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Abstract

Neural Architecture Search (NAS) facilitates001
the automatic effective neural network de-002
signs while requiring the substantial compu-003
tational resource particularly for language mod-004
els. Zero-shot NAS exploits Zero-cost (ZC)005
proxies to estimate model performance, thereby006
markedly reducing computational demands.007
However, existing ZC proxies rely heavily on008
in-depth expert knowledge and repetitive trial-009
and-error costs. Moreover, most of existing010
ZC proxies fail to surpass the performance of011
the naive baseline (number of parameters). To012
address these challenges, we introduce a novel013
framework called LPZero (Language model014
zero-cost Proxy search from Zero). It is de-015
signed to automate the design of efficient ZC016
proxies for language models, and achieve the017
higher ranking consistency. Specifically, we018
initially consolidate existing ZC proxy designs019
into a unified framework as the search space,020
and then apply an evolutionary algorithm to021
heuristically identify new, promising proxy can-022
didates for language models. To enhance the023
efficiency of the search process, we introduce a024
Predictive-Pruning Strategy (PPS). This strat-025
egy is designed to preemptively eliminate un-026
promising proxies, thereby mitigating the risk027
of proxy degradation. Extensive experiments028
on the FlexiBERT and GPT-2 search space029
demonstrate the effectiveness of our algorithm.030
Notably, the consistency in performance rank-031
ing achieved by our method significantly sur-032
passes that observed with current proxies.033

1 Introduction034

Traditional neural network design, heavily035

dependent on expert knowledge and experi-036

ence (Krizhevsky et al., 2017; He et al., 2016), is037

both time-intensive and prone to trial-and-error.038

Neural Architecture Search (NAS) emerged to039

automate and refine this process by identifying040

optimal architectures from a set of possibilities041

using various strategies. However, early NAS042

Figure 1: Comparison of zero-cost proxies on FlexiB-
ERT (Serianni and Kalita, 2023) using Spearman cor-
relation coefficients (higher values indicate better per-
formance). The red line represents the baseline method,
defined by the number of parameters (Abdelfattah et al.,
2021).

methods (Zoph and Le, 2017; Real et al., 2019) 043

require extensive computation. For instance, 044

NASNet (Zoph and Le, 2017) require 500 GPUs 045

for four days. This substantially limits their 046

accessibility and widespread use. 047

To alleviate this issue, recent advancements in 048

Zero-shot NAS (Lin et al., 2021; Li et al., 2023; 049

Mellor et al., 2021; Abdelfattah et al., 2021; Ying 050

et al., 2019; Krishnakumar et al., 2022; Zhou et al., 051

2022) aim to significantly reduce training costs by 052

employing Zero-cost (ZC) proxies, which circum- 053

vent the traditional training process and decrease 054

computational demands. Zero-shot NAS predicts 055

the performance of neural network architectures 056

without the need for actual training, using models 057

that are randomly initialized. This approach en- 058

ables a rapid and efficient estimation of architecture 059

performance, eliminating the time and resources 060

typically consumed in training processes. To evalu- 061

ate the effectiveness of ZC proxies, Spearman’s ρ 062

or Kendall’s τ are utilized to measure the congru- 063

ence between the performance rankings predicted 064

by ZC proxies and ground-truth derived from fully 065
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Proxy Name Formula

Activation Distance S = log|KH |
Synaptic Saliency S =

∂L
∂W

⊙W

Jacobian Cosine S =
[
JnJ

t
n − I

] 1
20

Synaptic Diversity S =

∥∥∥∥ ∂L
∂W

∥∥∥∥⊙ ∥W∥nuc

Attention Confidence S = max(Att(h, (xn)))
Softmax Confidence S = max(Sft(h, (xn)))

Attention Importance S =

∣∣∣∣∂Att(I)
∂L(I)
∂Att(I)

∣∣∣∣
SNIP S =

∣∣∣∣ ∂L∂W
⊙W

∣∣∣∣
GraSP S = −

(
H

∂L
∂W

)
⊙W

Fisher S =
∂L
∂A

×A

LogSynflow S = W ·
∣∣∣∣log ∣∣∣∣ ∂L∂W

∣∣∣∣∣∣∣∣
Synflow S =

∂L
∂W

⊙W

GradNorm S = || ∂L
∂W

||F

Table 1: Overview of mainstream handcrafted Zero-cost
proxies for Transformers, notating KH as the Kernel
Matrix, J as the Jacobian w.r.t. Mini-Batch Input I ,
Att as attention head, Sft as softmax output, A as
activation, and H as the Hessian matrix.

