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Abstract

One-shot federated learning often suffers from degraded
performance under heterogeneous client data. To address
this, we propose a task arithmetic-based knowledge integra-
tion method that applies anisotropic scaling. We optimize
the scaling coefficients via knowledge distillation leverag-
ing training data and ensemble outputs of local models.
Using a ResNet-18 pre-trained on ImageNet-1K, we evalu-
ate our method on CIFAR-10, CIFAR-100, and SVHN, each
split according to a Dirichlet distribution. Our method out-
performs the baseline across varying heterogeneity levels
and achieves high accuracy with minimal training time.

1. Introduction

In many real-world scenarios, data remain distributed across
multiple organizations and cannot be centralized due to pri-
vacy regulations and data-transfer costs. This situation has
motivated the development of federated learning (FL) [20],
which enables collaborative training without sharing raw
data. In FL, clients train local models on private data and
transmit only model updates to a central server, which ag-
gregates them into a global model.

However, FL faces a challenge when client data are
highly non-i.i.d., known as data heterogeneity, where lo-
cal updates diverge and degrade global performance. To
address this, various methods have been proposed. For ex-
ample, FedProx [17] and SCAFFOLD [12] mitigate param-
eter drift during local training, and MOON [15] introduces
arepresentation-alignment loss that encourages consistency
between local and global feature space. Although effective,
these methods require multiple rounds of communication to
correct client-side biases, thereby increasing both commu-
nication overhead and local computation costs.

Therefore, correcting data heterogeneity in a single com-
munication round, known as one-shot federated learning
[7], remains challenging. One prominent line of work
is knowledge distillation-based approaches [3, 6, 14, 29],
which compress models while minimizing client-side com-
putation. These methods train the global model on the
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Figure 1. In parameter block-wise OFASD, task vectors 7 are
computed for each parameter block (highlighted layers), their scal-
ing factors A are independently optimized via knowledge distilla-
tion, and the global model is composed as a weighted average of
the task vectors using these optimized scaling factors.

server by using the ensemble of local outputs as teacher sig-
nals to integrate client knowledge. Distilling the ensemble
into a global model with the same architecture should, in
theory, match its accuracy, but a clear gap remains.

To close this gap, we focus on interference during the
integration of heterogeneous local models and reduce it
by proposing anisotropic scaling of task vectors. This ap-
proach is illustrated in Fig. 1. Each task vector is defined
as the difference between model parameters before and af-
ter local training. Subsequently, we introduce scalar coeffi-
cients that are optimized anisotropically, either per task vec-
tor or per parameter block. By directly aggregating param-
eter differences, our method enables more detailed knowl-
edge transfer while mitigating interference among hetero-
geneous clients. Moreover, since only the fine-tuned local
parameters are required, our approach adds no extra com-
munication overhead.

To assess the impact of our approach on global model
accuracy, we integrate it into a one-shot federated learn-
ing method based on knowledge distillation. We use a
ResNet-18 pre-trained on ImageNet as the backbone and



evaluate classification accuracy across multiple datasets un-
der varying degrees of data heterogeneity. Experimental re-
sults demonstrate that incorporating task arithmetic consis-
tently enhances accuracy and produces a global model with
greater stability and precision.

2. Related Work
2.1. One-Shot Federated Learning

In one-shot federated learning, client—server communica-
tion is limited to a single round to reduce overhead. Ex-
isting methods under this setting are commonly categorized
into four main types: (i) knowledge distillation approaches
[6, 7, 14], (i) generative model-based approaches [2, 9, 27],
(iii) ensemble learning approaches [1, 5], (iv) hybrid meth-
ods that combine these techniques [3, 19, 29].

Knowledge Distillation-Based Approaches: Knowledge
distillation-based approaches have each client run a shared
unlabeled dataset through its locally trained model and use
the ensemble outputs as soft labels for global model training
[6, 7, 14]. These approaches incur minimal computational
overhead on clients and enable server-side model compres-
sion, unlike generative model-based techniques [2, 9, 27].
However, their effectiveness depends on the public dataset’s
relevance: low-quality or domain-mismatched data can de-
grade predictive performance [18, 23].

