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Abstract

A fundamental issue in machine learning is the
robustness of the model with respect to changes in
the input. In natural language processing, models
typically contain a first embedding layer, trans-
forming a sequence of tokens into vector repre-
sentations. While the robustness with respect to
changes of continuous inputs is well-understood,
the situation is less clear when considering dis-
crete changes, for instance replacing a word by
another in an input sentence. Our work for-
mally proves that popular embedding schemes,
such as concatenation, TF-IDF, and Paragraph
Vector (a.k.a. doc2vec), exhibit robustness in
the Hölder or Lipschitz sense with respect to
the Hamming distance. We provide quantitative
bounds for these schemes and demonstrate how
the constants involved are affected by the length
of the document. These findings are exemplified
through a series of numerical examples.

1. Introduction
Recent advances in natural language processing (NLP) have
exceeded all expectations. In particular, the advent of large
language models such as BERT (Devlin et al., 2018) and
GPT (Brown et al., 2020) are transforming radically the
way we interact with computers. They typically rely on a
deep neural network (DNN) architecture and are trained on
a variety of tasks such as sentiment analysis, translation,
and text summarization.

A known issue with DNNs is the existence of adversarial
examples: examples modified in order to radically change
the output of the model. Initially popularized in the context
of image classification (Szegedy et al., 2014), such exam-
ples also exist in NLP and a flourishing literature exists on
this topic (Zhang et al., 2020). This problem has sparked

1Université Côte d’Azur, CNRS, LJAD, France 2Inria,
France 3CNRS, France. Correspondence to: Damien Garreau
<damien.garreau@unice.fr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

a tremendous interest into the robustness of models with
respect to small changes in the input. In this paper, we focus
on the robustness of the vectorization NLP pipelines: the
transformation of the input document into a vector represen-
tation. We will consider documents as ordered sequences
of tokens, not necessarily corresponding to words. For
instance, GPT 2 uses Byte Pair encoding (Gage, 1994; Sen-
nrich et al., 2016), which relies on tokens corresponding to
sub-words.

As far as we reckon, there are essentially three main schools
of thought when it comes to vectorization:
(i) concatenation of vectors corresponding to each token
of the document. These vectors are often called word vec-
tors when the tokens are individual words. They can ei-
ther be one-hot representations of the tokens, or obtained
by a mapping learned from data. A celebrated approach
to produce word vectors is word2vec (Mikolov et al.,
2013a;b), which transports semantic properties to the em-
bedding space. Many other methods exist, such as GloVe
(Pennington et al., 2014), EMF (Li et al., 2015), WordPiece
(Wu et al., 2016), FastText (Bojanowski et al., 2017), and
ELMo (Peters et al., 2018). Positional information is typi-
cally added to the token embeddings.
(ii) TF-IDF (term frequency - inverse document fre-
quency), taking words as tokens and simply considering the
frequencies of each individual word in the document. These
frequencies are reweighted by an overall importance term to
take into account the lesser importance of frequently appear-
ing words such as articles. This is the historical approach to
text vectorization (Luhn, 1957; Jones, 1972).
(iii) ad hoc approaches. Notably, Paragraph Vector (also
known as doc2vec (Le & Mikolov, 2014)) extends the
ideas of word2vec. Although we will focus on doc2vec
in this work, we emphasize that there exists other ad hoc ap-
proaches, such as skip-thought vectors (Kiros et al., 2015),
quick-thought (Logeswaran & Lee, 2018), or universal sen-
tence encoder (Cer et al., 2018).

A priori, vectorizers are not designed to be robust to small
changes. Even when modifying a single word of the input
document, the embedding could change drastically. Thus,
we ask the following question:

Are text vectorizers provably robust with respect
to modifying a small subset of the document?
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Typical notions of robustness in machine learning deals with
continuous input data: changing slightly the observation
means that for instance its ℓ2-norm evolves infinitesimally.
The challenge of our analysis is the fundamentally discrete
nature of text data. Changing a word in a document is
usually not innocuous – one can think of extreme cases
where the meaning of this word is flipped – and vectorizers
sensitive to the semantics of input documents should capture
this phenomenon. Nevertheless, we show that the answer is
positive for all vectorizers that we study. Another difficulty
is that the mathematical formalization of some of these
vectorizers was not the main concern of the community. A
necessary first step is thus to give an unequivocal definition
of our objects of interest.

Contributions. In this paper, we analyze the robustness of
vectorizers as their local regularity (Lipschitz, Hölder) with
respect to the Hamming distance (Section 2). We prove:
• the 1/2-Hölder continuity of concatenation of token and
positional embeddings (Proposition 3.1);
• the Lipschitz continuity of TF-IDF (Proposition 4.1), and
the 1/2-Hölder continuity of it normalized variant (Proposi-
tion 4.2);
• the Lipschitz continuity of doc2vec (Theorem 5.1). As
a necessary step to derive the latter, we make two new math-
ematical contributions (see Appendix), we propose:
• a local Lipschitz analysis of the softmax (Theorem H.6);
• a Grönwall–Bellman–Bahouri result (Theorem G.1)
needed when casting the doc2vec analysis as an ODE
problem. The code for all experiments of the paper
is available at https://github.com/dgarreau/
vectorizer-robustness.

Related work. (Adversarial examples). A major motiva-
tion for studying robustness is its impact on the existence
of adversarial examples. In the case of DNNs, robustness
often means Lipschitz continuity with respect to the inputs.
For instance, one can show that a network having a small
Lipschitz constant prevents the existence of small adver-
sarial changes. More precisely, Hein & Andriushchenko
(2017) provide a lower bound on the norm of the input ma-
nipulation needed to change the classifier decision inversely
proportional to the Lipschitz constant of the network. This
was later extended by Weng et al. (2018b) to DNNs with
ReLU activations. Quantitatively, Weng et al. (2018a) show
that fully connected layers have a Lipschitz constant poten-
tially as large as the operator norm of the weight matrix.
From a practical point of view, it has also been noticed that
enforcing the Lipschitz constants of the layers to remain low
does improve the robustness (Cisse et al., 2017).
(Generalization & interpolation). It is known that robust
algorithms generalize better. In particular, Xu & Mannor
(2012) derive generalization bounds for generic algorithms
depending in their robustness. The definition of robustness

here includes Lipschitz continuous DNNs. More recently,
Bubeck & Sellke (2021) extending (Bubeck et al., 2020)
showed that in order to train Lipschitz continuous models,
one has to take a large number of parameters.
(Theory of vectorizers). Surprisingly, the robustness of vec-
torizers received little attention until now on the theoretical
side, and all previous works on robustness assume continu-
ous input. Nevertheless, there exist some theoretical works
on similar problems. Most notably, Arora et al. (2016) an-
alyze a large class of word vectorizers and explain how
the intriguing alignment properties observed experimentally
appear.

Notations. For u ∈ Rp, we denote by ∥u∥ its Euclidean
norm. Let g : R× Rd → R be a function. The derivative in
the time variable (µ) is denoted by ∂µg whereas ∇g (resp.
∇2g) denotes the Jacobian (resp. the Hessian) of g in the
space variable. We let 1 = (1, . . . , 1)⊤ ∈ Rd. For a matrix
R, σmin(R) is its smallest singular value. For a given set S ,
|S| is its cardinal.

2. Framework
Let us now present the mathematical framework in which
we perform our analysis. We consider tokens from a finite
dictionary D, identified as [D] := {1, . . . , D}. A document
x built on D is a finite sequence of elements of D, and we
write [D]∗ for the set of all documents. Thus the central
object of our work, a vectorizer, is simply a mapping φ :
[D]∗ → Rd, where d is the dimension of the embedding.
The length of x will be denoted by T (x), and therefore x
can be written as (x1, . . . , xT (x)). The set of all documents
over D of length T will be denoted [D]T ⊂ [D]∗. When
there is no ambiguity, we remove the dependency in x from
our notation, e.g., T (x) becomes T .

As discussed in the related work, robustness is often syn-
onym with Lipschitz continuity of the model – distance
between outputs lies within a constant factor of the distance
between inputs. As distance between input documents x
and x̃ of same length, we consider the Hamming distance,
which is the number of indices such that xt and x̃t differ:

dH(x, x̃) := |{t ∈ [T ] : xt ̸= x̃t}| .

The distance between outputs will simply be measured by
the Euclidean norm in Rd. In definitive, for a given docu-
ment length T , what we call Lipschitz continuity of the
vectorizer φ can be written as

∀x, x̃ ∈ [D]T , ∥φ(x)− φ(x̃)∥ ≤ C dH(x, x̃) , (1)

where C is called the Lipschitz constant. Another way to
quantify robustness is to allow for an exponent in Eq. (1):

∀x, x̃ ∈ [D]T , ∥φ(x)− φ(x̃)∥ ≤ C dH(x, x̃)
β , (2)
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with 1 ≥ β > 0. This is known as Hölder continuity,
and coincides with Lipschitz continuity whenever β = 1.
While it is known that Lipschitz continuity implies Hölder
continuity on the real line when β ≤ 1, this is not the
case here, since dH takes values in N. Thus in our setting,
Lipschitz continuity is a weaker notion of robustness
than Hölder continuity.

Often we obtain more precise results, depending explicitly
on the set of indices such that the documents differ. To
this extent, for a given subset S of [T ], we define the set of
S-close documents BS(x) of x ∈ [D]T as

BS(x) = {x̃ ∈ [D]T : xi = x̃i for i ̸∈ S} .

Said alternatively, x̃ ∈ BS(x) if it is obtained by replacing
the tokens of x with indices belonging to S by arbitrary
tokens in D. We note thatBS(x) is a subset of the Hamming
ball of radius |S|. Let us consider for instance the document
x = “the quick brown fox” and the set of perturbed indices
S = {2, 3} Here, x has length T = 4, |S| = 2, and an
element of BS(x) is the document x̃ = “the slow blue fox.”

3. Warm-up: concatenation
Concatenation embeddings generally proceed by first map-
ping each token xt of x to a vector u(xt, t) ∈ Rd. In a
second step, these vector representations are concatenated
together to form φ(x). We assume that the representation
u(xt, t) can be written as

u(xt, t) = [ue(xt);up(t)] ∈ Rd , (3)

where ue ∈ Rde denotes vector representations of individual
tokens, while up ∈ Rdp encodes positional information, and
we define d := de + dp.

Token embeddings. As noted in the introduction, there
are essentially two widespread choices for ue: either use
sparse representations for individual tokens or use dense
representations. The first approach is often synonymous
with the use of one-hot encodings, hence considering the
mapping ue : j 7→ 1j as a building brick, where, for any
j ∈ D, we define 1j the j-th vector of the canonical basis
of RD. This has the advantage of simplicity. One caveat
is that, although sparse, one-hot vectors have dimensional-
ity de = D—the size of the dictionary. Regarding dense
embeddings, as discussed in the introduction, the mapping
j 7→ ue(j) is learned from data and can encompass some
semantic properties. In all these examples, ue(j) typically
has dimensionality de ≪ D (for instance, gensim takes
de = 100 in its word2vec implementation).

Positional embeddings. A common choice is to learn po-
sitional embeddings, jointly with token embeddings. It is
also possible to use deterministic positional embeddings,

such as one-hot vectors — up(t) = 1t ∈ RTmax , where
Tmax is a maximal document size, or more complicated
functions of t. For instance, the original transformers archi-
tecture uses a sinusoidal transformation of t as positional
embedding (Vaswani et al., 2017). Further, it is also possible
to incorporate additional positional information in the em-
bedding – for instance BERT incorporates segment position
information corresponding to the index of the sentence the
token belongs to (Devlin et al., 2018, Figure 2). Finally, one
can simply ignore up altogether, relying simply on the order
of the u(xt) to convey the positional information. Let us
note that when de = dp, one can add ue and up in Eq. (3)
instead of concatenating them, a possibility to which our
analysis is robust.

Concatenation. For a given u, the embedding φ(x) of a
document x is formed by concatenating the u(xt, t)s for
t ∈ [T ]. Formally, if T ≥ Tmax, then the concatenation
φ(x) of (x1, . . . , xT ) is defined as

φ(x) := [u(x1, 1); . . . ;u(xTmax
, Tmax)] ∈ RdTmax ,

and if T < Tmax, as (zero-padding),

φ(x) := [u(x1, 1); . . . ;u(xT , T ); 0; . . . ; 0] ∈ RdTmax .

Since the embedding is explicit in this case, it is straightfor-
ward to show the following:
Proposition 3.1 (Robustness of concatenation). Let x ∈
[D]T , S ⊆ [T ], and x̃ ∈ BS(x). Then

∥φ(x)− φ(x̃)∥ ≤ max
j ̸=k

∥ue(j)− ue(k)∥ ·
√
|S| ∧ Tmax .

In particular, for small perturbation of the input document,
concatenation is 1/2-Hölder with respect to the Ham-
ming distance. Closer inspection of the proof reveals that
the constant depends only on the perturbed tokens: if the
changes made are close from the point of view of ue, then
φ(x) and φ(x̃) remain close.

