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Abstract
For macromolecular structure optimization over
internal torsion angles, the rugged, highly non-
convex Lennard–Jones (LJ) potential poses a ma-
jor obstacle. Our novel contribution lies in apply-
ing analytic Gaussian convolution to the LJ poten-
tial as a linear, shift-invariant smoothing operator
that uniquely guarantees monotonic reduction of
non-convexity without introducing new extrema.
By deriving closed-form radial integrals and ex-
act gradients in R3N , our method enables effi-
cient, rotation- and translation-invariant smooth-
ing. Across systems of 3 to 500 particles, we
observe up to a 56% reduction in the optimization
gap to the global minimum and over 75% closure
of the sampling gap in toy benchmarks, translating
into orders-of-magnitude higher probabilities of
visiting near-optimal configurations. This frame-
work opens a new avenue for scaling advanced
neural samplers in biomolecular modeling.

1. Introduction
Accurately identifying the ground-truth structures of
biomolecules and atomic or molecular clusters is a foun-
dational task across domains such as drug development,
materials design, and catalysis. While recent advances like
AlphaFold3 have significantly improved protein structure
prediction, their generalization to other biomolecule types
remains limited. This is largely due to the fact that approx-
imately 75 percent of AlphaFold3’s training set consists
solely of proteins, reducing its reliability for non-protein
biomolecules. For example, it fails to correctly predict the
structures of RNAs from orphan families (Zonta & Pantano,
2024).

Recent efforts aim to circumvent this issue by utilizing neu-
ral networks to sample from the Boltzmann distribution of
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macromolecules using only the closed-form energy func-
tion, without samples (Tan et al., 2025; Arbel et al., 2021;
Phillips et al., 2024; Vargas et al., 2023).

However, these approaches have not scaled to large macro-
molecules due to the challenging nature of the energy func-
tion. The current SOTA (Akhound-Sadegh et al., 2024) is
for a 55-dimensional Lennard-Jones particle system. This is
because the number of local minima increases exponentially
with dimension, and there are high energy barriers between
local minima, preventing exploration.

In the typical coarse-grained approximation, the energy
function’s non-convexity is primarily driven by the Lennard-
Jones potential. This is because bond lengths and bond an-
gles are relatively stiff degrees of freedom, fluctuating min-
imally around their equilibrium values. As a result, many
systems—including Rosetta—fix these degrees of freedom
to their default values and optimize only over torsion an-
gles (Das & Baker, 2008; Schwieters & Clore, 2001; Chen
et al., 2005). In this setting, the energy function consists
of only Lennard-Jones, Coloumb electrostatics, torsional
contributions, with the torsion energy being far more be-
nign. Torsion terms in modern biomolecular force fields are
periodic and bounded, with Fourier amplitudes typically in
the range 0.2–4 kcal mol−1, giving total barrier heights of
at most a few kcal mol−1 (Ponder & Case, 2003; MacKerell
et al., 2000). By contrast, Lennard–Jones (LJ) non-bonded
interactions have an attractive well depth ε of only ≲ 1
kcal mol−1 for common biomolecular atom types, yet the
repulsive part rises steeply—exceeding +100 kcal mol−1

when two atoms approach 0.8σ—making the LJ surface
effectively unbounded and far more rugged (Allen & Tildes-
ley, 1987). Coloumb electrostatics can also be analytically
smoothed in the same manner, as it is simply a function of
the distance between atoms. However, we focus this work
the Lennard-Jones potential as it is a greater contributor to
the non-convexity.

We introduce analytical Gaussian convolution of the
Lennard–Jones potential as a principled, scalable smoothing
operator that accelerates both optimization and sampling.
Convolution with an isotropic Gaussian admits a closed-
form—factorizing into one-dimensional integrals over pair-
wise distances—that directly reduces non-convexity by
dampening sharp wells and rugged barriers. Crucially, it is
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the only linear, shift-invariant operator that obeys the causal-
ity property from scale-space theory (Babaud et al., 1986):
as the smoothing scale σ increases, it removes all existing
local minima and maxima without ever introducing new
ones, gradually simplifying the landscape until it collapses
to a single global minimum. Moreover, Gaussian smoothing
can be viewed as the optimal affine approximation to the
convex-envelope PDE (Mobahi & III, 2012). This guar-
antees a controlled and artifact-free way to smooth highly
non-convex energy surfaces.

Once σ exceeds the system’s diameter, the smoothed energy
has a single critical point which is a global minimum. This
structure is valuable for both major use cases: in optimiza-
tion, the unique minimum provides a stable anchor point
for homotopy continuation, allowing the original landscape
to be recovered via gradual de-smoothing; in sampling, the
convex energy defines a simple prior distribution for anneal-
ing.

