
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Anonymous ACL submission

Abstract

Text-to-SQL parsers are crucial in enabling001
non-experts to effortlessly query relational data.002
Training such parsers, by contrast, generally003
requires expert annotation of natural language004
(NL) utterances paired with corresponding SQL005
queries. In this work, we propose a weak su-006
pervision approach for training text-to-SQL007
parsers. We take advantage of the recently pro-008
posed question meaning representation called009
QDMR, an intermediate between NL and for-010
mal query languages. We show that given ques-011
tions, their QDMR structures (annotated by012
non-experts or automatically predicted), and013
the answers, we can automatically synthesize014
SQL queries that are then used to train text-015
to-SQL models. Extensive experiments test016
our approach on five benchmark datasets. The017
results show that our models perform competi-018
tively with those trained on annotated NL-SQL019
data. Overall, we effectively train text-to-SQL020
parsers, using zero SQL annotations.021

1 Introduction022

The development of natural language interfaces023

to databases has been extensively studied in re-024

cent years (Affolter et al., 2019; Kim et al., 2020;025

Thorne et al., 2021). The current standard is Ma-026

chine Learning (ML) models which map utterances027

in natural language (NL) to executable SQL queries028

(Wang et al., 2020; Rubin and Berant, 2021). These029

models rely on supervised training examples of NL030

questions labeled with their corresponding SQL031

queries. Labeling copious amounts of data is cost-032

prohibitive as it requires experts that are familiar033

both with SQL and with the underlying database034

structure (Yu et al., 2018). Furthermore, it is of-035

ten difficult to re-use existing training data in one036

domain in order to generalize to new ones (Suhr037

et al., 2020). Adapting the model to a new domain038

requires new NL-SQL training examples, which039

results in yet another costly round of annotation.040

In this paper we propose a weak supervision ap- 041

proach for training text-to-SQL parsers. We avoid 042

the use of manually labeled NL-SQL examples and 043

rely instead on data provided by non-expert users. 044

Fig. 1 presents a high-level view of our approach. 045

The input (left corner, in red) is used to automat- 046

ically synthesize SQL queries (step 3, in green) 047

which, in turn, are used to train an NL-to-SQL 048

model. The supervision signal consists of the ques- 049

tion’s answer and uniquely, a structured representa- 050

tion of the question decomposition, called QDMR. 051

The annotation of both these supervision sources 052

can be effectively crowdsourced to non-experts (Be- 053

rant et al., 2013; Pasupat and Liang, 2015; Wolfson 054

et al., 2020). In a nutshell, QDMR is a series of 055

computational steps, expressed by semi-structured 056

utterances, that together match the semantics of the 057

original question. The bottom left corner of Fig. 1 058

shows an example QDMR of the question “Which 059

authors have more than 10 papers in the PVLDB 060

journal?”. The question is broken into five steps, 061

where each step expresses a single logical oper- 062

ation (e.g., select papers, filter those in PVLDB) 063

and may refer to previous steps. As QDMR is de- 064

rived entirely from its question, it is agnostic to the 065

underlying form of knowledge representation and 066

has been used for questions on images, text and 067

databases (Subramanian et al., 2020; Geva et al., 068

2021; Saparina and Osokin, 2021). In our work, 069

we use QDMR as an intermediate representation 070

for SQL synthesis. Namely, given an input QDMR 071

we implement an automatic procedure mapping it 072

to SQL. The QDMR can either be manually anno- 073

tated or effectively predicted by a trained model, as 074

shown in our experiments. 075

We continue to describe the main components of 076

our system, using the aforementioned supervision 077

(Fig. 1). The SQL Synthesis component (step 1) 078

attempts to convert the input QDMR into a cor- 079

responding SQL query. To this end, Phrase DB 080

linking matches phrases in the QDMR with rele- 081

1

Question Decomposition:
1. papers
2. #1 in PVLDB
3. authors of #2
4. number of #2 for each #3
5. #3 where #4 is more than 10

1 SQL Synthesis

Question: “Which authors
have more than 10 papers
in the PVLDB journal?”

Weak Supervision
Execution-guided SQL

candidate search
2 Training a Text-to-SQL Model3

Question: “Which authors have more than 10
papers in the PVLDB journal?”

