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Abstract. Simulating quantum systems is a foundational application in
quantum computing, particularly in fields such as computational chem-
istry. We present our use of a scalable framework, the Quantum Eco-
nomic Development Consortium (QED-C) Application-Oriented Bench-
mark Suite (QED-C), to evaluate the performance of quantum algorithms
across various hardware platforms. A key focus is leveraging NVIDIA
CUDA-Q, a powerful GPU-accelerated platform for quantum-classical
hybrid programming, to benchmark Hamiltonian simulation, Quantum
Fourier Transform (QFT), and Phase Estimation (PE).

We simulate a range of physical systems within HamLib [12], including
the transverse field Ising, Heisenberg, and Fermi-Hubbard models, as
well as molecules such as Ha using Suzuki-Trotter evolution. Simulations
were executed on NVIDIA GPUs, including the A100, H100, GH200, and
GB200 systems, at Purdue University [7] and Lawrence Berkeley Na-
tional Laboratory (LBNL) [§], as well as in collaboration with NVIDIA.
CUDA-Q’s SpinOperator formalism enabled emulation of circuits for up
to 38 qubits on the LBNL cluster, with performance up to 3x faster
than real quantum hardware. Strong scaling behavior is observed up to
32 GPUs, with execution times for some simulations reduced by more
than 90%. For example, execution times for simulating a 33-qubit TFIM
dropped from 19s (1 GPU) to 2s (32 GPUs).

Despite these gains, we observe classical HPC-like diminishing returns
beyond 8 GPUs, due to inter-GPU communication bottlenecks. This im-
pact is mitigated in the latest GB200 clusters that support extending
the high-bandwidth NVLink GPU interconnect across multiple nodes.
CUDA-Q proves especially effective for sampling-heavy workloads, of-
fering near-linear scaling and improved parallel efficiency for PE and
QFT. Our findings demonstrate that GPU-accelerated quantum Hamil-
tonian simulation with CUDA-Q provides a robust and high-throughput
alternative to noisy intermediate-scale quantum (NISQ) devices, paving
the way for future kernel-level optimizations and distributed quantum
computing strategies.


https://github.com/SRI-International/QC-App-Oriented-Benchmarks
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1 Introduction

Recent advances in quantum computing have necessitated robust simulation
platforms to evaluate algorithmic performance on classical hardware. Many quan-
tum computing applications require simulating the Hamiltonians of physical and
chemical systems. Hamiltonian simulation models how these quantum systems
evolve over time under a specific unitary operator. Since it underpins algorithms
such as Quantum Phase Estimation and is essential for solving physical prob-
lems, efficient Hamiltonian simulation serves as a crucial benchmark for evaluat-
ing quantum platforms. CUDA-Q by NVIDIA provides a platform for classically
simulating these quantum Hamiltonians in the form of quantum circuits using
GPU acceleration, enabling scalable testing of quantum algorithms.

Building on hardware acceleration, Dente et al. [2] implement a order
Trotter-Suzuki decomposition to simulate nonequilibrium dynamics of interact-
ing quantum spin systems, achieving multi-hundred-fold speedups on GPUs com-
pared to CPUs and scaling up to 27 spins limited by GPU memory. Wittek
and Calderaro [I3] extend this approach to handle a wider range of physics
problems—including periodic boundary conditions, many-body non-interacting
particles, arbitrary stationary potentials, and imaginary time evolution—with
scalability demonstrated from single-node multicore to clusters of 64+ proces-
sors and memory usage from 5 MB to 512 GB, enabling larger and more diverse
simulations.

4th

Kawase and Fuji [4] propose accelerating classical quantum Hamiltonian
simulation by clustering commuting Pauli terms and applying Clifford transfor-
mations for simultaneous diagonalization, significantly reducing memory over-
head and enhancing GPU parallelism, with benchmarks showing reduction of
simulation time on a 30-qubit transverse Ising model from 7.9 hours on CPU
to 4.2 minutes on GPU. Faj et al. [3] evaluate GPU and multi-GPU acceler-
ation in Qiskit Aer simulators, demonstrating up to 14x speedup over CPU
baselines and additional gains from Nvidia’s cuQuantum backend, while identi-
fying host—-GPU data transfer as a scalability bottleneck. Ma and Li [6] address
accurate runtime prediction for quantum programs using a graph transformer
model trained on 1,510 benchmark circuits, achieving over 95% R? accuracy for
simulators and 90% for hardware, surpassing existing platform estimates and
revealing key runtime predictors such as two-qubit gate counts.