4. TF-IDF transform
Let x be a document of length T built on D. In this section,
we will assume that tokens correspond to individual words.
Forgetting the sequential nature of natural language, one
can simply look at the words appearing in x with repetitions
– this is informally called a bag-of-words representation.
Any given word j ∈ D appears in this representation with
multiplicity mj(x). The TF-IDF transform of x is a vector
φ(x) ∈ RD, with each coordinate of φ(x) corresponding
to a word of the dictionary. Component-wise, φ(x) is a
product of two terms: the term frequency fj and the inverse
document frequency vj :

∀j ∈ D,
{
fj :=

mj

T ,

vj := log |C|
|{z∈C s.t. j∈z}| ,

(4)
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where C is a set of documents. We will assume that vj > 0.
The exact expressions appearing in Eq. (4) can vary de-
pending on implementation, we use here the most common
definitions (in particular, they are the default choices used
by scikit-learn (Pedregosa et al., 2011)). The (non-
normalized) TF-IDF of x can be written φ(x)j = fjvj for
all j ∈ D. Intuitively, one wants to quantify the importance
of each word in the document, while ignoring common
words appearing in many documents such as articles. Fi-
nally, it is common to normalize φ(x), generally using the
Euclidean norm. We denote by ϕ(x) := φ(x)/ ∥φ(x)∥ the
normalized TF-IDF of x.

4.1. Robustness results

As we saw in the previous section, the TF-IDF transform of
a given document can be given in closed-form as a function
of the word multiplicities and the given coefficients. This
allows a simple analysis, at least in the non-normalized case.
Proposition 4.1 (Robustness of non-normalized TF-IDF).
Let x ∈ [D]T , S ⊆ [T ], and x̃ ∈ BS(x). Let mmax be the
maximal word multiplicity in x and vmax be the maximal
inverse document frequency over D. Then

∥φ(x)− φ(x̃)∥ ≤ 4mmaxvmax
|S|
T
.

In other words, non-normalized TF-IDF is Lipschitz con-
tinuous for the Hamming distance, with Lipschitz con-
stant inversely proportional to the common length of the
documents. In reality, the dependency in T is slightly more
complicated since nothing prevents mmax from being as
large as T in pathological cases (when all the words of the
document are identical). In any case, we uncover a satisfy-
ing fact about TF-IDF: small changes in long documents
do not matter much. Taking into account the normaliza-
tion, we have a similar result:
Proposition 4.2 (Robustness of normalized TF-IDF). Let
x ∈ [D]T . Let vmin be the minimal inverse document fre-
quency associated to the words of x. Let S ⊆ [T ] such that
|S| ≤ ∥φ(x)∥ /(4mmaxvmax) and x̃ ∈ BS(x). Then

∥ϕ(x)− ϕ(x̃)∥ ≤ 4m
1/2
maxv

1/2
maxD1/4

v
1/2
min

√
|S|
T
.

In plain words, normalized TF-IDF is 1/2-Hölder with
respect to the Hamming distance. Again, the constant
appearing decreases with the length of the base document.
A close inspection of the proof also reveals that the D is
actually equal to D(x), the size of the local dictionary.

4.2. Experimental validation

In order to check the accuracy of Proposition 4.2, we ran
some numerical experiments. We considered movie reviews
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Figure 1. Normalized TF-IDF, influence of T . Documents of in-
creasing length t, 5 random replacements. Proposition 4.2 gives a
bound in O(1/

√
T ).

from the IMDB dataset as documents and the TF-IDF imple-
mentation from scikit-learn with L2 normalization.

Influence of the document length. In a first set of ex-
periments, we investigated the behavior of ∥ϕ(x)− ϕ(x̃)∥
with respect to the length T of x. To this extent, for several
documents, we created a sequence of growing documents
by considering the first t words of the documents, with t
ranging from 5 to T . For each value of t, we replaced 5
words in the intermediary document and repeated this ex-
periment several time. The words to replace were chosen
uniformly at random in the document, and the replacements
uniformly at random in D, and we estimated the supre-
mum of ∥φ(x)− φ(x̃)∥ by taking the maximum over these
repetitions. Proposition 4.2 predicts that, since |S| is kept
constant here, the supremum of ∥φ(x)− φ(x̃)∥ over all pos-
sible replacements should be upper bounded by 1/

√
T (up

to numerical constants). This appears to be empirically true
(see Figure 1).

Influence of the number of removals. In a second
set of experiments, we looked at the dependency of
∥ϕ(x)− ϕ(x̃)∥ with respect to |S|. This time keeping x
fixed, we gradually increased the number of replaced words
from 1 to T . Since T is fixed, Proposition 4.2 predicts that
the supremum of ∥ϕ(x)− ϕ(x̃)∥ over all possible replace-
ments should behave at most as

√
|S|. This also appears to

be empirically true, see Figure 2.

5. Paragraph Vector (doc2vec)
We now turn to the most challenging part of our analysis,
doc2vec. On a high level, a token embedding matrix is
learned jointly with a document embedding matrix on a
corpus, aiming to predict correctly a missing token in a
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Figure 2. Normalized TF-IDF, influence of |S|. For a given docu-
ment, s words are replaced at random with s ranging from 1 to T .
Proposition 4.2 gives a bound in O

(√
|S|

)
.

given context. The key difference with other vectorizers is
that, at inference time, another minimization problem is
solved by the model. Different documents yield different
optimization problems, and therefore it is quite challenging
to see where the resulting minimizer is located with respect
to the original embedding.

5.1. A primer on doc2vec

The key idea underlying paragraph vector is neural proba-
bilistic language modeling (Bengio et al., 2000): predict
words of a document knowing (i) the context of the miss-
ing word in the document, and (ii) some global information
about the document, encoded as a vector q ∈ Rd. Thus the
key concept is the probability of observing word j at posi-
tion t given some context c(t) and vector q. This is written
informally as P (j|c(t), q), and we describe its exact formu-
lation in the next paragraphs. Two models are proposed in
Le & Mikolov (2014): distributed memory (PVDM) model,
similar to the continuous bag of words model of Mikolov
et al. (2013a), and distributed bag of words (PVDBOW)
model, similar to the skip gram model. We first focus on
the PVDM model, PVDBOW being a simplified version
thereof, referring to Figure 3 for a visual help.

Local information. For a document x with length T , for
any ν < t < T − ν, we define the neighborhood of t as

γ(t) := (t− ν, . . . , t− 1, t+ 1, . . . , t+ ν) . (5)

Here, ν is an hyperparameter often called context size (or
window size), quantifying the breath of the context consid-
ered by the model. To this neighborhood corresponds the
context

c(t) := (xt−ν , . . . , xt−1, xt+1, . . . , xt+ν) . (6)

Intuitively, c(t) corresponds to the tokens surrounding xt
in the document x. The tokens contained in c(t) are then
mapped to their one-hot representations, which are aggre-
gated together. There are two natural ways to do this, either
computing the mean (PVDMmean) or the concatenation of
these vectors (PVDMconcat). Thus, at this stage, the local
information at index t is summarized as a vector ht, with

ht :=
1

2ν

∑
s∈γ(t)

1xs ∈ RD

if average is used, and

ht := [1xt−ν ; . . . ;1xt−1 ;1xt+1 ; . . . ;1xt+ν ] ∈ R2νD

if concatenation is used (see bottom layer of Figure 3).

Projecting and lifting. This local information is then pro-
jected into Rd, with d≪ D, the embedding space. At this
stage, the document vector q ∈ Rd is added to the local
representation. This intermediary representation is lifted
back to RD. PVDM relies on two matrices P and R such
that each context is mapped to

yt := R(Pht + q) = πt +Rq ∈ RD ,

where πt := RPht ∈ RD. Here, P has size d × D for
PVDMmean, and d× 2νD for PVDMconcat, while R has
size D × d. When tokens are words, the columns of P
are called word vectors, since they correspond to d dimen-
sional embeddings for individual words. We refer to the
intermediate layers of Figure 3 for a visual help.

Prediction. Finally, the prediction for xt is encoded as the
softmax of yt, where the softmax σ : RD → RD is defined
for u ∈ RD as

σ(u) =

(
euj∑D
k=1 e

uk

)
1≤j≤D

. (7)

In particular, all components of σ(yt) lie between 0 and 1
and sum to one, and reading coordinate j of σ(yt) can be
interpreted as reading the predicted probability of token j.
To summarize, σ(yt) encodes a discrete distribution over D
that depends on the context of xt and the document vector q
(topmost layer of Figure 3).

Training. Let us call x(1), . . . , x(N) the documents in our
training set, with lengths T1, . . . , TN . To each of these doc-
uments correspond an embedding q(i) ∈ Rd, which can be
seen as the columns of a matrixQ ∈ Rd×N , each giving rise
to y(i)t . The columns of Q are often referred to as document
vectors. The key idea here is to learn P,Q, andR so that the
predicted tokens at position t are accurate for all documents.
Seeing σ(y(i)t ) as a discrete probability distribution on D,
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1xt−c
∈ RD

. . .

1xt−1
1xt+1

. . .

1xt+c

(average/concatenation)

q ∈ Rd
P ∈ Rd×D P P P

yt := πt +Rq ∈ RD

RR ∈ RD×d

σ(yt)

σ1xt

Cross-entropy

Figure 3. Overview of the doc2vec vectorizer, PVDM model. For a given document, for each token position t, the model considers
the context c(t) of xt. The one-hot representation of the tokens in c(t) (which are of size D) are either average or concatenated, then
projected to the embedding layer (Rd, in blue). At this stage, the document embedding q ∈ Rd is added to this local representation, which
is then lifted back to yt ∈ RD . Taking a softmax transform of yt yields a discrete distribution on D, which is compared to the truth (xt)
using cross-entropy (top part, dotted line). During training, PV minimizes objective (8) to find satisfying token embeddings P , document
embedding q, and lifting R. At inference time, P and R are frozen and only q is allowed to vary.

a natural way to compare it to the groundtruth (x(i)t ) is to
compute the cross-entropy between the distribution putting
mass one at x(i)t and σ(y(i)t ), that is,

ℓ
(i)
t := − log σ(y

(i)
t )

x
(i)
t

:= ψ
x
(i)
t
(y

(i)
t ) ,

where we defined ψ := − log σ coordinate-wise. The opti-
mization problem solved by PV is written

Minimize
P,Q,R

N∑
i=1

1

Ti

∑
t∈x(i)

ψ
x
(t)
t
(y

(i)
t ) , (8)

where t ∈ x(i) means t ranging from ν + 1 to Ti − ν − 1.
Problem (8) is solved by stochastic gradient descent, or
ADAM (Kingma & Ba, 2015).

Inference. Let us describe the embedding of a new docu-
ment x, assuming that the model was trained on a corpus.
The way inference works for the PV model is to keep P
and R fixed, and to optimize solely in q ∈ Rd

Minimize
q∈Rd

1

T

∑
t∈x

ψxt
(yt) . (9)

An important observation is that q 7→ ψxt
(πt + Rq) is

a convex function, although not strictly (see Appendix).
Therefore, a regularization term is often added to Eq. (9),
a point which we will clarify in the next section. Also
noting that q has only d parameters, solving PV inference
(9) efficiently is not too challenging.

The case of PVDBOW. PVDBOW is another model
falling under the PV umbrella. In a nutshell, following
the idea of the distributed bag of word model, PVDBOW

works the other way around and uses only the representation
of the document to predict tokens. At position t, no local
information is taken into account and we put πt = 0 in that
case. The predicted token distribution for the document is
encoded as before (as σ(yt) = σ(Rq)), and its quality also
measured as ψxt

(yt) for all tokens in the document, leading
to the same optimization problems. To summarize, PVD-
BOW is a simplified, lightweight version of PVDM, simply
obtained by taking πt = 0 in our framework. In particular,
there is no matrix P , which leads to fewer parameters, and
thus easier training and inference, a fact which was pointed
out by Le & Mikolov (2014). Nevertheless, they recognize
that PVDBOW still performs well as an embedding, and
recommend considering as an embedding the concatenation
of PVDM and PVDBOW.

Hierarchical softmax and negative sampling. In prac-
tice, as advocated by Le & Mikolov (2014), two additional
expedients are used. First, the softmax is replaced by hi-
erarchical softmax (Morin & Bengio, 2005). In a nutshell,
each call of σ has a computational cost linear in D, which
can be as large as 105 in practice. A solution is to replace
the softmax by a tree-based approximation thereof, which
computation is much faster. Second, following Mikolov
et al. (2013a), it is common to incorporate tokens with a
negative association to the token to predict when computing
ℓt, leading to faster training. These two possibilities are
non-trivial modifications to the PV model and we do not
consider them in our analysis.

5.2. Robustness result

Before stating our robustness result, let us explain why it
is challenging and outline the proof technique. As detailed
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in the previous section, the embedding of a document x of
length T is found by solving

q0 = argmin
q∈Rd

{
F (q) +

α

2
∥q∥2

}
, (10)

where F (q) := 1
T

∑
t∈x ψxt

(πt +Rq). The regularization
term α ∥q∥2 /2 with α > 0 ensures uniqueness of the so-
lution. Indeed, the softmax is invariant by translation by a
vector proportional to 1, and solutions to (9) are not unique.
As before, consider x̃, a modified version of x where to-
kens with indices in S have been replaced by others. The
embedding q1 of x̃ is found by solving

q1 = argmin
t∈x

{
G(q) +

α

2
∥q∥2

}
, (11)

where G(q) := 1
T

∑
t∈x ψx̃t

(π̃t + Rq), and π̃t is defined
analogously to πt. The main challenge here is that q0 and
q1 are solutions of distinct optimization problems, which
can be quite different if |S| is large.