trained models. A high ranking correlation indi-066

cates the reliability of ZC proxies in forecasting067

the potential success of architectures. However, ex-068

isting Zero-cost (ZC) proxies (Serianni and Kalita,069

2023; Javaheripi et al., 2022) are heavily dependent070

on in-depth expert knowledge and a repetitive trial-071

and-error, which can be both time-intensive and072

demanding in terms of effort. For instance, Atten-073

tion Confidence (Serianni and Kalita, 2023) utilizes074

normalization techniques to refine attention mech-075

anisms for enhanced performance. Meanwhile,076

pruning-based proxies such as SNIP (Lee et al.,077

2019), Fisher (Turner et al., 2020), GraSP (Wang078

et al., 2020), GradNorm (Abdelfattah et al., 2021)079

and Synflow (Tanaka et al., 2020) involve complex080

combination of mathematical operations that criti-081

cally influence their ranking capabilities. Notably,082

LogSynflow (Cavagnero et al., 2023) implements083

logarithmic operations to address gradient explo-084

sion issues inherent in Synflow. Furthermore, we085

observe that most of proxies cannot surpass the086

baseline performance, measured by the number of087

parameters, as illustrated in Figure 1. This limita-088

tion raises a fundamental but critical question: How 089

to devise new proxies efficiently and automatically 090

for language models? 091

To answer this question, we break it down to 092

two steps: (1) Devise a unified search space for 093

existing ZC proxies. (2) Employ evolutionary 094

algorithm for discover new proxies. 095

For the first step, we revisit the existing ZC prox- 096

ies, as detailed in Table 1, and design a compre- 097

hensive search space that encompasses current ZC 098

proxies. Specifically, these proxies are categorized 099

into six types based on the input type: Activation 100

(A), Jacobs (J), Gradients (G), Head (H), Weight 101

(W) and Softmax (S), illustrated in Figure 2. Within 102

this unified framework, we select two types of in- 103

puts, denoted as θ, from these categories. Each 104

input undergoes transformation through n unary 105

operations f(·), and the results are combined using 106

a binary operation g(·). This process generates a 107

candidate proxy, φ(f, g, θ), for our search space. 108

More details can be found in Appendix A. 109

For the second step, we propose a novel 110

LPZero framework, denoting Language model 111

Proxy Search from Zero. As illustrated in Figure 3, 112

we initially select p candidate proxies to estab- 113

lish the population and assess their ranking consis- 114

tency within the FlexiBERT search space. Through 115

tournament selection, we identify two promising 116

parent proxies (φn,m). Subsequently, we perform 117

crossover and mutation operations to generate the 118

offspring proxy φq. To evaluate its ranking consis- 119

tency Spearman ρq, we employ this proxy to score 120

each architecture Ωi with φq(Ωi) and compare the 121

results with their respective ground truth gti (e.g., 122

average accuracy). Given the sparsity of the search 123

space, we advocate for a Predictive-Pruning Strat- 124

egy (PPS) aimed at eliminating ineffective proxies, 125

thereby enhancing the search efficiency. Our main 126

contributions are: 127

• We design a comprehensive and high-quality 128

search space that encompasses most of exist- 129

ing ZC proxies tailored for language models. 130

131
• We introduce the Language Model Proxy 132

Search from Zero (LPZero) framework, incor- 133

porating a Predictive-Pruning Strategy (PPS) 134

to prevent proxy degradation and thereby im- 135

prove search efficiency. 136

• Experiments on FlexiBERT and GPT-2 sub- 137

stantiate the superiority of the proxies identi- 138

fied by our LPZero, indicating the effective- 139

ness of our proposed approach. 140
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Figure 2: Search space of our LPZero framework. Figure 3: Overview of our LPZero framework.

2 Related Work141

Zero-shot NAS In recent years, Zero-shot NAS142

has gained prominence as a cost-effective strategy143

for evaluating the accuracy of candidate neural net-144

work architectures during the initialization phase,145

without the need for extensive training. This ap-146

proach offers a more computation-efficient alterna-147

tive to traditional One-shot NAS methods. The cor-148

nerstone of Zero-shot NAS is its accuracy ranking149

proxy, which critically determines its effectiveness.150

While the majority of existing proxies have been de-151

veloped for computer vision (CV) tasks, there has152

been relatively limited exploration in the context153

of natural language processing (NLP) tasks.154

NWOT (Mellor et al., 2021) leverages the local155

Jacobian values across various images to construct156

an indicator for model ranking based on the corre-157

lation of input Jacobians. Similarly, ZenNAS (Lin158

et al., 2021) assesses candidate architectures by em-159

ploying the gradient norm of input images as a rank-160

ing criterion. Furthermore, Zero-cost NAS (Ab-161

delfattah et al., 2021) draws inspiration from the162

Optimal Brain Damage principle (LeCun et al.,163

1989), introducing pruning-based metrics as zero-164

cost proxies. This includes a variety of indica-165

tors such as GradNorm (Abdelfattah et al., 2021),166

Plain (Abdelfattah et al., 2021), SNIP (Lee et al.,167

2019), GraSP (Wang et al., 2020), Fisher (Turner168

et al., 2020), and Synflow (Tanaka et al., 2020).169

These proxies evaluate the significance of network170

parameters and aggregate layer-wise values to esti-171

mate the overall performance.172

Zero-cost Proxies for Transformer Recent ef-173

forts (Serianni and Kalita, 2023) have revitalized174

the application of zero-cost proxies for transformer-175

based networks, marking a significant milestone176

in the domain. LiteTransformerSearch (Javaheripi177

et al., 2022) observes that the zero-cost proxies, 178

which exhibit promising performance in CV tasks, 179

do not outperform the baseline methods in terms of 180

the number of parameters of decoder when applied 181

to NLP. Serianni and Kalita (2023) re-arouse the 182

significance of Zero-cost (ZC) proxies in the con- 183

text of RNN and BERT-based Transformer models, 184

utilizing the FlexiBERT benchmark. It introduces 185

an array of proxies, such as Synaptic Diversity, 186

Synaptic Saliency, Activation Distance, Jacobian 187

Cosine, Attention Confidence, and Head Impor- 188

tance, highlighting their potential in streamlining 189

the architecture search process without extensive 190

training. 191

Automatic Search for ZC Proxies Several stud- 192

ies explore how to search for ZC proxies auto- 193

matically, notably EZNAS (Akhauri et al., 2022) 194

and EMQ (Dong et al., 2023). EZNAS intro- 195

duces a search space dedicated to convolution- 196

based networks, achieving commendable perfor- 197

mance across various benchmarks (Ying et al., 198

2019; Dong and Yang, 2020). However, its ef- 199

fectiveness is notably diminished when applied to 200

Transformer-based networks. On the other hand, 201

EMQ (Dong et al., 2023) develops a specialized 202

search space tailored for mixed-precision quantiza- 203

tion proxies but it is not optimized for Transformer- 204

based networks. In contrast, our LPZero frame- 205

work is specifically designed for language models, 206

particularly Transformer architectures, and shows 207

superior and more promising performance. 208

3 Methodology 209

In this section, we devise a search space and detail 210

the evolution framework - LPZero with analysis to 211

this framework. 212
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OP Symbols Description

f01 log(·) y = log(x1)
f02 | log(·)| y = | log(x1)|
f03 | · | y = |x1|
f04 (·)2 y = (x1)

2

f05 e(·) y = ex1

f06
√
· y =

√
x1

f07 ReLU(·) y = max(0, x1)
f08

1
(·) y = 1

x1

f09 || · ||F y = ||x1||F
f10 norm_sum(·) y =

∑N
i xi

1
numel(x1)

f11 || · ||1 y = ||x1||1
f12 softmax(·) y = ex

i
1∑n

j=1 e
x
j
1

f13 sigmoid(·) y = 1

1+e−xi1

f14 log_softmax(·) y = log(f12(x1))
f15

√
(·) y =

√
x1

f16 −(·) y = −x1

f17 min-max scaling(·) y = (x−min(x1))
max(x1)−min(x1)

f18 average(·) y =
∑N

i xi
1

N

f19 σ(·) y =
√

1
N

∑N
i=1(x

i
1 − µ)2

f20 ∅ y = x1
f21 ∅ y = ∅

g01 (·) + (·) y = x1 + x2
g02 (·)− (·) y = x1 − x2
g03 (·)× (·) y = x1 · x2
g04 (·)⊙ (·) y = x1 ⊙ x2

Table 2: Primitive operation set K. Summary of unary
(denoted by f ) and binary Operations (denoted by g).