In this work, a series of controlled experiments were conducted to explore
GPU-accelerated quantum simulation in several dimensions. We examined the
scaling limits observed with currently available GPU systems, as well as the im-
pact of load distribution across nodes on simulation execution time. The exper-
iments were carried out on multiple generations and configurations of NVIDIA
GPU systems.
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The workloads specifically target simulations of Hamiltonian evolution using
various models from the HamLib library [12], alongside well-established quan-
tum algorithms such as Quantum Fourier Transform (QFT) and Quantum Phase
Estimation (QPE). QFT serves as a key subroutine in many quantum algo-
rithms, enabling efficient transformation between computational and frequency
domains. QPE, in turn, builds on QFT to estimate the eigenvalues of unitary
operators, making it essential for extracting spectral properties of quantum sys-
tems. These baseline algorithms serve as performance benchmarks, providing a
comparative framework to assess the computational complexity of the Hamilto-
nian evolution operators. As our results demonstrate, Hamiltonian simulations
exhibit approximately 10x greater computational cost in both execution time
and circuit depth compared to these foundational quantum algorithms. Per-
formance analysis was primarily performed using the expected execution time,
normalized by the maximum number of GPUs used during the run. We utilized
the benchmarking framework provided by the open-source QED-C suite |(Link
to repository)| of Application-Oriented Performance Benchmarks for Quantum
Computing [TOUTTI5]

1.1 Contributions

We present multi-GPU performance benchmarks of Hamiltonian simulations
using CUDA-Q across NVIDIA’s A100, H100, GH200, and GB200 platforms,
demonstrating strong scaling up to 256 GPUs and the ability to simulate systems
of up to 40 qubits. Our study highlights the performance differences between
quantum algorithms, QFT and PE, and showcases the architectural advantages
using various Nvidia GPU systems. We observe significant reductions in exe-
cution time for quantum circuit simulations with increasing GPU counts and
improved interconnects. These results emphasize the importance of optimized
communication strategies for scalability and suggest that architectural tuning
and gate fusion parameters beyond the CUDA-Q defaults can yield further per-
formance improvements. We note that these results could serve as valuable start-
ing points for future work on Hamiltonian simulations using GPUs.

2 Methods

A representative set of quantum programming tasks was selected from the open-
source QED-C suite of Application-Oriented Performance Benchmarks for Quan-
tum Computing [ITU5]. The suite provides an implementation of key quantum
algorithms and common application tasks structured as benchmarking problems
to evaluate multiple aspects of performance in quantum computation, such as
the quality of the result, the execution speed and the utilization of resources.
The tasks selected for our work fall into two categories. The first is the
execution of single quantum kernels of standard quantum algorithms, such as
Quantum Fourier Transform (QFT) or Quantum Phase Estimation (PE). The


(https://github.com/SRI-International/QC-App-Oriented-Benchmarks/blob/master/hamlib/benchmark_hamlib_observables_cudaq.ipynb
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4 A. Ramesh, W. M. Brown, T. Lubinski, and D. E. Bernal Neira

second is the computation of the expectation values after simulation of a qubit-
encoded quantum Hamiltonian evolution [I[9]. The QED-C suite uses a publicly
available library of Hamiltonian problem instances, HamLib [I2], as its source.
HamLib is a comprehensive dataset of quantum Hamiltonians, encompassing
problem sizes ranging from 2 to 1000 qubits and organized into several high-
level categories, such as optimization, condensed matter, and chemistry models.

In the first category, for each of the two quantum algorithms, the test involves
generating a set of quantum kernels of varying sizes, ranging from 4 to 40 qubits.
The kernel instances are executed in sequence on a target GPU-accelerated quan-
tum simulator, while performance metrics are collected and stored in a database
for analysis. The key metrics recorded are listed below. (Result fidelity metrics
are also computed, but are typically relevant only for physical quantum hardware
devices.)