From discrete to continuous. The solution we propose
to connect between these two problems is to interpolate
smoothly between them. There are many ways to do this,
and we settle for the simplest: linear interpolation. More
precisely, we define for all µ ∈ [0, 1] and q ∈ Rd by

Ψlin(µ, q) := (1− µ)F (q) + µG(q) . (12)

Subsequently, for all µ ∈ [0, 1], we can solve the following
regularized optimization problem:

q(µ) := argmin
q∈Rd

{
Ψlin(µ, q) +

α

2
∥q∥2

}
, (13)

giving rise to a continuous trajectory in the embedding space
(see Figure 4 for an illustration). One can think of q(µ) as
the embedding of a fictitious document traveling halfway
between x and x̃ as µ ranges from 0 to 1.

Dynamics of interpolation. This approach is powerful,
since it allows us to transform a problem which is discrete
in nature (elements of a sum are modified) to a continuous
one (time parameter varies). In particular, the dynamics
of µ 7→ q(µ) are described by an ordinary differential
equation (ODE). Indeed, for all µ ∈ [0, 1], since q 7→
Ψlin(µ, q) + α

2 ∥q∥2 is a strongly convex function, q(µ) is
the (unique) critical point of q → ∇Ψlin(µ, q) + αq, where
∇ denotes derivative with respect to the space coordinate
(q). That is, for all µ ∈ [0, 1],

∇Ψlin(µ, q(µ)) + αq(µ) = 0 .

Differentiating, we get that for all µ ∈ [0, 1],(
∇2Ψlin(µ, q(µ)) + α I

)
q′(µ) + ∂µ∇Ψlin(µ, q(µ)) = 0 ,

(14)

1.2 1.0 0.8 0.6
0.8

0.7

0.6

0.5

0.4

0.3

0.2

q0 = q(0)

q( )

q1 = q(1)

Figure 4. Continuously interpolating between q0, the embedding
of x (in red), and q1, the embedding of x̃ (in black). Visualization
in a 2-dimensional slice of Rd. To each µ ∈ [0, 1] corresponds a
solution to (13), appearing here as a point of the trajectory between
q0 and q1 (solid orange line). Dynamics of this trajectory are
described by Eq. (14). Different document perturbations lead to
different embeddings and associated trajectories (dotted lines).

where g′ denotes derivative with respect to the time coordi-
nate (µ) and I the identity matrix. Let us set

Φlin(µ, q) := −
(
∇2Ψlin(µ, q) + α I

)−1
∂µ∇Ψlin(µ, q) .

(15)
Then, Eq. (14) can be rewritten as q′(µ) = Φlin(q(µ), µ).

Spectrum of the Hessian of the log-softmax. Looking
back at the ODE problem, it appears that one needs to
understand precisely the behavior of Φlin. Intuitively, an
ill-behaved function could lead to the explosion of the so-
lution of the ODE, preventing the existence of reasonable
bounds on ∥q(µ)− q(0)∥ for large µ. This understanding
relies on the control of the smallest positive eigenvalue of
∇2Ψlin, λ1(µ, q). Coming back to the definition of Ψlin

(Eq. (12)), F , and G, we see that λ1 closely related to λmin,
the smallest positive eigenvalue of the Hessian of the log-
softmax, for which we have precise results (Lemma H.5 and
Theorem H.9).

Grönwall-type result. Once that a precise control is
achieved on Φlin, one may have hoped to use standard
Grönwall type inequalities such as Pachpatte (2004) to ob-
tain quantitative bounds on ∥q(1)− q(0)∥. However, in our
setting, the growth of Φlin prevents us from getting explicit
bounds and we had to prove a new result (Theorem G.1)
which is actually true in a more general setting than that of
doc2vec. Specifying this result, we get:

7
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Figure 5. Influence of the length of the document on the robustness of doc2vec. Five random replacements, from left to right:
PVDMmean, PVDMconcat, and PVDBOW.
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Figure 6. Influence of the number of words replaced on the robustness of doc2vec. From left to right: PVDMmean, PVDMconcat, and
PVDBOW.

Theorem 5.1 (Bounded trajectories). Let x ∈ [D]T , S ⊆
[T ], and x̃ ∈ BS(x). Suppose that R ∈ RD×d is such
that σmin(R) > 0 and Im(R) ⊂ 1⊥. Let µ 7→ q(µ) be
the solution of ODE (14). Then, there exist two constants
c = c(α) > 0 and L = L(∥q(0)∥) > 0 depending explicitly
on P,R, ν, and D such that, whenever |S| /T ≤ c,

sup
µ∈[0,1]

∥q(µ)− q(0)∥ ≤ L
|S|
T
.

Since φ(x) = q(0) and φ(x̃) = q(1), a corollary of The-
orem 5.1 is that the doc2vec embedding is Lipschitz
continuous with respect to the Hamming distance, with
Lipschitz constant at most inversely proportional to the doc-
ument lengTheorem Coming back to our initial question,
Theorem 5.1 guarantees that, for documents of reasonable
length and small perturbations, doc2vec embeddings can
not vary too greatly. We emphasize that Theorem 5.1 is true
for all three doc2vec models.

The key assumption here is that |S| is small enough. We
argue that it is only natural to ask so: indeed, if one is
allowed to modify every single token of x, this yield a
completely different document (although having the same
length), which could a priori be embedded anywhere. The
other main assumptions concern the matrix R. Experimen-
tally, we observe that σmin(R) > 0 holds (see Section I.3).
Requiring that Im(R) ⊂ 1⊥ is not too restricting: because

of the translation invariance by 1 of the softmax, one can
always normalizeR by removing the average line from each
line. The main limitation of Theorem 5.1 is the dependency
of c and L in the problems parameters. Exact expression
can be found in Appendix (Theorem F.7).

5.3. Experimental validation

In order to verify the validity of Theorem 5.1, we ran similar
experiments to those presented in Section 4. We considered
again movie reviews from the IMDB dataset. As vectorizer,
we trained doc2vecmodels from scratch on a subset of the
IMDB dataset (103 reviews). The associated dictionary has
size D = 18, 416: we took tokens as words of the English
dictionary. Note that one can also consider sub-word tokens,
but in that case replacing a word in the document usually
implies replacing several tokens. We chose d = 50 as
dimension of the embedding. We took ν = 5 as context size
parameter.

We present results of experiments regarding the influence
of the document length in Figure 5. Theorem 5.1 pre-
dicts that, since |S| is kept constant here, the supremum
of ∥φ(x)− φ(x̃)∥ over all replacements should be upper
bounded by 1/T (up to numerical constants). This appears
to be empirically true.

We present results of experiments regarding the influence

8
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of the number of replaced words in Figure 6. Here we took
the number of replaced words from ν + 1 to T − ν − 1 to
avoid for border effects. Since T is fixed, Theorem 5.1 pre-
dicts that the supremum of ∥φ(x)− φ(x̃)∥ over all possible
replacements should behave at most linearly in |S|. This
appears to be empirically true.

We present in Appendix (Section I) additional results with
another implementation, gensim (Řehůřek & Sojka, 2010).
In particular, this implementation uses hierarchical softmax.
The results are consistent with the behavior presented here.

6. Conclusion
In this paper, we proved that several popular text vector-
izers are robust, in the sense that they are either Lipschitz
or Hölder continuous with respect to the Hamming dis-
tance. Proving this robustness was possible for concatena-
tion and TF-IDF thanks to elementary computations, but
required a much more challenging mathematical analysis for
doc2vec requiring two new results (local Lipschitz conti-
nuity of the softmax and a new Grönwall–Bellman–Bahouri
non-explosion lemma).

Let us outline future research directions. First, we studied
the robustness of the true solution of (8) and (9). In practice,
this problem is solved thanks to gradient descent, and it
would be interesting to measure the impact of this approxi-
mation. A second line of work would consist in obtaining
refined results when we put a random model on the distribu-
tion of the words of the document, similarly to what is done
in (Arora et al., 2016).
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A. General organization
This Appendix is organized as follows: in Section B (resp. C) we collect the missing proofs for Section 3 (resp. 4) of the
main paper.

The next five sections are dedicated to the proof of Theorem 5.1: First, in Section D, we formally prove that the dynamics of
the interpolation scheme between two minimizers follow an ordinary differential equation (ODE). We actually show a more
general result and provide technical conditions on the interpolation Ψ under which we are able to formulate the interpolation
between minimization problems as an ODE. Next, in Section E, we derive quantitative bounds for the solution of this ODE.
We show how to specialize this result in the doc2vec setting in Section F, proving Theorem 5.1 in the process. The main
tool used to obtain these bounds is a general Grönwall-Bellman-Bahouri type result for ODE with exponentially-growing
coefficients. This result (Theorem G.1), as well as all other technical results concerning ODEs, is stated and proved in
Section G . In order to specialize our result to the doc2vec setting, we needed a fine-grained study of the (log-)softmax
function. In particular, we derive a new bound on the softmax function (Theorem H.9), which is proved in Section H.

We conclude this Appendix with additional experimental results supporting our claims in Section I.

B. Omitted proofs for concatenation
B.1. Proof of Proposition 3.1

By definition of φ and Pythagoras theorem,

∥φ(x)− φ(x̃)∥2 =
∑

t∈S∩[Tmax]

∥u(xt, t)− u(x̃t, t)∥2 .

By definition of u (Eq. (3)), one has

u(xt, t)− u(x̃t, t) = [ue(xt)− u(x̃t); 0] , (16)

and therefore
∥u(xt, t)− u(x̃t, t)∥2 = ∥ue(xt)− u(x̃t)∥2 .

We deduce that
∥φ(x)− φ(x̃)∥2 ≤ |S ∩ [Tmax]| ·max

j ̸=k
∥ue(j)− ue(k)∥2 .

Remark B.1 (Concatenation v.s. sum). Replacing the concatenation by a sum in the definition of u (Eq. (3)) does not change
the proof. Indeed, the key step Eq. (16) remains unchanged in that case: the key idea here is that position tokens are the
same for words in the same position, and cancel out when forming the difference.

C. Omitted proofs for TF-IDF vectorization
C.1. Proof of Proposition 4.1

By definition, we can write

φ(x) =

D∑
j=1

fjvj1j =
1

T

D∑
j=1

mjvj1j .

Similarly, since x̃ has same length as x,

φ(x̃) =
1

T

D∑
j=1

m̃jvj1j ,

where we let m̃j denote the multiplicity of word j in document x̃. We deduce that

∥φ(x)− φ(x̃)∥2 =
1

T 2

D∑
j=1

(mj − m̃j)
2v2j .
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By letting vmax be the maximal inverse document frequency on D, we already see that

∥φ(x)− φ(x̃)∥2 ≤ v2max

T 2

D∑
j=1

(mj − m̃j)
2 .

In the previous display, only terms such that mj ̸= m̃j count. Using the inequality between p-norms, we have

∑
mj ̸=m̃j

(mj − m̃j)
2 ≤

 ∑
mj ̸=m̃j

|mj − m̃j |

2

.

Now, by the triangle inequality, ∑
mj ̸=m̃j

|mj − m̃j | ≤
∑

mj ̸=m̃j

mj +
∑

mj ̸=m̃j

m̃j .

We notice that these two sums are equal: every removed word has to appear somewhere. Moreover, |{j s.t. mj ̸= m̃j | ≤
2 |S|, since modifying one word changes at most two multiplicities, and this happens at most |S| times. Therefore, we have
proved that ∑

mj ̸=m̃j

|mj − m̃j | ≤ 4mmax |S| , (17)

where we recall that mmax is the maximal multiplicity of words of x. Backtracking, we have

∥φ(x)− φ(x̃)∥2 ≤ v2max

T 2
· 16m2

max |S|2 ,

and we can conclude by simply taking the square root of this last display.

C.2. Proof of Proposition 4.2

We notice that

∥ϕ(x)− ϕ(x̃)∥2 = 1 + 1− 2ϕ(x)⊤ϕ(x̃) = 2− 2
φ(x)⊤φ(x̃)

∥φ(x)∥ ∥φ(x̃)∥ . (18)

In this last term we recognize the cosine similarity between φ(x) and φ(x̃). Since we are working under the assumptions of
Lemma C.1, we have

φ(x)⊤φ(x̃)
∥φ(x)∥ ∥φ(x̃)∥ ≥ 1− 8mmaxvmax |S|

∥φ(x)∥ .

Coming back to Eq. (18), we see that

∥ϕ(x)− ϕ(x̃)∥2 ≤ 16mmaxvmax |S|
∥φ(x)∥ .

We conclude by using Lemma C.2 and taking the square root.

C.3. Auxilliary results

We have the following result, key to the proof of Prop. 4.2, and of independent interest:

Lemma C.1 (Cosine similarity robustness). Let x be a document. Let S ⊆ [T ] such that |S| ≤ ∥φ(x)∥ /(4mmaxvmax)
and x̃ ∈ BS(x). Then

φ(x)⊤φ(x̃)
∥φ(x)∥ ∥φ(x̃)∥ ≥ 1− 8mmaxvmax |S|

∥φ(x)∥ . (19)

Proof. By homogeneity, we can multiply numerator and denominator in Eq. (19) by T and deal with multiplicities instead
of frequencies in this proof. We first focus on the numerator and write

φ(x)⊤φ(x̃) = φ(x)⊤(φ(x) + φ(x̃)− φ(x)) = ∥φ(x)∥2 +
D∑

j=1

mj(m̃j −mj)v
2
j , (20)
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by definition of φ. Using Cauchy-Schwarz inequality, we find that

D∑
j=1

mj(mj − m̃j)v
2
j ≤

√∑
j

mjv2j

√∑
j

(mj − m̃j)2v2j .

