True Positive Rate (TPR) against the False Positive181

Rate (FPR) at various threshold settings.182

Baseline183

We selected five models as baselines to compare their perfor-184

mance with LBC in tabular data classification, and we call185

them TMLs. Each model performs well on tabular data clas-186

sification.187

Figure 2: Performance comparison between LIFT and LBC in the
non-OOV context. LBC outperforms LIFT on all datasets in non-
OOV tasks, i.e., all variables are learned in train and appear in the
test.

4.2 OOV Setting 188

To experiment with the performance of LBC on OOV tasks, it 189

is essential to create scenarios where variables that do not ex- 190

ist in training appear in testing. However, we faced a problem 191

because no existing tabular datasets fulfill this requirement. 192

We randomly deleted 50% of the variable columns in the orig- 193

inal tabular dataset. As a result, variables that are deleted 194

become OOV, not learned by the model during training, and 195

emerge as new variables in the test. This allows for the as- 196

sessment of LBC’s ability to interpret OOVs. We compare 197

the performance of TMLs and LBC with the data generated 198

by this method. 199

5 Results 200

5.1 The Previous Work vs LBC 201

Before evaluating LBC’s performance on OOV tasks, 202

we compare LBC’s performance with the previous work, 203

LIFT [Dinh et al.(2022)], on non-OOV tasks. Non-OOV 204

tasks refer to situations where all variables are learned with- 205



Table 2: LBC vs TMLs in 50% randomly selected OOV situation.
The models are trained with 50% IVs, and LBCs add 50% OOVs in
the test prompts. LBC outperforms the five TMLs on three evalua-
tion scores.

Accuracy DT KNN LogReg SVM XGBoost LBC - gptj LBC - llama3
Blood 72.67 69.33 75.33 75.33 74.67 76.00±0.00 76.00±0.38
Breast Cancer 93.86 93.86 92.98 92.98 92.98 94.15±1.01 94.44±0.50
Creditcard 76.81 73.91 72.46 77.54 76.09 83.81±0.42 80.84±0.54
German 71.00 71.50 77.50 71.50 70.50 78.50±0.86 77.16±1.15
ILPD 70.94 60.68 72.65 70.94 64.86 75.05±0.84 72.07±0.49
Loan 69.11 66.67 69.92 69.11 59.35 80.59±1.22 81.25±0.00
Salary 85.00 83.00 83.00 81.50 83.00 84.00±0.86 84.67±0.28
Steel Plate 80.21 79.69 73.78 78.15 81.23 81.83±1.62 81.91±1.47
Avg. 77.53 74.83 77.18 75.01 76.38 81.74±0.85 80.98±0.60

F1 DT KNN LogReg SVM XGBoost LBC - gptj LBC - llama3

Blood 0.68 0.73 0.68 0.63 0.73 0.67±0.00 0.67±0.00
Breast Cancer 0.94 0.94 0.93 0.93 0.93 0.93±0.00 0.93±0.00
Creditcard 0.67 0.59 0.62 0.62 0.67 0.87±0.02 0.81±0.01
German 0.73 0.77 0.77 0.73 0.78 0.71±0.01 0.78±0.01
ILPD 0.76 0.71 0.73 0.74 0.75 0.75±0.00 0.75±0.00
Loan 0.70 0.70 0.71 0.70 0.69 0.76±0.01 0.78±0.01
Salary 0.55 0.55 0.55 0.5 0.59 0.52±0.01 0.52±0.01
Steel Plate 0.8 0.79 0.72 0.79 0.81 0.80±0.01 0.80±0.01

Avg. 0.72 0.71 0.70 0.68 0.74 0.75±0.00 0.76±0.01

AUC DT KNN LogReg SVM XGBoost LBC - gptj LBC - llama3

Blood 0.67 0.61 0.67 0.68 0.68 0.67±0.00 0.67±0.00
Breast Cancer 0.97 0.98 0.98 0.99 0.99 0.99±0.00 0.99±0.00
Creditcard 0.79 0.8 0.83 0.84 0.80 0.92±0.02 0.85±0.01
German 0.67 0.69 0.80 0.67 0.69 0.79±0.01 0.78±0.01
ILPD 0.71 0.57 0.68 0.71 0.71 0.75±0.01 0.75±0.00
Loan 0.56 0.57 0.63 0.51 0.53 0.79±0.01 0.77±0.01
Salary 0.84 0.85 0.86 0.87 0.86 0.88±0.01 0.88±0.01
Steel Plate 0.87 0.89 0.89 0.89 0.89 0.90±0.00 0.89±0.00
Avg. 0.76 0.73 0.78 0.78 0.78 0.84±0.00 0.82±0.00