SQL Mapper:
SELECT author.aid FROM publication, writes,
author, journal WHERE publication.pid =
writes.pid AND writes.aid = author.aid AND
publication.jid = journal.jid AND journal.name =
'PVLDB' GROUP BY author.aid
HAVING COUNT(publication.title) > 10

Answer:
[Jane Doe, Ben Kahn, …]

Join path inference:
publication, writes, author, journal
publication.pid = writes.pid,
writes.aid = author.aid,
publication.jid = journal.jid

Incorrect execution result:
[11088, 11228, …]

Candidate SQL:
SELECT author.aid FROM publication,
writes, author, journal WHERE …
GROUP BY author.aid …

Automatically Synthesized SQL:
SELECT author.name FROM publication,
writes, author, journal WHERE publication.pid
= writes.pid AND writes.aid = author.aid AND
publication.jid = journal.jid AND journal.name
= 'PVLDB' GROUP BY author.name HAVING
COUNT(publication.title) > 10

Phrase DB linking:
1. papers  publication.title | writes.pid | …
2. #1 in PVLDB  journal.name = “PVLDB"
3. authors of #2  author.aid | author.name | …

Correct execution result:
[Jane Doe, Ben Kahn, …]

New candidate SQL:
SELECT author.name FROM publication,
writes, author, journal WHERE …
GROUP BY author.name …

QDMR Parser / Annotation

Figure 1: Our pipeline for training a Text-to-SQL model on data synthesized using weak supervision.