Generative Model-Based Approaches:  Generative
model-based approaches either train generators locally
on each client [9] or rely on large pretrained generative
models [2, 27]. These models generate pseudo-data that
are transmitted to the server for global model training,
avoiding the need for any public dataset. This advantage
comes at a cost. Training a local generator requires more
memory and computation than a standard classification
model. Moreover, since raw local data are used to train
these generators, the resulting models or their outputs may
leak sensitive information.

Ensemble Learning Approaches: Ensemble learning ap-
proaches [1, 5] perform inference on the server by aggre-
gating logits from all client models, using either equal or
weighted averaging to produce the final prediction. Al-
though this strategy fully exploits each model’s knowledge,
its memory consumption and inference latency on the server
grow linearly with the number of clients. As discussed
above, each approach has its own limitations. To overcome
the limitations, recent work has explored hybrid strategies
that combine multiple techniques [3, 19, 29].

2.2. Federated Learning and Task Arithmetic

Tao et al. [24] reformulate a single communication round of
Federated Averaging (FedAvg) as task arithmetic, demon-
strating equivalence in the update equations. They then
provide a theoretical analysis that quantifies the error in-

duced by data heterogeneity and proposes mitigation strate-
gies by integrating existing federated learning algorithms.
This work establishes a formal connection between task
arithmetic and federated learning, laying a theoretical foun-
dation for subsequent research.

Morafah et al. [21] observe that in federated learning
environments with heterogeneous model capacity and data
volume, standard knowledge distillation tends to suppress
the logits of stronger models when aggregated with weaker
ones. To address this, they introduce the TAKFL frame-
work, which treats each device’s distillation output as a sep-
arate task. These tasks are then adaptively fused via task
arithmetic to achieve optimal knowledge integration. While
TAKFL addresses cross-device heterogeneity, our study fo-
cuses on one-shot federated learning among clients with
identical architectures, targeting a complementary problem
setting.

3. Proposed Method

We propose One-Shot Federated Anisotropic Scaling Distil-
lation (OFASD), a task arithmetic—based method designed
for one-shot federated learning under data heterogeneity.
In this study, data heterogeneity refers to the variation in
class distribution across clients [16, 26]. While the data ag-
gregated over all clients covers all classes sufficiently, in-
dividual clients may lack examples of certain classes due
to skewed label proportions. This imbalance can degrade
global model accuracy and slow convergence.

The next subsection reviews task arithmetic and intro-
duces OFASD, which combines anisotropic scaling of task
vectors with one-shot distillation to address these issues.

3.1. Task Arithmetic

Task arithmetic begins with a pre-trained model and com-
putes, for each task, a task vector as the difference between
the pre-trained and fine-tuned parameters. These task vec-
tors are then added back to the pre-trained parameters to
adjust the model.

Let the model f(x; @) map an input € X to an output
y € ), given parameters 6 € ©. Let 6, denote pre-trained
parameters, and let 6;,¢t = 1,2,...,7T, be the parameters
after fine-tuning on task ¢. We then define the ¢-th task vec-
tor as

Tt = 9,5 - 00. (1)

By combining these vectors linearly with scalar coeffi-
cients A\; € R, we obtain the model f(-; 8y + ZtT:l AtTt),
which achieves strong performance on each task. The coef-
ficients \; are either selected by grid search [11] or learned
directly as model parameters [25, 28], enabling effective
interference-aware knowledge integration.



3.2. One-Shot Federated Anisotropic Scaling Distil-
lation (OFASD)

In the one-shot federated setting, we propose OFASD,
which applies anisotropic scaling via task arithmetic to fuse
knowledge from local models more effectively. OFASD
achieves more precise knowledge integration than standard
global aggregation. This improvement is achieved by op-
timizing scalar weights for each task vector or parameter
block, guided by the ensemble prediction.

A key observation underlying OFASD is that the output
of the model with the average task vector is approximately
equal to the ensemble prediction to first order:
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This implies that averaging task vectors approximates the
ensemble prediction to first order. However, due to higher-
order effects, the actual outputs can differ significantly.
OFASD mitigates this discrepancy by optimizing task vec-
tor coefficients to better align with the ensemble prediction
beyond the linear approximation (see Appendix A for the
derivation and Appendix B for optimization details).

