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Abstract

Neural Architecture Search (NAS) facilitates
the automatic effective neural network de-
signs while requiring the substantial compu-
tational resource particularly for language mod-
els. Zero-shot NAS exploits Zero-cost (ZC)
proxies to estimate model performance, thereby
markedly reducing computational demands.
However, existing ZC proxies rely heavily on
in-depth expert knowledge and repetitive trial-
and-error costs. Moreover, most of existing
ZC proxies fail to surpass the performance of
the naive baseline (number of parameters). To
address these challenges, we introduce a novel
framework called LPZero (Language model
zero-cost Proxy search from Zero). It is de-
signed to automate the design of efficient ZC
proxies for language models, and achieve the
higher ranking consistency. Specifically, we
initially consolidate existing ZC proxy designs
into a unified framework as the search space,
and then apply an evolutionary algorithm to
heuristically identify new, promising proxy can-
didates for language models. To enhance the
efficiency of the search process, we introduce a
Predictive-Pruning Strategy (PPS). This strat-
egy is designed to preemptively eliminate un-
promising proxies, thereby mitigating the risk
of proxy degradation. Extensive experiments
on the FlexiBERT and GPT-2 search space
demonstrate the effectiveness of our algorithm.
Notably, the consistency in performance rank-
ing achieved by our method significantly sur-
passes that observed with current proxies.

1 Introduction

Traditional neural network design, heavily
dependent on expert knowledge and experi-
ence (Krizhevsky et al., 2017; He et al., 2016), is
both time-intensive and prone to trial-and-error.
Neural Architecture Search (NAS) emerged to
automate and refine this process by identifying
optimal architectures from a set of possibilities
using various strategies. However, early NAS
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Figure 1: Comparison of zero-cost proxies on FlexiB-
ERT (Serianni and Kalita, 2023) using Spearman cor-
relation coefficients (higher values indicate better per-
formance). The red line represents the baseline method,
defined by the number of parameters (Abdelfattah et al.,
2021).

methods (Zoph and Le, 2017; Real et al., 2019)
require extensive computation. For instance,
NASNet (Zoph and Le, 2017) require 500 GPUs
for four days. This substantially limits their
accessibility and widespread use.

To alleviate this issue, recent advancements in
Zero-shot NAS (Lin et al., 2021; Li et al., 2023;
Mellor et al., 2021; Abdelfattah et al., 2021; Ying
et al., 2019; Krishnakumar et al., 2022; Zhou et al.,
2022) aim to significantly reduce training costs by
employing Zero-cost (ZC) proxies, which circum-
vent the traditional training process and decrease
computational demands. Zero-shot NAS predicts
the performance of neural network architectures
without the need for actual training, using models
that are randomly initialized. This approach en-
ables a rapid and efficient estimation of architecture
performance, eliminating the time and resources
typically consumed in training processes. To evalu-
ate the effectiveness of ZC proxies, Spearman’s p
or Kendall’s 7 are utilized to measure the congru-
ence between the performance rankings predicted
by ZC proxies and ground-truth derived from fully
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Table 1: Overview of mainstream handcrafted Zero-cost
proxies for Transformers, notating Ky as the Kernel
Matrix, J as the Jacobian w.r.t. Mini-Batch Input I,
Att as attention head, Sft as softmax output, A as
activation, and H as the Hessian matrix.

trained models. A high ranking correlation indi-
cates the reliability of ZC proxies in forecasting
the potential success of architectures. However, ex-
isting Zero-cost (ZC) proxies (Serianni and Kalita,
2023; Javaheripi et al., 2022) are heavily dependent
on in-depth expert knowledge and a repetitive trial-
and-error, which can be both time-intensive and
demanding in terms of effort. For instance, Atten-
tion Confidence (Serianni and Kalita, 2023) utilizes
normalization techniques to refine attention mech-
anisms for enhanced performance. Meanwhile,
pruning-based proxies such as SNIP (Lee et al.,
2019), Fisher (Turner et al., 2020), GraSP (Wang
et al., 2020), GradNorm (Abdelfattah et al., 2021)
and Synflow (Tanaka et al., 2020) involve complex
combination of mathematical operations that criti-
cally influence their ranking capabilities. Notably,
LogSynflow (Cavagnero et al., 2023) implements
logarithmic operations to address gradient explo-
sion issues inherent in Synflow. Furthermore, we
observe that most of proxies cannot surpass the
baseline performance, measured by the number of
parameters, as illustrated in Figure 1. This limita-

tion raises a fundamental but critical question: How
to devise new proxies efficiently and automatically
for language models?

To answer this question, we break it down to
two steps: (1) Devise a unified search space for
existing ZC proxies. (2) Employ evolutionary
algorithm for discover new proxies.

For the first step, we revisit the existing ZC prox-
ies, as detailed in Table 1, and design a compre-
hensive search space that encompasses current ZC
proxies. Specifically, these proxies are categorized
into six types based on the input type: Activation
(A), Jacobs (J), Gradients (G), Head (H), Weight
(W) and Softmax (S), illustrated in Figure 2. Within
this unified framework, we select two types of in-
puts, denoted as 6, from these categories. Each
input undergoes transformation through n unary
operations f(-), and the results are combined using
a binary operation g(-). This process generates a
candidate proxy, ¢(f,g,0), for our search space.
More details can be found in Appendix A.

For the second step, we propose a novel
LPZero framework, denoting Language model
Proxy Search from Zero. As illustrated in Figure 3,
we initially select p candidate proxies to estab-
lish the population and assess their ranking consis-
tency within the FlexiBERT search space. Through
tournament selection, we identify two promising
parent proxies (¢™"™). Subsequently, we perform
crossover and mutation operations to generate the
offspring proxy ¢9. To evaluate its ranking consis-
tency Spearman p?, we employ this proxy to score
each architecture §2; with ©?(£2;) and compare the
results with their respective ground truth gt; (e.g.,
average accuracy). Given the sparsity of the search
space, we advocate for a Predictive-Pruning Strat-
egy (PPS) aimed at eliminating ineffective proxies,
thereby enhancing the search efficiency. Our main
contributions are:

* We design a comprehensive and high-quality
search space that encompasses most of exist-
ing ZC proxies tailored for language models.