3.1 LPZero Search Space Design213

The search spaces of most AutoML ap-214

proaches (Real et al., 2020; Liu et al., 2019)215

are specifically designed for particular purposes216

and not suitable for proxy search. Previous auto217

loss search methods (Li et al., 2021b,a; Gu et al.,218

2022) takes the output of network y and ground219

truth ŷ as input (scalar), which is relatively easy220

to handle. However, the search spaces of these221

methods are primitives, which is most similar to222

ours. However, for ZC proxies search problem, we223

involve more operations that taking scalar, vector224

and matrix as input, which might deduce the shape225

mismatching problem.226

LPZero aims to identify the most suitable Zero-227

cost (ZC) proxy to accurately assess network per-228

formance. The primary objective is to optimize the229

Spearman’s rank correlation coefficient (ρ), which230

measures the ranking consistency of each ZC proxy.231

Thus, our training-free approach is formulated as232

Figure 4: Illustration of Crossover and Mutation.

follows: 233

φ∗ = argmax
φ∈S

(ρ(φ)), φ = φ(f, g, θ). (1) 234

where φ represents the candidate ZC proxies within 235

the search space S. Each proxy φ is defined as a 236

function of unary and binary operations (f and g) 237

applied to input parameters θ. 238

Zero-cost Proxy Representation. The ZC proxy 239

φ is represented symbolically as an algorithmic 240

expression (AE). As illustrated in Figure 2, the 241

algorithmic expression can be represented by the 242

combination of unary operations f(·) and binary 243

operations g(·). Therefore, AE can be represented 244

as φ(f, g, θ), where inputs x1 and x2 is chosen 245

from six candidates θ, including Activation (A), 246

Jacobs (J), Gradients (G), Head (H), Weight (W) 247

and Softmax (S). 248

Primitive Operations. Table 2 summarizes the 249

primitive operation set K used in our search space. 250

This set comprises 20 unary operations and four bi- 251

nary operations, facilitating information exchange 252

across dimensions. These operations are non- 253

parametric, meaning they do not have adjustable 254

parameters, making them highly efficient and ef- 255

fective in various computational tasks. Unary op- 256

erations act on a single input, while binary opera- 257

tions operate on pairs of inputs. Notably, f20 and 258

f21 are unique unary operations; f20 signifies a 259

pass-through where the input is returned without 260

any modification, and f21 represents a pruning op- 261

eration that results in the removal of the branch, 262

effectively returning nothing. By incorporating 263

this diverse set of operations, our search space can 264

explore a wide range of function transformations, 265

enabling the discovery of novel architectures and 266

enhancing the flexibility of our approach. 267

Analysis for the Search Space. In Figure 2, we 268

illustrate the search space by showcasing two prox- 269

ies depicted in red and yellow lines, demonstrating 270
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Algorithm 1 LPZero Algorithm

1: Input: Initial population size p, number of
generations G, crossover rate Cr, mutation rate
Mr

2: Output: ZC proxy with highest Spearman
3: Initialize population with p random ZC proxies

4: for g = 1 to G do
5: Evaluate fitness of each proxy in the popula-

tion
6: Pick top R ratio as pool Q
7: Select parents φn,m randomly from Q
8: CrossOver φq = CrossOver(φn, φm) with

probability Cr.
9: Mutation φq = Mutate(φq) with probability

Mr

10: if PPS(φq) is valid then
11: Add offspring to population
12: else
13: Jump to Line 8 and regenerate offspring

φq

14: end if
15: Evaluate fitness of new offspring φq

16: Keep the top-p proxies for the next genera-
tion

17: end for
18: return the proxy with the highest Spearman

the variability and richness of architectural con-271

figurations. With a total of 21 unary operations272

and 4 binary operations available, the search space273

is expansive, yielding a combinatorial space of274

C2
6 ×212×4 = 26, 460 potential ZC proxies. This275

vast space enables exploration of a wide spectrum276

of architectural designs, allowing for the discov-277

ery of innovative solutions tailored to the specific278

requirements of NLP tasks.279

3.2 Search Algorithm280

Inspired by the AutoML (He et al., 2021; Li et al.,281

2019), evolutionary algorithm serve as the core282

mechanism for our search algorithm design. Evolu-283

tionary algorithms, a subset of genetic algorithms,284

mimic the process of natural selection by gener-285

ating, evaluating, and selecting individuals in a286

population to solve optimization problems. Fig-287

ure 3 illustrates the search pipeline of our LPZero288

framework. At initialization, we uniformly sample289

p ZC proxies from the search space to form the290

initial population. Then, we measure the ranking291

correlation on the search space to measure the pre-292

dictability of each proxy. Then, for each iteration, 293

we conduct tournament selection to pick R ratios 294

from population (R = 10% by default) as promis- 295

ing candidates, and then randomly sample two of 296

them as parents φn,m. Then, the parents are utilized 297

to perform crossover and mutation with probability 298

of Cr and Mr respectively to get the offspring. To 299

verify the effectiveness of offspring, we sample S 300

candidate architectures from the search space and 301

compute the ranking correlation of ground truth 302

and proxy score. As the search space is very sparse 303

with a large number of unpromising or even invalid 304

ZC proxies, we propose Early-Stopping Strategy 305

to filter out the candidates. 306

Crossover and Mutation. Each Algorithmic Ex- 307

pression (AE) consists of two branches and one 308

aggregate node. These branches represent the indi- 309

vidual components or operations within the proxy 310

architecture, while the aggregate node combines 311

the outputs of these branches to form the final 312

proxy score. As shown in Figure 4, we present 313

the illustration of CrossOver and Mutation. Dur- 314

ing the crossover operation, two parent AEs are 315

selected, and genetic information is exchanged be- 316

tween them to generate offspring. This process 317

involves swapping segments of the parent AEs to 318

create new combinations of operations and archi- 319

tectures. Conversely, the mutation operation intro- 320

duces random alterations to the genetic makeup of 321

a single AE, potentially introducing novel architec- 322

tures into the population. 323

Predictive-Pruning Strategy. The Predictive- 324

Pruning Strategy in the LPZero framework serves 325

a crucial role in managing the computational chal- 326

lenges posed by the expansive and sparsely pop- 327

ulated search space. It works to promptly iden- 328

tify and discard unpromising or invalid Zero-cost 329

(ZC) proxies, thereby conserving computational re- 330

sources and expediting the search for optimal solu- 331

tions. By utilizing predefined criteria as presented 332

in Appendix B this strategy evaluates the viability 333

of candidate proxies. Those failing to meet the 334

specified criteria are removed from the population, 335

reducing the search space and focusing computa- 336

tional efforts on promising candidates. Overall, this 337

strategic filtering process enhances the efficiency 338

and effectiveness of the LPZero framework, facil- 339

itating swifter progress towards the discovery of 340

high-quality proxy architectures. 341

Searched ZC Proxy. Based on LPZero framework, 342

we present the searched Zero-cost (ZC) proxy tai- 343

lored for the FlexiBERT search space, character- 344
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ized by a unique combination of structural and op-345

