
Under review as submission to TMLR

AIDA: Action Inquiry DAGGER
for Interactive Imitation Learning

Anonymous authors
Paper under double-blind review

Abstract

Human teaching effort is a significant bottleneck for the broader applicability of interactive
imitation learning. To reduce the number of required queries, existing methods employ
active learning to query the human teacher only in uncertain, risky, or novel situations.
However, during these queries, the novice’s planned actions are not utilized despite con-
taining valuable information, such as the novice’s capabilities, as well as corresponding
uncertainty levels. To this end, we allow the novice to say: “I plan to do this, but I am
uncertain.” We introduce the Action Inquiry DAgger (AIDA) framework, which leverages
teacher feedback on the novice plan in three key ways: (1) Sensitivity-Aware Gating (SAG),
which adjusts the query threshold to track a desired sensitivity level; (2) Foresight Interac-
tive Experience Replay (FIER), which recasts valid and relabeled novice action plans into
demonstrations; and (3) Prioritized Interactive Experience Replay (PIER), which priori-
tizes replay based on uncertainty, novice success, and demonstration age. Together, these
components balance query frequency with failure incidence, reduce the number of required
demonstration annotations, improve generalization, and speed up adaptation to changing
domains. We validate the effectiveness of AIDA through language-conditioned manipulation
tasks in both simulation and real-world environments. Code, data, and videos are available
at https://aida-paper.github.io.

1 Introduction

The promise of imitation learning is to enable individuals to teach robots to perform desired tasks, all without
the need for specialized knowledge in coding or robotics. This learning paradigm is beneficial when humans
possess the knowledge to solve a task but prefer not to do it themselves due to its repetitive, risky nature
or when automation is more efficient. Specifically, demonstrating correct robot behavior in unstructured
environments can be simpler than engineering a controller. Imitation learning has demonstrated success
across various domains, such as autonomous driving (Pomerleau, 1988), helicopter aerobatics (Abbeel et al.,
2010), language-conditioned robotic manipulation (Jang et al., 2022; Shridhar et al., 2021), and generalist
robot policies (Brohan et al., 2022; Reed et al., 2022; Octo Model Team et al., 2024). Despite these successes
of behavioral cloning (BC), it can suffer from covariate shift. This issue arises when imitation learning is
naively posed as a standard supervised learning problem. In imitation learning, the data is not independent
and identically distributed because past predictions can influence future states (Ross et al., 2011). As a
result, a prediction error can lead to encountering states unseen in the training data, causing a cascade of
mistakes since errors in these unfamiliar states are even more likely.

Covariate shift issues can be alleviated with Interactive Imitation Learning (IIL) methods (Celemin et al.,
2022). These methods involve obtaining human demonstrations, corrections, and reinforcements interac-
tively. In a seminal work, Ross et al. (2011) introduced the Dataset Aggregation (DAgger) algorithm.
This approach alleviates the covariate shift problem by aggregating human input while executing the novice
policy. This enables the novice to learn to recover from failures, for instance. While having favorable per-
formance guarantees, the DAgger algorithm requires continuous teacher input and can have safety issues
as the novice policy is executed while learning to perform the task.

1

https://aida-paper.github.io


Under review as submission to TMLR

To overcome these limitations of the DAgger algorithm, various extensions allow the novice to actively
query the teacher in risky (Hoque et al., 2022) or uncertain situations (Menda et al., 2019; 2017; Zhang &
Cho, 2017; Hoque et al., 2023). We refer to these data aggregation methods as active DAgger approaches,
as they integrate data aggregation with active learning. The benefit of this active learning strategy is twofold.
First, possible failures can be prevented during the interactive training phase since uncertainty is assumed
to be correlated with failures. Second, this strategy minimizes the number of demonstrations needed by
maximizing their meaningfulness. That is to say, it is a waste of resources if humans demonstrate behaviors
already mastered by novices. Instead, the teacher should only demonstrate what the robot novice can not
do to enable learning from as few demonstrations as possible.

Existing active DAgger methods hand over control when querying the human teacher. Instead, we allow
the novice to also communicate their planned action when they are uncertain. This allows the teacher to
validate or correct the novice plan, providing valuable feedback that can be leveraged in several ways. First,
it reveals the levels of uncertainty where the novice succeeds or fails. This information can be used to
improve gating by allowing dynamic threshold adjustments to maintain a desired sensitivity. This extends
existing methods, which either require constant supervision (Kelly et al., 2019), rely on heuristics (Zhang
& Cho, 2017), or use a fixed query rate independent of novice performance (Hoque et al., 2022). Second,
validated novice actions can be aggregated into the demonstration dataset, reducing the need for teacher
demonstrations. Additionally, invalid plans may be useful demonstrations for alternative goals if the teacher
relabels them accordingly. Third, since not all demonstrations are created equally, we can prioritize replay
by considering the validity of the novice plan, the corresponding uncertainty level, and the demonstration
age. For example, the novice might learn more from a recent demonstration in a situation where they failed
rather than one where they acted successfully.

To this end, we introduce the Action Inquiry DAgger (AIDA) framework, a novel IIL method where the
robot novice actively communicates its planned actions when uncertain. An overview of AIDA is shown in
Fig. 1, and it is built on three key contributions: i) Sensitivity-Aware Gating (SAG): Adjusts the gating
threshold to maintain a desired sensitivity level (true positive rate). ii) Foresight Interactive Experience
Replay (FIER): aggregates valid and relabeled novice action plans into the demonstration dataset. iii)
Prioritized Interactive Experience Replay (PIER): prioritizes replay based on uncertainty, novice success,
and demonstration age.

Since AIDA relies on the novice communicating its planned actions for teacher feedback, we focus on learning
mid- to high-level control tasks. AIDA is best suited for scenarios where a robot has access to predefined
skills such as grasping, walking, pushing, door opening, screwing, or inserting. When querying the teacher,
the robot novice can specify which skill they plan to use along with the parameterization of that skill. If the
teacher deems the novice’s plan invalid, they can provide a demonstration by annotating the appropriate
skill and its parameters. For example, a pick skill can be parameterized by a 3D Cartesian position.

We make the following claims, considering an active data aggregation setting where the teacher can validate
novice action plans:

C1 SAG balances query count and system failures by tracking a desired sensitivity.

C2 FIER reduces the number of annotations needed to achieve a given success rate by recasting novice
actions to demonstrations.

C3 FIER enhances generalization to unseen scenarios by recasting failures to demonstrations.

C4 PIER improves the success rate and reduces the required annotations under domain shift compared
to uniform sampling.

The remainder of this paper is structured as follows. Sec. 2 reviews related work. The problem formulation
is presented in Sec. 3. Our method is introduced in Sec. 4, followed by its experimental evaluation in Sec. 5.
Sec. 6 discusses the results and limitations, and Sec. 7 concludes the paper.

2



Under review as submission to TMLR

Paper Bio

Paper Bio

Pick

Place

Figure 1: The Action Inquiry DAgger (AIDA) framework consists of three main components: Sensitivity-Aware
Gating (SAG, detailed in Sec. 4.1), Foresight Interactive Experience Replay (FIER, detailed in Sec. 4.2), and Prior-
itized Interactive Experience Replay (PIER, detailed in Sec. 4.3). In this interactive imitation learning framework,
we allow the novice to say: “I plan to do this, but I am uncertain.” The uncertainty gating threshold is set by
SAG to achieve a desired sensitivity level, facilitating the trade-off between queries and failures. Teacher feedback is
obtained with FIER, enabling demonstrations through validation, relabeling, or annotation demonstrations. Lastly,
PIER prioritizes replay based on novice success, uncertainty, and demonstration age.

2 Related Work

In this section, we will review related work on uncertainty-aware IIL. In a seminal work on IIL with active
learning, Chernova & Veloso (2007) introduced the Confidence-Based Autonomy (CBA) algorithm that
combined the prediction confidence of a Gaussian Mixture Model (GMM) with the nearest neighbor distance
from demonstration data to quantify the confidence of the novice policy. Based on this confidence measure,
control is then gated between the novice policy and the human expert. Several related strategies exist,
primarily as safety- and/or uncertainty-aware variants of the DAgger algorithm (Ross et al., 2011), which
we refer to as active DAgger approaches. Like CBA, these methods apply a form of active learning, i.e.,
actively querying in situations deemed informative and/or risky. Such techniques include confidence measures
based on prediction confidence (Grollman & Jenkins, 2007), maximum mean discrepancy (Kim & Pineau,
2013; Laskey et al., 2016), predicted proximity of novice actions to expert actions (Zhang & Cho, 2017),
Monte Carlo dropout (Menda et al., 2017; Cui et al., 2019), ensembles (Menda et al., 2019; Li & Silver, 2023;
Li & Zhang, 2023), variational autoencoder reconstruction error (Liu et al., 2024; Wong et al., 2021), value
estimates (Hoque et al., 2022; Gokmen et al., 2023), ambiguity (Franzese et al., 2020; Luijkx et al., 2022),
divergence (Datta et al., 2023), and diffusion policy training loss (Lee & Kuo, 2024). Outside the scope of
IIL, robot-gating based on conformal prediction theory was introduced as well (Ren et al., 2023). In contrast
to these robot-gated techniques, human-gated methods have also been proposed, requiring continuous human
supervision, where the teacher actively intervenes (Spencer et al., 2020; Kelly et al., 2019; Luo et al., 2024).
There are also combinations of robot and human gating (Celemin & Kober, 2023; Hoque et al., 2022). Our
approach differs from existing methods by considering the novice’s actions during active queries, which we
leverage in three ways. First, it enables a sensitivity-aware gating strategy to balance query frequency with
error incidence while maintaining the desired sensitivity level. Second, it allows novice actions to be recast
as demonstrations by validating the novice’s plan or relabeling the goal, inspired by Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017). Third, it enables replay prioritization based on novice success,
drawing inspiration from Prioritized Experience Replay (PER) (Schaul et al., 2015).