Utilizing this analytical Gaussian convolution, we observe
consistent improvements across a broad range of settings:
small and large systems (3 to 500 particles), both optimiza-
tion and sampling tasks, and both neural and non-neural
samplers. For optimization, Gaussian homotopy continua-
tion shrinks the gap to the global minimum by up to 56%,
indicating better convergence and solution quality. For sam-
pling, using the smoothed energy as an annealing prior
accelerates mixing and dramatically improves recovery of
low-energy states—achieving a ≈ 3.3× lower minimum
energy in the 13-particle system (from −4.65 to −15.28,
reducing the gap to the −44.33 optimum by ∼ 27%), a
≈ 3.6× lower minimum energy in the 55-particle system
(from −14.26 to −51.16, reducing the gap to the −279.25
optimum by ∼ 14%), and recovering over 75% of the gap to
the global minimum in the 3-particle system. These results
confirm that analytic Gaussian smoothing enables SMC
to penetrate deep energy basins that mixture-based paths
systematically miss.

2. Related Work
Neural-network-accelerated Boltzmann Sampling
There has been a flurry of recent work on utilizing neural
networks to sample from Boltzmann distributions in the
challenging scenario where one is given the closed-form
unnormalized density but no samples from the distribution.
Major methods include sequential Monte Carlo based
approaches (Tan et al., 2025; Arbel et al., 2021) and
diffusion samplers (Phillips et al., 2024; Vargas et al., 2023).
However, scalability has been a challenge as the energy
barriers and number of local minima increase exponentially
with dimension.

To address this challenge, two major techniques have

been proposed in the literature: temperature annealing and
smoothing.

Temperature annealing can lower energy barriers (Luo et al.,
2018), facilitating exploration. Indeed, this is behind the
success of the neural sequential Monte Carlo approaches
mentioned above. Tan et al. (2025) use sequential Monte
Carlo along with a new architecture to achieve SOTA per-
formance.

Another helpful technique has been smoothing the en-
ergy landscape. Akhound-Sadegh et al. (2024), the first
to model a 55-particle Lennard-Jones system, convolved
exp(−E(x)) with the Gaussian distribution where E(x) is
the Lennard-Jones energy function. Because this convolu-
tion cannot be calculated analytically, it was estimated via
MCMC sampling. However, MCMC sampling does not
scale well to higher dimensions.

Gaussian Homotopy Continuation Gaussian homotopy
continuation constructs a family of progressively less
smoothed surrogates of a non-convex energy landscape
by convolving the target function with Gaussian kernels
of decreasing variance. Empirically, following this homo-
topy path has consistently outperformed vanilla gradient
descent on highly multimodal benchmarks, enabling escape
from narrow local minima and discovery of deeper basins
(Mobahi, 2015; Hazan et al., 2016). It also enjoys theoret-
ical grounding - it is the best affine approximation to the
Vese’s nonlinear PDE, a PDE that evolves a function to its
convex envelope (Mobahi & III, 2012). In most practical
applications, the closed-form expressions for the smoothed
energy and its gradients are unavailable, so each homotopy
step is estimated via MCMC sampling.

Analytically smoothing Lennard-Jones Convolving the
Lennard-Jones potential with a Gaussian kernel reduces to
a sum of 1D integrals, allowing efficient and precise evalua-
tion. To our knowledge, this property has not been exploited
in any prior work to accelerate sampling—e.g., through an-
nealing or Langevin dynamics. Earlier work before 2000
did apply this idea for optimization via Gaussian homotopy
continuation (Wu, 1996; Pappu et al., 1998), but this di-
rection has seen little to no follow-up since 2000. Given
modern developments—such as the ability to compute high-
precision integrals and adaptive optimizers like Adam—a
fresh analysis of its use for optimization is warranted.

3. Problem Formulation
Mixing time and spectral gap introduction According
to Section 12.2 (Levin et al., 2017), let P be a discrete-time
ergodic Markov kernel on state space X with stationary
distribution π, and denote its spectral gap by γ > 0. Then
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for all x ∈ X and t ≥ 0,

∥P t(x, ·)− π∥TV ≤ e−γ t,

and the mixing time to within total-variation error ε satisfies

τmix(ε) = inf
{
t : sup

x
∥P t(x, ·)−π∥TV ≤ ε

}
= O

(
γ−1 log 1

ε

)
.

For functions with small spectral gaps, it can be helpful
to sample via temperature annealing as more time is spent
in the high-temperature regime where the spectral gap is
higher.

