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ABSTRACT

Scene flow estimation is an important primitive for 3D motion understanding and
dynamic scene reconstruction. Recent LiDAR-based methods have made signif-
icant progress in achieving centimeter-level accuracy on popular autonomous ve-
hicle (AV) datasets. Notably, such methods typically only train and evaluate on
the same dataset because each dataset has its own unique sensor setup. Motivated
by recent work in zero-shot image-based scene flow, we argue that multi-dataset
training is essential for scaling up LiDAR-based methods. However, prior work
in LiDAR-based semantic segmentation and 3D object detection demonstrate that
naively training on multiple datasets yields worse performance than single-dataset
models. We re-examine this conventional wisdom in the context of LiDAR-based
scene flow. Contrary to popular belief, we find that state-of-the-art scene flow
methods greatly benefit from cross-dataset training. We posit that low-level tasks
such as motion estimation may be less sensitive to sensor configuration than high-
level tasks such as detection. Informed by our analysis, we propose UniFlow, a
feedforward model that unifies and trains on multiple large-scale LiDAR scene
flow datasets with diverse point density and velocity distributions. Our frustrat-
ingly simple solution establishes a new state-of-the-art on Waymo and nuScenes,
improving over prior work by 16.4% and 34.5% respectively. Moreover, UniFlow
achieves state-of-the-art zero-shot accuracy on TruckScenes, outperforming prior
dataset-specific models by 38.4%!

Argoverse 2 Waymo nuScenes TruckScenes

Figure 1: Dataset Diversity. We visualize the front-center RGB and BEV LiDAR point cloud for
Argoverse 2, Waymo, nuScenes and TruckScenes. Notable, all four datasets use different LiDARs,
have different sensor configurations and collect data in different environments. Specifically, Argo-
verse 2, Waymo, and nuScenes collect data in urban city centers with sedans, while TruckScenes
primarily collects data on highways with a truck. Due to the diversity of environments and sensor
configurations, contemporary LiDAR scene flow methods typically only train and evaluate on the
same dataset. However, we find that multi-dataset training significantly improves both in-domain
and out-of-domain generalization.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Contemporary LiDAR-based scene flow methods achieve remarkable performance on popular au-
tonomous vehicle (AV) datasets. However, such methods are often trained and evaluated on the
same dataset because each dataset has a different sensor configuration. For example, Argoverse 2
(AV2) (Wilson et al., 2021) uses two out-of-phase 32 beam LiDARs, nuScenes (Caesar et al., 2020)
uses one 32 beam sensor, and Waymo Sun et al. (2020) uses a custom sensor. Prior work in LiDAR-
based 3D object detection (Wang et al., 2020; Soum-Fontez et al., 2023) and semantic segmentation
(Kim et al., 2024; Saltori et al., 2023) shows that naively training models on multiple datasets yields
poor performance. Our analysis challenges this conventional wisdom in the context of LiDAR-based
scene flow estimation.

Cross-Domain Generalization for Low-Level Vision Tasks. FlowNet (Dosovitskiy et al., 2015;
Ilg et al., 2017) and RAFT (Teed & Deng, 2020) demonstrate that optical flow models trained on
synthetic datasets (e.g. FlyingChairs, FlyingThings3D, Sintel) generalize surprisingly well to ca-
sually captured videos. We posit that low-level 3D vision tasks like LiDAR-based scene flow may
similarly generalize across different sensors. To test our hypothesis, we train dataset-specific mod-
els for AV2 (Wilson et al., 2021), Waymo (Sun et al., 2020) and nuScenes (Caesar et al., 2020) and
evaluate zero-shot cross-domain performance (cf. Table 1). Surprisingly, Flow4D (Kim et al., 2025)
trained on AV2 and Waymo achieve similar Dynamic Mean EPE across datasets. Notably, Flow4D
(Waymo) achieves lower EPE (i.e. better performance) than Flow4D (AV2) on fast moving objects
in AV2 since there are more fast movers in Waymo than in AV2. This suggests that cross-domain
generalization is highly correlated with training velocity distribution.