3 Problem Statement

We consider an IIL problem, where a (robot) novice is learning interactively from (human) teacher feedback.
The novice and teacher are denoted with subscripts N and T, respectively. The novice learns a policy
πN : O ×G → A that maps observations ok

t ∈ O and goals gk ∈ G to actions ak
t ∈ A during episode k at time

step t. The novice learns from a demonstration dataset D = {τ k}K
k=0, consisting of trajectories τ . These

are provided by the teacher. Contrasting to existing works, we let the teacher optionally provide a reward
rk

t indicating whether the novice’s actions were appropriate considering a goal gk and the observation ok
t .

3



Under review as submission to TMLR

Algorithm 1: Action Inquiry DAgger (AIDA)
Input: BC dataset DBC, BC policy π0

N, teacher policy πT
Parameters: Desired sensitivity σdes, random query rate prand, maximum number of episodes kmax
Output: πkmax

N
1 u← [ ], r ← [ ], k← [ ],D ← DBC
2 for episode k = 0 : kmax − 1 do
3 τ k ← ∅, ok

0 ← observe(), gk ← command(), done← False, t← 0
4 while not done do
5 ak

t ← πk
N(ok

t , gk)
6 uk

t ← quantify_uncertainty(πk
N, ok

t , gk)
7 γ ← SAG(u, r, k, σdes, prand) // Set threshold to track sensitivity (Alg. 2)
8 ϵ ∼ U[0,1)
9 if uk

t ≥ γ or ϵ < prand then // Query actively and with probability prand
10 ak

t , τ k, rk
t ← FIER(ok

t , ak
t , πT, τ k, gk) // Collect demonstration (Alg. 3)

11 ok
t+1, done← act(ak

t )
12 else
13 ok

t+1, done← act(ak
t )

14 t← t + 1
15 D ← D ∪ τ k

16 P (i), w ← PIER(u, r, k) // Prioritize replay (Alg. 4)
17 πk+1

N ← update_model(πk
N,D, P (i), w)

18 return πkmax
N

Therefore, a trajectory consists of tuples τ k = {(ok
t , ak

t , gk, rk
t )}Tk

t=0, where reward

rk
t =


1 if the teacher validates novice action;
−1 if the teacher rejects novice action and provides an annotation;
0 otherwise.

(1)

It is worth noting that rk
t is a teacher reward obtained during queries related to the novice’s actions, these

actions may be different than ak
t . In our interactive approach, we collect data while executing the novice

policy πk
N and iteratively update it with the dataset D, aggregating new demonstrations. Optionally, the

policy can be pre-trained with a BC dataset DBC. During this update, we aim to find the policy π∗ within
policy space Π that minimizes a loss measure L between the novice’s actions and the teacher’s actions,
given the distribution of observations in D: π∗ = argminπ∈Π L(π, D). Since we generally do not have full
state information, we consider ok

t to result from an observation mapping O : S → O and we observe the
state ok

t = O(sk
t ). We define the goal state set Sg ⊂ S to be the set of states that satisfy the constraints

of g. Therefore, an action ak
t leads to success if sk

t+1 ∈ Sg. The set of states that result in achieving
some goal is the union of all possible goal sets, i.e., SG =

⋃
g∈G Sg. We assume the goal gk is constant

throughout an episode, i.e., independent of the dynamics and actions taken. Therefore, a failure described
by transition (sk

t , ak
t , sk

t+1, gk, success = 0) can be “relabeled” to success (sk
t , ak

t , sk
t+1, g′, success = 1) if

sk
t+1 ∈ SG, i.e., if the action resulted in achieving some other goal g′ ∈ G. So, if the teacher can observe sk

t

and (predict) sk
t+1, and can infer whether sk

t+1 ∈ SG, the teacher can relabel failure transitions to successes.
Furthermore, we consider an active approach based on the policy’s prediction uncertainty. Therefore, we
require an uncertainty operator U : Π×O ×G → R[0,1] that provides the prediction uncertainty of the novice
policy, given the current observation and goal, i.e., uk

t = U(πN, ok
t , gk). Optionally, one can also take D into

account when quantifying uncertainty, e.g., to quantify the proximity of an observation to those in D.

4 Action Inquiry DAgger (AIDA) Framework

AIDA is an interactive imitation learning framework where the teacher is actively queried based on
Sensitivity-Aware Gating (SAG). The teacher can provide feedback through Foresight Interactive Expe-
rience Replay (FIER) in three modalities: validation, relabeling, or annotation demonstrations. We update
the novice policy using the demonstration dataset while we perform Prioritized Interactive Experience Re-

4



Under review as submission to TMLR

play (PIER). The main training procedure of AIDA, summarized in Alg. 1, follows these steps: In each
episode k, at every time step t, the novice policy πk

N selects an action ak
t based on observation ok

t and goal
gk. Besides inferring its policy, the novice also quantifies the corresponding uncertainty uk

t (Alg. 1, lines 2-6).
SAG then sets a gating threshold γ to track the user-defined sensitivity level σdes (line 7). The teacher is
queried if the novice uncertainty exceeds the gating threshold. Additional queries are obtained with proba-
bility prand to enhance the performance of the SAG algorithm (detailed in Sec. 4.1). During these queries the
novice presents its planned action ak

t , allowing the teacher to validate, relabel, and/or provide an annotation
demonstration (lines 9-11). If the teacher is not queried, the novice acts autonomously (lines 12-13). When
the episode is done, e.g., because the goal constraints are satisfied or a time-out is reached, the demonstration
trajectory τ k is added to D. Finally, a model update can be performed using PIER (lines 16-17). Note that
we keep track of the update/episode counts k = [0, . . . , KT K ], uncertainties u = [u0

0, . . . , uK
T K ], and rewards

r = [r0
0, . . . , rK

T K ] during training with AIDA. The next sections will provide detailed descriptions of the
subroutines from Alg. 1, i.e., SAG for gating (Alg. 2), FIER for demonstration collection (Alg. 3) and PIER
for replay prioritization (Alg. 4).

4.1 Sensitivity-Aware Gating (SAG)

At each time step, the uncertainty of the novice policy determines whether it should act autonomously
or request teacher feedback. We introduce SAG for this gating problem. This is an intuitive method for
balancing query frequency and system failures. SAG dynamically adjusts the gating threshold γ to maintain
a user-prescribed sensitivity level. In this context, queries are considered positives, and autonomous actions
are considered negatives. A false positive occurs when the teacher is queried despite the novice’s action being
valid since we want the novice to be as autonomous as possible. Conversely, a false negative occurs when
the teacher is not queried despite an invalid novice action since it leads to system failure. We formalize the
gating problem as a semi-supervised logistic regression, using uncertainty u as the independent variable and
reward r as the indicator variable. The logistic regression assumption—that the log-likelihood ratio of class
distributions is linear in the observations—holds for various exponential distributions, such as normal, beta,
and gamma distributions (Amini & Gallinari, 2002).

We summarize SAG in Alg. 2 and provide a visualization for more intuitive understanding in Fig. 2. For
computing the gating threshold γ, we maintain a window of the most recent values in uW , rW , and kW We
do this because, with each model update, the uncertainty and reward information becomes more outdated
(line 1 of Alg. 2). The window size is adjusted adaptively to ensure that the window contains at least Nmin
novice failures. These known failures (true positives) are essential for approximating sensitivity (true positive
rate) accurately. Since the failure distribution over uncertainty shifts over time due to model updates, we
normalize uW (lines 2-4 of Alg. 2) to match the expected uncertainty at the current episode K. This
is achieved by performing linear regression on kW and uW , then adjusting for the expected difference in
uncertainty between episode k and K. This is visualized in Fig. 2 A. Next, we fit a logistic function to −rW

and uW (line 5 of Alg. 2 and Fig. 2 B-C). We negate the rewards because, in the context of sensitivity,
positive cases typically represent costly events—in this case, novice failures. We capture these failures by
negating rW . If the teacher was not queried, we do not know whether the novice acted successfully at (k, t).
Since the uncertainty uk

t is known, we can obtain a pseudo-label by sampling from the fitted logistic model at
uk

t (line 11 and Fig. 2 D). This enables us to approximate true and false positive rates for different threshold
values.