For a family of kernels {Pβ}β≥0 indexed by inverse tem-
perature β, the mixing time at fixed β is τmix(β) =
O
(
γ(β)−1

)
. By (Woodard et al., 2009), under a discrete

annealing schedule β0 < β1 < · · · < βK , one may write
the effective mixing time of tempered MCMC as

τtemp =

K−1∑
k=0

∆βk

γ(βk)

cont.−−−−→
∫ βmax

βmin

dβ

γ(β)
.

To improve the mixing time of the annealing schedule fur-
ther, one can learn a schedule. However, by the perturbation
bound, small perturbations in the learned transition kernel
can induce large errors in its stationary distribution if the
target function has a low spectral gap, by Section 4.4 (Levin
et al., 2017).

∥π − π′∥TV ≤ τmix sup
x

∥∥P (x, ·)− P ′(x, ·)
∥∥
TV

,

so that approximation errors in the kernel are amplified by
the mixing time.

Mixing time increases exponentially with particle size
In the small-noise (β → ∞) regime of overdamped
Langevin dynamics on a potential E : Rd → R with multi-
ple local minima separated by barrier height ∆E, the spec-
tral gap obeys

γ(β) ≈ A(β) exp
(
−β∆E

)
,

where A(β) is a prefactor determined by the local curva-
tures around minima and saddle points, according to the
Eyring–Kramers law (Bouchet & Reygner, 2016).

For Lennard-Jones, empirical evidence suggests ∆E grows
(roughly) with the number of particles N (Wales & Doye,
1997), causing the spectral gap to decay exponentially in N .

The above indicates that biological energy functions have
an inherent hardness that increases exponentially with di-
mension. This hardness hinders temperature annealing and
causes learned samplers to learn an incorrect stationary dis-
tribution.

Learning a fast-mixing schedule via samples from the target
distribution, as done in standard diffusion model training,
avoids the curse of dimensionality (Gupta et al., 2024; Li &
Yan, 2024). Neural sampling, which aims to sample from
the target distribution without access to any ground-truth
samples, is a far more challenging problem.

To address this, we propose smoothing the Lennard-Jones
function with the Gaussian distribution. Biological energy
functions consist of smooth, low-frequency, deep funnel(s)
composed with shallow, high-frequency variation (Bryngel-
son et al., 1995). At an appropriate level of smoothing, one
can remove the variation to recover the funnel structure.
We demonstrate empirically that this leads to significant
improvements in mixing time.

4. Gaussian Convolution Properties
Our goal is to accelerate optimization and sampling on
the N -particle Lennard–Jones landscape by constructing
a smoothed energy Eσ that

1. monotonically reduces non-convexity—as σ increases
it can only eliminate local extrema and never introduce
new ones, smoothing away narrow, deep wells that
cause metastable trapping;

2. is linear, so that the full R3N convolution reduces to
an explicit one-dimensional integral over each pairwise
distance, enabling efficient evaluation (see Eq. (1));

3. is shift-invariant and radially symmetric, preserving
the translational and rotational invariance of the origi-
nal energy landscape;

4. guarantees a unimodal landscape once σ exceeds the
system’s diameter, allowing us to control the complex-
ity of the prior distribution by modulating σ.

In the sections that follow, we show that convolution with
an isotropic Gaussian kernel meets these requirements: it
reduces to the one-dimensional radial form in Eq. (1), yields
existence and uniqueness of the smoothed minimum (Corol-
lary 1), and—by the classical uniqueness theorem for linear,
shift-invariant convolutions—is the only such operator that
never introduces new local extrema as σ grows (Babaud
et al., 1986).

Moreover, Gaussian convolution serves as the optimal lin-
ear proxy for PDEs that drive the function to its convex
envelope, as further discussed Section 4.3.

4.1. Gaussian smoothing of the LJ energy

Let
X = (x1, . . . , xN ) ∈ R3N ,
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where each xi ∈ R3 is the position of particle i. Define the
pairwise Lennard–Jones potential

VLJ(r) = 4ε

[(σLJ

r

)12

−
(σLJ

r

)6
]
,

so that the total energy is

E(X) =
∑

1≤i<j≤N

VLJ

(
∥xi − xj∥

)
.

We smooth E by convolution with the isotropic Gaussian in
R3N ,

G(3N)
σ (∆X) =

N∏
k=1

G(3)
σ (∆xk),

G(3)
σ (u) =

1

(2πσ2)3/2
exp

(
−∥u∥2

2σ2

)
.

where

∆X = (∆x1, . . . ,∆xN ) ∈ R3N ,

and each ∆xk ∈ R3 denotes the isotropic Gaussian dis-
placement applied to particle k.

We define the smoothed energy as

Eσ(X) = (E ∗G(3N)
σ )(X)

=

∫
R3N

E(X −∆X)G(3N)
σ (∆X) d3N∆X.