— GPU utilization (%)
— GPU execution time (s)
— GPU memory usage (MiB)

GPU utilization (%) indicates the percentage of time the GPU cores are
actively engaged in computations. GPU execution time (s) refers to the total
duration a specific task runs on the GPU. GPU memory usage (MiB) measures
the amount of memory consumed during the execution of these tasks. In each of
these tests, the execution time corresponding specifically to the GPU kernel ex-
ecution time is plotted against the number of qubits, providing a direct measure
of computational scalability with respect to problem size

For the Hamiltonian simulation tests, six representative Hamiltonian prob-
lems were selected. The Hamiltonian benchmark test is more involved than the
simple algorithm test described above. For each, the test sweeps over problem
sizes ranging from 2 to 38 qubits and generates a quantum kernel that encodes
the terms of the Hamiltonian into a single Trotter-Suzuki step, using the CUDA-
Q Spin Operator, and initializes the kernel to a random quantum state. After
execution, the energy expectation value for that Hamiltonian is computed using
the CUDA-Q observe () method. The same metrics shown in the list above are
relevant for these tests (with the quality of expectation computation relevant
primarily for quantum hardware devices, not discussed here).

All of the quantum simulations were executed across multiple high-performance
computing platforms. GPU-accelerated computations used NVIDIA A100 tensor
core GPUs on the Purdue Anvil Cluster and Perlmutter at Lawrence Berkeley
National Laboratory (LBNL) [8], with additional evaluations performed on H100
GPUs available through the Purdue Gautschi Cluster [7]. Performance assess-
ments also incorporated NVIDIA’s latest GB200 and GH200 GPU architectures.
CPU-based calculations employed AMD EPYC processors: 32-core EPYC 7543
processors on Anvil and 96-core EPYC 9654 processors on Gautschi.

The computational framework was implemented using NVIDIA CUDA Quan-
tum (CUDA-Q), with version 0.9.1 deployed on the Anvil system and version
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0.10.0 on Gautschi and Perlmutter. The Anvil and Gautschi platforms oper-
ated on Rocky Linux distributions: version 8.10 (Green Obsidian) for Anvil and
version 9.4 (Blue Onyx) for Gautschi.

3 Results

The experimental results for multi-GPU quantum circuit simulations on A100,
H100, GH200, and GB200 reveal important insights into the scaling behavior
and efficiency of quantum algorithms, particularly the Quantum Fourier Trans-
form, Phase Estimation, and HamLib, which provides a comprehensive dataset
of qubit-based quantum Hamiltonians for simulation.

Table 1. Scaling Performance of Diverse Hamiltonian Simulations on H100 GPUs

Hamiltonian GPU Model #GPUs #Nodes Max Qubits Expected Time (s)
TFIM H100 80 GB 8 1 34 9.401
Heisenberg H100 80 GB 8 1 34 16.575
Fermi-Hubbard H100 80 GB 8 1 32 4.904
Bose-Hubbard H100 80 GB 8 1 32 17.132
Max3Sat H100 80 GB 8 1 34 27.936
Hydrogen molecule (Hz) H100 80 GB 8 1 20 3.248
TFIM H100 80 GB 4 1 34 13.159
Heisenberg H100 80 GB 4 1 34 24.133
Fermi-Hubbard H100 80 GB 4 1 32 6.061
Bose-Hubbard H100 80 GB 4 1 32 23.685
Max3Sat H100 80 GB 4 1 34 44.024
Hydrogen molecule (H2) H100 80 GB 4 1 20 3.342

3.1 Multi-GPU Scaling Behavior

The data in Table |l| showcase the expected strong scaling properties as the num-
ber of GPUs increases, where Hamiltonian simulations on 4 and 8 H100 GPUs
show clear performance improvements, particularly for larger and more compu-
tationally intensive problems such as Max3Sat and Bose-Hubbard. However, for
smaller systems such as Hsg, the gains from increasing GPU count are minimal,
suggesting that inter-GPU communication overhead can outweigh the benefits
of parallelism for problems with limited computational granularity. These ob-
servations highlight the importance of balancing problem size, GPU count, and
interconnect architecture when scaling quantum simulations on modern GPU
clusters. In Figure [1} the normalized execution times (Execution time / Maxi-
mum number of GPUs used) for the HamLib Hamiltonian simulation approx-
imately halve when doubling the GPU count from 1 to 2, 2 to 4, and 4 to 8,
demonstrating an effective workload distribution across multiple GPUs.
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Fig. 1. Normalized execution time profiles for different Hamiltonians using H100 GPUs.
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Fig. 2. Normalized execution time profiles for simulating 34 qubits using different GPU
counts on GB200 (FP32)

Simulations executed on more than 8 GPUs experience diminishing gains in
performance, indicating a drop in parallel efficiency. This reduction is primarily
attributed to the higher data movement overhead across lower-bandwidth inter-
connects between GPUs compared to the higher-bandwidth memory hierarchy
within a single GPU.