In the first part of the right-hand side we recognize ∥φ(x)∥, and in the second part, the same quantity bounded in the proof
of Proposition 4.1. We deduce that ∑

j

mj(mj − m̃j)v
2
j ≤ ∥φ(x)∥ · 4mmaxvmax |S| .

Coming back to Eq. (20), we have proved that

φ(x)⊤φ(x̃) ≥ ∥φ(x)∥2 − 4mmaxvmax ∥φ(x)∥ |S| ,

which is positive under our assumption. Let us now look into the denominator of Eq. (19). Using the triangle inequality and
Proposition 4.1, we write

∥φ(x̃)∥ ≤ ∥φ(x)∥+ 4mmaxvmax |S| .
Putting everything together, we have

φ(x)⊤φ(x̃)
∥φ(x)∥ ∥φ(x̃)∥ ≥ ∥φ(x)∥2 − 4mmaxvmax ∥φ(x)∥ |S|

∥φ(x)∥ · (∥φ(x)∥+ 4mmaxvmax |S|)
=

1− u

1 + u
,

with u := 4mmaxvmax |S| / ∥φ(x)∥. Again, by our assumption, u ∈ (0, 1). It is straightforward to show that (1− u)/(1 +
u) ≥ 1− 2u for all u ∈ (0, 1), and we deduce the result.

We also have the following:

Lemma C.2 (Lower bound on ∥φ(x)∥). Let x be a document. Let vmin be the minimum inverse document frequency for
words contained in x and D(x) the size of the local dictionary. Then

∥φ(x)∥ ≥ Tvmin√
D(x)

.

Proof. Straightforward from the definitions and the comparison of p-norms.

D. Dynamics of interpolation
Recall that we are considering, for all µ ∈ [0, 1], the following minimization problem:

q(µ) := argmin
q∈Rd

{
Ψlin(µ, q) +

α

2
∥q∥2

}
. (21)

In this section, we show that under mild regularity assumptions on Ψ, q is the unique solution of the following ODE:(
∇2Ψlin(µ, q(µ)) + α I

)
q′(µ) + ∂µ∇Ψlin(µ, q(µ)) = 0 . (22)

Notation. For any matrix M ∈ RA×B , let us define the operator norm of M as

∥M∥op := sup

{∥Mv∥
∥v∥ , v ∈ RB \ {0}

}
.

For any ρ > 0, we also define Bd(ρ) the open Euclidean ball of center 0 and radius ρ. Finally, for a1, a2 > 0, define
a1 ∨ a2 := max(a1, a2).

We can now state the required assumptions on Ψ.

13



On the Robustness of Text Vectorizers

Assumption D.1 (Convexity). Let d ≥ 1. We suppose that Ψ ∈ C1,2([0, 1]× Rd;R) and that, for all (µ, q) ∈ [0, 1]× Rd,
∇2Ψ(µ, q) is a positive semi-definite matrix.

Since α > 0, A.D.1 this guarantees that q(µ) is uniquely-defined for each µ. Next, we define some quantities related to the
local Lipschitz continuity of Ψ and its derivatives.

Definition D.2 (Local Lipschitz semi-norms). Let Ψ ∈ C1,2([0, 1]× Rd;R). For all ρ > 0, let us define

L1(ρ) := sup
µ∈[0,1]

q ̸=q̃∈Bd(0,ρ)

∥∥∇2Ψ(µ, q)−∇2Ψ(µ, q̃)
∥∥
op

∥q − q̃∥ , L2(ρ) := sup
µ∈[0,1]

q ̸=q̃∈Bd(0,ρ)

∥∂µ∇Ψ(µ, q)− ∂µ∇Ψ(µ, q̃)∥
∥q − q̃∥ , (23)

and
M(ρ) := sup

µ∈[0,1]
q∈Bd(0,ρ)

∥∂µ∇Ψ(µ, q)∥ . (24)

Our second assumption on Ψ at this stage is that these quantities are all finite.

Assumption D.3 (Global Lipschitz continuity). Let Ψ ∈ C1,2([0, 1]× Rd;R). Suppose that

sup
ρ>0

(
L1(ρ) + L2(ρ)

)
< +∞ and sup

ρ>0
M(ρ) < +∞,

where L1(ρ), L2(ρ), and M(ρ) are defined in Eq. (23) and Eq. (24).

In this setting, we are able to prove the following result:

Theorem D.4 (Equivalence ODE/minimization problem). Assume that Ψ satisfies A.D.1 and A.D.3. Then µ 7→ q(µ) is
differentiable on [0, 1], and q is the unique solution of Eq. (22).

Note that under assumption A.D.1 the matrix ∇2Ψ(µ, q)+α I is invertible. One can then rewrite Eq. (22) in a more standard
form, namely

q′(µ) = −
(
∇2Ψ(µ, q(µ)) + α I

)−1
∂µ∇Ψ(µ, q(µ)) . (25)

Thus, to study the ODE problem, one needs the regularity properties (local Lipschitz continuity, boundedness...) of the
function

Φ : (µ, q) ∈ [0, 1]× Rd 7→ Φ(µ, q) := −
(
∇2Ψ(µ, q) + α I

)−1
∂µ∇Ψ(µ, q) . (26)

The interplay between ∂µ∇Ψ and ∇2Ψ here is crucial. Indeed, in Section F we will see that when specified in the doc2vec
case, the term in ∂µ gives the desired quantity |S|

T whereas the term in ∇2Ψ has to be handled using precise properties on the
softmax function. Theorem D.4 is standard in the ODE literature and holds as soon as the quantities appearing in Eq. (25)
are well-behaved. More precisely, this is the case c = 0 of Theorem G.1 in Section G. We now simply check that the
assumptions of Theorem G.1 are satisfied in the setting of Theorem D.4. This is achieved by Lemma D.5 and Lemma D.6.
We start by a result upper bounding the norm of the inverse Hessian.

Lemma D.5 (Norm of inverse Hessian). Let Ψ : [0, 1]× Rd → R. Assume that A.D.1 holds. Then,

∀µ, q ∈ [0, 1]× Rd,
∥∥(∇2Ψ(µ, q) + α I)−1

∥∥
op

≤ 1

α
. (27)

The proof of Lemma D.5 exploits the fact that ∇2Ψ is a non-negative symmetric matrix and can be diagonalized in
orthonormal basis with non-negative eigenvalues. The regularization of the minimization problem with the addition of the
term α

2 ∥q∥ can be translated with the addition of the term α I to the previous Hessian matrix, which then becomes a positive
definite symmetric matrix. One then only has to estimate the smallest eigenvalue of the matrix to conclude.

Proof. By A.D.1, for all µ ∈ [0, 1], q 7→ Ψ(µ, q) is convex and, for any µ, q ∈ [0, 1] × Rd, ∇2Ψ(µ, q) is a positive
semi-definite matrix with non-negative eigenvalues. From these, N0(µ, q) = Rank

(
∇2Ψ(µ, q)

)
of them are non-zero, and

they can be ranked as
0 < λ1(µ, q) ≤ · · · ≤ λN0(µ,q)(µ, q) .

14
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Moreover, there exists an orthogonal matrix P (µ, q) (meaning that P (µ, q)P (µ, q)⊤ = I) such that

P (µ, q)∇2Ψ(µ, q)P (µ, q)⊤ = diag(0, . . . , 0, λ1(µ, q), . . . , λN0
(µ, q)) .

Furthermore since ∇2Ψ(µ, q) is a symmetric matrix, its range and its kernel are orthogonal complements,
Ker

(
∇2Ψ(µ, q)

)
⊕⊥ Im(∇2Ψ(µ, q)) = Rd and

h ∈ Im(∇2Ψ(µ, q)) if, and only if, P (µ, q)h = (0, . . . , 0, h1, · · · , hN0
).

Hence
P (µ, q)

(
∇2Ψ(µ, q) + α I

)
P (µ, q)⊤ = diag(α, . . . , α, λ1(µ, q) + α, . . . , λN0(µ, q) + α) ,

which implies that ∇2Ψ(µ, q) + α I is an invertible positive definite matrix such that

P (µ, q)
(
∇2Ψ(µ, q) + α I

)−1
P (µ, q)⊤ = diag

(
1

α
, . . . ,

1

α
,

1

λ1(µ, q) + α
, . . . ,

1

λN0
(µ, q) + α

)
.

From the last display, one readily sees that the maximum eigenvalue of
(
∇2Ψ(µ, q) + α I

)−1
is 1/α, proving our claim.

The next lemma shows how regularity assumptions on Ψ translate into regularity conditions for Φ.

Lemma D.6 (Global-Lispchitz continuity of Φ). Let Ψ such that A.D.1 and A.D.3 hold. Then Φ is globally Lipschitz
continuous in q uniformly in µ ∈ [0, 1]. Moreover, for all ρ > 0,

sup
µ∈[0,1]

q ̸=q̃∈Rd

∥Φ(µ, q)− Φ(µ, q̃)∥
∥q − q̃∥ ≤ 1

α

(
sup
ρ>0

L2(ρ) +

(
supρ>0 L1(ρ)

)(
supρ>0M(ρ)

)
α

)
. (28)

The proof of Lemma D.6 relies on the following identity, which is true for any non-negative symmetric matricesA,B ∈ Rd×d

and vectors X,Y ∈ Rd:

(A+ α I)−1X − (B + α I)−1Y = −(A+ α I)−1(A−B)(B + α I)−1X + (B + α I)−1(X − Y ) . (29)

Lemma D.5 allows us to conclude.

Proof. Let q, q̃ ∈ Bd(0, ρ). Using Eq. (29), we have

Φ(µ, q)− Φ(µ, q̃) =−
(
(∇2Ψ(µ, q) + αI)−1 − (∇2Ψ(µ, q̃) + αI)−1

)
∂µ∇Ψ(µ, q)

− (∇2Ψ(µ, q̃) + αI)−1 (∂µ∇Ψ(µ, q)− ∂µ∇Ψ(µ, q̃))

=− (∇2Ψ(µ, q) + αI)−1
(
∇2Ψ(µ, q̃)−∇2Ψ(µ, q)

)
(∇2Ψ(µ, q̃) + αI)−1∂µ∇Ψ(µ, q) (30)

− (∇2Ψ(µ, q̃) + αI)−1 (∂µ∇Ψ(µ, q)− ∂µ∇Ψ(µ, q̃)) . (31)

Taking the norm and using Lemma D.5 (in particular Inequality (27)), we have for ρ = ∥q∥ ∨ ∥q̃∥,

∥Φ(µ, q)− Φ(µ, q̃)∥ ≤ 1

α2

∥∥∇2Ψ(µ, q)−∇2Ψ(µ, q̃)
∥∥
op

∥∂µ∇Ψ(µ, q)∥

+
1

α
∥∂µ∇Ψ(µ, q)− ∂µ∇Ψ(µ, q̃)∥

∥Φ(µ, q)− Φ(µ, q̃)∥ ≤ 1

α

(
L1(ρ)M(ρ)

α
+ L2(ρ)

)
∥q − q̃∥ .

Taking the supremum for µ ∈ [0, 1], q ̸= q̃ belonging to Bd(0, ρ) and ρ > 0 yields the claim.

We now have all the tools to prove Theorem D.4.
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Proof of Theorem D.4. Note that in that setting, using Lemma D.5, for all µ ∈ [0, 1], q 7→ Ψ(µ, q) + α
2 ∥q∥2 is a strongly

convex function and has a unique minimum, which is also the unique critical point of the gradient q 7→ ∇Ψ(µ, q) + αq. Let
q0 ∈ Rd be such that

{q0} = argminΨ(0, q) +
α

2
∥q∥2 .

Thanks to Lemma D.6, Φ satisfies the hypothesis of Theorem G.1, with

a =
1

α
sup
ρ>0

M(ρ), b =
1

α

(
supρ>0 L1(ρ) supρ>0M(ρ)

α
+ sup

ρ>0
L2(ρ)

)
, and c = 0. (32)

Let µ ∈ [0, 1] → q(µ) be the unique solution up to time 1 to the ODE

q′(µ) = −
(
∇2Ψ(µ, q(µ)) + α I

)−1
∂µ∇Ψ(µ, q(µ)) = Φ(µ, q(µ)), q(0) = q0 .

According to Theorem G.1 applied to Λ = Φ, it exists and is well-defined up until µ = 1.

Remark that when differentiating in µ ∈ [0, 1] the function µ 7→ ∇Ψ(µ, q(µ)) + αq(µ), we have(
∇2Ψ(µ, q(µ)) + α I

)
q′(µ) + ∂µ∇Ψ(µ, q(µ)) =

(
∇2Ψ(µ, q(µ)) + α I

)
(q′(µ)− Φ(µ, q(µ))) = 0 .

Hence
∇Ψ(µ, q(µ)) + αq(µ) = ∇Ψ(0, q(0)) + αq(0) = 0 .

Thus, for any µ ∈ [0, 1],
{q(µ)} = argmin

{
Ψ(µ, q) +

α

2
∥q∥2

}
,

which is the promised result.

Remark D.7 (Crude bounds under mild assumptions). Using the same standard result (condition c = 0 in Theorem G.1)
could naturally give us some crude bounds on ∥q(µ)− q(0)∥, relying only on assumptions A.D.1 and A.D.3. More precisely,
these bounds would strongly depend on α and improve as α→ ∞. Namely, using Eq. (32) and Theorem D.4 one have for
all µ ∈ [0, 1],

∥q(µ)− q(0)∥ ≤ µ

α
· sup

ρ
M(ρ) · exp

(
1

α

(
1

α

(
sup
ρ>0

L1(ρ)
)(

sup
ρ
M(ρ)

)
+ sup

ρ>0
L1(ρ)

))
µ

)
.