* We introduce the Language Model Proxy
Search from Zero (LPZero) framework, incor-
porating a Predictive-Pruning Strategy (PPS)
to prevent proxy degradation and thereby im-
prove search efficiency.

* Experiments on FlexiBERT and GPT-2 sub-
stantiate the superiority of the proxies identi-
fied by our LPZero, indicating the effective-
ness of our proposed approach.
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Figure 2: Search space of our LPZero framework.

2 Related Work

Zero-shot NAS In recent years, Zero-shot NAS
has gained prominence as a cost-effective strategy
for evaluating the accuracy of candidate neural net-
work architectures during the initialization phase,
without the need for extensive training. This ap-
proach offers a more computation-efficient alterna-
tive to traditional One-shot NAS methods. The cor-
nerstone of Zero-shot NAS is its accuracy ranking
proxy, which critically determines its effectiveness.
While the majority of existing proxies have been de-
veloped for computer vision (CV) tasks, there has
been relatively limited exploration in the context
of natural language processing (NLP) tasks.
NWOT (Mellor et al., 2021) leverages the local
Jacobian values across various images to construct
an indicator for model ranking based on the corre-
lation of input Jacobians. Similarly, ZenNAS (Lin
etal., 2021) assesses candidate architectures by em-
ploying the gradient norm of input images as a rank-
ing criterion. Furthermore, Zero-cost NAS (Ab-
delfattah et al., 2021) draws inspiration from the
Optimal Brain Damage principle (LeCun et al.,
1989), introducing pruning-based metrics as zero-
cost proxies. This includes a variety of indica-
tors such as GradNorm (Abdelfattah et al., 2021),
Plain (Abdelfattah et al., 2021), SNIP (Lee et al.,
2019), GraSP (Wang et al., 2020), Fisher (Turner
et al., 2020), and Synflow (Tanaka et al., 2020).
These proxies evaluate the significance of network
parameters and aggregate layer-wise values to esti-
mate the overall performance.
Zero-cost Proxies for Transformer Recent ef-
forts (Serianni and Kalita, 2023) have revitalized
the application of zero-cost proxies for transformer-
based networks, marking a significant milestone
in the domain. LiteTransformerSearch (Javaheripi

Figure 3: Overview of our LPZero framework.

et al., 2022) observes that the zero-cost proxies,
which exhibit promising performance in CV tasks,
do not outperform the baseline methods in terms of
the number of parameters of decoder when applied
to NLP. Serianni and Kalita (2023) re-arouse the
significance of Zero-cost (ZC) proxies in the con-
text of RNN and BERT-based Transformer models,
utilizing the FlexiBERT benchmark. It introduces
an array of proxies, such as Synaptic Diversity,
Synaptic Saliency, Activation Distance, Jacobian
Cosine, Attention Confidence, and Head Impor-
tance, highlighting their potential in streamlining
the architecture search process without extensive
training.

Automatic Search for ZC Proxies Several stud-
ies explore how to search for ZC proxies auto-
matically, notably EZNAS (Akhauri et al., 2022)
and EMQ (Dong et al., 2023). EZNAS intro-
duces a search space dedicated to convolution-
based networks, achieving commendable perfor-
mance across various benchmarks (Ying et al.,
2019; Dong and Yang, 2020). However, its ef-
fectiveness is notably diminished when applied to
Transformer-based networks. On the other hand,
EMQ (Dong et al., 2023) develops a specialized
search space tailored for mixed-precision quantiza-
tion proxies but it is not optimized for Transformer-
based networks. In contrast, our LPZero frame-
work is specifically designed for language models,
particularly Transformer architectures, and shows
superior and more promising performance.

3 Methodology

In this section, we devise a search space and detail
the evolution framework - LPZero with analysis to
this framework.
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Table 2: Primitive operation set K. Summary of unary
(denoted by f) and binary Operations (denoted by g).

3.1 LPZero Search Space Design

The search spaces of most AutoML ap-
proaches (Real et al., 2020; Liu et al., 2019)
are specifically designed for particular purposes
and not suitable for proxy search. Previous auto
loss search methods (Li et al., 2021b,a; Gu et al.,
2022) takes the output of network y and ground
truth ¢ as input (scalar), which is relatively easy
to handle. However, the search spaces of these
methods are primitives, which is most similar to
ours. However, for ZC proxies search problem, we
involve more operations that taking scalar, vector
and matrix as input, which might deduce the shape
mismatching problem.

LPZero aims to identify the most suitable Zero-
cost (ZC) proxy to accurately assess network per-
formance. The primary objective is to optimize the
Spearman’s rank correlation coefficient (p), which
measures the ranking consistency of each ZC proxy.
Thus, our training-free approach is formulated as
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Figure 4: Illustration of Crossover and Mutation.

follows:

" = argmax(p(p)), ¥ = ¢(f,9,0). (1)
pES

where ¢ represents the candidate ZC proxies within
the search space S. Each proxy ¢ is defined as a
function of unary and binary operations (f and g)
applied to input parameters 6.
Zero-cost Proxy Representation. The ZC proxy
@ is represented symbolically as an algorithmic
expression (AE). As illustrated in Figure 2, the
algorithmic expression can be represented by the
combination of unary operations f(-) and binary
operations g(-). Therefore, AE can be represented
as ¢(f,g,0), where inputs z; and x2 is chosen
from six candidates 6, including Activation (A),
Jacobs (J), Gradients (G), Head (H), Weight (W)
and Softmax (S).
Primitive Operations. Table 2 summarizes the
primitive operation set /C used in our search space.
This set comprises 20 unary operations and four bi-
nary operations, facilitating information exchange
across dimensions. These operations are non-
parametric, meaning they do not have adjustable
parameters, making them highly efficient and ef-
fective in various computational tasks. Unary op-
erations act on a single input, while binary opera-
tions operate on pairs of inputs. Notably, fog and
fo1 are unique unary operations; foq signifies a
pass-through where the input is returned without
any modification, and fs; represents a pruning op-
eration that results in the removal of the branch,
effectively returning nothing. By incorporating
this diverse set of operations, our search space can
explore a wide range of function transformations,
enabling the discovery of novel architectures and
enhancing the flexibility of our approach.
Analysis for the Search Space. In Figure 2, we
illustrate the search space by showcasing two prox-
ies depicted in red and yellow lines, demonstrating