This trend is evident in the plot (Figure [2|) for GB200 (34-Qubit, FP32 con-
figuration), where there is minimal reduction in execution time as the number of
GPUs increases beyond 25, illustrating the classical HPC behavior of diminishing
returns in strong scaling.
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Fig. 3. Execution time profile for QFT algorithm and TFIM Hamiltonian evolution
at increasing problem size, using 256 Perlmutter A100 GPUs. The memory load is
distributed across the GPUs, enabling these simulations to be performed up to 40 or 38
qubits. Execution time grows as expected, by a factor of 4 for each increase of 2 qubits
in problem size. Execution times for the Hamiltonian simulation are approximately one
order of magnitude larger than those for the QFT, a consequence of the circuit depth
and the cost of observable estimation. (Data collected on NERSC Perlmutter GPU
partition)

In Figure [3] the execution time profile for the QFT algorithm and TFIM
Hamiltonian evolution, executed on 256 Perlmutter A100 GPUs, illustrates that
these simulations can be performed up to 40 or 38 qubits, respectively. The quan-
tum simulation memory load is distributed across all GPUs, enabling execution
at such a scale. However, execution time grows as expected, by a factor of 4 for
each increase of 2 qubits in problem size.

The data shown in Figures [I] and [2] highlight the incremental reduction in
execution time that can be achieved when using only a small number of GPUs
(1, 2, 4, 8) to simulate problems of up to 34-35 qubits. In contrast, Figure
emphasizes the benefit gained from distributing the load over a larger number
of GPUs, which significantly increases the total number of qubits that can be
simulated, in this case, 38-40.

3.2 Performance Analysis

Quantum Fourier Transform: The Quantum Fourier Transform (QFT) ex-
hibits strong scaling performance on Hopper GPUs (H100, GH200), efficiently
handling large substate vectors, and achieving faster execution times as the num-
ber of GPUs increases. However, scaling benefits begin to taper off beyond 8
GPUs due to communication overhead, a common challenge in classical high-
performance computing where inter-GPU communication starts to limit perfor-
mance. At 32 GPUs, parallel distribution of workload deviates significantly from
ideal linear scaling, highlighting data movement between GPUs as the main
bottleneck (Table . Additionally, while initialization overhead is noticeable at
lower qubit counts, it becomes less significant as simulations scale up to 38 qubits,
suggesting improved amortization of startup costs at larger problem sizes.
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Phase Estimation: Phase estimation (PE) on GB200 GPUs demonstrates sig-
nificant benefits from multi-GPU scaling, with execution time decreasing from
0.804 seconds on a single GPU to 0.067 seconds on 32 GPUs (Table|3)). This near-
linear reduction underscores the efficiency of distributed quantum state manip-
ulation in PE when effectively parallelized. Although communication overhead
increases slightly as the number of GPUs grows, PE maintains better scaling
efficiency compared to the Quantum Fourier Transform (QFT), likely due to
its comparatively smaller data-movement requirements during gate operations.
The optimized memory design of the Blackwell architecture for PE further fa-
cilitates a robust multi-GPU distribution, indicating that it is well suited for
highly parallel quantum computing tasks.

HamLib: The A100 GPUs demonstrated excellent scaling performance for sim-
ulations involving up to 32 qubits on a single node, utilizing only 2 GPUs per
node. However, simulating 34 qubits required the use of two nodes with a total
of 16 A100 GPUs on Perlmutter, as well as 8 H100 GPUs on a single node of
the Gautschi cluster. HamLib demonstrated significant scaling improvements,
with execution time decreasing from 19.378 seconds on a single GPU to just
2.026 seconds on 32 GPUs, a reduction exceeding 90% (Table[3)). Further scaling
efforts showed intensive GPU utilization; for instance, simulating 38 qubits for
the TFIM model required 16 nodes and 256 A100 GPUs on Perlmutter.

Despite substantial performance gains, the results followed the typical di-
minishing returns curve observed in strong-scaling high-performance computing
tasks, where data transfer between GPUs limits ideal linear scaling. Overall,
the findings indicate that HamLib is highly suitable for distributed execution,
although further optimization of interconnect usage could enhance its efficiency
at larger scales.