This is not the regime we aim at, since α is a small, fixed regularization constant whose role is simply to ensure that the
minimization problem is well-posed.

E. Quantitative bounds on the trajectory
Let us recall that q is the minimizer of the interpolated problem (21). In the previous section, we have made two assumptions
(A.D.1 and A.D.3), guaranteeing that q is well-defined and is the unique solution to the ODE (22). In this section, we show
how to obtain quantitative bounds on ∥q(0)− q(µ)∥ by studying the ODE (22). To derive these bounds, we now make two
additional assumptions on Ψ. The first one is an algebraic assumption which greatly improves the computations.

Assumption E.1 (Common kernel). We assume that there exists a fixed subspace E ⊂ Rd such that dimE = N0 and for
all (µ, q) ∈ [0, 1]× Rd

Ker
(
∇2Ψ(µ, q)

)
= E⊥, Im(∇2Ψ(µ, q)) = E, and ∂µ∇Ψ(µ, q) ∈ E .

The second one is a refined local-Lipschitz assumption (a quantitative version of A.D.3), which will allow us to use the case
c ̸= 0 in the Gronwall-Bahouri-Bellman type result Theorem F.7.

Assumption E.2 (quantitative (local)-Lipschitz continuity). Recall L1 and L2 from Definition D.2, and M from Eq. (24).
For any µ, q, define λ1(µ, q) the smallest positive eigenvalue of ∇2Ψ(µ, q). For any ρ > 0, define

w−1(ρ) := inf
µ∈[0,1]

q∈Bd(0,ρ)

λ1(µ, q) .
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We assume that there exist positive constants (Γi)i∈−1,...,2 and non negative constants (γi)i∈−1,...,2, such that for all ρ > 0,

L1(ρ) ≤ Γ1 e
γ1ρ , L1(ρ) ≤ Γ2 e

γ2ρ , M(ρ) ≤ Γ0 e
γ0ρ ,

and
w−1(ρ) ≥

1

Γ−1
e−γ−1ρ .

Under these stronger assumptions, we can obtain the following:

Theorem E.3 (Quantitative bounds on the trajectory). Assume that Ψ satisfies A.D.1, A.E.1, and A.E.2. Suppose
furthermore that

4Γ−1(Γ0Γ−1Γ1 + Γ2) < exp
(
−2
(
(γ−1 + γ0 + γ1) ∨ γ2

) (
∥q0∥+ Γ−1Γ0 e

(γ−1+γ0+γ1)∨γ2∥q0∥
))

. (33)

Then µ 7→ q(µ) is differentiable on [0, 1], it is the unique solution of Eq. (22) and furthermore

∀µ ∈ [0, 1], ∥q(µ)− q0∥ ≤ 2µΓ−1Γ0 e
(
∑2

i=−1 γi)∥q0∥ .

The proof of Theorem E.3 follows the same path as the proof of Theorem D.4, with analogues of Lemmas D.5 and D.6. The
crucial differences come from the fundamental use of A.E.1, which somehow allows us to diagonalize the Hessian ∇2Ψ
for all µ, q, and thus allows is to use estimates on the smallest positive eigenvalue of the Hessian. In practical cases, this
assumption will not allow us to use global-Lipchitz estimates. We therefore introduce A.E.2 to deal with that. These two
ingredients allow us to use the case c > 0 in the Grönwall-Bahouri-Bellman type lemma (Theorem G.1).

The following Lemma gives an improve bounds for the norm of the inverse of the Hessian, using the algebraic requirement
on the Hessian. Its proof is similar to the proof of Lemma D.5, and we only point out how to modify it.

Lemma E.4 (Quantitative norm of inverse Hessian). Let Ψ : [0, 1]× Rd → R. Assume that A.D.1 and A.E.1 hold. Then∥∥∥(∇2Ψ(µ, q) + α I)−1
Im(∇2Ψ(µ,q))

∥∥∥
op

≤ 1

λ1(µ, q)
, (34)

where f |E denotes the restriction of f to the set E.

Proof. Remind that from the proof of Lemma D.5, for all (q, µ) ∈ Rd × [0, 1], we have

P (µ, q)
(
∇2Ψ(µ, q) + α I

)−1
P (µ, q)⊤ = diag

(
1

α
, . . . ,

1

α
,

1

λ1(µ, q) + α
, . . . ,

1

λN0
(µ, q) + α

)
.

Assuming that A.E.1 holds, we have for all (µ, q) ∈ [0, 1]× Rd, N0(µ, q) = N0. Restricting to E, we see readily that the
largest eigenvalue becomes 1/(α+ λ1(µ, q)).

Here again, by using the algebraic requirements on Ψ and the local-Lipshcitz bound we are able to derive a local-Lipschitz
continuity result for Φ. Here again, the proof is quite similar to the one of Lemma E.5.

Lemma E.5 (Local-Lispchitz continuity of Φ). Let Ψ such that A.D.1, and A.E.1 hold. Then Φ is locally-Lipschitz
continuous in q uniformly in µ ∈ [0, 1]. More precisely, for all q, q̃ ∈ Rd and all µ ∈ [0, 1];

∥Φ(µ, q)− Φ(µ, q̃)∥ ≤ 1

w−1(∥q̃∥)

(
L1(∥q∥ ∨ ∥q̃∥)M(∥q∥)

w−1(∥q∥)
+ L2(∥q∥ ∨ ∥q̃∥)

)
∥q − q̃∥ .

If additionally A.E.2 holds, we get

∥Φ(µ, q)− Φ(µ, q̃)∥ ≤ 2Γ−1(Γ0Γ−1Γ1 + Γ2) e

(
(γ−1+γ0+γ1)∨γ2

)
∥q∥∨∥q̃∥ ∥q − q̃∥ , (35)

and
∥Φ(µ, q)∥ ≤ Γ−1Γ0 e

(γ−1+γ0)∥q∥ .
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Proof. Since Ψ satisfies A.E.1, for all (µ, q) ∈ [0, 1]× Rd and all q̃ ∈ Rd ∂µ∇Ψ(µ, q) ∈ Im(∇2Ψ(µ, q̃)), and we can use
we can use the second part of Lemma D.5, namely Inequality (34). Indeed, Eq. (30), in norm, is upper bounded by

1

λ1(µ, q) + α
L1(∥q∥ ∨ ∥q̃∥) 1

λ1(µ, q̃) + α
M(∥q∥) ∥q − q̃∥ ,

while (31) is bounded by
1

λ1(µ, q̃) + α
L2(∥q∥ ∨ ∥q̃∥) ∥q − q̃∥ .

Summing these last two displays and using the definition of w−1 and the bounds of A.E.2 allows us to conclude.

Proof of Theorem E.3. Remark that thanks to Lemma E.5, Φ satisfies the condition of Theorem G.1 with

a = Γ−1Γ0, b = 2Γ−1(Γ0Γ−1Γ1 + Γ2) and c = (γ−1 + γ0 + γ1) ∨ γ2.

Furthermore, Eq. (35) can be translated into

2b < exp
(
−2c

(
∥q0∥+ a ec∥q0∥

))
.

which is exactly the condition of application of Theorem G.1. It ensure that there exists a unique solution µ 7→ q(µ) to
Eq. (22). Following the proof of Theorem D.4 we can conclude easily.

F. Specializing our results for doc2vec
In the previous sections, we have seen that, under some technical assumptions on Ψ, the mapping q is solution to an ODE,
and we proved some bounds on ∥q(µ)− q(0)∥ (by means of Theorem E.3). In this section, we check that these assumptions
are satisfied for the Ψ occurring when considering doc2vec embeddings. That is, Ψ = Ψlin, where Ψlin is defined by
Eq. (12). This is embodied as Theorem F.7, which is Theorem 5.1 with explicit constants. We first prove a useful bound on
the norm of πt:

Lemma F.1 (Bound on πt). Define
Π := 2νσmax(R) · sup

i
∥P:,i∥ .

Then, for any document x and any position t ∈ x, it holds that

∥πt∥ ≤ Π .

We emphasize that Lemma F.1 is true regardless of the model used (PVDMmean, PVDMconcat, PVDBOW), even though
this bound can be strengthened for specific models. Moreover, it only depends on the P and R matrices, which are fixed
matrices after training.

Proof. Recall that we defined πt = RPht. For PVDBOW, ht = 0 and there is nothing to prove. Otherwise, let us first write

∥πt∥ = ∥RPht∥ ≤ σmax(R) · ∥Pht∥

and focus on ∥Pht∥. Let us assume that we work with PVDMconcat. Since, in that case, ht is the concatenation of 2ν
arbitrary one-hot vectors, Pht is the sum of 2ν arbitrary columns of P . Using the triangle inequality, we deduce that ∥Pht∥
is smaller than 2ν times the largest norm of a column of P . When PVDMmean is used, the reasoning is similar. Ignoring
the 1/(2ν) factor (which we consider to be part of P ), the bound is the same.

Since the matrix R appears in all the definition of the embeddings, one needs some (mild) assumptions on R. The first one
ensures that the condition number of R is not equal to +∞.

Assumption F.2 (Condition number of R). Let us R ∈ RD×d. We assume that Im(R) ⊂ 1⊥, and further that the smallest
singular value of R is non-negative, that is,

σmin(R) > 0 .
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The requirement for the range of R is needed here in order to work in the setting of Lemma H.6 and H.8, and then use the
nice bounds for the (local)-Lipschitz constant of the softmax and its Jacobian.
Lemma F.3. Suppose that A.F.2 hold. Then Ψlin satisfies A.D.1.

Proof. Recall that S denotes the set of modified words. Coming back to the definition of F and G, we see that, when
forming the difference F −G, many cancellations happen. To be more precise, replacing a word at position t only modifies
πs for s belonging to the neighborhood of t. Thus

G(q)− F (q) =
∑
t∈E

(
ψx̃t

(π̃t +Rq)− ψxt
(πt +Rq)

)
, (36)

where E ⊆ {s ∈ [T ], |s− t| ≤ ν with t ∈ S}. In particular, there is a numerical constant ℓ > 0 such that |E| ≤ ℓν |S|.
From the definition of Ψlin, Eq. (36), and Lemma H.1, we deduce that

∇Ψlin(µ, q) =R⊤
(
µ
1

T

∑
t∈E

(
∇ψxt

(πt +Rq)−∇ψx̃t
(π̃t +Rq)

)
+

1

T

∑
t∈x

∇ψxt
(πt +Rq)

)
R

=R⊤
(

− µ
1

T

∑
t∈E

(
σ(πt +Rq)− σ(π̃t +Rq)

)
+ µ

1

T

∑
t∈E

(
1xt − 1x̃t

)
− 1

T

∑
t∈x

(
σ(πt +Rq)− 1xt

))
,

∂µ∇Ψlin(µ, q) =R⊤
(

1

T

∑
t∈E

(
1xt

− 1x̃t

)
− 1

T

∑
t∈E

(
σ(πt +Rq)− σ(π̃t +Rq)

))

=R⊤
(

1

T

∑
t∈E

∫ 1

0

((
1xt

− 1x̃t

)
−∇σ(u(πt − π̃t) +Rq)(πt − π̃t)

)
du

)
and

∇2Ψlin(µ, q) = R⊤
(
µ
1

T

∑
t∈E

(∇σ(πt +Rq)−∇σ(π̃t +Rq)) +
1

T

∑
t∈x

∇σ(πt +Rq)

)
R, (37)

where we remind that ∇σ = diag(σ) − σσ⊤. Hence, ∇2Ψlin(µ, ·) is a symmetric non-negative matrix and Ψlin satisfies
A.D.1.

Next, we show that Ψlin satisfies A.E.1.
Lemma F.4. Suppose that A.F.2 holds. For all µ ∈ [0, 1] and all q ∈ Rd,

Ker
(
∇2Ψlin(µ, q)

)
= {0} ,

and Ψlin satisfies A.E.1 with N0 = d. Let us recall that we defined λ1 the smallest non-zero eigenvalue of the Hessian of
Ψlin. Then, for all (µ, q) ∈ [0, 1]× Rd, it holds that

λ1(µ, q) ≥ e−2
√
2Π 1

D
σmin(R)

2 e−2
√
2σmax(R)∥q∥ .

Proof. Let us remind from Lemma H.5 the definition of λmin, namely for z ∈ RD,

λmin(z) = min
(
Spec

(
diag (σ(z))− σ(z)σ(z)⊤

)
\{0}

)
.

For q, y ∈ Rd and since Ry ∈ 1⊥ (thanks to A.F.2), the minimax theorem allows us to write (using Eq. (37))

⟨∇2Ψlin(µ, q)y, y⟩ =µ 1

T

∑
t∈x

⟨(∇σ(π̃t +Rq)) (Ry), (Ry)⟩

+ (1− µ)
1

T

∑
t∈x

⟨(∇σ(πt +Rq)) (Ry), (Ry)⟩

≥ 1

T

∑
t∈x

(µλmin(π̃t +Rq) + (1− µ)λmin(πt +Rq)) ∥Ry∥2 .
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Here we have crucialy used A.F.2 and in particular the fact that Im(R) ⊂ 1⊥ and that πt ∈ 1⊥ in order to make λmin

appears. Let us set
σ(1)(z) = min

i∈[D]
σi(z) .