Towards Zero-Shot LiDAR Scene Flow. Motivated by recent image-based scene flow methods
(Liang et al., 2025), we argue that scaling up LiDAR-based methods will be a key enabler for 3D
motion understanding and dynamic reconstruction in diverse environments. To this end, we retrain
state-of-the-art methods on supervised data from AV2, Waymo, and nuScenes and demonstrate sig-
nificant improvements for both in-distribution and out-of-distribution generalization. We denote
models trained with multiple datasets as UniFlow. To the best of our knowledge, UniFlow is the first
to achieve state-of-the-art performance on nuScenes, AV2 and Waymo using a single model. Further,
UniFlow demonstrates remarkable zero-shot accuracy on TruckScenes (Fent et al., 2024), outper-
forming prior dataset-specific models by nearly 40%. Lastly, we propose a test-time refinement step
to improve out-of-distribution performance, bridging the gap between supervised and unsupervised
scene flow methods. Specifically, we use NSFP (Li et al., 2021) to predict residual flow estimates
for UniFlow’s predictions, allowing us to trade off test-time inference time for accuracy.

Contributions. We present three major contributions. First, we highlight that dataset-specific scene
flow models already achieve strong performance across datasets, challenging conventional wisdom
about LiDAR-based cross-domain generalization. Next, we demonstrate that multi-dataset training
yields state-of-the-art performance on AV2, nuScenes, and Waymo, improving over our baselines by
an average of 17% across datasets. Lastly, we show that UniFlow achieves state-of-the-art zero-shot
performance on TruckScenes, outperforming dataset-specific models by 38.3%.

2 RELATED WORK

Scene Flow Estimation is the task of describing the 3D motion field between temporally successive
point clouds (Vedula et al., 2005; Khatri et al., 2024; Zhang et al., 2025a). Early approaches (Wei
et al., 2021; Lang et al., 2023; Wang et al., 2023; Zhang et al., 2024b) learned point-wise features
to estimate per-point flow but struggled to scale to large outdoor environments (Zhang et al., 2024a;
Vedder et al., 2024). More recent work (Khoche et al., 2025; Kim et al., 2025; Luo et al., 2025;
Hoffmann et al., 2025; Vedder et al., 2024) jointly estimates flow for all points in a scene. Contem-
porary methods can be broadly classified into feedforward models and optimization-based methods.
Feedforward models directly learn a mapping between point cloud pairs and flow fields, but require
large-scale human annotations (Jund et al., 2021; Kim et al., 2025). For real world datasets (typi-
cally from the autonomous vehicle domain), these human annotations are provided in the form of
3D bounding boxes and tracks for every object in the scene. In contrast, optimization-based meth-
ods do not require labeled data, and instead optimize a learned representation per-scene (Li et al.,
2021; 2023). This per-scene optimization is prohibitively expensive, making it difficult to scale to
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Figure 2: Cross-Dataset Generalization Correlates with Velocity Distribution. We plot the ve-
locity distributions for the AV2, Waymo, nuScenes, and TruckScenes train sets (top) and the Dy-
namic Mean EPE per velocity bin of Flow4D trained on AV2, Waymo, nuScenes, TruckScenes, and
UniFlow (bottom). Notably, Flow4D trained on TruckScenes outpeforms Flow4D trained on any
other dataset for fast moving objects (2.0, ∞) across all datasets because it has the largest number
of fast moving objects.

large datasets. For example, EulerFlow (Vedder et al., 2025) achieves state-of-the-art unsupervised
accuracy on many popular AV datasets, but takes over 24 hours to optimize each scene. In summary,
feedforward models achieve efficient inference but demonstrate limited generalization beyond their
training data, while optimization-based methods produce high quality flow for diverse scenes, but
are too slow for real-time applications. Our work aims to reconcile this trade-off by training a single
feedforward model that achieves robust generalization across diverse datasets and sensors.

Cross-Domain LiDAR Generalization is a long-standing challenge in LiDAR perception. Prior
work in 3D object detection Malić et al. (2025); Hegde et al. (2025) and semantic segmentation Kim
et al. (2024); Caunes et al. (2025); Xu et al. (2025) shows that models trained on multiple datasets
often perform worse than dataset-specific models. This performance drop can be largely attributed to
diverse sensor hardware (e.g., number of beams, scan pattern, point density), environmental condi-
tions (e.g., weather, geography), and sensor placement across datasets. To address these challenges,
several methods have introduced data augmentation strategies (Sun et al., 2024), such as random
point dropping (Wang et al., 2021) and object scaling (Cen et al., 2022), while others (Liu et al.,
2024; Michele et al., 2024) have proposed unsupervised domain adaptation techniques that align
feature distributions across datasets. However, such data augmentation strategies primarily address
the geometric domain gap between datasets. For motion-centric tasks such as scene flow, we ar-
gue that understanding the distribution of object velocities between datasets represents a critical yet
overlooked axis for addressing cross-domain generalization. To this end, our work presents the first
systematic study of this velocity domain gap.