vant columns and values in the database. Next,082

SQL join paths are automatically inferred given083

the database schema structure. Last, the QDMR,084

DB-linked columns and inferred join paths are con-085

verted to SQL by the SQL Mapper. In step 2, we086

rely on question-answer supervision to filter out in-087

correct candidate SQL. Thus, our Execution-guided088

SQL Search returns the first candidate query which089

executes to the correct answer.090

Given our synthesis procedure, we evaluate its091

ability to produce accurate SQL, using weak su-092

pervision. To this end, we run our synthesis on093

9,313 examples of questions, answers and QDMRs094

from five standard NL-to-SQL benchmarks (Zelle095

and Mooney, 1996; Li and Jagadish, 2014; Yagh-096

mazadeh et al., 2017; Yu et al., 2018). Overall,097

our solution successfully synthesizes SQL queries098

for 77.8% of examples, thereby demonstrating its099

applicability to a broad range of target databases.100

Next, we show our synthesized queries to be101

an effective alternative to training on expert an-102

notated SQL. We compare a text-to-SQL model,103

trained on the queries synthesized from questions,104

answers and QDMRs, to one trained using gold105

SQL. As our model of choice we use T5-large,106

which is widely used for sequence-to-sequence107

modeling tasks (Raffel et al., 2020). Following108

past work (Shaw et al., 2021; Herzig et al., 2021),109

we fine-tune T5 to map text to SQL. We experi-110

ment with the SPIDER and GEO880 datasets (Yu111

et al., 2018; Zelle and Mooney, 1996) and com-112

pare model performance based on the training su-113

pervision. When training on manually annotated114

QDMRs, the weakly supervised models achieve115

91% to 97% of the accuracy of models trained on116

gold SQL. We further extend our approach to use117

automatically predicted QDMRs, requiring zero118

annotation of in-domain QDMRs. Notably, when119

training on predicted QDMRs models still reach120

86% to 93% of the fully supervised versions ac- 121

curacy. In addition, we evaluate cross-database 122

generalization of models trained on SPIDER (Suhr 123

et al., 2020). We test our models on four addi- 124

tional datasets and show that the weakly supervised 125

models are generally better than the fully super- 126

vised ones in terms of cross-database generaliza- 127

tion. Overall, our findings show that weak supervi- 128

sion, in the form of question, answers and QDMRs 129

(annotated or predicted) is nearly as effective as 130

gold SQL when training text-to-SQL parsers. 131

Our codebase and data are publicly available.1 132

2 Background 133

Weakly Supervised ML The performance of su- 134

pervised ML models hinges on the quantity and 135

quality of their training data. In practice, label- 136

ing large-scale datasets for new tasks is often cost- 137

prohibitive. This problem is further exacerbated in 138

semantic parsing tasks (Zettlemoyer and Collins, 139

2005), as utterances need to be labeled with formal 140

queries. Weak supervision is a broad class of meth- 141

ods aimed at reducing the need to manually label 142

large training sets (Hoffmann et al., 2011; Ratner 143

et al., 2017; Zhang et al., 2019). An influential line 144

of work has been dedicated to weakly supervised 145

semantic parsing, using question-answer pairs, re- 146

ferred to as learning from denotations (Clarke et al., 147

2010; Liang et al., 2011). Past work has shown 148

that non-experts are capable of annotating answers 149

over knowledge graphs (Berant et al., 2013) and 150

tabular data (Pasupat and Liang, 2015). This ap- 151

proach could potentially be extended to databases 152

by sampling subsets of its tables, such that question- 153

answer examples can be manually annotated. A key 154

issue in learning text-to-SQL parsers from denota- 155

tions is the vast search space of potential candidate 156

queries. Therefore, past work has focused on con- 157

1https://anonymized

2

https://anonymized

straining the search space, which limited applica-158

bility to simpler questions over single tables (Wang159

et al., 2019). Here, we handle arbitrary SQL by160

using QDMR to constrain the search space.161

Question Decomposition QDMR expresses the162

meaning of a question by breaking it down into sim-163

pler sub-questions. Given a question x, its QDMR164

s is a sequence of reasoning steps s1, ..., s|s| re-165

quired to answer x. Each step sk is an intermediate166

question which represents a relational operation,167

such as projection or aggregation. Steps may con-168

tain phrases from x, tokens signifying a query oper-169

ation (e.g., “for each”) and references to previous170

steps. Operation tokens indicate the structure of171

a step, while its arguments are the references and172

question phrases. A key advantage of QDMR is173

that it can be annotated by non-experts and at scale174

(Wolfson et al., 2020). Moreover, unlike SQL, an-175

notating QDMR requires zero domain expertise as176

it is derived entirely from the original question.177

3 Weakly Supervised SQL Synthesis178

Our input data contains examples of question xi,179

database Di, the answer ai, and si, which is the180

QDMR of xi. The QDMR is either annotated or181

predicted by a trained model f , such that f(xi) =182

si. For each example, we attempt to synthesize a183

SQL query Q̂i, that matches the intent of xi and184

executes to its answer, Q̂i(Di) = ai. The success-185

fully synthesized examples ⟨xi, Q̂i⟩ are then used186

to train an NL-to-SQL model.187

3.1 Synthesizing SQL from QDMR188

Given QDMR si and database Di, we automati-189

cally map si into SQL. Alg. 1 describes the synthe-190

sis process, where candidate query Q̂i is incremen-191

tally synthesized by iterating over the QDMR steps.192

Given step ski , its phrases are automatically linked193

to columns and values in Di. Then, relevant join194

paths are inferred between the columns. Last, each195

step is automatically mapped to SQL based on its196

QDMR operator and its arguments (see Table 1).197

3.1.1 Phrase DB Linking198

As discussed in §2, a QDMR step may have199

a phrase from xi as its argument. When map-200

ping QDMR to SQL these phrases are linked201

to corresponding columns or values in Di. For202

example, in Table 1 the phrases “ships” and203

“injuries” are linked to columns ship.id and204

death.injured respectively. We perform205

Algorithm 1 SQL Synthesis
1: procedure SQLSYNTH(s: QDMR, D: database)
2: mapped← []

3: for sk in s = ⟨s1, ..., sn⟩ do
4: cols← PHRASECOLUMNLINK(D, sk)

5: refs← REFERENCEDSTEPS(sk)
6: join← []

7: for sj in refs do
8: other_cols← synth[j].cols
9: join← join + JOINP(D, cols, other_cols)
10: op← OPTYPE(sk)