Queries are not only made when uncertainty exceeds the threshold but also with probability prand. These
random queries ensure that labels are collected across the entire uncertainty range, not just in the high-
uncertainty regime. If we do not account for these random queries when setting the threshold, the resulting
threshold will be too conservative, leading to a sensitivity higher than σdes. Since prand is user-defined, we
can incorporate these random queries when determining the gating threshold. The total sensitivity σ can be
computed by considering both the true positives TPγ and false negatives FNγ resulting from active gating,
along with the true positives TPrand from random gating:

σ = TPγ + TPrand

TPγ + FNγ
. (2)

5



Under review as submission to TMLR

Algorithm 2: Sensitivity-Aware Gating (SAG)
Input: Uncertainties u, rewards r, update counts k
Parameters: Desired sensitivity σdes, random query rate prand, minimum number of negative labels Nmin, number of

imputation repetitions Nrep
Output: Gating threshold γ

1 uW , rW , kW ← get_window(u, r, k, Nmin)
2 wlin, blin ← LinRegres().fit(kW , uW ) // Linear regression for normalizing u

3 for uk
t ∈ uW do

4 uk
t ← uk

t + wlin(K − k) // Visualized in Fig. 2 A

5 wlog, blog ← LogRegres().fit(uW ,−rW ) // Logistic regression for imputation where rk
t = 0

6 γ ← [ ]
7 for i = 0 : Nrep − 1 do
8 fW ← −rW // Visualized in Fig. 2 B
9 for rk

t ∈ rW do
10 if rk

t == 0 then // If teacher was not queried
11 fk

t ∼ {−1, 1}, P (fk
t = 1) = sigmoid(wloguk

t + blog) // Visualized in Fig. 2 C

12 σγ , θ ← get_roc(uW , fW ) // True positive rates and corresponding thresholds
13 γi ← interpolate(σdes, σγ + prand(1− σγ), θ) // Visualized in Fig. 2 D

14 γ ← median(γ)
15 return γ

92 93

Update count k

0.2

0.4

0.6

0.8

U
nc

er
ta

in
ty
u

wlin

A 0.25 0.50 0.75

Uncertainty u

−1

0

1

N
eg

at
ed

re
w

ar
d
−
r

Not queried

B 0.25 0.50 0.75

Uncertainty u

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y
P

Fit on data in B

C 0.25 0.50 0.75

Uncertainty u

−1

0

1

Fa
ilu

re
f

∼ P (f |u)

D

r = 1 r = 0 r = −1 LinRegres P (f = −1|u) P (f = 1|u) γi

Figure 2: Visualization of the SAG algorithm with experimental data from Sec. 5.1. First, we normalize the uncer-
tainty values in uW using linear regression, as the uncertainty distribution shifts with the number of updates (A).
By negating the rewards rW , we obtain labels for novice failures, denoted as fW (B). Labels are unavailable when
the teacher was not queried (r = 0). However, since uncertainties at those time steps are known, we generate pseudo
labels by sampling from a logistic distribution fit to uW and fW (C). We then compute a gating threshold γi using
both the labels and pseudo labels (D). This sampling and threshold calculation process is repeated Nrep times.

The number of TPrand are determined by which of FNγ are queried. These queries are based on whether
occur with probability prand (see lines 8-9 of Alg. 1). Therefore, its expected value is FNγ · prand. This leads
to:

Eϵ∼U[0,1) [σ] = TPγ

TPγ + FNγ
+ FNγ · prand

TPγ + FNγ
(3)

= σγ + prand(1 − σγ), (4)

where σγ is the sensitivity for gating disregarding the random queries. Thus, we interpolate between threshold
values that best satisfy the desired sensitivity level σdes = σγ + prand(1 − σγ) (line 13 of Alg. 2 and Fig. 2 D).
The process of sampling pseudo labels is repeated Nrep times, and the final threshold γ is set as the median
of the thresholds obtained across repetitions.

6



Under review as submission to TMLR

4.2 Foresight Interactive Experience Replay (FIER)

When the novice’s uncertainty exceeds the threshold set by SAG, feedback is requested from the teacher
through FIER. This method enhances demonstration collection by considering the novice’s planned actions
during queries and presenting them to the human teacher. The FIER procedure is summarized in Alg. 3.
FIER reduces the number of required teacher annotations by enabling the human teacher to provide two
additional feedback modalities. First, we allow the teacher to validate the proposed actions. If the teacher
considers the plan valid (r == 1 in line 2 in Alg. 3), we execute and add the novice’s planned actions to the
demonstration dataset. The novice plan can be valuable even if it is invalid. Inspired by HER Andrychowicz
et al. (2017), we can utilize invalid novice plans as demonstrations if they achieve another goal (line 7 in
Alg. 3). In this case, we can obtain a new demonstration by letting the teacher relabel the goal. The
benefit of relabeling demonstrations is twofold. First, there can be situations where relabeling the goal is
less demanding for the teacher than providing an annotation. In that case, it is possible to collect additional
demonstrations at a reduced cost Secondly, it allows for the collection of demonstrations for goals induced by
the novice policy instead of collecting demonstrations only for goals induced by the distribution of commands.
This way, the novice can learn to perform tasks beyond the instructed commands and possibly generalize
better to novel scenarios. After providing the option to relabel the novice’s actions, the teacher is asked to
provide an annotation demonstration (line 6). To summarize, we can collect three types of demonstrations
with FIER: validation, relabeling, and annotation demonstrations.

4.3 Prioritized Interactive Experience Replay (PIER)

At the end of the episode, the demonstrations collected through FIER are aggregated into the demonstration
dataset, allowing the novice policy to be updated. Efficiently performing policy updates is particularly
important in interactive imitation learning, as this paradigm involves a human teacher providing online
feedback. Taking inspiration from PER (Schaul et al., 2015), we introduce an interactive equivalent, which
we call PIER (summarized in Alg. 4). PIER prioritizes the replay of the demonstration dataset based on
uncertainty, novice success, and demonstration age. We prioritize demonstrations where the novice fails over
successes. Those with low uncertainty receive the highest priority among failures, as they suggest confident
yet mistaken actions. While among successes, those with high uncertainty are prioritized to reduce the
novice’s uncertainty for those situations. Successes with low uncertainty, indicating proficient performance,
are given the lowest priority. Since the uncertainty and novice success information become outdated with
each model update, we diminish the prioritization based on the age of the demonstration. Alg. 4 shows how
these desired properties are integrated into our prioritized replay scheme. Similar to PER (Schaul et al.,
2015), we define the probability of sampling demonstration tuple of episode k at timestep t to be:

P (k, t) = (pk
t )α∑

i

∑
j(pi

j)α
. (5)

Here pk
t is the priority of the demonstration tuple from episode k at time step t and α ≥ 0. Increasing α results

in more prioritization, while α = 0 corresponds to uniform sampling. We define the prioritization exponent
as a linear combination of the uncertainty and the number of model updates since the demonstration was
added to the dataset, i.e., ck

t = λuk
t + (1 − λ)( K−k

K ). Here, 0 ≤ λ ≤ 1 scales prioritization based on the
uncertainty versus novelty of the sample. Finally, the priorities are:

pk
t = 1 − rk

t

b1−ck
t − 1

b − 1 , (6)

where b > 1 is the base. In this way, the priorities of old demonstrations with high novice uncertainty depend
little on novice success. In contrast, the priorities for recent demonstrations with low novice uncertainty
depend greatly on novice success. Having defined the priorities, we need to compensate for the bias that
prioritization introduces when minimizing the expectation of a loss function l, i.e., Ek,t∼P (k,t)L

(
πN, (ok

t , ak
t )

)
,

instead of sampling k, t according to the distribution of the dataset—i.e., k, t ∼ D(k, t). Again, following PER
(Schaul et al., 2015), we can mitigate the bias by introducing importance-sampling weights w = [w0

0, . . . ]
(see line 7 of Alg. 4). Here, β determines the level of bias compensation. The weights are normalized to
prevent numerical instabilities.