Thanks to Lemma H.5, one has

⟨∇2Ψlin(µ, q)y, y⟩ ≥ 1

T

∑
t∈x

(
µDσ(1)(π̃t +Rq)2 + (1− µ)Dσ(1)(πt +Rq)2

)
D ∥Ry∥2 .

Furthermore, thanks to Theorem H.9,

σ(1)(z) ≥
1

D
e−

√
2∥q∥,

and we have

⟨∇2Ψlin(µ, q)y, y⟩ ≥ 1

T

∑
t∈x

(
µ exp

(
−2

√
2 ∥π̃t +Rq∥

)
+ (1− µ) exp

(
−2

√
2 ∥πt +Rq∥

)) 1

D
∥Ry∥2

≥ e−2
√
2Π e−2

√
2∥Rq∥ 1

D
∥Ry∥2

≥ e−2
√
2Π e−2

√
2σmax(R)∥q∥ 1

D
σmin(R)

2 ∥y∥2 ,

where we remind that Π is defined in Lemma F.1. This implies that Ker
(
∇2Ψlin(µ, q)

)
= {0}, that Ψlin fulfills A.E.1 with

N0 = d, and that

λ1(µ, q) ≥ e−2
√
2Π 1

D
σmin(R)

2 e−2
√
2σmax(R)∥q∥ . (38)

Next, we show that Ψlin satisfies A.E.2.

Lemma F.5 (Local Lipschitz continuity of Ψlin). Suppose that A.F.2 holds. Then Ψlin satisfies A.E.2 with

Γ−1 = D e2
√
2Π 1

σmin(R)2
, Γ0 = 4ℓνσmax(R)

|S|
T
, Γ1 =

8 e6
√
2Π

(D − 1)
σmax(R)

3 , Γ2 =
4ℓνΠe4

√
2Π

D − 1
σmax(R)

2 |S|
T
,

and
γ−1 = 2

√
2σmax(R) , γ0 = 0 , γ1 = 3

√
2σmax(R) , and γ2 = 2

√
2σmax(R) .

Proof. We have for all µ ∈ [0, 1] and all q ∈ Rd,

∥∥∂µ∇Ψlin(µ, q)
∥∥ ≤

∥∥∥∥∥R⊤
(

1

T

∑
t∈E

(
1xt

− 1x̃t

)
− 1

T

∑
t∈E

(
σ(πt +Rq)− σ(π̃t +Rq)

))∥∥∥∥∥
≤4σmax(R)

|E|
T

≤4ℓνσmax(R)
|S|
T
,

where we have used the fact that ∥σ∥ ≤ 1 and the previous bound gives the value of Γ0 and γ0. Thanks to Lemma H.6 σ is
locally-Lipschitz continuous and thanks to Lemma H.8, ∇σ is also locally-Lipschitz continuous, hence for q, q̃ ∈ Rd

∥∥∂µ∇Ψlin(µ, q)− ∂µ∇Ψlin(µ, q̃)
∥∥ ≤

∥∥∥∥∥R⊤ 1

T

∑
t∈E

(∫ 1

0

(σ(u(πt − π̃t) +Rq)− σ(u(πt − π̃t) +Rq̃)) (πt − π̃t) du

)∥∥∥∥∥
≤4

1

D − 1
e2

√
2(2Π+σmax(R)(∥q∥∨∥q̃∥)) ℓνσmax(R)

2 |S|
T

Π ∥q − q̃∥

≤4ℓνΠe4
√
2Π

D − 1

|S|
T

e2
√
2σmax(R)(∥q∥∨∥q̃∥) σmax(R)

2 ∥q − q̃∥ ,
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where we have used Lemma H.6 and the bound D
D−1 ≤ 2, which gives the value of Γ2 and γ2. Finally, let us remark that

∥∥∇2Ψlin(µ, q)−∇2Ψlin(µ, q)
∥∥
op

≤µ 1

T

∑
t∈x

∥∥R⊤ (∇σ(π̃t +Rq)−∇σ(π̃t +Rq̃))R
∥∥

+ (1− µ)
1

T

∑
t∈x

∥∥R⊤ (∇σ(πt +Rq)−∇σ(πt +Rq̃))R
∥∥

≤ 8 e6
√
2Π

(D − 1)
σmax(R)

3 e3
√
2σmax(R)(∥q∥∨∥q̃∥) ∥q − q̃∥ ,

which gives the value of Γ1 and γ1. Finally, Eq. 38 gives directly that

w−1(ρ) = e−2
√
2Π 1

D
σmin(R)

2 e−2
√
2σmax(R)∥q∥ ,

which concludes the proof.

Next, we show that ∥q0∥ is not too large.

Lemma F.6 (Bound on ∥q0∥). Suppose that A.F.2 holds. Then

∥q0∥ ≤
√
2σmax(R)

α
.

We demonstrate Lemma F.6 in practice in Section I.2. The key idea behind the proof is that the regularization term α
2 ∥q∥2

prevents q from escaping to infinity.

Proof. Let us recall that

q0 = argmin
q∈Rd

{
1

T

∑
t∈x

ψxt
(πt +Rq) +

α

2
∥q∥2

}
.

In view of Lemma F.3, q0 is the unique solution of the following equation:

R⊤
(

1

T

∑
t∈x

(
σ(πt +Rq)− 1xt

))
+ αq = 0 . (39)

From Eq. (39), we deduce that

∥q0∥ =
1

Tα

∥∥∥∥∥R⊤
(∑

t∈x

(
σ(πt +Rq0)− 1xt

))∥∥∥∥∥ .
By definition of σmax(R) and the triangle inequality, this is upper bounded by

σmax(R)

Tα

∑
t∈x

∥σ(πt +Rq0)− 1xt
∥ . (40)

But we notice that, for any q ∈ Rd and t ∈ x,

∥σ(πt +Rq)− 1xt
∥2 =

∑
j ̸=xt

σj(πt +Rq)2 + (σxt
(πt +Rq)− 1)2

=
∑
j

σj(πt +Rq)2 + 1− 2σxt
(πt +Rq)

∥σ(πt +Rq)− 1xt∥2 ≤2 ,

where we have used the fact that ∥σ∥ ≤ 1 and σi ≥ 0. Hence each term in Eq. (40) is upper bounded by
√
2. Keeping in

mind that the summation over t ∈ x has at most T terms, we deduce the result.
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We are now ready to apply case c > 0 of Theorem G.1 to obtain the promised quantitative bounds.
Theorem F.7 (Quantitative bounds for doc2vec embeddings). Let Ψlin defined in Eq. (12), and suppose A.F.2 holds.
Let us define

A := 4ℓνD e2
√
2Π σmax(R)

σmin(R)2
,

B := 64ℓνD
σmax(R)

2

σmin(R)2
e10

√
2Π

(
σmax(R)

2

σmin(R)2
+

Π

D − 1

)
,

and
C := 5

√
2σmax(R) .

Suppose that
|S|
T

≤ 1

2B
e−2(AC+1) eC

√
2σmax(R)

α , (41)

Then

sup
µ∈[0,1]

∥q(µ)− q0∥ ≤ 2A eC∥q0∥ |S|
T
. (42)

Proof. Remark that Ψlin satisfies A.(D.1) (Lemma F.3), A.(E.1) (Lemma F.4) and A.(E.2) (Lemma F.5). Therefore the
assumptions of Theorem E.3 are satisfied. Let us note that

γ0γ−1 = A
|S|
T
,

2Γ−1(Γ−1Γ1Γ0 + Γ2) ≤ B
|S|
T

and
(γ−1 + γ1) ∨ γ2 = C .

Remark that in that setting, thanks to Lemma F.6, ∥q0∥ ≤
√
2σmax(R)

α . We also have the following straightforward bounds:

|S|
T

≤ 1 and C ∥q0∥ ≤ eC∥q0∥ ≤ eC
√

2σmax(R)
α .

Using Eq. (41), one necessarily have

2B
|S|
T

≤ e−2(AC+1) eC
√

2σmax(R)
α

≤ e−2C(∥q0∥+A
|S|
T eC∥q0∥) .

This guarantees that Eq. (33) and one can apply Theorem E.3, which yields the desired result.

G. Grönwall-Bahouri-Bellman type result
In this section, we collect all results related to ODEs. In our setting, as seen in Lemma D.6, and in view of A.E.2, the
coefficients of Eq. 22 are not globally Lispchitz (although locally-Lipschitz). Thus, while local existence and uniqueness of
solutions to Eq. (22) is a given (small µ regime), existence up to time 1 and non-explosion of the solutions is much more
challenging to achieve (large µ regime). Unfortunately, this is the regime that we are interested into: the local behavior of
the ODE at µ = 0 does not tell us anything interesting, since what we aim at is the comparison between the starting point
(µ = 0) and final point (µ = 1) of the dynamic. Our strategy is to use an ad hoc extension of the Grönwall-Bahouri-Bellman
lemma to deal with our specific setting.

Our approach is inspired by proofs of Grönwall-Bellman-Bahouri type lemmas, see for example Dannan (1985); Agarwal
et al. (2005); Kim (2009); Pachpatte (2004). It relies on an explicit integration of the integral inequality which will pop
up in the computations. Note that, instead of generic local constants L, M , and w−1, and in view of Section F, we will
suppose that all those quantity are locally bounded by some exponential functions. Our derivation is very close to that of
Pachpatte inequality (Pachpatte, 2004), but here we keep track of the constants. In doing, so we gain an explicit criteria for
non-explosion of the solutions up to time µ = 1. To view other applications of non-explosion on the time-one map, one
could also consult (Bailleul & Catellier, 2020) and the references therein.
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Theorem G.1 (Grönwall-Bahouri-Bellman type inequality). Let Λ : [0, 1] × Rd → Rd be a continuous function and
a, b, c > 0 be numerical constants such that, for all q, q̃ ∈ Rd,

sup
µ∈[0,1]

∥Λ(µ, q)∥ ≤ a ec∥q∥ , (43)

and
sup

µ∈[0,1]

∥Λ(µ, q)− Λ(µ, q̃)∥ ≤ b ec(∥q∥∨∥q̃∥) ∥q − q̃∥ . (44)

Let q0 ∈ Rd such that either c = 0 or
2b < exp

(
−2c

(
∥q0∥+ a ec∥q0∥

))
. (45)

Then, there exists a unique function q : [0, 1] → Rd such that q(0) = 0 and for all µ ∈ [0, 1]

q′(µ) = Λ(µ, q(µ)) . (46)

Furthermore, for all µ ∈ [0, 1],

∥q(µ)− q0∥ ≤
{
2µa ec∥q0∥ if c > 0,

µa eb if c = 0 .

Proof. Step 1: Existence of the map satisfying (46). Note that since Λ is locally Lipschitz continuous, thanks to the
Cauchy-Lipschitz/Picard-Lindelöf theorem (see Arnold (1978, Chapter 2)), there exists an open interval I⋆ of [0, 1] and
a unique function q : I⋆ → Rd such that q is the unique solution to Eq. (46). Note that an open interval of [0, 1] which
contains 0 is necessarily of the form [0, τ) with 0 < τ < 1 or [0, 1]. Remark also that for all µ ∈ I⋆, thanks to the regularity
assumption on Λ, on I⋆, µ 7→ Λ(µ, q(µ)) is continuous and for µ ∈ I⋆ the following integral equation is satisfied:

q(µ) = q0 +

∫ µ

0

Λ(µ̃, q(µ̃)) dµ̃ .

Step 2: . Taking the norm in the previous display and using the triangle inequality, we see that

∥q(µ)− q0∥ ≤
∫ µ

0

∥Λ(µ̃, q0)∥ dµ̃+

∫ µ

0

∥Λ(µ̃, q(µ))− Λ(µ̃, q0)∥ dµ̃ .

Using our assumptions on Λ, namely Eqs. (43) and (44), we obtain

∥q(µ)− q0∥ ≤ µa ec∥q0∥ +b
∫ µ

0

ec(∥q(µ̃)∥+∥q0∥) ∥q(µ̃)− q0∥ dµ̃ .

Since ∥q(µ̃)∥ − ∥q(q0)∥ ≤ ∥q(µ̃)− q0∥, we deduce that

∥q(µ)− q0∥ ≤ µa ec∥q0∥ +b e2c∥q0∥
∫ µ

0

ec∥q(µ̃)−q0∥ ∥q(µ̃)− q0∥ dµ̃ .

Let us define for all µ ∈ I⋆,

Q(µ) =

{
a ec∥q0∥ +b e2c∥q0∥ 1

µ

∫ µ

0
ec∥q(µ̃)−q0∥ ∥q(µ̃)− q0∥ dµ̃ if µ > 0 ,

a ec∥q0∥ if µ = 0 .