erational elements. The architecture of this proxy346

is delineated as follows: the input structure com-347

prises heads and activation functions, and the tree348

structure utilizes operations such as element-wise349

reversion, element-wise power, Frobenius norm,350

and log softmax. The binary operation defined351

within this context is the element-wise summation.352

The mathematical formulation of the searched ZC353

proxy is given by:354

φ(θH , θA) =
N∑
i=0

((
1

θH
)2+log (η (||θA||F ))) (2)355

where θH denotes the parameters associated with356

the heads in the Multi-head Attention, θA repre-357

sents the activation values of each block within the358

network, and η symbolizes the softmax operation.359

The formulated Zero-cost (ZC) proxy equation360

effectively evaluates neural architectures by con-361

sidering both their structural efficiency and func-362

tional performance. The first term prioritizes mod-363

els with fewer, yet efficient, parameters in the atten-364

tion mechanism
(

1
θH

)2
, highlighting the goal of365

Zero-cost NAS towards computational efficiency.366

The second term log (η (∥θA∥F )) focuses on the367

diversity and distribution of activations, aiming for368

architectures that ensure balanced and effective in-369

formation processing. Together, these aspects form370

a comprehensive approach for the holistic evalua-371

tion of architectures in the FlexiBERT search space,372

which is critical for identifying optimal models for373

NLP tasks.374

4 Experiments375

In this section, we first detail the experimental setup376

and implementation details of LPZero. Then, we377

present the ranking correlation evaluation on Flex-378

iBERT and GPT-2 Search Space. Subsequently,379

we assess LPZero’s performance by examining the380

ranking correlation in the FlexiBERT and GPT-381

2 search spaces. Lastly, we conduct an ablation382

study to evaluate the impact of our evolutionary383

algorithm, the Predictive-Pruning Strategy (PPS),384

and other variables such as the number of unary385

operations and the initial population size.386

4.1 Implementation Details387

Datasets. FlexiBERT (Serianni and Kalita, 2023)388

is built on the General Language Understanding389

Evaluation (GLUE) benchmark (Wang et al., 2018)390

including several tasks. We adopt the average per- 391

formance of these tasks as ground truth to measure 392

the ranking consistency. We utilize OpenWebText 393

dataset (Gokaslan et al., 2019) during searching ZC 394

proxies on FlexiBERT search space. For GPT-2 395

search space, we conduct experiments on WikiText- 396

103 dataset (Merity et al., 2016). During evolution 397

searching, we only require a mini-batch of input 398

(batch size of 128 and 16 for BERT and GPT-2) to 399

calculate the input statistics. 400

Criteria. The effectiveness of ZC proxies is mea- 401

sured by Kendall’s τ and Spearman’s ρ, with values 402

from -1 (negative correlation) to 1 (positive correla- 403

tion), where 0 indicates no correlation. These met- 404

rics allow us to assess the alignment between the 405

proxies’ predictions and actual model performance, 406

providing a quantitative basis for comparison. 407

Search Space. We employ two existing bench- 408

marks as the search space. FlexiBERT Bench- 409

mark (Serianni and Kalita, 2023) is a challenging 410

benchmark that encompasses over 107 architec- 411

tures (Refer to Appendix D.1 for more details.) 412

We adopt the GPT-2 Benchmark (Javaheripi et al., 413

2022) on WikiText-103, which provides 1054 archi- 414

tectures (Refer to Appendix D.2 for more details). 415

Evolution Settings. The configuration of our evo- 416

lutionary algorithm is as follows: The total num- 417

ber of generations, denoted as G, is established 418

at 1,000, with the initial population size, p, set 419

to 80 individuals. The probabilities for crossover 420

and mutation operations are both set at Cr = 0.5 421

and Mr = 0.5, respectively. The selection pres- 422

sure, represented by the ratio R, is fixed at 10%. 423

A consistent seed of 42 is utilized to ensure re- 424

producibility across experiments. These experi- 425

ments are conducted using A6000 GPUs to lever- 426

age their computational efficiency. To expedite the 427

evolutionary search process, we assess the ranking 428

consistency by sampling 50 architectures. Upon 429

finalizing the search proxy, we proceed to evalu- 430

ate its performance by applying it to two distinct 431

datasets: FlexiBERT, comprising 500 architectures, 432

and GPT-2, encompassing 200 architectures. The 433

whole evolution process require 10 GPU hours. 434

Training and Evaluation. We leverate the open- 435

source code by Serianni and Kalita (2023) and Ab- 436

delfattah et al. (2021) to implement the FlexiBERT 437

and various proxies as shown in Table 1. We further 438

use the source code in Javaheripi et al. (2022) to im- 439

plement the GPT-2 search space and we collect the 440

benchmark data from their open-sourced repository. 441

To assess ranking consistency, we randomly sample 442
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Figure 5: Spearman’s ρ and Kendall’s τ Correlation of training-free proxies with GLUE Score across 500 architec-
tures randomly sampled from FlexiBERT Search Space.

Proxy Name τ ρ

Synaptic Diversity (Zhou et al., 2022) 0.021 0.175
Head Importance (Serianni and Kalita, 2023) 0.050 0.171
Activation Distance (Mellor et al., 2021) 0.081 0.123
Jacobian Cosine (Celotti et al., 2020) 0.116 0.149
SNIP (Lee et al., 2019) 0.119 0.173
GraSP (Wang et al., 2020) 0.122 0.179
GradNorm (Abdelfattah et al., 2021) 0.133 0.197
Fisher (Turner et al., 2020) 0.139 0.209
Synaptic Saliency (Tanaka et al., 2020) 0.157 0.266
Synflow (Tanaka et al., 2020) 0.322 0.471
LogSynflow (Cavagnero et al., 2023) 0.334 0.491
No.Params. (Abdelfattah et al., 2021) 0.454 0.590
Attention Confidence (Serianni and Kalita, 2023) 0.475 0.666
EZNAS (Akhauri et al., 2022) 0.483 0.698
LPZero (Ours) 0.511 0.748

Table 3: Ranking correlation of Zero-cost proxies on
the FlexiBERT benchmark over 500 architectures with
Kendall’s τ and Spearman’s ρ.