By linearity and the product form of G
(3N)
σ , each 3-

dimensional “spectator” convolution integrates to one, and
one is left with an integral only over the relative distance u
for each particle-pair. In Appendix A we show that

Eσ(X) =
∑

1≤i<j≤N

Vσ(∥xi − xj∥),

where the radialized potential is

Vσ(r) =

∫ ∞

0

uVLJ(u)

2 r
√
π σ

[
e−

(r−u)2

4σ2 − e−
(r+u)2

4σ2

]
du. (1)

4.2. Existence and uniqueness of the smoothed
minimum

We show that Gaussian smoothing of a regularized Lennard-
Jones energy admits a unique critical point – a global mini-
mum – once the smoothing scale exceeds the radius of the
configuration domain.

Regularized LJ and compact support. We take the stan-
dard LJ pair potential

VLJ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
, r > r0 > 0,

and replace its singular core for r ≤ r0 by the unique affine
extension matching value and derivative at r0. The resulting
bounded-above VLJ(r) yields a total energy

E(X) =
∑

1≤i<j≤N

VLJ(∥xi − xj∥).

Fix a compact set D ⊂ (R3)N containing all configurations
of interest, and let

C = max
X∈D

E(X).

Define

f(X) =

{
C − E(X), X ∈ D,

0, X /∈ D,

so that f ≥ 0 is compactly supported. Denote by r the
minimal radius so that supp(f) ⊂ Br(0).

Uniqueness via Gaussian smoothing. Let gσ(X) =

(2πσ2)−3N/2e−∥X∥2/(2σ2), and write

fσ = f ∗ gσ, Eσ = E ∗ gσ.

By a classical result of Loog & Welling (Loog et al., 2001),

Theorem 1. If f ≥ 0 is compactly supported in Br(0), then
for every σ > r, fσ has exactly one critical point, which is
a global maximum.

Since fσ = C − Eσ , it follows immediately that:

Corollary 1. For σ > r, the smoothed energy Eσ has
exactly one critical point (where ∇Eσ = 0), and this point
is a global minimum. This point is at X = 0.

4.3. Optimality of the Gaussian kernel

Finally, we note that among all linear, shift-invariant con-
volution operators, only the Gaussian kernel is guaranteed
never to introduce new local extrema as the smoothing scale
increases—a result established by Babaud et al. (Babaud
et al., 1986).

This extremum-preserving property mirrors the behavior
of Vese’s geometric flow for convex-envelope generation,
which evolves an initial function v(x, t) according to

∂v

∂t
=

√
1 + ∥∇v∥2 min{0, λmin(∇2v)}, v(x, 0) = f(x),

so that smoothing occurs only at points of local non-
convexity (where the smallest Hessian eigenvalue is neg-
ative), and as t → ∞, v(·, t) converges to the convex
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envelope of f (Vese, 1999). Moreover, among all linear,
shift-invariant operators, Gaussian convolution arises as the
best affine approximation to this inherently nonlinear PDE
(Mobahi & III, 2012).

5. Experiments
In this section, we validate our analytic Gaussian smooth-
ing in two complementary settings that together cover the
core tasks of molecular energy landscapes. First, we use
Gaussian homotopy continuation as a drop-in replacement
for standard gradient-based optimizers, testing whether our
closed-form convolution helps escape local minima and con-
verge more reliably toward known global optima on systems
ranging from 100-500 particles. Second, we embed the same
smoothing into sequential Monte Carlo samplers to mea-
sure mixing efficiency and minimum energies under a fixed
MCMC budget on moderate-dimensional Lennard–Jones
problems. By evaluating both optimization and sampling,
we demonstrate that Gaussian convolution annealing deliv-
ers practical speedups and deeper basin exploration com-
pared to traditional mixture-based schedules.

We find that Gaussian homotopy continuation reduces the
energy gap to the global minimum by around 40% compared
to Adam on high-dimensional optimization tasks. Further-
more, these benefits also extend to neural samplers - where
Gaussian-convolution annealing was able to close over 75%
of the gap to the global optimum compared to standard
methods on a toy problem. Notably, since sampling prob-
abilities scale as e−E(x), even a modest reduction in the
energy gap yields an exponential boost in the likelihood of
visiting near–global-minimum configurations.

5.1. Gaussian Homotopy Continuation

Gaussian homotopy continuation constructs a family of
smoothed objectives

Eσ(x) = (E ∗ Gσ)(x),

where Gσ is an isotropic Gaussian of variance σ2. Starting
from a large σ, we solve

x(σ) = argmin
x

Eσ(x)

using a standard gradient-based optimizer. We then decrease
σ according to a predefined schedule and re-initialize the
optimizer at x(σ), thereby obtaining a sequence of approx-
imate minimizers {x(σ)} that migrate toward the original
landscape E(x).