Table 2. Expected execution time for QF T simulation on GH200 with Infiniband and
GB200 with multi-node NVLink

QFT Time (s)
GPUs (GH200) Qubits GH200 GB200

1 33 2.847 1.25
2 34 3.903 1.632
4 35 7.166 2.005
8 36 8.723 2.478
16 37 9.812 2.595
32 38  10.284 2.717

3.3 Comparison with GB200 (33-Qubits)

The GB200 results highlight the advantages of the Blackwell GPU architecture
in combination with the Grace CPU. In particular, Hamlib and PE demonstrate
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Table 3. Expected execution time for QFT, PE, and HamLib simulations for 33 qubits
on GH200 with Infiniband and GB200 with multi-node NVLink

HamlLib (s) QFT (s) PE (s)
GPUs GH200 GB200 GH200 GB200 GH200 GB200

1 41.46 19.378 2.847 1.25 2.047 0.804
2 26.579 11.985 1.961 0.788 1.525 0.516
4 22396 6.977 1.832 0.501 1.288 0.307
8 20.571 4.127 1.123 031 0.892 0.179
16 11.886 2.629 0.683 0.172 0.539 0.1

32 8114 2.026 0.433 0.109 0.365 0.067

significant reductions in execution times with GPU scaling. For instance, Ham-
lib sampling drops from 19.378s s with 1 GPU to just 2.026 s with 32 GPUs,
reflecting over 90%-time reduction. PE follows a similar pattern, suggesting op-
timized data handling and execution pipelining with increased GPU resources.
Moreover, QFT on GB200 exhibits robust scaling, with a reduction from 1.25 to
0.109 s, demonstrating effective interconnect utilization.

3.4 Implications for HPC and Quantum Simulation

These results suggest that multi-GPU configurations are highly effective for
large-qubit simulations or parallelizable quantum circuits. The performance gain
from increasing the GPU count from four to eight is minimal, showing only a
slight improvement of a few seconds. However, beyond 8 GPUs, the efficiency
loss becomes substantial, suggesting the need for optimized interconnects or
communication-compressed strategies to maintain scalability. Interestingly, for
certain qubit sizes, running the simulation on a single GPU can sometimes be
faster than using eight GPUs. This counterintuitive behavior can arise due to
the overhead associated with communication and data synchronization between
multiple GPUs, which may outweigh the benefits of parallelism at smaller prob-
lem sizes or less optimized workloads. Additionally, the best performance tunable
parameter for gate fusion may deviate from CUDA-Q defaults, indicating poten-
tial areas for custom optimization. Future access to systems with 576 Blackwell
GPUs presents an opportunity to explore these strategies further, potentially
mitigating communication bottlenecks and extending strong-scaling capabilities
beyond current limitations.

The next steps involve optimizing the gate fusion parameters and explor-
ing the expectation value computation strategies that can leverage distributed
memory efficiently in multi-GPU setups. Additionally, techniques such as Pauli
grouping and operator merging, as discussed in [9], present promising avenues
for reducing measurement overhead and communication costs during observable
evaluation, making them valuable strategies for enhancing the efficiency of large-
scale Hamiltonian simulations This could unlock further improvements in both
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QFT and more complex quantum algorithms as we scale to larger qubit counts
and higher GPU configurations.

4 Future Work

Future work will investigate the current limitations of GPU usage on A100s, an-
alyzing why they require a larger number of GPUs compared to H100s for similar
workloads. It will also examine whether A100 80 GB GPUs provides performance
advantages over the A100 40 GB GPUs. Further efforts will focus on scaling the
HamLib benchmark beyond 34 qubits using multi-node configurations and Mes-
sage Passing Interface (MPI) on the H100 GPUs of the Gautschi cluster. In
addition, fine-grained profiling with Nsight Systems will be conducted to enable
kernel-level optimizations. The study will also include tests of Multi-Instance
GPU (MIG) partitioning to assess performance in shared GPU scenarios.

The work described here evaluates the scaling characteristics of multiple
GPUs that implement distributed parallel processing of the state vector asso-
ciated with a single quantum kernel by allocating the memory load to enable
larger qubit widths. A complementary future study will explore a distinctly dif-
ferent parallelization approach, in which the processing load is distributed across
multiple GPUs by executing quantum kernels in parallel. Each quantum kernel
will implement a subset of the commuting term groups comprising the complete
quantum Hamiltonian, with the expectation value aggregated across the execu-
tions. This alternative distributed approach contrasts with our current memory
distribution method, potentially offering additional performance improvements
for quantum simulations involving large, complex Hamiltonians with numerous
individual terms.
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