Algorithm 1 LPZero Algorithm

1: Input: Initial population size p, number of
generations (7, crossover rate C,., mutation rate
M,

2: Output: ZC proxy with highest Spearman

3: Initialize population with p random ZC proxies

4. forg=1to Gdo

5 Evaluate fitness of each proxy in the popula-
tion
Pick top R ratio as pool Q
Select parents ¢™™ randomly from Q
CrossOver ¢? = CrossOver(¢", ¢"™) with

probability C..
9:  Mutation p? = Mutate(?) with probability

M,

10:  if PPS(¢?) is valid then

11: Add offspring to population

12:  else

13: Jump to Line 8 and regenerate offspring

o1
14:  endif

15:  Evaluate fitness of new offspring ¢4

16:  Keep the top-p proxies for the next genera-
tion

17: end for

18: return the proxy with the highest Spearman

the variability and richness of architectural con-
figurations. With a total of 21 unary operations
and 4 binary operations available, the search space
is expansive, yielding a combinatorial space of
C2 x 212 x 4 = 26, 460 potential ZC proxies. This
vast space enables exploration of a wide spectrum
of architectural designs, allowing for the discov-
ery of innovative solutions tailored to the specific
requirements of NLP tasks.

3.2 Search Algorithm

Inspired by the AutoML (He et al., 2021; Li et al.,
2019), evolutionary algorithm serve as the core
mechanism for our search algorithm design. Evolu-
tionary algorithms, a subset of genetic algorithms,
mimic the process of natural selection by gener-
ating, evaluating, and selecting individuals in a
population to solve optimization problems. Fig-
ure 3 illustrates the search pipeline of our LPZero
framework. At initialization, we uniformly sample
p ZC proxies from the search space to form the
initial population. Then, we measure the ranking
correlation on the search space to measure the pre-

dictability of each proxy. Then, for each iteration,
we conduct tournament selection to pick R ratios
from population (R = 10% by default) as promis-
ing candidates, and then randomly sample two of
them as parents ™. Then, the parents are utilized
to perform crossover and mutation with probability
of C; and M, respectively to get the offspring. To
verify the effectiveness of offspring, we sample S
candidate architectures from the search space and
compute the ranking correlation of ground truth
and proxy score. As the search space is very sparse
with a large number of unpromising or even invalid
ZC proxies, we propose Early-Stopping Strategy
to filter out the candidates.

Crossover and Mutation. Each Algorithmic Ex-
pression (AE) consists of two branches and one
aggregate node. These branches represent the indi-
vidual components or operations within the proxy
architecture, while the aggregate node combines
the outputs of these branches to form the final
proxy score. As shown in Figure 4, we present
the illustration of CrossOver and Mutation. Dur-
ing the crossover operation, two parent AEs are
selected, and genetic information is exchanged be-
tween them to generate offspring. This process
involves swapping segments of the parent AEs to
create new combinations of operations and archi-
tectures. Conversely, the mutation operation intro-
duces random alterations to the genetic makeup of
a single AE, potentially introducing novel architec-
tures into the population.

Predictive-Pruning Strategy. The Predictive-
Pruning Strategy in the LPZero framework serves
a crucial role in managing the computational chal-
lenges posed by the expansive and sparsely pop-
ulated search space. It works to promptly iden-
tify and discard unpromising or invalid Zero-cost
(ZC) proxies, thereby conserving computational re-
sources and expediting the search for optimal solu-
tions. By utilizing predefined criteria as presented
in Appendix B this strategy evaluates the viability
of candidate proxies. Those failing to meet the
specified criteria are removed from the population,
reducing the search space and focusing computa-
tional efforts on promising candidates. Overall, this
strategic filtering process enhances the efficiency
and effectiveness of the LPZero framework, facil-
itating swifter progress towards the discovery of
high-quality proxy architectures.

Searched ZC Proxy. Based on LPZero framework,
we present the searched Zero-cost (ZC) proxy tai-
lored for the FlexiBERT search space, character-



ized by a unique combination of structural and op-
erational elements. The architecture of this proxy
is delineated as follows: the input structure com-
prises heads and activation functions, and the tree
structure utilizes operations such as element-wise
reversion, element-wise power, Frobenius norm,
and log softmax. The binary operation defined
within this context is the element-wise summation.
The mathematical formulation of the searched ZC
proxy is given by:

N

P(0m.04) = Y (51 +1og (n([6a]l))) @

=0

where 0 denotes the parameters associated with
the heads in the Multi-head Attention, 64 repre-
sents the activation values of each block within the
network, and 1 symbolizes the softmax operation.

The formulated Zero-cost (ZC) proxy equation
effectively evaluates neural architectures by con-
sidering both their structural efficiency and func-
tional performance. The first term prioritizes mod-
els with fewer, yet efficient, parameters in the atten-

tion mechanism ( i)
Zero-cost NAS towards computational efficiency.
The second term log (7 (||04||r)) focuses on the
diversity and distribution of activations, aiming for
architectures that ensure balanced and effective in-
formation processing. Together, these aspects form
a comprehensive approach for the holistic evalua-
tion of architectures in the FlexiBERT search space,
which is critical for identifying optimal models for

NLP tasks.