Zero-Shot LiDAR Perception aims to generalize across unseen semantic categories and new Li-
DAR sensors without retraining. Recent work distills vision-language models from paired RGB-
LIDAR data into LiDAR-only models (Ošep et al., 2024; Takmaz et al., 2025; Zhang et al., 2025b;
Liang et al., 2025; Khurana et al., 2024; Davidson et al., 2025), facilitating open-vocabulary prompt-
ing. However, such methods fail to generalize across different LiDAR sensors. In this work, we in-
troduce UniFlow, a first step toward feedforward LiDAR foundation models for scene flow. We posit
that low-level 3D vision tasks like LiDAR-based scene flow generalize more easily across sensors.

3
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Figure 3: Zero-Shot Generalization on TruckScenes. Each row shows one example scene: (a)
TruckScenes-Only model, (b) UniFlow model, and (c) ground truth. UniFlow can provide more
accurate flows and predict motion where the TruckScenes-only model fails to detect it,

3 UNIFLOW: TOWARDS ZERO-SHOT LIDAR SCENE FLOW

In this section, we describe the process of unifying four popular AV datasets for training. Further,
we present our test-time refinement network to improve UniFlow’s out-of-domain generalization.

Unifying Datasets. We standardize both sensor frame rates and annotations across four widely
used AV datasets. For example, AV2 and Waymo annotate 3D tracks at 10 Hz, while nuScenes
and TruckScenes annotate at 2 Hz. To ensure consistency, we linearly interpolate the nuScenes
and TruckScenes tracks to 10 Hz. This step is crucial because state-of-the-art scene flow methods
parameterize motion as the displacement between two consecutive LiDAR frames; lower frame rates
increase displacement, making scene flow estimation more challenging.

Different from prior work on cross-domain generalization, scene flow is inherently class-agnostic.
This allows us to avoid complications arising from dataset-specific label definitions. For example,
nuScenes defines bicycle as excluding the rider, while Waymo includes the rider (Madan et al.,
2023; Robicheaux et al., 2025). Such label ambiguity poses a significant challenge for semantic
tasks, potentially explaining why prior LiDAR-based semantic tasks like 3D object detection and
semantic segmentation did not benefit from training on multiple datasets.

Training UniFlow. We retrain SOTA scene flow methods such as Flow4D Kim et al. (2025) and
SSF Khoche et al. (2025) on a mixture of nuScenes, AV2, and Waymo. Importantly, we do not re-
weight dataset frequencies or apply dataset-specific augmentations. Following prior work, we apply
height augmentation to account for sensor placement variations and introduce random LiDAR ray

Table 1: Analysis on Cross-Domain Generalization. We train Flow4D (Kim et al., 2025) on AV2,
Waymo and nuScenes and evaluate each dataset-specific model across datasets. We find that Flow4D
(AV2) achieve similar Dynamic Mean EPE on AV2 and Waymo (8.55 vs. 8.31), suggesting that it
already generalizes across datasets. Similarly, Flow4D (Waymo) nearly matches Flow4D (AV2)’s
overall performance on AV2 (0.0890 vs. 0.0855), and outperforms it on fast moving objects (9.27
vs. 10.33). Flow4D (nuScenes) performs considerably worse on out-of-distribution datasets due to
the sparsity of its LiDAR and limited number of training examples.

Train Data Test Data FD (cm) Dyn. Mean [0, 0.5) [0.5, 1.0) [1.0, 2.0) [2.0, ∞)

AV2
AV2 8.55 0.1918 0.0196 0.1190 0.1141 0.1033

Waymo 8.31 0.2356 0.0161 0.0772 0.0718 0.3498
nuScenes 20.40 0.4629 0.0174 0.2492 0.3335 0.6101

Waymo
AV2 8.90 0.1985 0.0210 0.1190 0.1249 0.0927

Waymo 4.58 0.2145 0.0068 0.0641 0.0508 0.1301
nuScenes 16.04 0.4084 0.0116 0.2166 0.3189 0.5401

nuScenes
AV2 16.08 0.3565 0.0386 0.2388 0.2724 0.3954

Waymo 17.24 0.3642 0.0223 0.2219 0.2092 0.5982
nuScenes 7.97 0.2304 0.0127 0.0998 0.1086 0.3703
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dropping to simulate sparser sensors. These simple augmentations significantly enhance UniFlows
generalization to out-of-domain data (cf. Table 7).