7



Under review as submission to TMLR

Algorithm 3: Foresight Interactive Experi-
ence Replay (FIER)

Input: Observation o, novice action a, teacher
policy πT, trajectory τ , goal gk

Parameters: Goal set G
Output: Action a, trajectory τ

1 r, g′ ← query(o, a)
2 if r == 1 then // Validation tuple
3 τ ← τ ∪ (o, a, g = gk, r = 1)
4 else
5 a← πT(o) // Annotation tuple
6 τ ← τ ∪ (o, a, g = gk, r = −1)
7 if g′ ∈ G then // Relabeled tuple
8 τ ← τ ∪ (o, a, g = g′, r = 0)

9 return a, τ , r

Algorithm 4: Prioritized Interactive Experience
Replay (PIER)

Input: Uncertainties u, rewards r, update counts k
Parameters: Scale λ, base b, exponents α, β
Output: Sampling priorities p, weights w

1 w = [ ]
2 for k = 0 : K do
3 for t = 0 : T k do
4 ck

t = λuk
t + (1− λ) K−k

K

5 pk
t ← 1− rk

t
b

1−ck
t −1

b−1

6 P (k, t)← (pk
t )α∑

i

∑
j

(pi
j

)α

7 wk
t = (|k| · P (k, t))−β / maxi,j wi

j

8 return P (k, t), w

5 Experimental Evaluation

To support claims C1-4 from Sec. 1, we evaluate AIDA and its components in four sets of experiments. First,
we performed active dataset aggregation on the MNIST dataset (LeCun et al., 1998) using TorchUncertainty
(Lafage & Laurent, 2024) to validate SAG extensively. Second, we interactively trained CLIPort agents on
simulated language-conditioned tabletop manipulation tasks (Shridhar et al., 2021). Third, we conducted
experiments on a real-world assembly setup to demonstrate that these claims extend beyond simulation.
Finally, we showcase AIDA’s applicability by integrating it with built-in primitive actions on a Spot robot
to perform a sorting task.

5.1 MNIST Dataset Aggregation

To support claim C1—SAG balances query count and system failures by tracking a desired sensitivity—we
conducted experiments in which we interactively trained digit classification models on the MNIST dataset
(LeCun et al., 1998) 1. We selected this setup due to its low computational requirements, enabling extensive
ablations and easy reproducibility. Additionally, existing packages such as TorchUncertainty (Lafage &
Laurent, 2024) facilitate uncertainty quantification in this setting. Since we focus on the SAG component,
we follow the procedure described in Alg. 1, but without demonstration collection via relabeling or replay
prioritization. To validate whether SAG can track a desired sensitivity, we performed interactive training
for nine different sensitivity values, i.e., σdes ∈ {0.1i}9

i=1, repeating the procedure ten times for each value
of σdes.

These experiments proceed as follows. We sample a batch of 128 handwritten digit images from the MNIST
dataset at each timestep without replacement. This allows for 468 timesteps, as the dataset contains 60,000
samples. Although MNIST provides ground truth labels, we simulate an active learning scenario where labels
are queried if the prediction uncertainty exceeds the threshold γ set by SAG or randomly with probability
prand = 0.1. Uncertainty quantification is performed using Monte Carlo Dropout (MC Dropout) (Gal
& Ghahramani, 2016) with a dropout rate of 0.4 and 16 stochastic forward passes, forming an ensemble
C = {h1, . . . , h16}. For a sample x with label y, prediction uncertainty is computed as u = 1 − maxy PC(y|x),
where PC(y|x) = 1

16
∑16

i=1 Pi(y|x). Ground truth labels are obtained for the queried samples and added to
the training dataset. The model is updated every five timesteps using the aggregated dataset.

The results of these experiments are summarized in Fig. 3. The sensitivity plots in Fig. 3 A show that SAG
successfully tracks the desired sensitivity level for all nine values of σdes. Fig. 3 B reveals a clear trade-off
between sensitivity and specificity: higher values of σdes lead to lower specificity. Additionally, Fig. 3 B and
Fig. 3 C show that, for most values of σdes, specificity increases over time, while the query rate decreases
over time. This shows that as the uncertainty quantification’s informedness (Youden’s J statistic) improves,

1The code and data from these experiments are available at https://github.com/aida-paper/aida_mnist.

8

https://github.com/aida-paper/aida_mnist


Under review as submission to TMLR

0 200 400
0.0

0.2

0.4

0.6

0.8

1.0
S

en
si

tiv
ity

A
0 200 400

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ci
fic

ity

B
0 200 400

0.0

0.2

0.4

0.6

0.8

1.0

Q
ue

ry
R

at
e

C

0 200 400

Step

0

1

2

3

Tr
ai

n
S

am
pl

es

×104

D
0 200 400

Step

0.0

0.2

0.4

0.6

0.8

1.0
N

ov
ic

e
S

uc
ce

ss
R

at
e

E
0 200 400

Step

0.0

0.2

0.4

0.6

0.8

1.0

S
ys

te
m

S
uc

ce
ss

R
at

e

F

σdes = 0.1

σdes = 0.2

σdes = 0.3

σdes = 0.4

σdes = 0.5

σdes = 0.6

σdes = 0.7

σdes = 0.8

σdes = 0.9

Desired (A)

Figure 3: Results for various levels of desired sensitivity, σdes, in active dataset aggregation with SAG on the MNIST
(LeCun et al., 1998) dataset. Sensitivity in A and specificity in B are calculated over a moving window of 1000
failures and successes, respectively. Novice and system success rates in E and F are calculated over a window of 1000
samples (approximately eight steps). Mean and standard deviation are shown for ten repetitions.

SAG adapts by reducing the query rate to maintain sensitivity tracking. Fig. 3 D and Fig. 3 E show that
while fewer training samples are collected for lower values of σdes, the novice still converges to similar success
rates over time. However, the convergence rate is slightly slower for σdes = 0.1. Finally, Fig. 3 F shows that
higher values of σdes lead to a better system success rate, as more failures are prevented through querying.

5.2 CLIPort Benchmark Tasks

To support claims C1-3, we conducted experiments using AIDA to train CLIPort (Shridhar et al., 2021)
agents interactively 2. CLIPort is a language-conditioned imitation-learning agent that leverages the CLIP
(Radford et al., 2021) foundation model and sample-efficient Transporter Networks (Zeng et al., 2021) for
vision-based manipulation. We selected this setup because it allows novices to communicate their actions
by indicating planned pick-and-place locations on an image alongside a language command, making it well-
suited for AIDA. We compared AIDA’s performance against an active DAgger baseline without both
PIER and FIER to provide evidence for claims C2-3. Examples of such active DAgger approaches that
request feedback when the policy is considered unsafe, risky, or uncertain are Zhang & Cho (2017); Menda
et al. (2019; 2017); Hoque et al. (2022); Datta et al. (2023); Lee & Kuo (2024); Luijkx et al. (2022). We also
performed ablations with AIDA without PIER and AIDA without FIER to isolate the effects of the individual
components. All methods use SAG for gating and rely on prediction entropy to quantify uncertainty for a fair
comparison. The comparison was conducted across the subset of tasks by Shridhar et al. (2021). These tasks

2The code, data, videos, and a notebook are available at https://github.com/aida-paper/aida_cliport.

9

https://github.com/aida-paper/aida_cliport


Under review as submission to TMLR

Figure 4: The CLIPort benchmark tasks from left to right: packing-google-objects-seq, packing-google-objects-group,
packing-shapes and put-blocks-in-bowls. Adapted from image by Shridhar et al. (2021).

100 200 300
0

20

40

60

80

R
ew

ar
d

A

packing-seen-google
objects-seq

100 200 300
0

20

40

60

80

B

packing-seen-google
objects-group

100 200 300
0

20

40

60

80

C

packing-seen-shapes

100 200 300
0

25

50

75

100

D

put-block-in
bowl-seen-colors

100 200 300

Demonstrations

0

20

40

R
ew

ar
d

E

packing-unseen-google
objects-seq

100 200 300

Demonstrations

0

20

40

60

F

packing-unseen-google
objects-group

100 200 300

Demonstrations

0

20

40

60

G

packing-unseen-shapes

100 200 300

Demonstrations

0

20

40

60

H

put-block-in
bowl-unseen-colors

Active DAgger AIDA

Figure 5: Cumulative rewards for evaluating checkpoints over 100 episodes on tasks with seen and unseen objects.
Mean and standard deviation are shown for ten policies using a moving window of 50 episodes. The results show
clear improvements with AIDA on the unseen scenarios.

are visualized in Fig. 4. To highlight scenarios where relabeling demonstrations is beneficial, we modified
the tasks involving Google objects and shapes so that objects from the unseen set appear as distractors
during training. The following hyperparameters were used for both AIDA and the active DAgger baseline
if applicable. For SAG we used σdes = 0.9, Nmin = 15, prand = 0.2 and for PIER α = 1.5, b = 10, β = 1 and
λ = 0.5. Each setting involved training ten CLIPort agents without BC pretraining, collecting 300 interactive
demonstrations, and evaluating checkpoints every 50 demonstrations. Model updates occur at the end of an
episode if a demonstration is collected. This way, we ensure that AIDA and the active DAgger baseline
had the same number of updates.