As shown in Section 4, Gaussian convolution is preferred
over ad-hoc mixtures (e.g. π0(x)

λ e−(1−λ)E(x), where π0

is a simple base distribution) or over other non-Gaussian
convolutions due to its unique theoretical properties. This

ensures that critical basin structures and low-energy mani-
folds of E are retained more faithfully during smoothing.

While most objective functions lack a closed-form Gaus-
sian convolution—forcing prior Gaussian homotopy contin-
uation methods to approximate Eσ via Monte Carlo sam-
pling— the Lennard–Jones potential admits an exact ana-
lytic convolution with an isotropic Gaussian. Leveraging
this analytic reduction to a single one-dimensional radial
integral, we compute gradients for 500-particle systems on
the order of minutes.

Experimental setup. In this section, we compare homo-
topy continuation (with our analytic smoothing) against
standard Adam optimization on the original, unsmoothed LJ
potential. Both use learning rate decay on plateau (by a fac-
tor of 10) and early stopping. Each setting is repeated across
5 independent runs. See Appendix D for more details.

Results. Gaussian homotopy continuation consistently
achieves lower-energy minima than Adam. For N = 100,
Adam’s best run ends at −530.4, leaving a gap of 26.6 en-
ergy units, whereas Gaussian homotopy reaches −541.8,
reducing the gap to 15.2 units—an absolute gain of 11.4
units and a relative reduction of 42.9%. At N = 250,
the minimum gap shrinks from 81.7 to 35.6 units (an ab-
solute improvement of 46.1 and a 56.4% reduction), and
at N = 500, from 192.1 to 120.1 units (a 72.0-unit gain,
or 37.5% reduction). Median energies likewise improve.
These gaps in E(x) become even more significant in the
context of particle likelihood, which scales as exp(−E(x)),
indicating that the solutions found by Gaussian homotopy
are many orders of magnitude more likely.

Method Metric N = 100 N = 250 N = 500

Adam Median −526.9 −1482.2 −3170.2
Min −530.4 −1498.1 −3190.6

Homotopy Median −534.7 −1501.4 −3205.0
Min −541.8 −1544.2 −3262.6

Global Minimum −557.0 −1579.8 −3382.7

% Gap Reduction 42.9% 56.4% 37.5%

Table 1. Final Lennard-Jones (LJ) energies across 5 independent
runs per method and particle count. We report the median and
minimum energy achieved, along with the known global mini-
mum from the Cambridge Cluster Database (Wales et al., 2001).
Gaussian homotopy continuation consistently outperforms Adam,
converging to lower energies and reducing the gap to the global
minimum more effectively. The final row quantifies the percent
reduction in this energy gap (Adam’s minimum to global min)
achieved by switching from Adam to Gaussian Homotopy.
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5.2. Sequential Monte Carlo Methods

In this section, we employ two related population-based sam-
pling frameworks—standard Sequential Monte Carlo (SMC)
and Neural SMC via Annealed Flow Transport (Arbel et al.,
2021)—to explore the Lennard–Jones energy landscape.

Standard SMC. SMC approximates a target distribution
π(x) ∝ e−E(x) by evolving a population of M weighted
particles {(x(i)

t , w
(i)
t )}Mi=1 through a sequence of interme-

diate densities {πt}Tt=0. At each stage t, the algorithm
proceeds as follows:

1. Mutation (ULA step). We apply one Unadjusted
Langevin Algorithm (ULA) update, which discretizes
the continuous overdamped Langevin diffusion

dX = ∇ log πt(X) dt+
√
2 dWt

with step size ε:

x
(i)
t = x

(i)
t−1 +

ε
2 ∇ log πt(x

(i)
t−1)

+
√
ε ξ

(i)
t , ξ

(i)
t ∼ N (0, I).

This gradient-informed proposal mixes more efficiently
than a random-walk Metropolis kernel.

2. Weighting: Particles are reweighted to account for the
change in target density:

w
(i)
t ∝ w

(i)
t−1

πt(x
(i)
t )

πt−1(x
(i)
t )

.

3. Resampling: When the effective sample size falls
below a threshold, particles are resampled to prevent
weight degeneracy.

Neural SMC. Annealed Flow Transport (AFT) (Arbel
et al., 2021) enhances standard SMC by inserting learned,
invertible transport maps between successive intermediate
targets. At each stage k, a lightweight normalizing flow is
trained to push the particle approximation of πk−1 toward
πk; the transported particles are then reweighted (and resam-
pled if necessary) before a brief ULA mutation. This learned
alignment sharply reduces weight variance and accelerates
mixing compared to pure importance-resampling.