Test-Time Optimization. Despite the UniFlow’s impressive zero-shot performance, we note that
it underestimates flow vectors for fast moving objects in TruckScenes, likely because nuScenes,
Argoverse, and Waymo primarily collect data in urban city centers, while TruckScenes collects data
on highways. Therefore, we repurpose, Neural Scene Flow Prior (NSFP) Li et al. (2021) to learn
residual flow vectors to mitigate UniFlow’s dataset-specific biases. NSFP uses the inductive bias
of the smooth, restricted learnable function class of two ReLU MLP coordinate networks (8 hidden
layers of 128 neurons); θ to estimate forward flow and θ′ to estimate backwards flow, minimizing

TruncatedChamfer(Pt + θ (Pt) , Pt+1) + ∥Pt + θ (Pt) + θ′ (Pt + θ (Pt))− Pt∥2 ,

where TruncatedChamfer is defined as the standard L2 Chamfer distance, with per-point distances
above 2 meters set to zero in order to reduce the influence of outliers. NSFP is optimized for at most
5000 steps with early stopping. We modify the loss function to predict residual flows by minimizing

TruncatedChamfer(Pt + UniF low(.) + θ (Pt) , Pt+1)+

∥Pt + UniF low(.) + θ (Pt) + θ′ (Pt + UniF low(.) + θ (Pt))− Pt − UniF low(.)∥2

We find that this residual network’s predictions are unreliable for static objects, so we only advect
the residual to moving points according to UniFlow’s original predictions. We threshold all points
moving below 10.0 m/s as static. Notably, initializing NSFP with UniFlow’s predictions speeds
up convergence rates by 10%. We report results with the extra Test-Time Optimization step in the
ablation studies.

4 EXPERIMENTS

Datasets We train and evaluate our model on four large-scale autonomous driving datasets, se-
lected to cover diverse sensor configurations, ego-vehicle platforms, and driving scenarios critical
for studying cross-domain generalization (cf. Table 4). Argoverse 2 (AV2) Wilson et al. (2021)
and nuScenes Caesar et al. (2020) provide data from sedans operating in dense urban environments,
collected with two 32-beam LiDARs and a single 32-beam LiDAR, respectively. The Waymo Open
Dataset (WOD) Sun et al. (2020) offers denser point clouds from a custom LiDAR, spanning a mix
of urban and suburban scenes with more varied traffic dynamics. To test zero-shot generalization,
we use TruckScenes Fent et al. (2024), captured from a large truck equipped with two 64-beam
long-range LiDARs, primarily in high-speed highway settings. While AV2 and WOD provide stan-
dard 10 Hz LiDAR data, nuScenes and TruckScenes require special treatment due to sparse 2 Hz
annotations that are misaligned with their higher-frequency sensor data. To construct a consistent 10
Hz benchmark across all datasets, we generate ground-truth flow from official velocity labels at 10
Hz and apply LineFit Himmelsbach et al. (2010) for ground removal. These four datasets allow us
to systematic analyze the impact of point density (32-beam vs. 64-beam), ego-vehicle perspective
(car vs. truck), and velocity (urban vs. highway) on cross-domain generalization.

Metrics To evaluate cross-domain generalization, particularly across diverse velocity distributions,
our primary metric is the Dynamic Bucket-Normalized EPE from Khatri et al. (2024). This protocol
is specifically designed to be both class-aware and speed-normalized. By normalizing the error by

Table 2: Dataset Statistics. We summarize the four datasets used for training and evaluation below.
We include both the (# Total Frames / # Annotated Frames) for nuScenes and TruckScenes.