The cumulative rewards for evaluating checkpoints on tasks with seen and unseen objects are shown in Fig. 5.
While AIDA performs equally or better on all tasks, the number of teacher annotations is significantly lower,

10



Under review as submission to TMLR

as shown in Fig. 6. The performance gain of AIDA can be attributed to the composition of the demonstration
dataset. For the active DAgger baseline, all demonstrations consist of annotation tuples, whereas AIDA
collects many through validation and relabeling. The relabeled demonstrations explain AIDA’s superior
performance on unseen tasks: agents sometimes obtained demonstrations by relabeling novice failures, where
the intended pick was a distractor object from the unseen set. Fig. 6 also shows that AIDA requires fewer
annotation demonstrations than the active DAgger baseline. This is further reflected in the training curves
in Fig. 7, where the novice achieves higher success rates for the same number of annotation tuples. The
corresponding sensitivity curves for AIDA in Fig. 8 confirm that SAG maintains the desired sensitivity level
across all tasks.

100 200 300

Demonstrations

0

250

500

750

D
em

on
st

ra
tio

n
Tu

pl
es

A

packing-google
objects-seq

100 200 300

Demonstrations

0

250

500

750

B

packing-google
objects-group

100 200 300

Demonstrations

0

200

400

C

packing-shapes

100 200 300

Demonstrations

0

200

400

D

put-block
in-bowl

Active DAgger: Annotation
AIDA: Annotation

AIDA: Relabeled
AIDA: Validation

Figure 6: Composition of the demonstration datasets, showing mean values for ten policies. AIDA relies on fewer
annotation demonstrations and benefits from relabeling and validation demonstrations.

0 50 100

Ann. Tuples

0.00

0.25

0.50

0.75

N
ov

ic
e

S
uc

ce
ss

R
at

e

A

packing-google
objects-seq

0 50 100

Ann. Tuples

0.00

0.25

0.50

0.75

B

packing-google
objects-group

0 25 50

Ann. Tuples

0.00

0.25

0.50

0.75

C

packing-shapes

0 25 50

Ann. Tuples

0.0

0.5

1.0

D

put-block
in-bowl

Active DAgger AIDA

Figure 7: Novice success rate during training as a function of the number of collected annotation tuples. Mean and
standard deviation are shown for ten policies, with a moving window of 50 episodes.

0 100 200 300

Demonstrations

0.75

1.00

S
en

si
tiv

ity

A

packing-google
objects-seq

0 100 200 300

Demonstrations

0.75

1.00

B

packing-google
objects-group

0 100 200 300

Demonstrations

0.75

1.00

C

packing-shapes

0 100 200 300

Demonstrations

0.75

1.00

D

put-block
in-bowl

Sensitivity Desired

Figure 8: Sensitivity during training for AIDA on the CLIPort tasks. Sensitivity is calculated over a moving window
of 50 failures. Mean and standard deviation are shown for ten policies.

11



Under review as submission to TMLR

0 50 100 150
0.0

0.2

0.4

0.6

0.8

N
ov

ic
e

S
uc

ce
ss

R
at

e

A

packing-seen-shapes

150 200 250 300

0.4

0.6

0.8

B

packing-unseen-shapes

300 350 400 450
0.0

0.2

0.4

0.6

C

packing-seen-google-objects-seq

0 50 100 150

Demonstrations

0

50

100

150

A
nn

.
Tu

pl
es

D 150 200 250 300

Demonstrations

0

50

100

150

E 300 350 400 450

Demonstrations

0

100

200

300

F

AIDA w/o PIER AIDA w/o FIER AIDA

Figure 9: Novice success rate during training (A-C) and the number of collected annotation tuples (D-F) under
domain shifts. The success rate is computed over a moving window of 50 episodes, reinitialized after each domain
shift. The first 150 demonstrations are collected on packing-seen-shapes, the next 150 on packing-unseen-shapes, and
the final 150 on packing-seen-google-objects-seq. Mean and standard deviation are shown for ten policies.

To support C4, we performed ablations with AIDA under domain shifts. We trained agents using AIDA,
AIDA without PIER (w/o PIER), and AIDA without FIER (w/o FIER) on a sequence of tasks with increas-
ing domain shifts: packing-seen-shapes, packing-unseen-shapes, and packing-seen-google-objects-seq. As shown
in Fig. 9, AIDA and AIDA w/o PIER perform similarly on the initial task, while AIDA w/o FIER per-
forms slightly worse, likely due to the benefits of relabeling demonstrations. Moreover, AIDA w/o FIER
requires more annotation demonstrations (Fig. 9 D). After transitioning to packing-unseen-shapes, AIDA
adapts slightly faster to the domain shift initially, though performance is similar after 300 demonstrations
across all settings. This improved adaptation likely stems from FIER’s relabeling and PIER’s replay pri-
oritization. Upon shifting to packing-seen-google-objects-seq, AIDA and AIDA w/o FIER outperform AIDA
w/o PIER, highlighting the benefits of replay prioritization with PIER. This effect is more pronounced af-
ter the second transition, as the shift from unseen-shapes to seen-google-objects-seq is larger than from seen
to unseen shapes. Additionally, as the demonstration dataset grows, the probability of sampling a specific
demonstration decreases for uniform sampling, further increasing PIER’s effect. Finally, AIDA’s improved
performance on the third task requires fewer annotation demonstrations, as more validation demonstrations
are collected (Fig. 9 F).

5.3 Real-World Engine Assembly

We conducted experiments on a real-world assembly task to demonstrate that our claims extend beyond
simulation and showcase AIDA’s applicability in real-world settings 3. This task is a simplified version
of a diesel engine assembly using 3D-printed models. The procedure is illustrated in Fig. 10. As shown
in Fig. 10 A, the setup includes a Franka Panda robot equipped with an in-hand RealSense D405 RGB-D
camera and a Franka hand with custom-printed fingers for grasping bolts. The control scheme is implemented
using the EAGERx framework (van der Heijden et al., 2024). The objective is to pick bolts from a holder
and insert them into specific locations on the engine block. We use pick-and-place primitives that rely on
2D Cartesian positions, assuming a given height for picking and placing.

3A video of this experimental evaluation is available at https://aida-paper.github.io.

12

https://aida-paper.github.io


Under review as submission to TMLR

A B C

D E F

Figure 10: Real-world implementation of AIDA on an engine assembly task. (A) The setup includes a Franka Panda
robot, an RGB-D camera, and 3D-printed parts. (B) The interface allows the operator to issue commands. (C)
When queried, the operator can validate, relabel, or reject the plan. (D) The operator relabels the plan. (E) The
operator provides an annotation demonstration. (F) The robot executes the demonstration.

50 100 150

Demonstrations

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

R
at

e

A

Novice
System

50 100 150

Demonstrations

0

50

100

150

D
em

on
st

ra
tio

n
Tu

pl
es

B

Ann.
Rel.
Val.

50 100 150

Demonstrations

0.6

0.7

0.8

0.9

1.0

S
en

si
tiv

ity

C

Sensitivity
Desired

Figure 11: Results for the engine assembly task. (A) Success rates calculated over a window of 50 episodes. (B)
Composition of the demonstration dataset. (C) Sensitivity calculated over a moving window of 50 failures.

13



Under review as submission to TMLR

A B C

Figure 12: Real-world implementation of AIDA on a sorting task with Spot (A). This demonstrates AIDA’s appli-
cability in scenarios where a robot has access to one or more skills, such as grasping (B), walking, and placing (C).

The task involves four bolt colors (red, yellow, green, and black) and seven insertion locations. The bolts
are randomly ordered and placed in a holder. The human operator interacts with the robot via the interface
shown in Fig. 10 B. This Gradio (Abid et al., 2019) interface allows command input via speech or text. In our
experiments, we generate random commands in the form: “Insert the [color] bolt at location number [location
number].” Upon receiving a command, a top-down RGB-D reconstruction is obtained following Zeng et al.
(2021), and the novice policy is evaluated. We use a CLIPort agent with the same hyperparameters as in
Sec. 5.2, but with a smaller batch size of 3 due to GPU memory constraints on our laptop. If the prediction
uncertainty exceeds the threshold γ set by SAG, or randomly with probability prand = 0.2, the robot queries
the human operator. This is shown in Fig. 10 C. The robot’s planned action is visualized in the interface,
allowing the operator to validate, relabel, or reject the plan. If validated, the robot executes the plan and
it is added to the dataset. If relabeling is required, as in Fig. 10 C, the operator is prompted to provide
corrections by selecting the correct bolt and location. This is shown in Fig. 10 D. The robot then executes
the annotation demonstration (Fig. 10 F) and aggregates the relabeling and annotation demonstrations into
the dataset. When a demonstration is collected, a model update is performed while the robot executes the
demonstration.