The choice of annealing path {πt} critically controls mixing:
poor paths trap particles in narrow wells or collapse the
effective sample size.

For both methods, we consider two annealing paths:

• Mixture-based annealing, which interpolates between
a simple Gaussian prior with variance σ2

fixed and the

Boltzmann target by gradually decreasing the mixing
parameter λ ∈ [0, 1]:

πk(x) ∝ π0(x)
λ πK(x) 1−λ,

where

π0(x) = N
(
x; 0, σ2

fixedI
)
, πK(x) ∝ exp

(
−E(x)

)
.

• Gaussian-convolution annealing, which replaces the
original energy E with its Gaussian-smoothed version
Eσ and then linearly decreases the smoothing width σ:

Eσ(x) = (E∗G(3N)
σ )(x), πσ(x) ∝ exp

(
−Eσ(x)

)
.

We find that in both SMC and Neural SMC, Gaussian-
convolution annealing accelerates mixing and drives par-
ticles into deeper minima—improving minimum energies
by roughly an order of magnitude compared to mixture-
based annealing. Even in low-dimensional settings (e.g. a
3-particle system), mixture annealing suffers severe sam-
pling pathologies and struggles to locate deep wells.

5.2.1. STANDARD SEQUENTIAL MONTE CARLO

We benchmark the Gaussian convolution and mixture-based
annealing schedules on 13- and 55-particle Lennard-Jones
systems. Each schedule drives T = 104 ULA steps per
chain across five independent runs, using a population of
1,000 replicas.

To isolate mixing rather than importance–weight correc-
tion, we omit the weighting/resampling stages: every
replica evolves with identical step sizes and remains equally
weighted. This choice makes the experiment more demand-
ing—without resampling, the chains themselves must mix
rapidly—so only genuinely efficient annealing paths will
perform well. Because the ULA proposal is Markov–chain–
exact for the intermediate targets in the limit of small ε, any
residual bias is identical for both schedules; differences in
performance therefore isolate the mixing efficiency of each
path.

Gaussian convolution annealing. We begin with a burn-
in of ten ULA steps targeting the distribution defined by the
LJ energy smoothed with a Gaussian kernel of initial width
σinitial = 1.5. We then linearly decrease σ from σinitial to
0.025 over the remaining 104 ULA steps, performing one
ULA update per σ and carrying forward the chain state.

Mixture annealing. Particles are initialized from an
isotropic Gaussian with variance σ2

fixed (where σfixed =

1.5 to match the above setting). Over 104 ULA steps, we
decrease the mixing parameter λ from 1 to 0 under two
spacing strategies:
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• Linear schedule: λ decreases by a fixed increment each
step.

• Geometric schedule: λ values are updated by multiply-
ing by a fixed ratio of 0.95 at each step, starting from
λ = 1 and decaying toward 0.

At each step, we perform one ULA update targeting the
current mixture distribution and carry forward the chain
state.

Results. As shown in Table 2 (13-particle LJ) and Table 3
(55-particle LJ), Gaussian-convolution annealing consis-
tently achieves substantially lower mean minimum energies
than either mixture-based schedule. In the 13-particle sys-
tem, it attains −15.28± 0.78 compared to 4.65± 1.06 for
the geometric λ schedule and −0.02±0.002 for the linear λ
schedule. In the 55-particle system, it reaches −51.16±1.60
versus −14.26 ± 5.93 for the geometric schedule and
−0.12±0.005 for the linear schedule, demonstrating a clear
and consistent advantage of Gaussian-convolution annealing
across both problem sizes.

The top panel of Figure 1 reveals that under Gaussian convo-
lution for the LJ-13 system, the sample distribution (orange)
spans roughly −15 to 0 and is tightly concentrated between
−11 and −3, almost entirely below the minimum energies
reached by mixture-based schedule (blue). This demon-
strates that analytic Gaussian smoothing drives SMC into
deep energy basins that mixture annealing systematically
fails to explore.

Similarly, the bottom panel of Figure 1 shows that for LJ-55
the Gaussian-smoothed distribution extends from about −55
to 0, whereas the mixture-based schedule yields virtually
no low-energy samples. These observations confirm that
Gaussian convolution annealing consistently penetrates deep
minima that mixture-based paths miss across both system
sizes.

Method Mean Min. Energy Std. Dev.

Gauss. ann. (lin. σ) −15.28 0.78
Mix. ann. (geom. λ) −4.65 1.06
Mix. ann. (lin. λ) −0.02 0.002
Global Minimum −44.33 —

Table 2. 13 dimensional LJ. Mean minimum energy over 5 chains
after 104 ULA steps. Gaussian convolution annealing achieves
substantially lower energies than either mixture variant.