2
, highlighting the goal of

4 [Experiments

In this section, we first detail the experimental setup
and implementation details of LPZero. Then, we
present the ranking correlation evaluation on Flex-
iBERT and GPT-2 Search Space. Subsequently,
we assess LPZero’s performance by examining the
ranking correlation in the FlexiBERT and GPT-
2 search spaces. Lastly, we conduct an ablation
study to evaluate the impact of our evolutionary
algorithm, the Predictive-Pruning Strategy (PPS),
and other variables such as the number of unary
operations and the initial population size.

4.1 Implementation Details

Datasets. FlexiBERT (Serianni and Kalita, 2023)
is built on the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)

including several tasks. We adopt the average per-
formance of these tasks as ground truth to measure
the ranking consistency. We utilize OpenWebText
dataset (Gokaslan et al., 2019) during searching ZC
proxies on FlexiBERT search space. For GPT-2
search space, we conduct experiments on WikiText-
103 dataset (Merity et al., 2016). During evolution
searching, we only require a mini-batch of input
(batch size of 128 and 16 for BERT and GPT-2) to
calculate the input statistics.

Criteria. The effectiveness of ZC proxies is mea-
sured by Kendall’s 7 and Spearman’s p, with values
from -1 (negative correlation) to 1 (positive correla-
tion), where 0 indicates no correlation. These met-
rics allow us to assess the alignment between the
proxies’ predictions and actual model performance,
providing a quantitative basis for comparison.
Search Space. We employ two existing bench-
marks as the search space. FlexiBERT Bench-
mark (Serianni and Kalita, 2023) is a challenging
benchmark that encompasses over 107 architec-
tures (Refer to Appendix D.1 for more details.)
We adopt the GPT-2 Benchmark (Javaheripi et al.,
2022) on WikiText-103, which provides 10>* archi-
tectures (Refer to Appendix D.2 for more details).
Evolution Settings. The configuration of our evo-
lutionary algorithm is as follows: The total num-
ber of generations, denoted as G, is established
at 1,000, with the initial population size, p, set
to 80 individuals. The probabilities for crossover
and mutation operations are both set at C;, = 0.5
and M, = 0.5, respectively. The selection pres-
sure, represented by the ratio R, is fixed at 10%.
A consistent seed of 42 is utilized to ensure re-
producibility across experiments. These experi-
ments are conducted using A6000 GPUs to lever-
age their computational efficiency. To expedite the
evolutionary search process, we assess the ranking
consistency by sampling 50 architectures. Upon
finalizing the search proxy, we proceed to evalu-
ate its performance by applying it to two distinct
datasets: FlexiBERT, comprising 500 architectures,
and GPT-2, encompassing 200 architectures. The
whole evolution process require 10 GPU hours.
Training and Evaluation. We leverate the open-
source code by Serianni and Kalita (2023) and Ab-
delfattah et al. (2021) to implement the FlexiBERT
and various proxies as shown in Table 1. We further
use the source code in Javaheripi et al. (2022) to im-
plement the GPT-2 search space and we collect the
benchmark data from their open-sourced repository.
To assess ranking consistency, we randomly sample
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Figure 5: Spearman’s p and Kendall’s 7 Correlation of training-free proxies with GLUE Score across 500 architec-

tures randomly sampled from FlexiBERT Search Space.

Proxy Name ‘ T ‘ p Proxy Name ‘ T ‘ p
Synaptic Diversity (Zhou et al., 2022) 0.021 | 0.175 Jacobian Cosine (Celotti et al., 2020) 0.227 | 0.362
Head Importance (Serianni and Kalita, 2023) 0.050 | 0.171 EZNAS (Akhauri et al., 2022) 0.489 | 0.704
Activation Distance (Mellor et al., 2021) 0.081 | 0.123 No.Params (Abdelfattah et al., 2021) 0.582 | 0.737
Jacobian Cosine (Celotti et al., 2020) 0.116 | 0.149 Synflow (Tanaka et al., 2020) 0.632 | 0.730
SNIP (Lee et al., 2019) 0.119 | 0.173 Activation Distance (Mellor et al., 2021) 0.644 | 0.818
GraSP (Wang et al., 2020) 0.122 | 0.179 Attention Confidence (Serianni and Kalita, 2023) | 0.676 | 0.850
GradNorm (Abdelfattah et al., 2021) 0.133 | 0.197 Fisher (Turner et al., 2020) 0.691 | 0.872
Fisher (Turner et al., 2020) 0.139 | 0.209 GraSP (Wang et al., 2020) 0.765 | 0.922
Synaptic Saliency (Tanaka et al., 2020) 0.157 | 0.266 GradNorm (Abdelfattah et al., 2021) 0.834 | 0.958
Synflow (Tanaka et al., 2020) 0.322 | 0.471 LogSynflow (Cavagnero et al., 2023) 0.836 | 0.962
LogSynflow (Cavagnero et al., 2023) 0.334 | 0.491 Synaptic Diversity (Zhou et al., 2022) 0.841 | 0.957
No.Params. (Abdelfattah et al., 2021) 0.454 | 0.590 Decoder.Params (Javaheripi et al., 2022) 0.847 | 0.967
Attention Confidence (Serianni and Kalita, 2023) | 0.475 | 0.666 Synaptic Saliency (Tanaka et al., 2020) 0.855 | 0.970
EZNAS (Akhauri et al., 2022) 0.483 | 0.698 SNIP (Lee et al., 2019) 0.858 | 0.970
LPZero (Ours) 0.511 | 0.748 Head Importance (Serianni and Kalita, 2023) 0.861 | 0.971
LPZero (Ours) 0.886 | 0.980

Table 3: Ranking correlation of Zero-cost proxies on
the FlexiBERT benchmark over 500 architectures with
Kendall’s 7 and Spearman’s p.

500 architectures from the FlexiBERT benchmark,
with findings presented in Table 3. Similarly, for
the GPT-2 benchmark, we randomly sample 200
architectures to evaluate their ranking consistency,
as detailed in Table 4.