The results for collecting 150 demonstrations are summarized in Fig. 11. The novice and system success
rates in Fig. 11 A show that while the novice is learning to perform the task, the system can maintain a high
success rate by querying based on SAG. The composition of the dataset in Fig. 11 B shows a similar trend as
in the simulated experiments. This figure shows that AIDA can learn from mostly validation demonstrations
in the later stages of training. Also, it shows that relabeling demonstrations is possible not only in simulation
but also in real-world scenarios. The sensitivity in Fig. 11 C shows that SAG can track the desired sensitivity
level across the task.

5.4 Real-World Sorting Task

To further demonstrate AIDA’s applicability in real-world scenarios, we integrated it with Spot’s built-in
primitive skills to perform a sorting task 4. Since AIDA is designed to work with any robot with one or more
skills, we selected Spot for its built-in grasping, walking, and placing capabilities. The task involves sorting
objects into paper and organic waste bins, as illustrated in Fig. 12. For this demonstration, we trained a
CLIPort agent using an interface similar to Fig. 10 with the command format: “Put the [object] in the [bin
type] bin.” Since CLIPort requires a top-down RGB-D projection, we use the in-hand RGB-D camera to
scan the environment from different perspectives. With these images we can obtain a top-down projection
using the robot’s joint states, odometry, and camera intrinsics. The teacher issues the command through
a Gradio (Abid et al., 2019) interface at the beginning of an episode. Similar to Sec. 5.3, the teacher is
queried if the novice’s uncertainty exceeds the gating threshold, and the interface shows the planned pick
and place locations. The teacher can choose to validate or relabel the novice’s actions. The teacher can
provide annotation demonstrations by clicking where to pick and where to place in the top-down projected
image. Demonstrations are aggregated to the demonstration dataset at the end of the episode, and the
policy is updated. In the meantime, the robot walks back to its initial position and rescans its environment.

4A video of this demonstration is available at https://aida-paper.github.io.

14

https://aida-paper.github.io


Under review as submission to TMLR

6 Discussion

This section discusses the results from Sec. 5 by revisiting the claims in Sec. 1. We also examine the
limitations of the AIDA framework and its experimental evaluation.

6.1 Claims

Our experiments were designed to provide evidence for claims C1-4 from Sec. 1. First, we claim that SAG
balances query count and system failures by tracking a desired sensitivity (C1). We provide evidence for this
claim by showing accurate sensitivity tracking and the consequences for the query and system success rate for
multiple values of σdes on an MNIST dataset aggregation task in Fig. 3. Moreover, we extend these results
to simulated and real-world robot tasks in Sec. 8 and Fig. 11 C. Secondly, we claim that FIER reduces the
number of annotations needed to achieve a given success rate (C2). We trained CLIPort agents on a set of
benchmark tasks in simulation for 300 demonstrations and evaluated the performance of checkpoints saved
every 50 demonstrations. The results from these experiments support this claim. The evaluation results in
Fig. 5 show that AIDA performs equivalent or better compared to the active DAgger baseline, while Fig. 6
shows that AIDA requires significantly fewer teacher annotations. Further evidence for this claim is provided
by the results in Fig. 7, showing that training with AIDA results in higher success rates for the same number
of annotations. The results in Fig. 11 provide evidence that these results generalize to real-world tasks, as
we see a similar composition of the dataset and similar performance improvements. Thirdly, we claim that
FIER enhances generalization to unseen scenarios by recasting failures to demonstrations (C3). The results
in Fig. 5 provide evidence for this claim, as the AIDA checkpoints outperform the active DAgger baseline on
the unseen scenarios. This can be attributed to relabeling failures involving the distractor objects, resulting
in demonstrations for the unseen scenarios. Finally, we claim that PIER improves the success rate and
reduces the required annotations under domain shift compared to uniform sampling. Evidence for this claim
is provided by the results in Fig. 9, where PIER outperforms uniform sampling under domain shift regarding
success rate while requiring fewer annotations.

6.2 Limitations

AIDA is designed for tasks with sparse rewards and learning mid- to high-level control. While this covers
many problems, it does not extend to applications requiring high-rate feedback from the teacher. Thus,
AIDA is best suited for scenarios where a robot has access to predefined skills and can learn higher-level
plans for these skills. Additionally, AIDA can be integrated with methods that are better suited for learning
low-level control or longer-horizon reasoning. While FIER significantly improves performance, it relies on
recasting failures as successes, which can be challenging in some applications. Additionally, although AIDA
reduces the teacher’s workload, it assumes the teacher can validate or relabel actions before execution. This
may not always be feasible. In such cases, relabeling and validation can still occur post-execution. Tuning
hyperparameters in real-world settings is challenging. However, our experiments show that a single set
of hyperparameters, without extensive tuning, generalizes effectively across different tasks, suggesting that
hyperparameter sensitivity is not strongly dependent on task descriptions. Finally, our evaluations primarily
used policies with a CLIPort (Shridhar et al., 2021) architecture, but AIDA is not limited to this choice. It
can be applied to any policy architecture where a teacher can determine the success of actions and provide
demonstrations.

7 Conclusion

We have introduced the AIDA framework, which consists of three components: a gating procedure SAG
that can track a desired sensitivity level; FIER for recasting novice actions to demonstrations; and PIER
to prioritize replay experience based on uncertainty, novice success, and age. Our experiments show that
AIDA allows for an effective balance between queries and failures based on a user-specified sensitivity level.
It can significantly enhance task performance while also improving its generalization capabilities to unseen
scenarios. By utilizing demonstrations acquired through interactive relabeling and validation, AIDA can

15



Under review as submission to TMLR

reduce the number of annotation demonstrations needed. Additionally, it improves adaptation to domain
shifts by prioritizing replay.

For future work, several promising directions emerge for further enhancing the capabilities of AIDA. Ex-
tending this methodology to scenarios involving longer horizons and non-sparse rewards could improve its
applicability. Leveraging generative/foundation models and simulators for visualizing action plans and gen-
erating artificial demonstrations could also expand the application domain of AIDA, potentially improving
training efficiency and outcome predictability. Moreover, conducting participant studies would be vital
to assess the mental load associated with AIDA and refine user interfaces accordingly. Finally, adapting
AIDA to environments characterized by heterogeneous or imperfect teachers could widen its applicability
and effectiveness in real-world settings.

References
P. Abbeel, A. Coates, and A. Ng. Autonomous helicopter aerobatics through apprenticeship learning.

Intl. Journal of Robotics Research (IJRR), 29(13):1608–1639, 2010.

A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan, and J. Zou. Gradio: Hassle-free sharing and testing of
ML models in the wild. arXiv preprint, 2019.

M.-R. Amini and P. Gallinari. Semi-supervised logistic regression. In Proc. of the Europ. Conf. on Artificial
Intelligence (ECAI), pp. 11, 2002.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel,
OpenAI, and W. Zaremba. Hindsight experience replay. In Proc. of the Advances in Neural Information
Processing Systems (NIPS), 2017.

A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, J. Hsu, et al. RT-1: Robotics transformer for real-world control at scale. arXiv preprint, 2022.

C. Celemin and J. Kober. Knowledge-and ambiguity-aware robot learning from corrective and evaluative
feedback. Neural Computing and Applications, pp. 1–19, 2023.

C. Celemin, R. Pérez-Dattari, E. Chisari, G. Franzese, L. de Souza Rosa, R. Prakash, Z. Ajanović, M. Ferraz,
A. Valada, J. Kober, et al. Interactive imitation learning in robotics: A survey. Foundations and Trends
in Robotics, 10(1-2):1–197, 2022.

S. Chernova and M. Veloso. Confidence-based policy learning from demonstration using gaussian mixture
models. In Proc. of the Intl. Conf. on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1–8,
2007.

Y. Cui, D. Isele, S. Niekum, and K. Fujimura. Uncertainty-aware data aggregation for deep imitation
learning. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pp. 761–767. IEEE, 2019.

G. Datta, R. Hoque, A. Gu, E. Solowjow, and K. Goldberg. IIFL: Implicit interactive fleet learning from
heterogeneous human supervisors. In Proc. of the Conf. on Robot Learning (CoRL), volume 229, pp.
2340–2356. PMLR, 2023.

G. Franzese, C. Celemin, and J. Kober. Learning interactively to resolve ambiguity in reference frame
selection. In Proc. of the Conf. on Robot Learning (CoRL). PMLR, 2020.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. In Proc. of the Intl. Conf. on Machine Learning (ICML), pp. 1050–1059. PMLR, 2016.

C. Gokmen, D. Ho, and M. Khansari. Asking for help: Failure prediction in behavioral cloning through
value approximation. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pp. 5821–5828,
2023.

D. H. Grollman and O. C. Jenkins. Dogged learning for robots. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), pp. 2483–2488. IEEE, 2007.