500 architectures from the FlexiBERT benchmark,443

with findings presented in Table 3. Similarly, for444

the GPT-2 benchmark, we randomly sample 200445

architectures to evaluate their ranking consistency,446

as detailed in Table 4.447

4.2 Ranking Evaluation448

Performance on FlexiBERT As illustrated in449

Table 3, we benchmark the Kendall’s τ and Spear-450

man’s ρ of 14 zero-cost proxies over 500 architec-451

tures from the FlexiBERT search space. The base-452

line (number of parameters) serves as a competitive453

counterparts and most of proxies fail to surpass the454

baseline, which is also shown in Figure 1. Our455

LPZero model demonstrates superior ranking con-456

Proxy Name τ ρ

Jacobian Cosine (Celotti et al., 2020) 0.227 0.362
EZNAS (Akhauri et al., 2022) 0.489 0.704
No.Params (Abdelfattah et al., 2021) 0.582 0.737
Synflow (Tanaka et al., 2020) 0.632 0.730
Activation Distance (Mellor et al., 2021) 0.644 0.818
Attention Confidence (Serianni and Kalita, 2023) 0.676 0.850
Fisher (Turner et al., 2020) 0.691 0.872
GraSP (Wang et al., 2020) 0.765 0.922
GradNorm (Abdelfattah et al., 2021) 0.834 0.958
LogSynflow (Cavagnero et al., 2023) 0.836 0.962
Synaptic Diversity (Zhou et al., 2022) 0.841 0.957
Decoder.Params (Javaheripi et al., 2022) 0.847 0.967
Synaptic Saliency (Tanaka et al., 2020) 0.855 0.970
SNIP (Lee et al., 2019) 0.858 0.970
Head Importance (Serianni and Kalita, 2023) 0.861 0.971
LPZero (Ours) 0.886 0.980

Table 4: Ranking correlation of Zero-cost proxies on
the GPT-2 search space over 200 architectures with
Kendall’s τ and Spearman’s ρ.

sistency, as evidenced by the values of τ = 0.51 457

and ρ = 0.75 for the respective coefficients. Fur- 458

thermore, we elucidate the correlation between 459

GLUE scores and Zero-cost (ZC) proxies through 460

Figure 5, which contrasts LPZero with the exist- 461

ing ZC proxies (Serianni and Kalita, 2023) in their 462

study on training-free evaluation methods. This 463

comparison clearly illustrates that our methodol- 464

ogy exhibits the highest ranking consistency among 465

the evaluated frameworks. 466

Performance on GPT-2 As illustrated in Table 4, 467

we benchmark the Kendall’s τ and Spearman’s ρ 468

of 15 zero-cost proxies over 200 randomly sam- 469

7



Figure 6: Performance comparison of evolution search
with and without the Predictive-Pruning Strategy (PPS)
and random search across iterations.

Figure 7: Performance comparison of different size of
population.

pled architectures from GPT-2 search space. The470

additional proxy (Javaheripi et al., 2022) is “De-471

coder.Params", which represent the parameter of472

decoder in GPT-2 models. Our LPZero achieve the473

SOTA performance among all ZC proxies, achiev-474

ing τ = 0.87 and ρ = 0.98. Compared with Flex-475

iBERT search space, the ranking consistency is476

much higher than GPT-2 search space.477

4.3 Ablation Study478

We conduct extensive ablation study over the four479

factors: (1) Evolutionary Algorithm. (2) Predictive-480

Pruning Strategy. (3) Initial Population Size. (4)481

Number of Unary Operation.482

(1) Effectiveness of Evolutionary Algorithms. As483

depicted in Figure 6, we limit the number of iter-484

ations to 1,000, maintaining an initial population485

size of 80 throughout the process. The findings re-486

veal that the Evolutionary Algorithm substantially487

surpasses the performance of Random Search. This488

indicates that the evolutionary algorithm can heuris-489

tically enhance the speed of the search process,490

thereby significantly improving search efficiency.491

#Unary 2 3 4 5

Spearman’s ρ 86.48% 77.47% 75.15% 78.12%
Winning Rate 25.61% 7.96% 8.69% 6.25%

Table 5: Influence of the Number of Unary Operations
on Spearman’s ρ and Winning Rate.

(2) Effectiveness of Predictive-Pruning Strategy 492

(PPS). As illstrated in Figure 6, we present the per- 493

formance of the Predictive-Pruning Strategy (PPS). 494

Our findings indicate that for iterations fewer than 495

400, PPS not only achieves higher Spearman’s ρ but 496

also significantly outperforms evolutionary search 497

methodologies not incorporating PPS, highlighting 498

its critical role in enhancing search efficiency. 499

(3) Initial Population Size. As illustrated in Fig- 500

ure 7, we compare Spearman’s ρ across varying 501

initial population sizes of 80, 100, and 200. The 502

data indicate a positive correlation between popu- 503

lation size and the initial Spearman’s Coefficient 504

value: larger initial populations yield higher Spear- 505

man’s ρ at the outset. 506

(4) Number of Unary Table 5 presents an abla- 507

tion study examining the effect of unary operation 508

counts on Spearman’s rank correlation coefficient 509

and winning rate. The study shows that a lower 510

number of unary operations (2) yields the highest 511

Spearman correlation (86.48%) and winning rate 512

(25.61%), indicating that large unary operations 513

may lead to over-complex proxies. 514

5 Conclusion 515

In this paper, we present the LPZero framework, an 516

innovative approach for discovering proxies for lan- 517

guage models without involving extensive training 518

or expert intervention. Our approach encompasses 519

the design of a comprehensive search space, captur- 520

ing a wide array of existing ZC proxies. Utilizing 521

an Evolutionary Algorithm, we efficiently unearth 522

promising ZC proxies within this space. To expe- 523

dite the search, we implement a Predictive-Pruning 524

Strategy, eliminating less promising proxies early 525

in the process. To verify the effectiveness of our 526

LPZero, we conduct experiments on FlexiBERT 527

and GPT-2 search space to measure the ranking 528

consistency of the searched proxy. Experimental 529

results demonstrate that our LPZero have better 530

ranking ability compared with previous ZC prox- 531

ies, and surpass the baseline by a large margin. Our 532

findings pave the way for future explorations in 533

Zero-cost proxies for language models. 534
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6 Limitations535