4.2 Ranking Evaluation

Performance on FlexiBERT As illustrated in
Table 3, we benchmark the Kendall’s 7 and Spear-
man’s p of 14 zero-cost proxies over 500 architec-
tures from the FlexiBERT search space. The base-
line (number of parameters) serves as a competitive
counterparts and most of proxies fail to surpass the
baseline, which is also shown in Figure 1. Our
LPZero model demonstrates superior ranking con-

Table 4: Ranking correlation of Zero-cost proxies on
the GPT-2 search space over 200 architectures with
Kendall’s 7 and Spearman’s p.

sistency, as evidenced by the values of 7 = 0.51
and p = 0.75 for the respective coefficients. Fur-
thermore, we elucidate the correlation between
GLUE scores and Zero-cost (ZC) proxies through
Figure 5, which contrasts LPZero with the exist-
ing ZC proxies (Serianni and Kalita, 2023) in their
study on training-free evaluation methods. This
comparison clearly illustrates that our methodol-
ogy exhibits the highest ranking consistency among
the evaluated frameworks.

Performance on GPT-2 As illustrated in Table 4,
we benchmark the Kendall’s 7 and Spearman’s p
of 15 zero-cost proxies over 200 randomly sam-
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pled architectures from GPT-2 search space. The
additional proxy (Javaheripi et al., 2022) is “De-
coder.Params", which represent the parameter of
decoder in GPT-2 models. Our LPZero achieve the
SOTA performance among all ZC proxies, achiev-
ing 7 = 0.87 and p = 0.98. Compared with Flex-
iBERT search space, the ranking consistency is
much higher than GPT-2 search space.

4.3 Ablation Study

We conduct extensive ablation study over the four
factors: (1) Evolutionary Algorithm. (2) Predictive-
Pruning Strategy. (3) Initial Population Size. (4)
Number of Unary Operation.

(1) Effectiveness of Evolutionary Algorithms. As
depicted in Figure 6, we limit the number of iter-
ations to 1,000, maintaining an initial population
size of 80 throughout the process. The findings re-
veal that the Evolutionary Algorithm substantially
surpasses the performance of Random Search. This
indicates that the evolutionary algorithm can heuris-
tically enhance the speed of the search process,
thereby significantly improving search efficiency.

#Unary | 2 3 4 5

86.48% 77.47% 75.15% 78.12%
25.61% 796% 8.69%  6.25%

Spearman’s p
Winning Rate

Table 5: Influence of the Number of Unary Operations
on Spearman’s p and Winning Rate.

(2) Effectiveness of Predictive-Pruning Strategy
(PPS). As illstrated in Figure 6, we present the per-
formance of the Predictive-Pruning Strategy (PPS).
Our findings indicate that for iterations fewer than
400, PPS not only achieves higher Spearman’s p but
also significantly outperforms evolutionary search
methodologies not incorporating PPS, highlighting
its critical role in enhancing search efficiency.

(3) Initial Population Size. As illustrated in Fig-
ure 7, we compare Spearman’s p across varying
initial population sizes of 80, 100, and 200. The
data indicate a positive correlation between popu-
lation size and the initial Spearman’s Coefficient
value: larger initial populations yield higher Spear-
man’s p at the outset.

(4) Number of Unary Table 5 presents an abla-
tion study examining the effect of unary operation
counts on Spearman’s rank correlation coefficient
and winning rate. The study shows that a lower
number of unary operations (2) yields the highest
Spearman correlation (86.48%) and winning rate
(25.61%), indicating that large unary operations
may lead to over-complex proxies.

5 Conclusion

In this paper, we present the LPZero framework, an
innovative approach for discovering proxies for lan-
guage models without involving extensive training
or expert intervention. Our approach encompasses
the design of a comprehensive search space, captur-
ing a wide array of existing ZC proxies. Utilizing
an Evolutionary Algorithm, we efficiently unearth
promising ZC proxies within this space. To expe-
dite the search, we implement a Predictive-Pruning
Strategy, eliminating less promising proxies early
in the process. To verify the effectiveness of our
LPZero, we conduct experiments on FlexiBERT
and GPT-2 search space to measure the ranking
consistency of the searched proxy. Experimental
results demonstrate that our LPZero have better
ranking ability compared with previous ZC prox-
ies, and surpass the baseline by a large margin. Our
findings pave the way for future explorations in
Zero-cost proxies for language models.



6 Limitations

This study undertakes a comprehensive review of
existing Zero-cost (ZC) proxies specifically tai-
lored for Transformer architectures, integrating
them into a unified framework for evaluation. By
benchmarking these ZC proxies within the Flex-
iBERT and GPT-2 search spaces, we rigorously
assess their ranking capabilities through Kendall’s
7 and Spearman’s p. This approach allows us to
present a systematic comparison of their effective-
ness in identifying promising language model ar-
chitectures without the need for extensive compu-
tational resources. Our evaluation focuses on the
architectural aspects of language models, aiming
to streamline the search process for efficient and
effective neural network designs.

However, it’s important to note that our research
primarily concentrates on the structural design and
optimization of language models, sidelining en-
hancements in specific functional areas such as
inference capabilities, logical analysis, advanced
language generation, nuanced natural language un-
derstanding, and the retrieval and integration of
knowledge. These critical components of language
model performance and applicability in real-world
applications are not directly addressed by our cur-
rent framework. Recognizing these gaps, we iden-
tify substantial opportunities for future research to
delve into these aspects. Expanding the scope of
Zero-cost proxy evaluation to include these func-
tionalities could significantly elevate the utility and
comprehensiveness of language models, offering
a more holistic approach to their development and
assessment in the field of artificial intelligence.

7 Ethics Statement

Our LPZero framework addresses the technical
development of language model architectures,
sidestepping direct ethical or social considerations.
Our work is likely to increase the adoption of NAS
in the NLP domain, providing an economic way to
perform estimation in language models.