16



Under review as submission to TMLR

R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and K. Goldberg. ThriftyDAgger: Budget-
aware novelty and risk gating for interactive imitation learning. In Proc. of the Conf. on Robot Learning
(CoRL), volume 164 of Proceedings of Machine Learning Research, pp. 598–608. PMLR, 2022.

R. Hoque, L. Y. Chen, S. Sharma, K. Dharmarajan, B. Thananjeyan, P. Abbeel, and K. Goldberg. Fleet-
DAgger: Interactive robot fleet learning with scalable human supervision. In Proc. of the Conf. on Robot
Learning (CoRL), pp. 368–380. PMLR, 2023.

E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-Z: Zero-shot
task generalization with robotic imitation learning. In Proc. of the Conf. on Robot Learning (CoRL), pp.
991–1002. PMLR, 2022.

M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. HG-DAgger: Interactive imitation
learning with human experts. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pp.
8077–8083, 2019.

B. Kim and J. Pineau. Maximum mean discrepancy imitation learning. In Proc. of Robotics: Science and
Systems (RSS), 2013.

A. Lafage and O. Laurent. TorchUncertainty. github.com/ENSTA-U2IS-AI/torch-uncertainty, 2024.

M. Laskey, S. Staszak, W. Y.-S. Hsieh, J. Mahler, F. T. Pokorny, A. D. Dragan, and K. Goldberg. SHIV:
Reducing supervisor burden in dagger using support vectors for efficient learning from demonstrations in
high dimensional state spaces. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pp.
462–469. IEEE, 2016.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proc. of the IEEE, 86(11):2278–2324, 1998.

S.-W. Lee and Y.-L. Kuo. Diff-DAgger: Uncertainty estimation with diffusion policy for robotic manipulation.
arXiv preprint, 2024.

A. Li and T. Silver. Embodied active learning of relational state abstractions for bilevel planning. In Proc. of
the Conf. on Lifelong Learning Agents (CoLLAs), pp. 358–375. PMLR, 2023.

Y. Li and C. Zhang. Ensemble-based interactive imitation learning. Computing Research Repository (CoRR),
2023.

H. Liu, S. Dass, R. Martín-Martín, and Y. Zhu. Model-based runtime monitoring with interactive imitation
learning. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2024.

J. Luijkx, Z. Ajanović, L. Ferranti, and J. Kober. PARTNR: Pick and place ambiguity resolving by trust-
worthy interactive learning. In NeurIPS Robot Learning Workshop: Trustworthy Robotics, 2022.

J. Luo, P. Dong, Y. Zhai, Y. Ma, and S. Levine. RLIF: Interactive imitation learning as reinforcement
learning. In Proc. of the Intl. Conf. on Learning Representations (ICLR), 2024.

K. Menda, K. Driggs-Campbell, and M. Kochenderfer. DropoutDAgger: A bayesian approach to safe imita-
tion learning. arXiv preprint, 2017.

K. Menda, K. Driggs-Campbell, and M. J. Kochenderfer. EnsembleDAgger: A bayesian approach to safe
imitation learning. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pp.
5041–5048, 2019.

Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo,
T. Kreiman, Y.-L. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and S. Levine.
Octo: An open-source generalist robot policy. In Proc. of Robotics: Science and Systems (RSS), 2024.

D. A. Pomerleau. ALVINN: An autonomous land vehicle in a neural network. Proc. of the Advances in
Neural Information Processing Systems (NIPS), 1, 1988.

17

github.com/ENSTA-U2IS-AI/torch-uncertainty


Under review as submission to TMLR

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In Proc. of the
Intl. Conf. on Machine Learning (ICML), pp. 8748–8763. PMLR, 2021.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez, Y. Sulsky,
J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint, 2022.

A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia, J. Varley, et al.
Robots that ask for help: Uncertainty alignment for large language model planners. In Proc. of the Conf.
on Robot Learning (CoRL), pp. 661–682. PMLR, 2023.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to no-regret
online learning. In Proc. of the Intl. Conf. on Artificial Intelligence and Statistics (AISTATS), volume 15
of Proceedings of Machine Learning Research, pp. 627–635. PMLR, 2011.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint, 2015.

M. Shridhar, L. Manuelli, and D. Fox. CLIPort: What and where pathways for robotic manipulation. In
Proc. of the Conf. on Robot Learning (CoRL), 2021.

J. Spencer, S. Choudhury, M. Barnes, M. Schmittle, M. Chiang, P. Ramadge, and S. Srinivasa. Learning
from interventions: Human-robot interaction as both explicit and implicit feedback. In Proc. of Robotics:
Science and Systems (RSS), 2020.

B. van der Heijden, J. Luijkx, L. Ferranti, J. Kober, and R. Babuska. Engine Agnostic Graph Environments
for Robotics (EAGERx): A graph-based framework for sim2real robot learning. IEEE Robotics and
Automation Magazine (RAM), pp. 2–15, 2024.

J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese, and R. Martín-Martín. Error-
aware imitation learning from teleoperation data for mobile manipulation. In Proc. of the Conf. on Robot
Learning (CoRL), 2021.

C. Wu. CLIPort-Batchify. github.com/ChenWu98/cliport-batchify, 2024.

A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin, D. Duong,
V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic manipulation. In
Proc. of the Conf. on Robot Learning (CoRL), pp. 726–747. PMLR, 2021.

J. Zhang and K. Cho. Query-efficient imitation learning for end-to-end simulated driving. In Proc. of the
Conference on Advancements of Artificial Intelligence (AAAI), 2017.

18

github.com/ChenWu98/cliport-batchify


Under review as submission to TMLR

A Appendix

A.1 Sensitivity-Aware Gating (SAG) Ablations

Sensitivity-Aware Gating (SAG) involves two regression steps, as shown in Alg. 2 and Fig. 2. The first
step is linear regression to normalize uW , and the second is logistic regression to impute pseudo labels for
cases without teacher feedback (r = 0). To evaluate the impact of these steps, we performed ablations in
the same experimental setup as described in Sec. 5.1. We conducted dataset aggregation on the MNIST
handwritten dataset under two conditions: one without normalization of uW (w/o Normalization) and one
without pseudo-label imputation (w/o Imputation). Fig. 13 and Tab. 1 compare these results to SAG with
both normalization and imputation.

0 100 200 300 400

Step

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

A

SAG

0 100 200 300 400

Step

0.0

0.2

0.4

0.6

0.8

1.0

B

SAG w/o Imputation

0 100 200 300 400

Step

0.0

0.2

0.4

0.6

0.8

1.0

C

SAG w/o Normalization

σdes = 0.1

σdes = 0.2

σdes = 0.3

σdes = 0.4

σdes = 0.5

σdes = 0.6

σdes = 0.7

σdes = 0.8

σdes = 0.9

Desired

Figure 13: Comparison of SAG, SAG without pseudo-label imputation (w/o Imputation), and SAG without uncer-
tainty normalization (w/o Normalization). Sensitivity is calculated over a moving window of 1000 failures. Mean
and standard deviation are shown for ten repetitions. The plots show that SAG w/o Imputation sets the threshold
too high, as it primarily uses labels from high-uncertainty regions. SAG w/o Normalization performs poorly in the
early training stages due to rapidly decreasing uncertainty, which also results in an overly high threshold. A too high
threshold will result in too low sensitivity, as not enough failures are prevented through querying.

Table 1: Comparison of SAG, SAG without pseudo-label imputation (w/o Imputation), and SAG without uncertainty
normalization (w/o Normalization). Sensitivity is calculated over the complete training duration. Mean and standard
deviation are shown for ten repetitions. Boldface is used to highlight the values corresponding to the best sensitivity
tracking.

σdes SAG SAG w/o Imputation SAG w/o Normalization
0.1 0.104 ± 0.003 0.114 ± 0.003 0.103 ± 0.002
0.2 0.207 ± 0.005 0.141 ± 0.005 0.190 ± 0.004
0.3 0.304 ± 0.009 0.171 ± 0.003 0.272 ± 0.006
0.4 0.397 ± 0.007 0.200 ± 0.005 0.365 ± 0.010
0.5 0.497 ± 0.008 0.236 ± 0.005 0.448 ± 0.010
0.6 0.598 ± 0.007 0.283 ± 0.009 0.548 ± 0.012
0.7 0.695 ± 0.005 0.350 ± 0.009 0.655 ± 0.013
0.8 0.793 ± 0.010 0.447 ± 0.008 0.764 ± 0.005
0.9 0.899 ± 0.004 0.628 ± 0.008 0.880 ± 0.007

The sensitivity plots and table show a clear performance degradation for SAG w/o Imputation. Without
imputing pseudo labels where success is unknown, the threshold is set too high, as gating results in labels
for only the high-uncertainty regions. This leads to overly low sensitivity values. Tab. 1 also indicates

19



Under review as submission to TMLR

performance degradation when uW is not normalized. Fig. 13 suggests that this primarily results from poor
sensitivity tracking in the early training stages. Uncertainty drops rapidly during early training. Therefore,
failing to normalize uW causes the threshold to be set too high. As a result, sensitivity remains too low in
these early stages.