Note that 1
µ

∫ µ

0
ec∥q(µ̃)−q0∥ ∥q(µ̃)− q0∥ dµ̃→µ→0 ec∥q(0)−q0∥ ∥q(0)− q0∥ = 0 and Q is continuous in µ = 0. Furthermore,

for µ ∈ I⋆\{0},

Q′(µ) = − 1

µ2
b e2c∥q0∥

∫ µ

0

ec∥q(µ̃)−q0∥ ∥q(µ̃)− q0∥ dµ̃+
1

µ
b ec∥q(µ)−q0∥ ∥q(µ)− q0∥ . (47)

With this notation in hand, for any µ ∈ I⋆\{0}, ∥q(µ)− q0∥ ≤ µQ(µ). Since we restrict our attention to µ ≤ 1, we have

∥q(µ)− q0∥ ≤ Q(µ) . (48)
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Step 3: Differential inequality. Since x 7→ x ecx is a non-decreasing function, we have for µ ∈ I⋆\{0}

Q′(µ) ≤ b e2c∥q0∥
∥q(µ)− q0∥

µ
ecµ

∥q(µ)−q0∥
µ

≤ b e2c∥q0∥ Q(µ) ecQ(µ) , (49)

where we used Eq. (47) for a direct bound one the derivative and Eq. (48) to obtain the last display.

Step 4: Cauchy-Lipschitz setting (c = 0). Suppose for a moment that c = 0 so that we are in the standard setting of global
Cauchy-Lipschitz/Picard Lindelöf Theorem and standard Grönwall Lemma. We have for µ ∈ I⋆

log

(Q(µ)

a

)
≤ bµ ,

I⋆ = [0, 1] and
∥q(µ)− q0∥ ≤ µQ(µ) ≤ aµ ebµ .

Step 5: Grönwall-Bahouri-Bellman integration (c > 0). Suppose now that c > 0. Let β > 0. Let us remark that for all
x ≥ 0, x ecx ≤ 1

c e
2cx, and we have

Q′(µ) ≤ b

c
e2c∥q0∥ e2cQ(µ) . (50)

Multiplying both sides of Eq. (50) by e−2cQ(µ), one recognize (up to constants) the derivative of e−2cQ. Integrating from 0
to µ, we have proved that

e−2ca ec∥q0∥ − e−2cQ(µ)

2
≤ b e2c∥q0∥ µ . (51)

When
e−2ca ec∥q0∥ −2b e2c∥q0∥ µ > 0 , (52)

we have

ecQ(µ) ≤
(
e−2ca ec∥q0∥ −2b e2c∥q0∥ µ

)− 1
2

. (53)

Furthermore, whenever Eq (45) holds (namely Eq. (52) is true for all µ ∈ [0, 1]) we can take I⋆ = [0, 1], since Eq. (53)
guaranty that Q does not explode.

For µ ∈ I⋆\{0} which satisfies Eq. (52), when using the previous bound and Eq. (49), we have the following inequality :

Q′(µ) ≤ b e2c∥q0∥
(
e−2ca ec∥q0∥ −2b e2c∥q0∥ µ

)− 1
2 Q(µ) .

When dividing by Q(µ) and integrating, we get

log(Q(µ))− log(Q(0)) ≤ exp

(
b e2c∥q0∥

∫ µ

0

(
e−2ca ec∥q0∥ −2b e2c∥q0∥ µ̃

)− 1
2

dµ̃

)
.

Therefore, for all µ which satisfies Eq. (52),

∥q(µ)− q0∥ ≤ µQ(µ) ≤µa ec∥q0∥ exp
(∫ µ

0

b e2c∥q0∥
(
e−2ca ec∥q0∥ −2b e2c∥q0∥ µ̃

)− 1
2

dµ̃

)
≤µa ec∥q0∥ exp

((
e−2ca ec∥q0∥) 1

2 −
(
e−2ca ec∥q0∥ −2b e2c∥q0∥ µ

) 1
2

)
(54)

≤µa ec∥q0∥ exp
((

2b e2c∥q0∥ µ
) 1

2

)
,

where we have use that for 0 ≤ v < ṽ,
√
ṽ − √

v ≤
√
ṽ − v. Note that Eq. (54) makes sense since Eq. (52) is satisfied.

Finally, one can use Eq. (52) and write

2b e2c∥q0∥ µ ≤ 2b e2c∥q0∥ ≤ e−2ac e2∥q0∥ ≤ 1 ,
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which gives
∥q(µ)− q0∥ ≤ µ2a ec∥q0∥ ,

which is the wanted result.

Remark G.2 (Improving Theorem F.7). There are several open avenues to improve Theorem F.7. One possibility is to keep a
finer the dependency in µ when bounding ∥q(µ)− q0∥ (namely keeping the µ factor when deriving Eq. (48)). A second
possible improvement is to use a finer inequality than y ≤ ey when deriving Eq. (50). Unfortunately, in both cases, we were
unsuccessful in integrating these more complicated expressions in a tractable form (derivation leading to Eq. (51)).

H. Technical results related to the softmax function
In this section, we collect all technical facts related to the softmax function used throughout the proofs. Let us recall that we
defined the softmax function from RD to RD as σ(x) = (σ1(x), . . . , σD(x))⊤, where for all i ∈ [D],

σi(x) =
exi∑D
j=1 e

xj

.

We also defined, for all x ∈ RD and all i ∈ [D],

ψi(x) = − log(σi(x)) .

H.1. Basics on the softmax function

We start by recalling elementary properties of the softmax function.

Lemma H.1 (Softmax derivatives). We have

∂

∂xk
σℓ(x) =

{
σk(x)(1− σk(x)) if k = ℓ

−σk(x)σℓ(x) otherwise.

In a more concise way,
∇σ(x) = diag(σ(x))− σ(x)σ(x)⊤ .

A straightforward consequence of Lemma H.1 is the computation of the first derivatives of ψi (these are very standard
computations, see for instance Proposition 1 and 2 in Gao & Pavel (2017)).

Lemma H.2 (Gradient of ψi). We have

∂

∂xk
ψi(x) =

{
−1 + σk(x) if k = i

σk(x) otherwise.

In more concise notation, ∇ψi = σ − 1i.

Similarly, we have:

Lemma H.3 (Hessian of ψi). We have

∂2

∂xk∂xℓ
ψi(x) =

{
σ (x)k (1− σ (x)k) if k = ℓ

−σ (x)k σ (x)ℓ otherwise.

In more concise notation,
∇2ψi = ∇σ = diag(σ)− σσ⊤. (55)

Corollary H.4 (Convexity of log-softmax). For any i ∈ [D], the function ψi is convex.

The proof of the previous fact relies on the Courant minimax theorem, which gives the value of the eigenvalue of a real
symmetric matrix. Furthermore, we also use that fact that a function such that its Hessian is a non-negative symmetric
matrix is convex.
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Proof. Let x, v ∈ RD. Since
∑

i σi(x) = 1, we have

⟨∇2ψi(x)v, v⟩ =
∑
k

σk(x)v
2
k −

∑
k

σk(x)
∑
ℓ

σℓ(x)vℓvk

=
∑
k

σk(x)v
2
k −

(∑
k

σk(x)vk

)2

=
∑
k

σk(x)

(
vk −

∑
ℓ

σℓ(x)vℓ

)2

≥ 0 ,

Hence, thanks to the Courant minimax principle, all the eigenvalues of ∇2ψi are non-negative. Hence ∇2ψi is a non-negative
symmetric matrix, and ψi is a convex function.

The following proposition controls the spectrum of the Hessian of ψi, that is the gradient of the softmax, in function of the
minimal and maximal values of the softmax function.

Lemma H.5 (Spectrum of the softmax Jacobian). Let ρ > 0. For x ∈ RD, let us define

σ(1)(x) := min
i∈[D]

σi(x) ,

and
σ(D)(x) := max

i∈[D]
σi(x) .

Let us define
λmin(x) := min {Spec (∇σ(x)) \{0}} ,

and
λmax(x) := max {Spec (∇σ(x))} .

Then
Dσ2

(1)(x) ≤ λmin(x) ≤ λmax(x) ≤ Dσ2
(D)(x) .

Proof. According to Lemma H.3,
∇σ(x) = diag(σ(x))− σ(x)σ(x)⊤ .

This matrix is symmetric, and according to Corollary H.4, its eigenvalues are non-negative real numbers. Since
∑

i σi(x) = 1,
one has

∇σ(x)1 = 0 ,

where, as before, 1 = (1, . . . , 1)⊤. Since for all i ∈ [D], σi(x) ̸= 0, if v ∈ Ker (∇σ(x)) then necessarily for all i ∈ [D],
viσi(x) − σi(x)

∑
j σj(x)vj = 0, and v = v11. Hence, Im(∇σ(x)) = 1⊥ and Ker (∇σ(x)) = Vec (1). Using the

Courant minimax characterization of eigenvalues, we have

λmin(x) = min
v∈1⊥
∥v∥=1

⟨∇σ(x)v, v⟩ = min
v∈1⊥
∥v∥=1

v⊤ (∇σ(x)) v and λmax(x) = max
v∈1⊥
∥v∥=1

⟨∇σ(x)v, v⟩ = max
v∈1⊥
∥v∥=1

v⊤ (∇σ(x)) v .

(56)
Note then that for v ∈ 1⊥ (and dropping the x dependency),

v⊤ (∇σ(x)) v =

D∑
i=1

σiv
2
i −

(
D∑
i=1

σjvj

)2

.

Now, the Cauchy-Schwarz inequality guarantees that the previous display is non-negative, but this is not enough to conclude.
We resort to the four-letter identity (Steele (2004, Exercise 3.7), see also Garreau & Mardaoui (2021, Proposition 13)) to
write

v⊤ (∇σ(x)) v =

D∑
i=1

σiv
2
i −

(
D∑
i=1

σivi

)2

=
∑
j<k

σjσk(vk − vj)
2 . (57)
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Keeping in mind that the σis are non-negative, this last identity gives

σ2
(1)

∑
j<k

σjσk(vk − vj)
2 ≤ v⊤ (∇σ(x)) v ≤ σ2

(D)

∑
j<k

σjσk(vk − vj)
2 .

In the term (
σ(1)

)2 ·∑
j<k

(vk − vj)
2 .

we recognize (D2 times) the variance of the vis. More precisely,

1

D2

∑
j<k

(vk − vj)
2 =

1

D

D∑
i=1

vi − 1

D

∑
j

vj

2

.

Since v ∈ Vec (1)
⊥, we know that

∑
j vj = 0, and the previous display reduces to (1/D times) the norm of v. Whenever

∥v∥ = 1 and v ∈ 1⊥ we have shown

Dσ(1)(x)
2 ≤ v⊤ (∇σ(x)) v ≤ Dσ(D)(x)

2.

Coming back to the characterization of the eigenvalues given by Eq. (56), we deduce the result.

The previous bound, associated with estimates on the infimum and supremum of the softmax function on balls gives
estimates on the (local)-Lipschitz constant of the softmax.
Lemma H.6 (local-Lipschitz continuity of the softmax). For all x, y ∈ RD such that x, y ∈ 1⊥,

∥σ(x)− σ(y)∥ ≤ D

(D − 1)2
exp

(
2

√
D

D − 1
(∥x∥ ∨ ∥y∥)

)
∥x− y∥ .

In order to prove the previous lemma, one only has to remember that the operator norm for real symmetric matrices is the
greatest eigenvalue, and use the fundamental theorem of analysis.

Proof. Let x, y ∈ 1⊥. We write

∥σ(x)− σ(y)∥ =

∥∥∥∥∫ 1

0

∇σ(u(x− y) + y)(x− y) du

∥∥∥∥
≤
∫ 1

0

∥∇σ(u(x− y) + y)∥op ∥x− y∥ du.

One can then use Theorem H.9 and Lemma H.5, and we have for all u ∈ [0, 1],

∥∇σ(u(x− y) + y)∥op = λmax(u(x− y) + y)

≤ Dσ(D)(u(x− y) + y)2

≤ D

 1

1 + (D − 1) e
−
√

D
D−1∥u(x−y)+y∥

2

≤ D e
2
√

D
D−1∥u(x−y)+y∥

(D − 1)2

≤ D

(D − 1)2
e
2
√

D
D−1 (∥x∥∨∥y∥)

.

Putting everything together, we have

∥σ(x)− σ(y)∥ ≤ D

(D − 1)2
e
2
√

D
D−1∥x∥∨∥y∥ ∥x− y∥ ,

which is the desired result.
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Remark H.7 (Lipschitz continuity of the softmax). Note that usually, the Lipschitz continuity of the softmax is considered,
but with respect to the Frobenius norm. One can obtain a crude bound starting from the squared Frobenius norm of the
Jacobian, namely ∑

i

σ2
i (1− σi)

2 +
∑
i̸=j

σ2
i σ

2
j . (58)

Since the Frobenius norm is always greater than the operator norm, this implies the result for a (global) Lispchitz constant
equal to 1. A finer study of Eq. (58) yields a better Lipschitz constant for σ. This is what Alghamdi et al. (2022) do, proving
1/2-Lipschitz continuity for the softmax function (Proposition 1 in Appendix A.4).

In view of the specific form of the gradient of the softmax, this implies that we have (almost) the same local-Lipschitz
constant for the gradient of the softmax.

Corollary H.8 (local-Lispchitz continuity of the softmax Jacobian). For all x, y ∈ 1⊥,

∥∇σ(x)−∇σ(y)∥op ≤ 2D2

(D − 1)3
e
3
√

D
D−1 (∥x∥∨∥y∥) ∥x− y∥ .

The proof is a direct consequence of the particular form of the Jacobian (see Lemma H.1) and of the fact that

|σi(x)− σi(y)| ≤ ∥σ(x)− σ(y)∥ .

Proof. Let x, y ∈ 1⊥. We have

∥∇σ(x)−∇σ(y)∥op = sup
v∈RD

∥v∥=1

v⊤ (∇σ(x)−∇σ(y)) v .