Despite this focus, we recognize that the appli-
cation of our findings—aimed at reducing compu-
tational demands and streamlining language model
development—could intersect with broader ethi-
cal issues in natural language processing, such as
data privacy, algorithmic bias, and the potential
for misuse. We advocate for future research to in-
tegrate ethical considerations, scrutinize training
data sources for biases, and ensure the responsible

deployment of language models, acknowledging
their profound societal impact. We acknowledge
the significant capabilities and prospects offered
by artificial intelligence, particularly ChatGPT, in
refining written materials. As we utilize this tech-
nology to enhance paragraphs, we pledge to adhere
strictly to the utmost ethical guidelines, thereby
guaranteeing the preservation of integrity, the re-
spect of intellectual property rights, and the support
of inclusivity. It is important to clarify that our use
of ChatGPT is limited to the refinement of existing
content rather than the generation of new content
for the paper.
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A Additional Related Work

Activation Distance Activation Distance, specifi-
cally in the context of NWOT (Mellor et al., 2021),
leverages binary activation patterns to measure the
correlation between input data across ReLU (Rec-
tified Linear Unit) layers within a neural network.
This proxy is crucial for understanding how dif-
ferent inputs activate the network’s architecture,
providing insights into the diversity and richness of
the learned representations. The formula provided,

S = 3)

where Ky represents the kernel matrix, quantifies
the similarity (or distance) between activation pat-
terns. The determinant of the kernel matrix (| Kfz|)
captures the volume of the space spanned by the
activations, and taking its logarithm transforms this
volume measure into a more manageable scale.
Synaptic Saliency Synaptic Saliency, or Syn-
flow (Tanaka et al., 2020), is a criterion used to
identify the importance of parameters (weights) in
a neural network, aiming to approximate the impact
on the loss function when a specific parameter is
removed. This concept is framed within the equa-
tion,

log |[K'g|

oL

S—%QG “)

where 2 56 L denotes the gradient of the loss function
with respect to the parameters (), and © repre-
sents the Hadamard product, signifying element-
wise multiplication between the gradient and the
parameters themselves. This approach to quanti-
fying parameter importance is designed to prevent
layer collapse during the pruning process of net-
work training, ensuring that the pruning does not
disproportionately affect any single layer which
could result in significant performance degrada-
tion.

Jacobian Score Cosine The Jacobian Score Co-
sine (JSC) (Celotti et al., 2020) is a Zero-cost Proxy
designed to evaluate the sensitivity and stability of
neural network architectures with respect to their in-
put data. By analyzing the Jacobian matrix, which
represents the first derivatives of the network’s out-
puts with respect to its inputs, the JSC offers in-
sights into how small variations in the input can
affect the output, thereby assessing the network’s
robustness and generalization capability. The JSC
is computed using the following formula:

N

IS

=1

1
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where S denotes the Jacobian Score, IV is the num-
ber of inputs to the network, .J,, represents the Ja-
cobian matrix for the nth input, J¢ is the transpose
of J,, and I is the identity matrix. This equation
calculates the average cosine similarity between
the Jacobian vectors of all pairs of inputs, adjusted
by the identity matrix to normalize self—similarity,
and finally raised to the power of g to scale the
measure.

Synaptic Diversity The concept of Synaptic Di-
versity within the context of Training-Free Trans-
former Architecture Search (TF-TAS) (Zhou et al.,
2022) represents a novel approach towards evalu-
ating and selecting Vision Transformer (ViT) ar-
chitectures. By circumventing the need for exten-
sive training, this methodology significantly en-
hances computational efficiency in Transformer
Architecture Search (TAS). The TF-TAS scheme,
delineated in the studies by Zhou et al., employs
a modular strategy that assesses ViT architectures
through two theoretical lenses: synaptic diversity
and synaptic saliency, collectively referred to as the
DSS-indicator.

Synaptic Diversity, particularly in relation to
multi-head self-attention (MSA) modules of ViTs,
is instrumental in gauging the performance of these
architectures. This proxy evaluates the heterogene-
ity of synaptic connections by utilizing the Nuclear-
norm as an approximate measure for the rank of
weight matrices within MSA modules. A higher
Nuclear-norm indicates a greater diversity, which
suggests a potential for enhanced performance due
to the ability to encapsulate a broader spectrum
of features and relationships within the data. The
computation of Synaptic Diversity is formalized as
follows:

S = Z H (6)
Here S symbolizes the synaptic diversity score,
aW denotes the gradient of the loss function with
respect to the weights of the m-th MSA module,
and ||W,, |lnuc is the Nuclear-norm of the weight
matrix, serving as a proxy for the rank and thus the
diversity of the synaptic connections.
Hidden Covariance The Hidden Covariance proxy
provides a sophisticated means to analyze the be-
havior and interaction of hidden states within a spe-
cific layer of a Recurrent Neural Network (RNN)
when processing a minibatch of [V input sequences
X = {x,})_,. This proxy is particularly insight-

H © W e



ful for examining the internal dynamics and depen-
dencies of the hidden states across different time
steps or sequences. Given the hidden state matrix
H(X) for a minibatch, we first compute the covari-
ance matrix C' as follows:

C = (H-Mp)(H - Mp)T, (7)

where My is the mean matrix derived from the
hidden states, with its elements defined by:

N
(Mp)ij = % > Hin, ®)
n=1

indicating the average activation across the mini-
batch for each hidden unit. This step captures the
variance and covariance of the hidden states, high-
lighting the variability and correlation of activa-
tions in response to the input batch. Subsequently,
to normalize and interpret the covariance values,
we calculate the Pearson product-moment correla-
tion coefficients matrix R as:

Cij
VCiiCjj’
which standardizes the covariance matrix into a
correlation matrix R, providing a normalized mea-
sure of linear dependencies between pairs of hidden
units.

Building upon the framework established by
Mellor et al. (2021), the final proxy S(H) is de-

rived using the Kullback-Leibler divergence from
the eigenvalues of the kernel of R, computed as:

R;; = 9

N
1
(1) = =3 (1oa +0)+ 52 )
(10)
where Aq,..., Ay are the eigenvalues of R, and

k = 107° is a small constant added to stabilize the
logarithm and reciprocal operations.