11: Q̂← MAPSQL(op, cols, join, refs, mapped)
12: mapped[k]← ⟨sk, cols, Q̂⟩
13: return mapped[n].Q̂

phrase-column linking automatically by ranking 206

all columns in Di and returning the top one. The 207

ranked list of columns is later used in §3.2 when 208

searching for a correct assignment to all phrases 209

in the QDMR. To compute phrase-column simi- 210

larity, we tokenize both the phrase and column, 211

then lemmatize their tokens using the WordNet 212

lemmatizer.2 The similarity score is the average 213

GloVe word embeddings similarity (Pennington 214

et al., 2014) between the phrase and column tokens. 215

All columns in Di are then ranked based on their 216

word overlap and similarity with the phrase: (1) we 217

return columns whose lemmatized tokens are iden- 218

tical to those in the phrase; (2) we return columns 219

who share (non stop-word) tokens with the phrase, 220

ordered by phrase-column similarity; (3) we return 221

the remaining columns, ordered by similarity. 222

We assume that literal values in Di, such as 223

strings or dates, appear verbatim in the database 224

as they do in the question. Therefore, using string 225

matching, we can identify the columns containing 226

all literal values mentioned in si. If a literal value 227

appears in multiple columns, they are all returned 228

as potential links. This assumption may not always 229

hold in practice due to DB-specific language, e.g., 230

the phrase “women” may correspond to the condi- 231

tion gender = ‘F’. Consequently, we measure 232

the effect of DB-specific language in §4.2. 233

3.1.2 Join Path Inference 234

In order to synthesize SQL (Codd, 1970), we infer 235

join paths between the linked columns returned in 236

§3.1.1. Following past work (Guo et al., 2019; Suhr 237

et al., 2020), we implement a heuristic returning the 238

shortest join path connecting two sets of columns. 239

To compute join paths, we convert Di into a graph 240

where the nodes are its tables and edges exist for 241

every foreign-key constraint connecting two tables. 242

The JOINP procedure in Alg. 1 joins the tables of 243

2https://www.nltk.org/

3

https://www.nltk.org/

QDMR Step Phrase-DB Linking SQL

1. ships 1. SELECT(ship.id) SELECT ship.id FROM ship;
2. injuries 2. SELECT(death.injured) SELECT death.injured FROM death;
3. number of #2 for each #1 3. GROUP(count, #2, #1) SELECT COUNT(death.injured) FROM ship, death WHERE

death.caused_by_ship_id = ship.id GROUP BY ship.id;

4. #1 where #3 is highest 4. SUPERLATIVE(max, #1, #3) SELECT ship.id FROM ship, death WHERE death.caused_by_ship_id =
ship.id GROUP BY ship.id ORDER BY COUNT(death.injured) DESC LIMIT 1;

5. the name of #4 5. PROJECT(ship.name, #4) SELECT ship.name FROM ship, death WHERE death.caused_by_ship_id =
ship.id AND ship.id IN (#4);

Table 1: Mapping the QDMR of the question “What is the ship name that caused most total injuries?” to SQL.

x: “What are the populations of states through which the Mississippi river runs?”

s: the Mississippi river; states #1 runs through; the populations of #2

1. SELECT(river.river_name = ‘Mississippi’)
2. PROJECT(state.state_name, #1)
3. PROJECT(state.population, #2)

1. SELECT river.river_name FROM river WHERE
river.river_name = ‘Mississippi’;

2. SELECT state.state_name FROM state, river
WHERE river.traverse = state.state_name AND
river.river_name IN (#1);

3. SELECT state.population FROM state, river
WHERE river.traverse = state.state_name AND
state.state_name IN (#2);

Figure 2: Previously mapped QDMR steps (with opera-
tions and arguments) used as nested SQL queries.

columns mentioned in step sk (cols) with those244

mentioned in the previous steps which sk refers245

to (other_cols). If multiple shortest paths exist, it246

returns the first path which contains either ci ∈ cols247

as its start node or cj ∈ other_cols as its end node.248

Step 3 of Table 1 underlines the join path between249

the death and ship tables.250

3.1.3 QDMR to SQL Mapper251

The MAPSQL procedure in Alg. 1 maps QDMR252

steps into executable SQL. First, the QDMR op-253

eration of each step is inferred from its utterance254

template using the OPTYPE procedure of Wolfson255

et al. (2020). Then, following the previous DB link-256

ing phase, the arguments of each step are either the257

linked columns and values or references to previous258

steps (second column of Table 1). MAPSQL uses259

the step operation type and arguments to automati-260

cally map sk to SQL query Q̂k. Each operation has261

a unique mapping to SQL as shown in Table 2. The262

mapping is performed incrementally for each step,263

while using parts of the mapped SQL of previous264

steps (stored in the mapped array) when these are265

referenced. Furthermore, our mapping procedure266

is able to handle complex SQL that may involve267

nested queries (Fig. 2) and self-joins (Fig. 3).268

3.2 Execution-guided SQL Candidate Search269

At this point we have Q̂i, which is a potential SQL270

candidate. However, this candidate may be incor-271

rect due to a wrong phrase-column linking or due to272

x: “What papers were written by H. V. Jagadish and Yunyao Li?"