This study undertakes a comprehensive review of536

existing Zero-cost (ZC) proxies specifically tai-537

lored for Transformer architectures, integrating538

them into a unified framework for evaluation. By539

benchmarking these ZC proxies within the Flex-540

iBERT and GPT-2 search spaces, we rigorously541

assess their ranking capabilities through Kendall’s542

τ and Spearman’s ρ. This approach allows us to543

present a systematic comparison of their effective-544

ness in identifying promising language model ar-545

chitectures without the need for extensive compu-546

tational resources. Our evaluation focuses on the547

architectural aspects of language models, aiming548

to streamline the search process for efficient and549

effective neural network designs.550

However, it’s important to note that our research551

primarily concentrates on the structural design and552

optimization of language models, sidelining en-553

hancements in specific functional areas such as554

inference capabilities, logical analysis, advanced555

language generation, nuanced natural language un-556

derstanding, and the retrieval and integration of557

knowledge. These critical components of language558

model performance and applicability in real-world559

applications are not directly addressed by our cur-560

rent framework. Recognizing these gaps, we iden-561

tify substantial opportunities for future research to562

delve into these aspects. Expanding the scope of563

Zero-cost proxy evaluation to include these func-564

tionalities could significantly elevate the utility and565

comprehensiveness of language models, offering566

a more holistic approach to their development and567

assessment in the field of artificial intelligence.568

7 Ethics Statement569

Our LPZero framework addresses the technical570

development of language model architectures,571

sidestepping direct ethical or social considerations.572

Our work is likely to increase the adoption of NAS573

in the NLP domain, providing an economic way to574

perform estimation in language models.575

Despite this focus, we recognize that the appli-576

cation of our findings—aimed at reducing compu-577

tational demands and streamlining language model578

development—could intersect with broader ethi-579

cal issues in natural language processing, such as580

data privacy, algorithmic bias, and the potential581

for misuse. We advocate for future research to in-582

tegrate ethical considerations, scrutinize training583

data sources for biases, and ensure the responsible584

deployment of language models, acknowledging 585

their profound societal impact. We acknowledge 586

the significant capabilities and prospects offered 587

by artificial intelligence, particularly ChatGPT, in 588

refining written materials. As we utilize this tech- 589

nology to enhance paragraphs, we pledge to adhere 590

strictly to the utmost ethical guidelines, thereby 591

guaranteeing the preservation of integrity, the re- 592

spect of intellectual property rights, and the support 593

of inclusivity. It is important to clarify that our use 594

of ChatGPT is limited to the refinement of existing 595

content rather than the generation of new content 596

for the paper. 597
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A Additional Related Work719

Activation Distance Activation Distance, specifi-720

cally in the context of NWOT (Mellor et al., 2021),721

leverages binary activation patterns to measure the722

correlation between input data across ReLU (Rec-723

tified Linear Unit) layers within a neural network.724

This proxy is crucial for understanding how dif-725

ferent inputs activate the network’s architecture,726

providing insights into the diversity and richness of727

the learned representations. The formula provided,728

S = log |KH | (3)729

where KH represents the kernel matrix, quantifies730

the similarity (or distance) between activation pat-731

terns. The determinant of the kernel matrix (|KH |)732

captures the volume of the space spanned by the733

activations, and taking its logarithm transforms this734

volume measure into a more manageable scale.735

Synaptic Saliency Synaptic Saliency, or Syn-736

flow (Tanaka et al., 2020), is a criterion used to737

identify the importance of parameters (weights) in738

a neural network, aiming to approximate the impact739

on the loss function when a specific parameter is740

removed. This concept is framed within the equa-741

tion,742

S =
∂L
∂θ

⊙ θ (4)743

where ∂L
∂θ denotes the gradient of the loss function744

with respect to the parameters (θ), and ⊙ repre-745

sents the Hadamard product, signifying element-746

wise multiplication between the gradient and the747

parameters themselves. This approach to quanti-748

fying parameter importance is designed to prevent749

layer collapse during the pruning process of net-750

work training, ensuring that the pruning does not751

disproportionately affect any single layer which752

could result in significant performance degrada-753

tion.754

Jacobian Score Cosine The Jacobian Score Co-755

sine (JSC) (Celotti et al., 2020) is a Zero-cost Proxy756

designed to evaluate the sensitivity and stability of757

neural network architectures with respect to their in-758

put data. By analyzing the Jacobian matrix, which759

represents the first derivatives of the network’s out-760

puts with respect to its inputs, the JSC offers in-761

sights into how small variations in the input can762

affect the output, thereby assessing the network’s763

robustness and generalization capability. The JSC764

is computed using the following formula:765

S = 1− 1

N2 −N

N∑
i=1

[
JnJ

t
n − I

] 1
20 , (5)766

where S denotes the Jacobian Score, N is the num- 767

ber of inputs to the network, Jn represents the Ja- 768

cobian matrix for the nth input, J t
n is the transpose 769

of Jn, and I is the identity matrix. This equation 770

calculates the average cosine similarity between 771

the Jacobian vectors of all pairs of inputs, adjusted 772

by the identity matrix to normalize self-similarity, 773

and finally raised to the power of 1
20 to scale the 774

measure. 775

Synaptic Diversity The concept of Synaptic Di- 776

versity within the context of Training-Free Trans- 777

former Architecture Search (TF-TAS) (Zhou et al., 778

2022) represents a novel approach towards evalu- 779

ating and selecting Vision Transformer (ViT) ar- 780

chitectures. By circumventing the need for exten- 781

sive training, this methodology significantly en- 782

hances computational efficiency in Transformer 783

Architecture Search (TAS). The TF-TAS scheme, 784

delineated in the studies by Zhou et al., employs 785

a modular strategy that assesses ViT architectures 786

through two theoretical lenses: synaptic diversity 787

and synaptic saliency, collectively referred to as the 788

DSS-indicator. 789

Synaptic Diversity, particularly in relation to 790

multi-head self-attention (MSA) modules of ViTs, 791

is instrumental in gauging the performance of these 792

architectures. This proxy evaluates the heterogene- 793

ity of synaptic connections by utilizing the Nuclear- 794

norm as an approximate measure for the rank of 795

weight matrices within MSA modules. A higher 796

Nuclear-norm indicates a greater diversity, which 797

suggests a potential for enhanced performance due 798

to the ability to encapsulate a broader spectrum 799

of features and relationships within the data. The 800

computation of Synaptic Diversity is formalized as 801

follows: 802

S =
∑
m

∥∥∥∥ ∂L
∂Wm

∥∥∥∥⊙ ∥Wm∥nuc (6) 803

Here, S symbolizes the synaptic diversity score, 804
∂L

∂Wm
denotes the gradient of the loss function with 805

respect to the weights of the m-th MSA module, 806

and ∥Wm∥nuc is the Nuclear-norm of the weight 807

matrix, serving as a proxy for the rank and thus the 808

diversity of the synaptic connections. 809

Hidden Covariance The Hidden Covariance proxy 810

provides a sophisticated means to analyze the be- 811

havior and interaction of hidden states within a spe- 812

cific layer of a Recurrent Neural Network (RNN) 813

when processing a minibatch of N input sequences 814

X = {xn}Nn=1. This proxy is particularly insight- 815
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ful for examining the internal dynamics and depen-816