Note that Hidden Covariance is designed for
RNN architectures, which means it is not work-
ing for Transformer-based networks. That is why
we don not report the performance of Hidden Co-
variance on FlexiBERT and GPT-2 search space.
Confidence The Confidence proxy (Serianni and
Kalita, 2023) quantifies the average maximum at-
tention (or activation) that a neural network layer,
specifically an attention mechanism, directs to-
wards the most significant features or tokens for a
set of inputs X . This is mathematically articulated
as:
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1 N
S — N Z max(Att(h, x,,))

n=1

(1)

In this expression, S symbolizes the average

maximal attention score across all instances within
the minibatch, where Att(h,z,,) signifies the at-
tention scores calculated for the n-th input by the
function h.
Softmax Confidence Softmax Confidence (Seri-
anni and Kalita, 2023) broadens the notion of Con-
fidence to scenarios where softmax scores, derived
from the softmax function o, are utilized to gauge
the network’s prediction certainty. The formulation
is given by:

(12)

Here, o(h, x,) computes the softmax probabilities
for the outputs related to the n-th input, and the
max operation selects the highest probability, de-
noting the model’s most confident prediction for
each input. The mean of these maxima across the
minibatch offers a measure of the overall prediction
confidence, valuable for assessing the certainty of
classification decisions by the model.

Importance The Importance proxy (Serianni and
Kalita, 2023) assesses the sensitivity of the cost
function C(X') with respect to the attention mech-
anism Atty, (X) for a given input set X. This sen-
sitivity analysis is crucial for understanding the
impact of changes in attention weights on the over-
all performance or cost of the neural network. The
Importance proxy is mathematically represented
as:

dC(X)

O0Att, (X)

This equation calculates the absolute value of the
derivative of the cost function relative to the at-
tention weights, quantifying the "importance" of
the attention mechanism in the network’s decision-
making process. A higher value suggests that minor
adjustments to the attention weights could lead to
significant changes in the cost, underscoring the
critical areas of the input that the network focuses
on.

SNIP (Single-shot Network Pruning) (Lee et al.,
2019) introduces a pruning criterion that can be
applied early in the training process, even before
the actual training commences. It is predicated on
the sensitivity of the loss function £ with respect to

(13)




each parameter #, modulated by the parameter val-
ues themselves. The SNIP criterion is formulated
as:

0

L

S(0) = ’6969‘ (14)

Here, the operation © denotes the element-wise
product. This expression evaluates the absolute
value of the gradient of the loss function with re-
spect to the parameters, weighted by the parame-
ters themselves. This criterion aids in identifying
parameters that have minimal impact on the loss
function, allowing for their pruning to streamline
the model architecture without significantly com-
promising performance.
GraSP (Gradient Signal Preservation) (Wang
et al., 2020) introduces a pruning methodology
aimed at preserving the gradient flow throughout
the network’s architecture. This strategy identifies
and eliminates parameters that have the least effect
on the gradient flow, thus minimizing their impact
on the network’s ability to learn. The GraSP crite-

rion is quantitatively defined by the equation:

Jor

In this formulation, S(#) denotes the pruning
score assigned to each parameter 6, reflecting its
significance in maintaining effective gradient flow
within the network. The term H represents the
Hessian matrix, which consists of the second-order
derivatives of the loss function £ with respect to
the parameters, while %—g is the gradient of the
loss with respect to the parameters. The operation
© signifies element-wise multiplication, and the
negative sign indicates that parameters which con-
tribute negatively to the gradient flow—and there-
fore potentially hinder learning—are prioritized for
removal.

The principal insight of GraSP is its emphasis on
the Hessian-gradient product, which offers a mea-
sure of the influence of parameter changes on the
curvature of the loss landscape and, subsequently,
on the dynamics of model training. By focusing on
preserving parameters critical for the integrity of
gradient flow, GraSP enables network pruning in a
manner that is less likely to degrade performance.

In this paper, we have chosen not to incorporate
the Hessian Matrix as part of our analysis due to
its computationally intensive nature. However, it
is worth noting that excluding considerations of

oL

5(0) = — <H89 (15)
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computational load, the inclusion of the Hessian
Matrix could potentially enhance performance sig-
nificantly.

LogSynflow (Cavagnero et al., 2023) introduces a
nuanced variation to the conventional pruning crite-
ria by applying a logarithmic transformation to the
gradients’ magnitude. This adjustment is intended
to enhance the pruning strategy by ensuring a more
nuanced evaluation of parameter importance, espe-
cially for those with small but significant gradients.
The LogSynflow criterion is mathematically ex-
pressed as:

S(6)=6-

oL
ET (16)

o

log ‘

In this equation, S(6) represents the score as-
signed to each parameter ¢ based on its importance,
where ‘g—g denotes the gradient of the loss func-
tion £ with respect to the parameters. The use of
the absolute value of the logarithm of the gradient
magnitude aims to highlight the significance of pa-
rameters that might otherwise be overlooked due
to their relatively small gradient values. By multi-
plying these logarithmic values by the parameters
themselves, LogSynflow prioritizes the retention of
parameters that are integral to the network’s abil-
ity to learn, thereby facilitating a more informed
pruning process that minimizes the loss of critical
information.

B Predefined Criteria in PPS

In mathematics, understanding the relationships
between various operations significantly impacts
the LPZero search space. Table 6 summarizes the
relationships among a set of operations, catego-
rizing them based on their mathematical interac-
tions. These relationships include inverse functions,
derivatives, equivalence, special cases, and poten-
tial conflicts when certain operations are combined.
This overview helps in recognizing how operations
can complement or conflict with each other, thereby
providing support for PPS.