Dataset Split Scenes Frames LiDAR Setup Ego-Vehicle Scenario

Argoverse 2 Train 700 110,071 2 x 32-beam Car Urban CityVal 150 23,547

Waymo Train 798 155,000 1 x 64-beam Car MixedVal 202 40,000

nuScenes Train 700 137,575 / 27,392 1 x 32-beam Car Urban CityVal 150 29,126 / 5,798

TruckScenes Train 524 101,902 / 20,380 2 x 64-beam Truck HighwayVal 75 14,625 / 2,925
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an object’s speed, it measures the fraction of motion not described, enabling a fair and insightful
comparison between slow-moving pedestrians and fast-moving vehicles. This detailed, per-speed-
bucket analysis is crucial for validating our core insight that velocity distribution is a primary factor
in scene flow generalization. For completeness and comparison with prior work, we also report the
standard Three-way and dynamic EPE Chodosh et al. (2024).

Table 3: Argoverse 2 Test Set. We compare SSF (UniFlow) and Flow4D (UniFlow) with re-
cent methods on the Argoverse 2 test set. Notably, Flow4D (UniFlow) outperforms Flow4D by
11.41%, while SSF (UniFlow) outperforms SSF by 17.89% Dynamic Mean EPE. Flow4D (Uni-
Flow) achieves parity with EulerFlow on Dynamic Mean EPE (0.132 vs. 0.130) at a fraction of the
runtime.

Method Three-way EPE (cm) Dynamic Bucket-Normalized
Mean ↓ FD ↓ FS ↓ BS ↓ Dyn. Mean ↓ Car ↓ Other ↓ Pedestr. ↓ VRU ↓

Unsupervised
NSFP 6.06 11.58 3.16 3.44 0.422 0.251 0.331 0.722 0.383
FastNSF 11.18 16.34 8.14 9.07 0.383 0.296 0.413 0.500 0.322
SeFlow 4.86 12.14 1.84 0.60 0.309 0.214 0.291 0.464 0.265
ICP Flow 6.50 13.69 3.32 2.50 0.331 0.195 0.331 0.435 0.363
EulerFlow 4.23 4.98 2.45 5.25 0.130 0.093 0.141 0.195 0.093
Supervised
TrackFlow 4.73 10.30 3.65 0.24 0.269 0.182 0.305 0.358 0.230
DeFlow 3.43 7.32 2.51 0.46 0.276 0.113 0.228 0.496 0.266
SSF 2.89 5.93 1.82 0.91 0.190 0.110 0.175 0.295 0.177
Flow4D 2.45 4.98 1.70 0.67 0.149 0.092 0.139 0.237 0.130
SSF (UniFlow, Ours) 2.23 4.89 1.31 0.51 0.156 0.102 0.147 0.241 0.134
Flow4D (UniFlow, Ours) 2.07 4.50 1.31 0.40 0.132 0.072 0.131 0.218 0.107

Table 4: Waymo Validation Set. We compare SSF (UniFlow) and Flow4D (UniFlow) with recent
methods on Waymo val. Notably, supervised methods achieve significantly lower EPE than unsu-
pervised methods, with Flow4D (UniFlow) beating SeFlow by 74.57% on Foreground Dynamic.

Method Three-way EPE (cm)
Mean ↓ FD ↓ FS ↓ BS ↓

Unsupervised
NSFP 10.05 17.12 10.81 2.21
SeFlow 5.98 15.06 1.81 1.06
ZeroFlow 8.52 21.62 1.53 2.41
Supervised
FastFlow3D 7.84 19.54 2.46 1.52
DeFlow 4.46 9.80 2.59 0.98
SSF 2.19 5.62 0.74 0.23
Flow4D 1.82 4.58 0.61 0.28
SSF (UniFlow, Ours) 1.85 4.74 0.58 0.22
Flow4D (UniFlow, Ours) 1.60 3.83 0.68 0.30

Table 5: nuScenes Validation Set. We compare SSF (UniFlow) and Flow4D (UniFlow) with recent
methods on the nuScenes val set. Interestingly, SSF (UniFlow) outperforms Flow4D (UniFlow) by
26.53% Dynamic Mean EPE, suggesting that SSF’s architecture more effectively learns to estimate
flow from sparse point clouds.