Furthermore, using the same argument as in the proof of Lemma H.5, one can only consider v ∈ 1⊥ with ∥v∥ = 1. Applying
Eq. (57) to x and y and forming the difference, we obtain

v⊤ (∇σ(x)−∇σ(y)) v =
∑
i<k

(
σi(x)σk(x)− σi(y)σk(y)

)
(vi − vk)

2

=
∑
i<k

(
σi(x)− σi(y)

)
σk(x)(vi − vk)

2 +
∑
i<k

σi(y)
(
σk(x)− σk(y)

)
(vi − vk)

2

Each of these terms can be bounded, using successively the local Lipschitz continuity of the softmax (Lemma H.6) and the
definition of σ(D). The last display is upper bounded by(

D

(D − 1)2
e
2
√

D
D−1 (∥x∥∨∥y∥)

σ(D)(x) +
D

(D − 1)2
e
2
√

D
D−1 (∥x∥∨∥y∥)

σ(D)(y)

)∑
i<k

(vi − vk)
2 ∥x− y∥ ,

which, in turn, is smaller than

(σ(D)(x) + σ(D)(y))
D

(D − 1)2
e
2
√

D
D−1 (∥x∥∨∥y∥)∑

i<k

(vi − vk)
2 ∥x− y∥ .

Using the bound on σ(D) given by Theorem H.9, we have

v⊤ (∇σ(x)−∇σ(y)) v ≤ 2D

(D − 1)3
e
3
√

D
D−1 (∥x∥∨∥y∥) ∥x− y∥

∑
i<k

(vi − vk)
2.

Using again the same argument as in the proof of Lemma H.6, we have
∑

i<k(vi − vk)
2 = D, and finally for v ∈ 1⊥ with

∥v∥ = 1, we have

v⊤(∇σ(x)−∇σ(y))v ≤ 2D2

(D − 1)3
e
2
√

D
D−1 (∥x∥∨∥y∥) ∥x− y∥ ,

which gives the wanted result by taking the supremum on v.
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H.2. Minimization of the softmax function

In this section, we study the extremal values of the softmax function. The reason of this study is the close connection of
these extremal values with the spectrum of the softmax and log-softmax function. Intuitively, the trivial bound σi(x) ≤ 1
can be greatly strengthened when the norm of x is constrained: σi(x) = 1 is achieved only when xi → +∞, which can not
be if x lives in a ball of radius ρ.

Theorem H.9 (Bounding the softmax function). Let ρ > 0 and D ≥ 2. We have

min
i∈[D]

inf
∥x∥≤ρ∑
j xj=0

σi(x) =
1

1 + (D − 1) e

√
D

D−1ρ
.

and
max
i∈[D]

sup
∥x∥≤ρ∑
j xj=0

σi(x) =
1

1 + (D − 1) e
−
√

D
D−1ρ

.

Remark H.10 (Bounding the softmax). The softmax function is ubiquitous in machine learning, and many bounds can be
found in the literature (Wei et al., 2023). Generally, these bounds are pointwise, and not applicable in our case since we need
a global bound on the ball of radius ρ (with the additional constraint

∑
j xj = 0 coming from our algebraic assumption).

Proof. Step 1: the infimum is achieved and invariant by permutation. For any x ∈ RD such that ∥x∥ ≤ ρ, σi(x) ∈ (0, 1)
for all i ∈ [D]. Furthermore,

∇σi(x) = σi(x)1i − σi(x)σ(x) ,

where we remind that (11, . . . ,1D) is the canonical basis of RD. Hence ∇σi(x) ̸= 0 and the supremum is achieved on the
sphere. Note that B0(ρ) :=

{
x ∈ RD : ∥x∥ = ρ,

∑
j xj = 0

}
is a compact set, and the infimum is a minimum. Consider

i0 ∈ [D] and y ∈ B0(ρ) a joint minimizer such that

σi0(y) = min
i∈[D]

min
x∈B0(ρ)

σi(x) . (59)

Remark that Eq. (59) is invariant by permutation, i.e., for any permutation τ : [D] → [D], we have

στ(i0)(τ · y) = σi0(y) = min
i∈[D]

min
x∈B0(ρ)

σi(x) ,

where τ · y = (yτ(i))i∈{1,...,D}. Hence, one can suppose without loss of generality that i0 = 1.

Step 2: the coordinates of a minimizer are equal under z 7→ z e−z except at i0. In this setting, since we have for all
i ∈ {2, . . . , D}, σ1(y) ≤ σi(y) this implies that y1 ≤ yi. Using the fact that

∑
j yj = 0, when summing the previous

inequality for all i ∈ [D], one gets y1 ≤ 0. Note that in fact y1 < 0. Indeed, if y1 = 0, we have yi = 0 for all i ∈ [D] and
∥y∥ = 0 ̸= ρ.

We are in the setting of a minimization problem under constrains, namely y solves

minimize σ(x) subject to ∥x∥2 = ρ2, ⟨x,1⟩ = 0 .

Using the Lagrange-Multiplier Theorem, there exist α, β ∈ R such that for the aforementioned solution y we have

∇σ(y) + α∇
(
∥·∥2 − ρ2

)
(y) + β∇ (⟨·,1⟩) (y) = 0 ,

which translate into

σ1(y)− σ1(y)
2 + 2αy1 + β = 0

−σ1(y)σi(y) + 2αyi + β = 0 for i ∈ {2, . . . , D} .

Remark that β = 0 and α ̸= 0. Indeed, by summing all these previous equality, and using that
∑
yi = 0 and

∑
σi = 1, one

gets Dβ = 0 and β = 0. Remind that y1 < 0, and since

σ1(y)− σ1(y)
2 + 2αy1 = 0 ,
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if α = 0 then σ1(y)(1− σ1(y)) = 1, which is not possible. Hence α ̸= 0.

We also have that for all i, j ∈ {2, . . . , D},

σ1(y) =
2αyi
σi(y)

=
2αyj
σj(y)

.

Using that fact that α ̸= 0, this implies that yi

eyi = y2

ey2 for all i ∈ {2, . . . , D} and that

0 = y1 +

D∑
i=2

yi = y1 +

(
D∑
i=2

y2 e
−y2 eyi

)
= y1 +

(
D∑
i=1

eyi − ey1

)
y2 e

−y2 = y1 + ey1
1− σ1(y)

σ1(y)
y2 e

−y2 .

As a consequence, for all i ∈ {2, . . . , D},

yi e
−yi = y2 e

−y2 = −y1 e−y1
σ1(y)

1− σ1(y)
. (60)

Step 3: expression of the minimum in function of the solution of z e−z = c. Since y1 < 0, the previous equality (60)
implies that yi > 0 for i ∈ {2, . . . , D}. For any 0 < c < e−1, the equation x e−x = c has exactly two solutions, which we
call 0 < y−(c) < 1 < y+(c). Let us define

n =

∣∣∣∣{2 ≤ i ≤ D, yi = y−

(
−y1 e−y1

σ1(y)

1− σ1(y)

)}∣∣∣∣
the number of “negative” solutions. By definition of n, we necessarily have

σ1(y) =
ey1

ey1 +n ey− +(D − 1− n) ey+
. (61)

Recall that
∑

j yj = 0 and ∥y∥ = ρ, hence

y1 + ny− + (D − 1− n)y+ = 0 (62)

y21 + ny2− + (D − 1− n)y2+ = ρ2 . (63)

When n = D − 1, one can solve the previous equations and we have y1 = ρ
√

D
D−1 and yj = ρ

√
1

D(D−1) for all

j ∈ {2, · · · , D}, and σ1(y) = 1

1+(D−1) e

√
D

D−1
ρ

.

Since the problem here is symmetric in y− and y+, one can suppose that 1 ≤ n ≤ D − 2. Hence rewriting Eq. (62), we
obtain

y+ = −
(

n

D − 1− n
y− +

1

D − 1− n
y1

)
.

Replacing the value of y+ by the right-hand side of the previous display in Eq. (63), we obtain(
n+

n2

D − 1− n

)
y2− + 2

n

D − 1− n
y1y− −

(
ρ2 − y21

(
1 +

1

D − 1− n

))
= 0 .

Dividing by
(
n+ n2

D−1−n

)
, we get

y2− +
2

D − 1
y1y− −

(
D − 1− n

n(D − 1)
ρ2 − D − n

n(D − 1)
y21

)
= 0 .

We can see the previous display as a quadratic equation in y−, which we now solve. There exists ε ∈ {−1, 1} such that

y− =
−y1 − ε

√
D−1−n

n ∆(y1)

D − 1
,
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where
∆(y1) =

√
(D − 1)ρ2 −Dy21 .

Note that in this setting one necessarily have

−
√

D

D − 1
ρ ≤ y1 ≤ 0 , (64)

since we have already seen that the minimization problem under constrains has a solution, y− and y+ exist and 1 ≤ n ≤ D−2.
When the previous condition is not satisfied, necessarily in the case n = D − 1 or n = 0 holds which has already been
treated.

Finally, when using the fact that y+ = − 1
D−1−n (y1 + ny−),

y+ =
−y1 + ε

√
n

D−1−n∆(y1)

D − 1
.

And since y+ > y−, we have

ε

√
n

D − 1− n
> −ε

√
D − 1− n

n
,

and we conclude that ε = 1, i.e.,

y− =
−y1 −

√
D−1−n

n ∆(y1)

D − 1
(65)

y+ =
−y1 +

√
n

D−1−n∆(y1)

D − 1
. (66)

Taking a step back, we have managed to express all coordinates as an explicit function of y1.

Step 4: closed-form expression of the minimum. Replacing y− and y+ in Eq. (61) by the expression obtained in Eqs. (65)
and (66), we have to minimize the function of y1 defined

g(y1) =
ey1

ey1 +n e
−y1−

√
D−1−n

n
∆(y1)

D−1 + (D − 1− n)e
−y1+

√
n

D−1−n
∆(y1)

D−1

=

(
1 + e−

D
D−1y1

(
n e−

√
D−1−n

n
∆(y1)

D−1 +(D − 1− n) e

√
n

D−1−n
∆(y1)

D−1

))−1

=

(
1 + e−

D
D−1y1

√
n(D − 1− n)

×
(√

n

D − 1− n
e−

√
D−1−n

n
∆(y1)

D−1 +

√
D − 1− n

n
e

√
n

D−1−n
∆(y1)

D−1

))−1

Note that for y1 satisfying Eq. (64) y1 is non-positive. It is elementary to show that y 7→ ∆(y) is an increasing function on
R−. Moreover, for all a > 0, h : x 7→ a e−

x
a + 1

a eax is an increasing function on R+. Thus y 7→ h(∆(y)/(D − 1)) is a

decreasing mapping on R−. Hence, by taking a =
√

D−1−n
n , we have

h

(
∆(y1)

D − 1

)
≤ h(0) =

√
D − 1− n

n
+

√
n

D − 1− n
,

and √
(D − 1− n)nh

(
∆(y)

D − 1

)
≤
√
(D − 1− n)n

(√
D − 1− n

n
+

√
n

D − 1− n

)
= D − 1 .
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Figure 7. Influence of the length of the document with gensim implementation of doc2vec. Increasing the length of a document
by considering the first words of 3 IMDB examples and replacing 5 words at random several times for each document lengTheorem
Dimension of the embedding is d = 50, size of the dictionary is D = 23, 048.

Using this last display, we write

g(y1) ≥
1

1 + (D − 1) e−
D

D−1y1
.

The right-hand side is an increasing function of y1, whose minimum value is −
√

D−1
D ρ, and this gives

g(y1) =
1

1 + (D − 1) e

√
D

D−1ρ
. (67)

Thus equality in the key bound is reached for

y =

(
−
√
D − 1

D
ρ,

√
1

D(D − 1)
ρ, . . . ,

√
1

D(D − 1)
ρ

)⊤

,

with value given by Eq. (67).

Step 5: Proof for the maximum. Following the same reasoning as in the proof of Theorem H.9, we show that the maximum
is reached for the point (√

D − 1

D
ρ,−

√
1

D(D − 1)
ρ, . . . ,−

√
1

D(D − 1)
ρ

)⊤

,

and the coordinate σ1, and we get the wanted result.

I. Additional experimental results
In this section we collect additional experimental results.

I.1. Illustration of Theorem 5.1 with another implementation

In Figure 7 and 8, we present a replication of the experiment presented in Section 5.2 of the main paper. This time, we used
the gensim implementation of the doc2vec model. The main difference is the use of hierarchical softmax instead of
softmax. Despite this difference, the empirical results remain consistent with our theoretical claims and experimental results
with an ad hoc implementation. We conjecture that the hierarchical softmax has similar algebraic properties to the softmax,
in particular kernel stability, which would justify conducting the same analysis.

I.2. Illustration of Lemma F.6

In Figure 9, we illustrate the bound provided by Lemma F.6. We consider the 5 longest examples of the IMDB dataset and
create artificial documents of increasing length as before. We observe no asymptotic dependency in T , as predicted by the
theoretical result.
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Figure 8. Influence of number of replacements with gensim implementation of doc2vec. Considering 3 examples from the IMDB
dataset. Dimension of the embedding is d = 50, size of the dictionary is D = 23, 048.
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Figure 9. Norm of the original embedding as a function of T .

I.3. Singular values of R

In Figure 10, we empirically check that the singular values of the (learned) R are well-behaved. We considered the matrices
from our local model and report the histogram of their singular values in log scale in Figure 10.
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Figure 10. Singular values of R, in log scale. We observe that σmin(R) > 0.
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