C Correlation of Rank

As a complement to the visualization of
ranking correlation, we follow LiteTransform-
erSearch (Javaheripi et al., 2022) and provide visu-
alizations of GLUE Score Ranking and ZC Proxies
Ranking. It can be observed that potential proxies
are capable of dividing the candidate models into



OP1 OP2 Relationship Description
log exp Inverse e” and log(x) are inverse functions.
abs abs(log) Derivative Absolute value operation applied to log.
square sqrt Inverse Squaring and square root are inverse operations.
ReLU identity Special case ReLU acts as identity for x>0.
inverse identity Inverse for non-zero Multiplicative inverse operation.
norm_sum average Equivalent Norm sum divided by count is average.
softmax log_softmax Derivative Log softmax is the logarithm of softmax.
sigmoid logistic function Equivalent Sigmoid is also known as the logistic function.
min-max scaling normalization Type Min-max scaling is a type of normalization.
standard deviation variance Square root Standard deviation is the square root of variance.
L1-norm abs Generalization L1-norm is a sum of absolute values.
F-norm Euclidean norm Equivalent Frobenius norm for matrices, Euclidean norm for vectors.
-0 log Conflict Negation followed by log leads to undefined result for positive inputs.
-0 sqrt Conflict Negation followed by sqrt leads to undefined result for positive inputs.
identity (if zero) inverse Conflict Identity ensuring zero input followed by inverse leads to division by zero.
-() (for positive) sqrt Conflict Negation of positive numbers followed by sqrt is undefined.

Table 6: Summary of Predefined Criteria

two clusters at least through ranking. This further
demonstrates the robustness of our LPZero results.

D Details of Search Space
D.1 Details of FlexiBERT

The table 7 provides a detailed overview of the Flex-
iBERT search space, highlighting the diverse range
of hyperparameters available for tuning. FlexiB-
ERT, designed to explore architectural variations
within the BERT model framework, allows for con-
figurations that span the specifications of BERT-
Tiny and BERT-Mini. Key architectural elements
are outlined along with their corresponding hy-
perparameters values, including hidden dimension
sizes, the number of encoder layers, types of at-
tention operators, and more. Notably, the hidden
dimension and the number of encoder layers are
consistent across the architecture, whereas other pa-
rameters vary across encoder layers, introducing a
high degree of flexibility and customization. The ta-
ble also specifies the conditions under which differ-
ent attention operation parameters are applied, de-
pending on the type of attention operator selected.
With a total of 10,621,440 possible architectures,
this search space represents a comprehensive frame-
work for exploring and identifying efficient model
configurations within the BERT architecture spec-
trum.

D.2 Details of GPT-2

Table 8 delineates the expansive search space lever-
aged for the GPT-2 architecture optimization, out-
lining a comprehensive set of hyperparameters tar-
geted in the exploration process. It includes the
number of layers (nlayer), representing the depth of
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the transformer model; the dimensionality of model
embeddings (dmodel), indicative of the scale and
capacity of the model; the inner dimension of the
feed-forward networks (dinner), a critical parame-
ter for the model’s ability to process and integrate
information within each transformer layer; the num-
ber of attention heads (nhead), which impacts the
model’s ability to focus on different parts of the in-
put sequence; and the dimensions of adaptive input
embeddings (dembed) along with their associated
scaling factors (k), parameters that offer a novel
approach to managing input representation com-
plexity and efficiency. A noteworthy aspect of this
search space is the adaptive setting of the dinner
parameter, which is dynamically adjusted to be at
least twice the dmodel size, a heuristic introduced
to mitigate the risk of training collapse by ensuring
a sufficient capacity in the feed-forward networks.

E Ablation Study of Unary

Figure 13 illustrates an ablation study that inves-
tigates the performance of systems with varying
unary operations. It presents four graphs, each plot-
ting performance metrics in 100 iterations for sys-
tems with two to five unary operations. The study
finds that the system with two unary operations
achieves and maintains the highest *Best SP’ score,
indicating stable, optimal performance. Systems
with more than two unary operations show more
fluctuations in 'Best SP” and a lower Spearman
rank correlation, suggesting that additional oper-
ations may lead to over-complexity and reduced
performance. Thus, the optimal number of unary
operations for this system is two, balancing com-
plexity and performance.
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Figure 8: Correlation of training-free proxies ranking with GLUE Ranking on 500 architectures randomly sampled
from FlexiBERT Search Space.

Architecture Element Hyperparameters Values
Hidden dimension {128, 256}
Number of Encoder Layers {2,4}
Type of attention operator {self-attention, linear transform, span-based dynamic convolution}
Number of operation heads {2, 4}
Feed-forward dimension {512, 1024}
Number of feed-forward stacks {1, 3}

if self-attention {scaled dot-product, multiplicative}
Attention operation parameters if linear transform {discrete Fourier, discrete cosine }

if dynamic convolution convolution kernel size: {5, 9}

Table 7: The FlexiBERT search space, with hyperparameter values spanning those found in BERT-Tiny and BERT-
Mini. Hidden dimension and number of encoder layers is fixed across the whole architecture; all other parameters
are heterogeneous across encoder layers. The search space encompasses 10,621,440 architectures.

Architecture Element Hyperparameters Values
Number of Layers (nlayer) {2,3,...,16}
Model Dimension (dmodel) {128,192, ...,1024}
Inner Dimension (dinner) {256, 320, ..., 4096 }
Number of Attention Heads (nhead) {2,4,8}
Adaptive Input Embedding Dimension (dembed) {128,256, 512}
Adaptive Input Embedding Factor (k) {1,2,4}

Table 8: The GPT-2 search space, covering a broad spectrum of architectural configurations. Once a model
dimension (dmodel) is chosen, the minimum inner dimension (dinner) is set to twice the value of dmodel to avoid
training collapse. This adaptive approach ensures a wide range of effective and efficient architectures, summing up
to more than 10°* unique configurations.
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Figure 9: Two Unary Operations.
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Figure 11: Four Unary Operations.
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Figure 10: Three Unary Operations.
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Figure 12: Five Unary Operations.

Figure 13: Ablation Study of the Number of Unary Operations.
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