To enable finer-grained knowledge integration, we split
each task vector 7 into B disjoint parameter blocks and as-
sign an independent scaling coefficient to each block. We
refer to the case without partitioning as client-wise, and
the case with partitioning as parameter block-wise. We
adopt the same parameter partitioning strategy as aTLAS
[28], grouping parameters by weight and bias within con-
volutional, fully connected, and batch normalization layers
using functorch’s make_functional with buffers.
The global model is then constructed by adding as scaled
task vectors or parameter blocks to the pre-trained parame-
ters. To stabilize training, each vector or block is normal-
ized to unit norm before scaling. Algorithm | summarizes
the optimization procedure, where ||-|| denotes the {5 norm
and KL(+||-) is the Kullback—Leibler divergence.

4. Experiment

We conducted comparative experiments in a one-shot feder-
ated learning setup to evaluate the effectiveness of OFASD.
To this end, we integrated OFASD into DENSE [29],
a representative ensemble-distillation framework for one-
shot federated learning. In DENSE, a generator on the
server feeds synthetic data into the global model, which
is trained using the ensemble of local model outputs as

Algorithm 1 OFASD: One-shot Federated Anisotropic
Scaling Distillation

Require: Pre- trained parameter 00, Local model pa-
Training dataset D Number of chents K Nurnber of pa-
rameter blocks B, Learning rate n

Ensure: Updated coefficients {)\,(Cb)}b=17..,, B, k=1
for kinl,..., K do

Compute task vector: 73, < 0 — 0

Decompose into parameter blocks: {T,Eb)} — T

end for

for sampling batch Dy, in D do
/I Construct global model from task vectors
Initialize: 8, < 6y

for each (k,b) withk =1,...,
b ‘r()
0, + 6, +)\()H Qr

end for

L+ \D | ZZ:EDI) KL (Fens ( {Ok}k 1) I[f (x;6y))
// Update anisotropic scaling coefficients
for each (k,b) withk =1,...,K,b=1,...,Bdo

b
A A

K,b=1,...,Bdo

end for
end for ,
return {/\5£ )}bilwa’ k=1,....K

teacher signals. The generator is optimized using three
loss terms: (i) ensemble mimicry (similarity), (ii) real-data
statistics matching (stability), (iii) global-model differenti-
ation (transferability) (see [29] for details). Detailed exper-
imental settings are described below.

4.1. Experimental Setup

Datasets: We evaluated on three widely used real-image
datasets for federated learning: CIFAR-10 [13], CIFAR-
100 [13], and SVHN [22]. To simulate data heterogeneity
across clients, we partitioned each dataset using a Dirich-
let distribution [16, 26, 29]. Letting C' denote the number
of classes, for each class ¢ € 1,...,C we sampled a K-
dimensional probability vector p. ~ Dir(«), and assigned
a fraction p, i, of class—c samples to client k. Lower o yields
stronger label skew across clients.

Evaluation Metric: We report the test accuracy of the
global model. For each method and heterogeneity level, we
performed three trials with different random seeds and re-
port the mean =+ standard deviation.

Model Architecture: Each client uses a ResNet-18 [8]
from PyTorch’s torchvision, initialized with pretrained
weights from ImageNet-1K [4].

Compared Methods: We compare OFASD against the fol-
lowing baselines. First, we consider two non-distillation



Table 1. Comparison of predictive accuracy across methods. Mean accuracy =+ standard deviation is reported; within each row, the best

result is highlighted in bold and the second-best is underlined.