Method Three-way EPE (cm) Dynamic Bucket-Normalized
Mean ↓ FD ↓ FS ↓ BS ↓ Dyn. Mean ↓ Car ↓ Other ↓ Pedestr. ↓ VRU ↓

Unsupervised
NSFP 10.79 20.26 4.88 7.23 0.602 0.463 0.456 0.829 0.662
SeFlow 8.19 16.15 3.97 4.45 0.554 0.396 0.635 0.726 0.419
Supervised
DeFlow 3.98 6.99 3.45 1.50 0.314 0.163 0.286 0.533 0.275
SSF 3.00 6.55 2.04 0.41 0.220 0.142 0.197 0.398 0.144
Flow4D 3.46 7.97 1.85 0.55 0.230 0.160 0.241 0.345 0.176
SSF (UniFlow, Ours) 1.97 4.33 1.38 0.20 0.144 0.081 0.131 0.267 0.097
Flow4D (UniFlow, Ours) 3.01 7.28 1.47 0.28 0.196 0.137 0.219 0.272 0.157

Comparison to State-of-the-Art Methods. In order to demonstrate the power of the Uni-
Flow framework we choose two popular state of the art supervised scene flow methods, SSF and
Flow4D and train them using UniFlow’s unified datasets and augmentation regime. We evaluate
SSF (UniFlow) and Flow4D (UniFlow) against recent approaches on multiple benchmarks (Ta-
bles 3-5). On the Argoverse 2 test set, Flow4D (UniFlow) improves over Flow4D by 11.41% and
SSF (UniFlow) improves over SSF by 17.89% in Dynamic Mean EPE. Moreover, Flow4D (Uni-
Flow) achieves near-parity with EulerFlow (a previous SOTA method) while running at a fraction
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Table 6: TruckScenes Validation Set. We compare Flow4D (UniFlow) with recent methods on the
TruckScenes validation set. According to Three-Way EPE, Flow4D achieves the best performance
due to low Foreground Dynamic error. However, Dynamic Bucket Normalized EPE highlights that
Flow4D (UniFlow) outperforms it across all moving object categories, most notably on pedestrians
and VRUs.

Method Three-way EPE (cm) Dynamic Bucket-Normalized
Mean ↓ FD ↓ FS ↓ BS ↓ Dyn. Mean ↓ Car ↓ Other ↓ Pedestr. ↓ VRU ↓

Unsupervised
NSFP 45.63 120.45 2.07 14.38 0.658 0.303 0.350 1.221 0.758
FastNSF 30.72 59.44 3.35 29.38 0.588 0.218 0.376 1.124 0.635
ICP Flow 58.82 169.91 1.43 5.12 0.472 0.302 0.614 0.596 0.376
Supervised
DeFlow 7.30 16.47 1.67 3.77 0.570 0.180 0.410 0.970 0.730
Flow4D 16.14 44.87 1.71 1.85 0.456 0.176 0.351 0.885 0.413
SSF (UniFlow, Ours) 35.23 103.72 1.69 0.27 0.435 0.149 0.455 0.669 0.466
Flow4D (UniFlow, Ours) 23.59 68.41 1.78 0.57 0.281 0.088 0.277 0.530 0.230

Table 7: Ablation on TruckScenes. We ablate the impact of multi-dataset training, data augmen-
tation and test-time optimization on zero-shot TruckScenes performance. First, we find that both
Flow4D and SSF benefit from training on multiple datasets. Interestingly, despite training on a 3X
larger dataset, data augmentation still provides significant benefits, suggesting that further scaling
may improve performance further. We find that test-time optimization slightly improves Foreground
Dynamic EPE and Mean Dynamic EPE for fast moving objects.

Method FD Dynamic EPE [0, 0.5) [0.5, 1.0) [1.0, 2.0) [2.0, ∞)
Flow4D 116.01 0.336 0.071 0.129 0.215 0.586

+ Unified Dataset 93.76 0.310 0.040 0.116 0.170 0.594
+ Augmentation 68.32 0.301 0.047 0.111 0.141 0.407
+ XL Backbone 68.41 0.281 0.033 0.097 0.119 0.389
+ Optimization 65.57 0.284 0.034 0.099 0.130 0.368

SSF 170.65 0.737 0.049 0.555 0.740 0.971
+ Unified Dataset 133.04 0.577 0.042 0.257 0.514 0.827
+ Augmentation 103.72 0.435 0.036 0.149 0.285 0.637
+ Optimization 89.77 0.460 0.036 0.177 0.332 0.577

of the cost. Similar improvements can be seen between the stock Flow4D and SSF networks and
their UniFlowcounterparts on the Waymo validation set in Table 4. In Table 5 we similarly evalu-
ate on the NuScenes validation set. Interestingly the SSF model architecture when paired with the
UniFlow augmentations and multi-dataset training outperforms the Flow4D architecture under the
same regime, suggesting that the SSF architecture is naturally more suited to the sparser point clouds
present in the NuScenes dataset.