dencies of the hidden states across different time817

steps or sequences. Given the hidden state matrix818

H(X) for a minibatch, we first compute the covari-819

ance matrix C as follows:820

C = (H −MH)(H −MH)T , (7)821

where MH is the mean matrix derived from the822

hidden states, with its elements defined by:823

(MH)ij =
1

N

N∑
n=1

Hin, (8)824

indicating the average activation across the mini-825

batch for each hidden unit. This step captures the826

variance and covariance of the hidden states, high-827

lighting the variability and correlation of activa-828

tions in response to the input batch. Subsequently,829

to normalize and interpret the covariance values,830

we calculate the Pearson product-moment correla-831

tion coefficients matrix R as:832

Rij =
Cij√
CiiCjj

, (9)833

which standardizes the covariance matrix into a834

correlation matrix R, providing a normalized mea-835

sure of linear dependencies between pairs of hidden836

units.837

Building upon the framework established by838

Mellor et al. (2021), the final proxy S(H) is de-839

rived using the Kullback–Leibler divergence from840

the eigenvalues of the kernel of R, computed as:841

S(H) = −
N∑

n=1

(
log(λn + k) +

1

λn + k

)
,

(10)842

where λ1, . . . , λN are the eigenvalues of R, and843

k = 10−5 is a small constant added to stabilize the844

logarithm and reciprocal operations.845

Note that Hidden Covariance is designed for846

RNN architectures, which means it is not work-847

ing for Transformer-based networks. That is why848

we don not report the performance of Hidden Co-849

variance on FlexiBERT and GPT-2 search space.850

Confidence The Confidence proxy (Serianni and851

Kalita, 2023) quantifies the average maximum at-852

tention (or activation) that a neural network layer,853

specifically an attention mechanism, directs to-854

wards the most significant features or tokens for a855

set of inputs X . This is mathematically articulated856

as:857

S =
1

N

N∑
n=1

max(Att(h, xn)) (11) 858

In this expression, S symbolizes the average 859

maximal attention score across all instances within 860

the minibatch, where Att(h, xn) signifies the at- 861

tention scores calculated for the n-th input by the 862

function h. 863

Softmax Confidence Softmax Confidence (Seri- 864

anni and Kalita, 2023) broadens the notion of Con- 865

fidence to scenarios where softmax scores, derived 866

from the softmax function σ, are utilized to gauge 867

the network’s prediction certainty. The formulation 868

is given by: 869

S =
1

N

N∑
n=1

max(σ(h, xn)) (12) 870

Here, σ(h, xn) computes the softmax probabilities 871

for the outputs related to the n-th input, and the 872

max operation selects the highest probability, de- 873

noting the model’s most confident prediction for 874

each input. The mean of these maxima across the 875

minibatch offers a measure of the overall prediction 876

confidence, valuable for assessing the certainty of 877

classification decisions by the model. 878

Importance The Importance proxy (Serianni and 879

Kalita, 2023) assesses the sensitivity of the cost 880

function C(X) with respect to the attention mech- 881

anism Atth(X) for a given input set X . This sen- 882

sitivity analysis is crucial for understanding the 883

impact of changes in attention weights on the over- 884

all performance or cost of the neural network. The 885

Importance proxy is mathematically represented 886

as: 887

S =

∣∣∣∣ ∂C(X)

∂Atth(X)

∣∣∣∣ (13) 888

This equation calculates the absolute value of the 889

derivative of the cost function relative to the at- 890

tention weights, quantifying the "importance" of 891

the attention mechanism in the network’s decision- 892

making process. A higher value suggests that minor 893

adjustments to the attention weights could lead to 894

significant changes in the cost, underscoring the 895

critical areas of the input that the network focuses 896

on. 897

SNIP (Single-shot Network Pruning) (Lee et al., 898

2019) introduces a pruning criterion that can be 899

applied early in the training process, even before 900

the actual training commences. It is predicated on 901

the sensitivity of the loss function L with respect to 902
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each parameter θ, modulated by the parameter val-903

ues themselves. The SNIP criterion is formulated904

as:905

S(θ) =

∣∣∣∣∂L∂θ ⊙ θ

∣∣∣∣ (14)906

Here, the operation ⊙ denotes the element-wise907

product. This expression evaluates the absolute908

value of the gradient of the loss function with re-909

spect to the parameters, weighted by the parame-910

ters themselves. This criterion aids in identifying911

parameters that have minimal impact on the loss912

function, allowing for their pruning to streamline913

the model architecture without significantly com-914

promising performance.915

GraSP (Gradient Signal Preservation) (Wang916

et al., 2020) introduces a pruning methodology917

aimed at preserving the gradient flow throughout918

the network’s architecture. This strategy identifies919

and eliminates parameters that have the least effect920

on the gradient flow, thus minimizing their impact921

on the network’s ability to learn. The GraSP crite-922

rion is quantitatively defined by the equation:923

S(θ) = −
(
H

∂L
∂θ

)
⊙ θ (15)924

In this formulation, S(θ) denotes the pruning925

score assigned to each parameter θ, reflecting its926

significance in maintaining effective gradient flow927

within the network. The term H represents the928

Hessian matrix, which consists of the second-order929

derivatives of the loss function L with respect to930

the parameters, while ∂L
∂θ is the gradient of the931

loss with respect to the parameters. The operation932

⊙ signifies element-wise multiplication, and the933

negative sign indicates that parameters which con-934

tribute negatively to the gradient flow—and there-935

fore potentially hinder learning—are prioritized for936

removal.937

The principal insight of GraSP is its emphasis on938

the Hessian-gradient product, which offers a mea-939

sure of the influence of parameter changes on the940

curvature of the loss landscape and, subsequently,941

on the dynamics of model training. By focusing on942

preserving parameters critical for the integrity of943

gradient flow, GraSP enables network pruning in a944

manner that is less likely to degrade performance.945

In this paper, we have chosen not to incorporate946

the Hessian Matrix as part of our analysis due to947

its computationally intensive nature. However, it948

is worth noting that excluding considerations of949

computational load, the inclusion of the Hessian 950

Matrix could potentially enhance performance sig- 951

nificantly. 952

LogSynflow (Cavagnero et al., 2023) introduces a 953

nuanced variation to the conventional pruning crite- 954

ria by applying a logarithmic transformation to the 955

gradients’ magnitude. This adjustment is intended 956

to enhance the pruning strategy by ensuring a more 957

nuanced evaluation of parameter importance, espe- 958

cially for those with small but significant gradients. 959

The LogSynflow criterion is mathematically ex- 960

pressed as: 961

S(θ) = θ ·
∣∣∣∣log ∣∣∣∣∂L∂θ

∣∣∣∣∣∣∣∣ (16) 962

In this equation, S(θ) represents the score as- 963

signed to each parameter θ based on its importance, 964

where ∂L
∂θ denotes the gradient of the loss func- 965

tion L with respect to the parameters. The use of 966

the absolute value of the logarithm of the gradient 967

magnitude aims to highlight the significance of pa- 968

rameters that might otherwise be overlooked due 969

to their relatively small gradient values. By multi- 970

plying these logarithmic values by the parameters 971

themselves, LogSynflow prioritizes the retention of 972

parameters that are integral to the network’s abil- 973

ity to learn, thereby facilitating a more informed 974

pruning process that minimizes the loss of critical 975

information. 976

B Predefined Criteria in PPS 977

In mathematics, understanding the relationships 978

between various operations significantly impacts 979

the LPZero search space. Table 6 summarizes the 980

relationships among a set of operations, catego- 981

rizing them based on their mathematical interac- 982

tions. These relationships include inverse functions, 983

derivatives, equivalence, special cases, and poten- 984

tial conflicts when certain operations are combined. 985

This overview helps in recognizing how operations 986

can complement or conflict with each other, thereby 987

providing support for PPS. 988

C Correlation of Rank 989

As a complement to the visualization of 990

ranking correlation, we follow LiteTransform- 991

erSearch (Javaheripi et al., 2022) and provide visu- 992

alizations of GLUE Score Ranking and ZC Proxies 993

Ranking. It can be observed that potential proxies 994

are capable of dividing the candidate models into 995
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OP 1 OP 2 Relationship Description

log exp Inverse ex and log(x) are inverse functions.
abs abs(log) Derivative Absolute value operation applied to log.