5.2.2. NEURAL SEQUENTIAL MONTE CARLO

We evaluate the performance of the two annealing distri-
butions for Annealed Flow Transport (AFT) Monte Carlo
(Arbel et al., 2021).

Method Mean Min. Energy Std. Dev.

Gauss. ann. (lin. σ) −51.16 1.60
Mix. ann. (geom. λ) −14.26 5.93
Mix. ann. (lin. λ) −0.12 0.005
Global Minimum −279.25 —

Table 3. 55 dimensional LJ. Mean minimum energy over 5 chains
after 104 ULA steps. Gaussian convolution annealing achieves
substantially lower energies than either mixture variant.

To highlight sampling pathologies in even the simplest case,
we evaluate on a three-particle Lennard–Jones system using
the equivariant flow from (Köhler et al., 2020). The Gaus-
sian convolution and mixture annealing distributions are the
same as those described in the previous section. In addition,
we set σ to be 1.1.

Figure 1. Energy histograms for LJ13 (top) and LJ55 (bottom)
after 104 sampling steps from Gaussian convolution annealing
(orange) and mixture annealing (blue). Gaussian annealing ex-
hibits a heavier low-energy tail, indicating faster mixing into
deep minima compared to mixture annealing. The experiment
was run with 1000 particles. For clarity’s sake, the x-axis of the
graphs are clipped at 30. However, the sample fractions are the
true fractions prior to clipping.

We train each flow for two stages.

Annealing schedules.
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• Mixture-based: In stage one, the mixing parameter λ
decreases from 1.0 to 0.6, and in stage two from 0.6 to
0, interpolating between the target exp(−E) and the
Gaussian prior N (0, 1.12I).

• Gaussian-smoothed: In stage one, the smoothing
width σ decreases from 1.1 to 0.6, and in stage two
from 0.6 to 0, targeting exp(−Eσ).

Training details. We train two flow models sequentially
(one per annealing stage) for 150 epochs each using Adam
(lr = 2×10−4) on 2,000 training, 500 validation, and 1,000
test samples. A log-determinant penalty E[(log detJf )2]
and energy rescaling of 1

40 are applied to prevent effective
sample size collapse upon reweighting.

Results. Gaussian-smoothed AFT drives the mean test-
set minimum from −1.13± 0.07 (mixture-based) down to
−2.58± 0.06, a net improvement of 1.45 LJ units (roughly
a 130% deeper well). Moreover, the gap to the known
global minimum −3.00 shrinks by over 75%, from 1.87 to
0.42 units. These gains confirm that even in the simplest
3-particle setting, analytic Gaussian smoothing substantially
improves sampler quality and basin exploration compared
to conventional mixture schedules.

Method Mean Std

Mixture-based −1.1329 0.0715
Gaussian-smoothed −2.5822 0.0629
Global minimum −3.0000 –

Table 4. Test-set minimum LJ energy (mean ± std) over 10 seeds.

6. Extension to Torsional Energy Terms
In this work we restrict our smoothing to Lennard-Jones
interactions (our method generalizes to Coloumb electro-
statics as well) and leave torsional terms unsmoothed, but
three natural extensions could be pursued. First, one might
simply omit torsion smoothing and rely on the dominant LJ
convolution, as LJ is the main contributor to non-convexity.
Second, one could apply Gaussian convolution directly in
dihedral-angle space—performing a one-dimensional inte-
gral on each S1 torsion angle—to eliminate local extrema;
this is computationally trivial and preserves periodicity, yet
it operates in a different domain than the coordinate-space
LJ smoothing. Third, one could convolve each four-atom
torsion term with an isotropic Gaussian in R12 while restrict-
ing the integrand to the torsion manifold of fixed angles and
bonds via an indicator or delta function. This leads to a dou-
ble integral with an outer 1-D convolution over the dihedral
angle ϕ, and for each ϕ, an inner integral over the residual

rigid-body rotations (3-D). We leave a thorough evaluation
of these torsion-smoothing strategies to future work.

7. Conclusion
Energy landscapes of molecular systems are notoriously
difficult to navigate: even when optimizing just the intrinsic
coordinates (torsion angles), the Lennard-Jones potential
drives extreme non-convexity, with steep repulsive walls
exceeding +100 kcalmol−1 and a proliferation of local
minima. We offer a principled remedy—analytical Gaus-
sian convolution of the LJ potential—as the unique linear,
shift-invariant smoothing operator that monotonically re-
duces non-convexity without introducing artifacts. This
novel observation yields closed-form, one-dimensional ra-
dial integrals and exact gradients, enabling efficient, scalable
evaluation in R3N .