Zero-Shot TruckScenes Performance In Table 6 we demonstrate UniFlow’s strong zero-shot gen-
eralization capabilities. All baseline methods were trained on TruckScenes and evaluated on the
same. However for UniFlow we use the exact same checkpoint used for the previous AV2, Waymo,
and nuScenes experiments which has notably never seen any TruckScenes data during training. De-
spite this, Flow4D (UniFlow) significantly outperforms Flow4D with a dataset specific checkpoint.
This is despite the significant domain gap between the datasets used for training UniFlow (which are
all urban car datasets) and TruckScenes which is a highway trucking dataset. Table 6 also demon-
strates the importance of the speed normalized and bucketed EPE metric from Khatri et al. (2024),
as Threeway-EPE results don’t adequately measure the significant improvements that Flow4D (Uni-
Flow) makes on pedestrian and VRU performance.

Ablation on Frame-Rate We evaluate the generalization of Flow4D (UniFlow) and SSF (Uni-
Flow) across different frame rates in Table 8. Slower frame rates approximate a slower-moving
ego-vehicle, while faster frame rates approximate a faster one. Although all models are trained
using 10 Hz annotations, multi-dataset training consistently improves performance, especially at
slower frame rates. Interestingly, higher frame rates have a smaller negative effect on performance.

Ablation on TruckScenes. We ablate the effects of multi-dataset training, data augmentation, and
test-time optimization on zero-shot TruckScenes performance. Both Flow4D and SSF show clear
gains from multi-dataset training. Notably, even with a dataset three times larger, data augmen-
tation continues to yield substantial improvements, indicating that further scaling could drive ad-
ditional performance gains. In addition we add Test-Time optimization as an extra step for the
UniFlow methods. We notice that despite better foreground dynamic Threeway-EPE performance,
and better performance on fast moving objects in Mean Dyanmic EPE, there are slight regressions
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Table 8: Ablation on Frame-Rate. We evaluate Flow4D (UniFlow) and SSF (UniFlow)’s general-
ization to different frame rates. Note that slower frame-rates effectively mimic a slower ego-vehicle,
while faster-frame rates mimic a faster ego-vehicle. Although we train all models on 10 Hz anno-
tations, multi-dataset training yields better results, particularly at slower frame rates. Interestingly,
faster frame rates do not negatively impact performance nearly as much as slower frame-rates.

Method Three-way EPE (cm) Dynamic Bucket-Normalized
Mean ↓ FD ↓ FS ↓ BS ↓ Dyn. Mean ↓ Car ↓ Other ↓ Pedestr. ↓ VRU ↓

2 Hz
Flow4D 30.79 88.10 3.26 1.02 0.495 0.364 0.494 0.613 0.509
SSF 31.16 89.82 3.07 0.59 0.520 0.363 0.498 0.684 0.535
Flow4D (UniFlow, Ours) 27.52 79.54 2.36 0.65 0.444 0.297 0.415 0.587 0.476
SSF (UniFlow, Ours) 28.67 83.11 2.50 0.39 0.503 0.296 0.432 0.671 0.611
5 Hz
Flow4D 9.58 25.64 2.45 0.65 0.323 0.215 0.312 0.432 0.333
SSF 8.74 23.02 2.74 0.47 0.311 0.179 0.286 0.489 0.291
Flow4D (UniFlow, Ours) 8.02 21.78 1.92 0.37 0.290 0.190 0.265 0.405 0.302
SSF (UniFlow, Ours) 6.75 17.96 2.06 0.22 0.285 0.135 0.218 0.454 0.333
10 Hz (Standard Frame Rate)
Flow4D 3.46 7.97 1.85 0.55 0.230 0.160 0.241 0.241 0.176
SSF 3.00 6.55 2.04 0.41 0.220 0.142 0.197 0.398 0.144
Flow4D (UniFlow, Ours) 3.01 7.28 1.47 0.28 0.196 0.137 0.219 0.272 0.157
SSF (UniFlow, Ours) 1.97 4.33 1.38 0.20 0.144 0.081 0.131 0.267 0.097
20 Hz
Flow4D 2.55 5.79 1.35 0.50 0.272 0.196 0.315 0.377 0.200
SSF 2.94 6.72 1.73 0.38 0.316 0.177 0.303 0.533 0.250
Flow4D (UniFlow, Ours) 1.95 4.65 1.00 0.21 0.230 0.171 0.269 0.315 0.163
SSF (UniFlow, Ours) 2.13 5.16 1.11 0.12 0.246 0.127 0.275 0.395 0.189