square sqrt Inverse Squaring and square root are inverse operations.
ReLU identity Special case ReLU acts as identity for x>0.
inverse identity Inverse for non-zero Multiplicative inverse operation.

norm_sum average Equivalent Norm sum divided by count is average.
softmax log_softmax Derivative Log softmax is the logarithm of softmax.
sigmoid logistic function Equivalent Sigmoid is also known as the logistic function.

min-max scaling normalization Type Min-max scaling is a type of normalization.
standard deviation variance Square root Standard deviation is the square root of variance.

L1-norm abs Generalization L1-norm is a sum of absolute values.
F-norm Euclidean norm Equivalent Frobenius norm for matrices, Euclidean norm for vectors.

-() log Conflict Negation followed by log leads to undefined result for positive inputs.
-() sqrt Conflict Negation followed by sqrt leads to undefined result for positive inputs.

identity (if zero) inverse Conflict Identity ensuring zero input followed by inverse leads to division by zero.
-() (for positive) sqrt Conflict Negation of positive numbers followed by sqrt is undefined.

Table 6: Summary of Predefined Criteria

two clusters at least through ranking. This further996

demonstrates the robustness of our LPZero results.997

D Details of Search Space998

D.1 Details of FlexiBERT999

The table 7 provides a detailed overview of the Flex-1000

iBERT search space, highlighting the diverse range1001

of hyperparameters available for tuning. FlexiB-1002

ERT, designed to explore architectural variations1003

within the BERT model framework, allows for con-1004

figurations that span the specifications of BERT-1005

Tiny and BERT-Mini. Key architectural elements1006

are outlined along with their corresponding hy-1007

perparameters values, including hidden dimension1008

sizes, the number of encoder layers, types of at-1009

tention operators, and more. Notably, the hidden1010

dimension and the number of encoder layers are1011

consistent across the architecture, whereas other pa-1012

rameters vary across encoder layers, introducing a1013

high degree of flexibility and customization. The ta-1014

ble also specifies the conditions under which differ-1015

ent attention operation parameters are applied, de-1016

pending on the type of attention operator selected.1017

With a total of 10,621,440 possible architectures,1018

this search space represents a comprehensive frame-1019

work for exploring and identifying efficient model1020

configurations within the BERT architecture spec-1021

trum.1022

D.2 Details of GPT-21023

Table 8 delineates the expansive search space lever-1024

aged for the GPT-2 architecture optimization, out-1025

lining a comprehensive set of hyperparameters tar-1026

geted in the exploration process. It includes the1027

number of layers (nlayer), representing the depth of1028

the transformer model; the dimensionality of model 1029

embeddings (dmodel), indicative of the scale and 1030

capacity of the model; the inner dimension of the 1031

feed-forward networks (dinner), a critical parame- 1032

ter for the model’s ability to process and integrate 1033

information within each transformer layer; the num- 1034

ber of attention heads (nhead), which impacts the 1035

model’s ability to focus on different parts of the in- 1036

put sequence; and the dimensions of adaptive input 1037

embeddings (dembed) along with their associated 1038

scaling factors (k), parameters that offer a novel 1039

approach to managing input representation com- 1040

plexity and efficiency. A noteworthy aspect of this 1041

search space is the adaptive setting of the dinner 1042

parameter, which is dynamically adjusted to be at 1043

least twice the dmodel size, a heuristic introduced 1044

to mitigate the risk of training collapse by ensuring 1045

a sufficient capacity in the feed-forward networks. 1046

E Ablation Study of Unary 1047

Figure 13 illustrates an ablation study that inves- 1048

tigates the performance of systems with varying 1049

unary operations. It presents four graphs, each plot- 1050

ting performance metrics in 100 iterations for sys- 1051

tems with two to five unary operations. The study 1052

finds that the system with two unary operations 1053

achieves and maintains the highest ’Best SP’ score, 1054

indicating stable, optimal performance. Systems 1055

with more than two unary operations show more 1056

fluctuations in ’Best SP’ and a lower Spearman 1057

rank correlation, suggesting that additional oper- 1058

ations may lead to over-complexity and reduced 1059

performance. Thus, the optimal number of unary 1060

operations for this system is two, balancing com- 1061

plexity and performance. 1062
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Figure 8: Correlation of training-free proxies ranking with GLUE Ranking on 500 architectures randomly sampled
from FlexiBERT Search Space.

Architecture Element Hyperparameters Values
Hidden dimension {128, 256}
Number of Encoder Layers {2, 4}
Type of attention operator {self-attention, linear transform, span-based dynamic convolution}
Number of operation heads {2, 4}
Feed-forward dimension {512, 1024}
Number of feed-forward stacks {1, 3}

Attention operation parameters
if self-attention {scaled dot-product, multiplicative}
if linear transform {discrete Fourier, discrete cosine}

if dynamic convolution convolution kernel size: {5, 9}

Table 7: The FlexiBERT search space, with hyperparameter values spanning those found in BERT-Tiny and BERT-
Mini. Hidden dimension and number of encoder layers is fixed across the whole architecture; all other parameters
are heterogeneous across encoder layers. The search space encompasses 10,621,440 architectures.

Architecture Element Hyperparameters Values
Number of Layers (nlayer) {2, 3, ..., 16}
Model Dimension (dmodel) {128, 192, ..., 1024}
Inner Dimension (dinner) {256, 320, ..., 4096}
Number of Attention Heads (nhead) {2, 4, 8}
Adaptive Input Embedding Dimension (dembed) {128, 256, 512}
Adaptive Input Embedding Factor (k) {1, 2, 4}

Table 8: The GPT-2 search space, covering a broad spectrum of architectural configurations. Once a model
dimension (dmodel) is chosen, the minimum inner dimension (dinner) is set to twice the value of dmodel to avoid
training collapse. This adaptive approach ensures a wide range of effective and efficient architectures, summing up
to more than 1054 unique configurations.
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Figure 9: Two Unary Operations. Figure 10: Three Unary Operations.

Figure 11: Four Unary Operations. Figure 12: Five Unary Operations.

Figure 13: Ablation Study of the Number of Unary Operations.
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