We also performed an ablation to study the influence of the value of the random query probability prand.
We compared the experiments from Sec. 5.1 with prand = 0.1 to training with prand = 0.05 and prand = 0.2.
The results of this comparison are shown in Fig. 14, Tab. 2 and Tab. 3. The sensitivity plots in Fig. 14 A-C
show that SAG can track multiple sensitivity levels for different values of prand. However, for prand = 0.2 and
σdes = 0.1 it fails. This results from SAG being unable to track sensitivities lower than prand. This follows
from Eq. (3):

Eϵ∼U[0,1) [σ] = σγ + prand(1 − σγ) (7)
≥ prand, (8)

since 0 ≤ σγ ≤ 1. The specificity plots in Fig. 14 D-F show that increasing prand results in lower specificity
values. This is also reflected in Tab. 3. This table shows the informedness values for the different values of
prand. The informedness is also known as the Youden’s J statistic and is calculated as:

informedness = sensitivity + specificity − 1. (9)

It quantifies the performance of a dichotomous diagnostic test:

• below zero means worse than random;

• 0 equals random performance;

• Above zero indicates some degree of informed decision-making.

In table Tab. 3, we see that increasing prand results in lower informedness, as a higher percentage of queries
results from random querying, rather than from querying based on exceeding the uncertainty threshold.

Table 2: Comparison of SAG with different values of prand. Sensitivity is calculated over the complete training
duration. Mean and standard deviation are shown for ten repetitions. Boldface is used to highlight the values
corresponding to the best sensitivity tracking.

σdes sensitivity prand = 0.05 sensitivity prand = 0.1 sensitivity prand = 0.2
0.1 0.113 ± 0.006 0.104 ± 0.003 0.200 ± 0.003
0.2 0.198 ± 0.012 0.207 ± 0.005 0.202 ± 0.003
0.3 0.298 ± 0.010 0.304 ± 0.009 0.309 ± 0.005
0.4 0.399 ± 0.006 0.397 ± 0.007 0.406 ± 0.007
0.5 0.493 ± 0.009 0.497 ± 0.008 0.507 ± 0.007
0.6 0.591 ± 0.006 0.598 ± 0.007 0.599 ± 0.005
0.7 0.696 ± 0.010 0.695 ± 0.005 0.699 ± 0.005
0.8 0.799 ± 0.010 0.793 ± 0.010 0.799 ± 0.006
0.9 0.897 ± 0.003 0.899 ± 0.004 0.900 ± 0.006

20



Under review as submission to TMLR

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

A

SAG prand=0.05

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

B

SAG prand=0.1

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

C

SAG prand=0.2

0 100 200 300 400

Step

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ci
fic

ity

D
0 100 200 300 400

Step

0.0

0.2

0.4

0.6

0.8

1.0

E
0 100 200 300 400

Step

0.0

0.2

0.4

0.6

0.8

1.0

F

σdes = 0.1

σdes = 0.2

σdes = 0.3

σdes = 0.4

σdes = 0.5

σdes = 0.6

σdes = 0.7

σdes = 0.8

σdes = 0.9

Desired (A-C)

Figure 14: Comparison of SAG with different values of prand (0.05 shown, 0.1 and 0.2). Sensitivity in A-C and
specificity in E-F are calculated over a moving window of 1000 failures and successes, respectively. Mean and
standard deviation are shown for ten repetitions. SAG can track a desired sensitivity for different values of prand.
However, it fails for σdes = 0.1 when prand = 0.2. This happens because the minimum trackable sensitivity is equal
to prand. The plots E-F show that increasing prand leads to lower specificity values.

Table 3: Comparison of SAG with different values of prand. Informedness (Youden’s J statistic = sensitivity +
specificity − 1) is calculated over the complete training duration. Mean and standard deviation are shown for ten
repetitions. Boldface is used to highlight the values corresponding to the best informedness.

σdes informedness prand = 0.05 informedness prand = 0.1 informedness prand = 0.2
0.1 0.055 ± 0.006 0.003 ± 0.004 −0.000 ± 0.004
0.2 0.126 ± 0.011 0.092 ± 0.004 0.002 ± 0.004
0.3 0.209 ± 0.012 0.170 ± 0.010 0.094 ± 0.007
0.4 0.284 ± 0.007 0.245 ± 0.007 0.171 ± 0.010
0.5 0.349 ± 0.013 0.311 ± 0.015 0.249 ± 0.010
0.6 0.410 ± 0.010 0.375 ± 0.013 0.308 ± 0.010
0.7 0.464 ± 0.011 0.427 ± 0.014 0.365 ± 0.011
0.8 0.483 ± 0.025 0.460 ± 0.019 0.407 ± 0.015
0.9 0.456 ± 0.027 0.445 ± 0.014 0.403 ± 0.016

21



Under review as submission to TMLR

A.2 Prioritized Interactive Experience Replay (PIER) Intuition

Prioritized Interactive Experience Replay (PIER) prioritizes the replay of demonstrations based on novice
success, uncertainty, and demonstration age. In Fig. 15, we visualize Eq. (6) to provide a more intuitive
understanding of the prioritization scheme. The red lines correspond to novice failures (r = −1), while the
green lines correspond to novice successes (r = 1). The black lines indicate r = 0, which occurs, for example,
for relabeled demonstrations where the goal was relabeled, and we do not know whether the novice would
act correctly. In this figure, we observe that for values of b close to 1, the priorities converge almost linearly
to 1, while for higher values of b, they converge exponentially.

0.0 0.2 0.4 0.6 0.8 1.0

Prioritization Exponent c

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
rio

rit
ie

s
p

b=1.001

b=1.001

b=10

b=10

b=1000

b=1000

r = -1
r = 0
r = 1

Figure 15: Visualization of Eq. (6) showing priorities p over prioritization exponents c for various values of base b.

In summary, we prioritize demonstrations in the following order (from highest to lowest):

1. Novice failure demonstrations that are recent and have low uncertainty.

2. Novice failure demonstrations that are either recent or have low uncertainty.

3. Novice failure demonstrations that are neither recent nor have low uncertainty.

4. Offline or relabeled demonstrations.

5. Novice success demonstrations that are neither recent nor have low uncertainty.

6. Novice success demonstrations that are either recent or have low uncertainty.

7. Novice success demonstrations that are both recent and have low uncertainty.

A.3 Foresight Interactive Experience Replay (FIER) Oracle

The oracle used in the experiments from Sec. 5.2 is based on Shridhar et al. (2021). We extend this oracle
to provide relabeling demonstrations. Instead of querying a human teacher about the validity of the novice’s
planned actions, we execute these actions in simulation to verify the plan and then reset the environment to
its previous state.

22



Under review as submission to TMLR

A.4 CLIPort Implementation

Our implementation of CLIPort agents builds on Shridhar et al. (2021) with modifications for interactive
imitation learning. Efficient model updates are essential in this setting, as saving multiple checkpoints and
performing evaluation rollouts after each update is impractical. Thus, training stability is a priority. We
replace rectified linear units (ReLUs) with leaky ReLUs to prevent vanishing gradients. We also use a larger
batch size (8 in simulation, 3 in real-world experiments) than the original (1) (Shridhar et al., 2021). Our
batch training implementation is based on Wu (2024). Since batch training increases memory requirements,
we reduce the model size by removing the two middle layers from the ResNet streams with lateral connections,
the first language fusion layer, and its associated upscaling and lateral fusion layers.

A.5 Compute Resources

The MNIST experiments (Sec. 5.1) and real-world experiments (subsection 5.3 and subsection 5.4) were
performed using an RTX 3080 Mobile graphics card. The CLIPort simulation benchmark experiments
(Sec. 5.2) were performed using multiple A40 graphics cards on a high-performance computing cluster.

23


	Introduction
	Related Work
	Problem Statement
	Action Inquiry DAgger (AIDA) Framework
	Sensitivity-Aware Gating (SAG)
	Foresight Interactive Experience Replay (FIER)
	Prioritized Interactive Experience Replay (PIER)

	Experimental Evaluation
	MNIST Dataset Aggregation
	CLIPort Benchmark Tasks
	Real-World Engine Assembly
	Real-World Sorting Task

	Discussion
	Claims
	Limitations

	Conclusion
	Appendix
	Sensitivity-Aware Gating (SAG) Ablations
	Prioritized Interactive Experience Replay (PIER) Intuition
	Foresight Interactive Experience Replay (FIER) Oracle
	CLIPort Implementation
	Compute Resources