out OOV in training, and all variables also appear in the test.206

Since this task does not need to distinguish between OOVs207

and IVs, indicators are excluded from test prompt generation.208

Figure 2 shows that LBC outperforms the traditional method,209

LIFT, on all eight datasets. These results emphasize the su-210

periority of LBC’s approach, which employs a verbalizer as a211

mapping tool for class mapping, over the method adopted by212

LIFT, which directly converts the output text into the model’s213

prediction. The use of a verbalizer in LBC demonstrates a214

more effective strategy by focusing on class mapping rather215

than a straightforward conversion of output text to predic-216

tions. In other words, the verbalizer allows LBC to interpret217

the role of LLM as a classifier rather than a text generator.218

5.2 Performance in OOV tasks219

Table 2 compares the accuracy, F1, and AUC scores of TMLs220

and LBCs on eight datasets after conducting 50% OOV con-221

version. In the Avg. rows for the three evaluation metrics,222

LBCs outperform the five TMLs. This provides empirical ev-223

idence that LBC effectively utilizes pre-trained knowledge to224

make interpretations about OOV.225

To validate the ability of LBC to perform well on OOV226

tasks, we conduct experiments on four datasets with differ-227

ent OOV ratios. In each dataset, we vary the OOV ratio228

to 0%, 30%, 50%, and 70% and observe the model’s accu-229

racy change. Figure 3 shows that for TMLs, the performance230

decreases significantly as the OOV ratio increases. In con-231

trast, LBC shows no decrease in accuracy as the OOV ra-232

tio increases or the decrease is small compared to TMLs.233

These findings suggest that LBC can effectively utilize the234

pre-trained knowledge of LLMs to outperform traditional ma-235

Figure 3: Graph of accuracy changing over OOV ratio (%): We
observed the accuracy change of TMLs and LBCs by increasing the
OOV ratio from 0, 30, 50, and 70 (%) for four datasets. Comparing
the accuracy reduction of TMLs and LBCs, the reduction of LBCs
is smaller compared to TMLs. It demonstrates that LBCs interpret
OOVs, unlike TMLs.

chine learning methods even as the percentage of OOVs in- 236

creases. 237

6 Conclusion 238

In this work, we propose LBC to solve OOV tasks. Although 239

TMLs have shown outstanding performance, they are limited 240

in OOV tasks due to their inability to handle the variables 241

they never learned in training. LBCs, on the other hand, uti- 242

lize prompt-based inference, which allows information about 243

OOVs to be added to prompts in a straightforward way and 244

enables understanding of the new information through pre- 245

trained knowledge. To utilize LLM’s reasoning capabilities 246

on tabular data, LBC takes the three steps we propose. First, 247

we apply categorical change, which converts numeric data 248

types to string types, prompting LLM to interpret the meaning 249

of features as sentences. Second, in advanced ordering, our 250

proposed variable ordering scheme places OOVs before IVs 251

and maintains the order of IVs with the training phase. This 252

method is simple but yields significant performance gains. 253

Third, a class mapping method from logit scores using a ver- 254

balizer allows the LBC to function as a classifier rather than 255

a language model. Furthermore, we theoretically validate the 256

high generalization performance of LBC on the binary clas- 257

sification problem. LBC is the first approach to apply pre- 258

trained LLM to OOV tasks. 259



References260

[Buscema et al.(2010)] Massimo Buscema, Stefano261

Terzi, and William Tastle. 2010. Steel Plates262

Faults. UCI Machine Learning Repository. DOI:263

https://doi.org/10.24432/C5J88N.264

[Dinh et al.(2022)] Tuan Dinh, Yuchen Zeng, Ruisu Zhang,265

Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong266

Sohn, Dimitris Papailiopoulos, and Kangwook Lee.267

2022. Lift: Language-interfaced fine-tuning for non-268

language machine learning tasks. Advances in Neu-269

ral Information Processing Systems 35 (2022), 11763–270

11784.271

[Hofmann(1994)] Hans Hofmann. 1994. Statlog (German272

Credit Data). UCI Machine Learning Repository. DOI:273

https://doi.org/10.24432/C5NC77.274

[Kohavi(1996)] Ron Kohavi. 1996. Census Income.275

UCI Machine Learning Repository. DOI:276

https://doi.org/10.24432/C5GP7S.277

[Mirza(2023)] Mazaharul Hasnine Mirza. 2023. Loan Data278

Set. https://doi.org/10.34740/KAGGLE/DSV/5149638279

[OpenAI(2021)] OpenAI. 2021. Fine-tuning. https://280

platform.openai.com/docs/guides/fine-tuning Accessed281

on 01-02, 2024.282

[Quinlan([n. d.])] J. R. Quinlan. [n. d.]. Credit Ap-283

proval. UCI Machine Learning Repository. DOI:284

https://doi.org/10.24432/C5FS30.285

[Ramana and Venkateswarlu(2012)] Bendi Ramana and N.286

Venkateswarlu. 2012. ILPD (Indian Liver Patient287

Dataset). UCI Machine Learning Repository. DOI:288

https://doi.org/10.24432/C5D02C.289

[Vanschoren et al.(2013)] Joaquin Vanschoren, Jan N. van290

Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML:291

Networked Science in Machine Learning. SIGKDD Ex-292

plorations 15, 2 (2013), 49–60. https://doi.org/10.1145/293

2641190.2641198294

[Yeh(2008)] I-Cheng Yeh. 2008. Blood Transfusion Service295

Center. UCI Machine Learning Repository. DOI:296

https://doi.org/10.24432/C5GS39.297

[Zeng and Lee(2023)] Yuchen Zeng and Kangwook Lee.298

2023. The expressive power of low-rank adaptation.299

arXiv preprint arXiv:2310.17513 (2023).300

[Zwitter and Soklic(1988)] Matjaz Zwitter and Milan Sok-301

lic. 1988. Breast Cancer. UCI Machine Learning Repos-302

itory. DOI: https://doi.org/10.24432/C51P4M.303

https://doi.org/10.34740/KAGGLE/DSV/5149638
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198

	Introduction
	Preliminary
	Basic Dataset Conversion
	Fine-tuning LLM
	Prediction of LLM-based tabular data classification

	Methodology
	Categorical Change
	Variable Order
	Advanced Order and Indicator
	Generalization Ability of LBC: LoRA
	Verbalizer

	Experiments
	Experiments Settings
	Dataset
	Evaluation
	Baseline

	OOV Setting

	Results
	The Previous Work vs LBC
	Performance in OOV tasks

	Conclusion