Our empirical results on systems from 3 to 500 parti-
cles confirm substantial quantitative gains. In optimiza-
tion, Gaussian homotopy continuation reduces the gap to
the global minimum by 56.4% compared to Adam for
N = 250. In sampling, Gaussian-convolution annealing
achieves a mean minimum energy of −15.28± 0.78 versus
−4.65± 1.06 under geometric mixture for the 13-particle
LJ system—reducing the energy gap to the global optimum
by approximately 26.8%. For the 55-particle system, it
reaches −51.16 ± 1.60 compared to −14.26 ± 5.93, cor-
responding to a gap reduction of about 13.9%. In Neural
SMC, it reduces the residual gap from 1.87 to 0.42 LJ units
(a 77.5% improvement). These improvements consistently
outperform both Adam and mixture-based schedules.

By bridging scale-space theory with molecular modeling,
we provide a scalable, artifact-free framework to smooth
highly rugged energy surfaces. We hope this technique can
be adopted to scale advanced neural samplers to larger and
more complex bio-molecular systems.

Software and Data
Code to reproduce all experiments can be found here.

Impact Statement
We present a technique that improves optimization and sam-
pling from biological energy functions. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. Derivation of the one-dimensional radial integral
We show how the 3-dimensional convolution for one particle pair

I(r) =

∫
R3

VLJ(∥r − u∥) Grel(u) d
3u,

with

Grel(u) =
1

(4πσ2)3/2
exp

(
−∥u∥2

4σ2

)
,

reduces to a 1-dimensional radial integral. Here r = ∥xi − xj∥.

1. Switch to spherical coordinates

Align r along the polar axis. In spherical (u, θ, ϕ):

d3u = u2 sin θ du dθ dϕ, ∥r − u∥2 = r2 + u2 − 2 r u cos θ.

Thus

I(r) =
2π

(4πσ2)3/2

∫ ∞

0

u2 e−u2/(4σ2) du

∫ 1

−1

VLJ

(√
r2 + u2 − 2ruµ

)
dµ,

with µ = cos θ.

2. Exact angular integral

Use ∫ 1

−1

e−a(r2+u2−2ruµ) dµ =
e−a(r−u)2 − e−a(r+u)2

a r u
, a =

1

4σ2
.

Since VLJ depends only on
√
r2 + u2 − 2ruµ, inserting this identity yields the “difference-of-Gaussians” form inside the

radial integral.

3. Final 1-D form

Collecting constants and simplifying gives

Vσ(r) =

∫ ∞

0

uVLJ(u)
1

2 r
√
π σ

[
e−(r−u)2/(4σ2) − e−(r+u)2/(4σ2)

]
du.

Hence the globally smoothed energy is

Eσ(X) =
∑

1≤i<j≤N

Vσ

(
∥xi − xj∥

)
.

B. Computational Efficiency of Convolution
For each fixed σ we compute one integral up to the largest pair distance; every other r simply re-uses this result, so the
overhead minimally increases with dimension.

C. Lennard-Jones formulation
To deal with the Lennard-Jones singularity at r = 0, for r less than 0.8, the function was modified to be linear. Furthermore,
the minimum sigma value for gaussian smoothing was 0.025, as the integral become unstable for lower values of sigma.
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D. Gaussian Homotopy Continuation Details
All experiments were run for 10,000 steps and the configuration with the best energy was taken. The initial positions were
sampled from a standard normal distribution. The learning rate started at 1e-1 and decreased by a factor of 10 upon 1000
steps with no improvement. For the gaussian homotopy experiment, the initial sigma value for smoothing was 1.0. When the
gradient norm dipped below 1e-5, the sigma value was multiplied by 0.95. We take the configuration with the best energy
for a given sigma value as the starting point for the minimization on the subsequent sigma value. After the sigma value of
0.025 was reached, we additionally minimize with the un-smoothed Lennard-Jones function.

E. Sequential Monte Carlo
Prior Selection. We find that a σ value between 1.0 to 1.5 works well across tasks and particle sizes. This is because a
sigma value in this range smooths the Lennard-Jones function to be almost flat. To sample from the initial sigma value, we
first sample from an iid Gaussian with the same sigma value and then apply 10 burn-in Metropolis-Hastings steps. For the
temperature annealing, we simply sample from the iid Gaussian with the same sigma value.

Ground-Truth MCMC Processing We retrieve the raw data for the 100 k experiment from (Köhler et al., 2020) here.
We extracted near-independent energy samples from the 100 k–step baseline as follows:

1. Discard the first 20 k steps (burn-in).

2. Estimate the integrated autocorrelation time τint of the post–burn-in energy series.

3. Thin the trajectory by a factor of ⌈2τint⌉.

4. Evaluate LJ energies on the thinned configurations for all downstream analyses.
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