Accuracy (%)
@ Weight Average Ensemble .DENSE . . . OFASD .
w/o pretrain w/ pretrain client-wise ~ parameter block-wise
0.01 10.00 £ 0.01 16.46 £0.73 | 13.06 £2.45 14.494+2.59 11.76 +£0.52 17.01 £0.80
CIFARI0 0.05 10.79 £ 0.62 32.73+£3.47 | 28.44+1.47 30.56£2.15 23.71+4.31 36.54+6.11
0.1 17.86 £ 6.82 48.98 +1.14 | 36.91 £4.02 4243+1.31 40.15+6.67 55.21+1.75
0.5 38.78 £20.72 75.78 +£1.04 | 46.39+2.25 53.65+2.33 67.40 £ 1.96 73.914+1.18
0.01 2.48 £0.59 28.57+0.75 | 1446 +090 1829+2.04 1243+£1.02 17.31 £1.02
CIFAR100 0.05 3.13£0.49 30.01 +1.81 | 14.30+2.16 1820+2.14 1758 £1.76 21.57 £ 0.67
0.1 2.26 £1.78 32.514+0.87 | 1590 +1.20 19.43+0.29 18.25+£2.29 24.52 +0.03
0.5 5.49 £ 2.53 43.43+0.22 | 16.54+1.22 20.85+£0.59 31.47£1.57 35.55 £+ 0.25
0.01 15.96 + 4.65 20.734+£1.26 | 16.02+1.03 18.89+3.55 16.66 £ 2.85 22.11+5.33
SVHN 0.05 15.95 £ 3.99 30.04 £4.81 | 29.25+3.51 34.63+3.39 23.30£5.16 28.03 £ 7.44
0.1 14.25 £ 3.30 51.74 £7.69 | 43.07+5.66 47.91+£857 35.79£8.99 52.38 +11.23
0.5 31.60 £ 9.89 83.18 £1.39 | 56.97+3.15 65.98+£2.15 74.30£1.22 83.33+0.75

Accuracy (%)

—— OFASD (parameter block-wise)
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Figure 2. Accuracy progression during global model training on
CIFAR-10 (e = 0.5) for each method. Solid lines indicate the mean
accuracy, and shaded bands show mean + one standard deviation.

methods: Weight Average, which simply averages client
parameters, and Ensemble, which averages predictions
from local models. As a distillation-based baseline, we
adopt DENSE [29], evaluated with two different global
model initialization: random parameters (w/o pretrain) and
ImageNet-pretrained parameters (w/ pretrain).

Training Details: We simulate K = 10 clients. Each local
model trains for 50 epochs using SGD with a learning rate
of 0.01, a momentum of 0.9, and a batch size of 128. The
synthetic-data generator is trained following the procedure
described in [29].

4.2. Results

Tab. 1 reports mean accuracy + standard deviation for each
dataset and heterogeneity level. As described in Sec. 3,
Weight Average is defined as the simple average of local
model weights, which corresponds to combining the pre-
trained model with the mean task vector. Weight Aver-
age and Ensemble share the same linear term. However,

their predictive accuracies diverge markedly, indicating that
matching linear components alone is insufficient to capture
the full benefit of ensembling.

OFASD variants consistently achieve higher accuracy
than the DENSE baseline, except for two cases: CIFAR-
100 with o« = 0.01 and SVHN with a = 0.05. The largest
gains occur under relatively mild heterogeneity. Moreover,
OFASD often surpasses the output-ensemble method (En-
semble), potentially due to the same phenomenon reported
in LoRA research [10], where restricting parameter updates
to a low-dimensional subspace helps mitigate overfitting.

Fig. 2 (CIFAR-10, o = 0.5) plots the accuracy over
training epochs for DENSE (w/ and w/o pretrain) and
OFASD (client-wise and parameter block-wise). OFASD
exceeds 60% accuracy after just one epoch, already out-
performing DENSE even after 200 epochs. In addition,
the parameter block-wise variant shows the lowest epoch-
to-epoch variance, indicating the most stable global model
convergence.

5. Conclusion

We propose OFASD, a one-shot federated learning method
that integrates task arithmetic with anisotropic scaling.
OFASD achieves higher accuracy than both simple averag-
ing and prior distillation methods, without incurring any ad-
ditional training cost or longer global training time. These
results highlight the effectiveness of fine-grained task vec-
tor aggregation in improving knowledge integration under
data heterogeneity. OFASD’s anisotropic scaling coeffi-
cients are optimized for a fixed client set and must be re-
calibrated when the number of participants changes. Future
work will explore zero-shot task arithmetic to build high-
accuracy global models regardless of client count.
Acknowledgements. This work was supported by JSPS
KAKENHI Grant Number JP23K24914
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