for slower moving objects which yield worse overall Dynamic EPE. While we do not include our
Test-Time Optimization technique as a core component of UniFlow we believe it to be a useful
avenue for future exploration.

Figure 4: Scaling Laws. We evaluate the performance of Flow4D (UniFlow) with different amounts
of training data both in-distribution (on AV2, nuScenes, and Waymo), and out-of-distribution (on
TruckScenes). Unsurprisingly, increasing data reduces Dynamic Mean EPE. However, we find that
data augmentation is significantly more important for out-of-distribution performance, and has min-
imal impact on in-distribution performance.

Scaling Laws. We evaluate Flow4D (UniFlow) with varying amounts of training data on both
in-distribution benchmarks (AV2, nuScenes, and Waymo) and an out-of-distribution benchmark
(TruckScenes) in Fig 4. As expected, larger training sets reduce Dynamic Mean EPE. However,
data augmentation proves far more critical for out-of-distribution performance, while its effect on
in-distribution performance remains minimal.

Analysis of Failure Cases. The first failure case (top row of Fig. 5) illustrates artifacts in the pre-
dicted scene flow. It comes from a truck yard with many parked trailers and heavy occlusions. This
is quite different from the urban environments in the training data, and UniFlow ends up predicting
motion that does not actually exist. The second failure case (bottom row of Fig. 5) is from a rainy
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Figure 5: Visuals of Failure Cases. Each row shows one failure example with (a) UniFlow predic-
tion, (b) ground truth, and (c) RGB camera frame. Top row: a truck yard with many parked trailers
and occlusions, leading to artifacts in UniFlows prediction. Bottom row: a rainy scene with heavy
LiDAR noise, where UniFlowfails to capture motion and predicts artifacts.

scene, where the LiDAR data is highly noisy. In this case, UniFlowfails to capture most of the true
motion and instead predicts artifacts on the noise.

Limitations and Future Work In this paper we investigate the domain gap between various LiDAR
scene flow datasets and demonstrate that strong generalization can arise from multi-datsaet training
despite differences in the sensing suite due to the low-level signal provided by the task of scene flow.
However we are limited to quantitative evaluations on autonomous vehicle datasets due to a lack of
scene flow benchmarks and baselines in other domains. Future work should investigate non-AV
domains and continue our efforts to combine feed-forward methods with Test-Time Optimization
techniques.

5 CONCLUSION

In this paper, we introduce UniFlow, a frustratingly simple approach that re-trains off-the-shelf Li-
DAR scene flow models with diverse data from multiple datasets. Although prior work in LiDAR-
based 3D object detection and segmentation don’t seem to benefit from multi-dataset training, we
posit that our proposed method works well because dataset-specific LiDAR-based scene flow models
already achieve strong cross-domain generalization. Notably, our model establishes a new state-of-
the-art Waymo and nuScenes, improving over prior work by 16.4% and 34.5% respectively. Al-
though UniFlowis primarily trained on urban city driving scenarios, we demonstrate that it gen-
eralizes surprisingly well to highway truck driving without any dataset-specific fine-tuning. Our
extensive analysis shows that such improvements are model-agnostic, suggesting that future scene
flow methods should adopt a multi-dataset training strategy.
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Taixé. Better call sal: Towards learning to segment anything in lidar. In European Conference on
Computer Vision, pp. 71–90. Springer, 2024.

Peter Robicheaux, Matvei Popov, Anish Madan, Isaac Robinson, Joseph Nelson, Deva Ramanan,
and Neehar Peri. Roboflow100-vl: A multi-domain object detection benchmark for vision-
language models. arXiv preprint arXiv:2505.20612, 2025.

Cristiano Saltori, Aljosa Osep, Elisa Ricci, and Laura Leal-Taixé. Walking your lidog: A journey
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