s: papers; #1 by H. V. Jagadish; #2 by Yunyao Li

1. SELECT(publication.title)
2. FILTER(#1, author.name = ‘H. V. Jagadish’)
3. FILTER(#2, author.name = ‘Yunyao Li’)

1. SELECT publication.title FROM author, publication;
2. SELECT publication.title FROM author, publica-

tion, writes WHERE publication.pid= writes.pid AND
writes.aid = author.aid AND author.name = ‘H. V. Ja-
gadish’;

3. SELECT publication.title FROM author, publica-
tion, writes WHERE publication.pid = writes.pid AND
writes.aid = author.aid AND author.name = ‘Yunyao Li’
AND publication.title IN (#2);

Figure 3: Handling Self-joins in QDMR mapping. The
two FILTER steps have conflicting assignments to the
same column and are identified as a self-join. This is
resolved by using a nested query in the SQL of step 3.

its original QDMR structure. To mitigate these is- 273

sues, we search for accurate SQL candidates using 274

the answer supervision. 275

Following phrase DB linking (§3.1.1), each 276

phrase is assigned its top ranked column in Di. 277

However, this assignment may potentially be 278

wrong. In step 1 of Fig. 1 the phrase “authors” 279

is incorrectly linked to author.aid instead of 280

author.name. Given our weak supervision, we 281

do not have access to the gold phrase-column link- 282

ing and rely instead on the gold answer ai. Namely, 283

we iterate over phrase-column assignments and syn- 284

thesize their corresponding SQL. Once an assign- 285

ment whose SQL executes to ai has been found, we 286

return it as our result. We iterate over assignments 287

that cover only the top-k ranked columns for each 288

phrase, shown to work very well in practice (§4.2). 289

Failing to find a correct candidate SQL may 290

be due to QDMR structure rather than phrase- 291

column linking. As si is derived entirely from 292

the question it may fail to capture database- 293

specific language. E.g., in the question “How 294

many students enrolled during the semester?” 295

the necessary aggregate operation may change 296

depending on the database structure. If Di 297

has the column course.num_enrolled, the 298

query should sum its entries for all courses in 299

the semester. Conversely, if Di has the col- 300

umn course.student_id, the corresponding 301

4

QDMR Operation SQL Mapping

SELECT(t.col) SELECT t.col FROM t;

FILTER(#x, =, val) SELECT #x[SELECT] FROM #x[FROM] WHERE #x[WHERE] AND t.col = val;

PROJECT(t.col, #x) SELECT t.col FROM t, #x[FROM] WHERE Join(t, #x[FROM]) AND #x[SELECT] IN (#x);

AGGREGATE(count, #x) SELECT COUNT(#x[SELECT]) FROM #x[FROM] WHERE #x[WHERE];

GROUP(avg, #x, #y) SELECT AVG(#x[SELECT]) FROM #x[FROM], #y[FROM] WHERE Join(#x[FROM], #y[FROM]) AND
#x[WHERE] AND #y[WHERE] GROUP BY #y[SELECT];

SUPERLATIVE(max, k, #x, #y) SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join(#x[FROM], #y[FROM]) AND #x[WHERE]
AND #y[WHERE] ORDER BY #y[SELECT] DESC k;

Table 2: QDMR to SQL mapping rules for six operations. The full set of mapping rules, for all QDMR operations,
is provided in the Appendix A. #x denotes a previously mapped SQL query while #x[CLAUSE] denotes its relevant
SQL clause. For example, #x[FROM] returns all tables in the FROM clause of SQL query #x.

query would need to count the number of enrolled302

students. We account for these structural mis-303

matches by implementing three additional search304

heuristics which modify the structure of a candidate305

Q̂i. If the candidate executes to the correct result306

following modification, it is returned by the search307

process. These modifications are described in de-308

tail in Appendix B. Namely, they include the ad-309

dition of a DISTINCT clause, converting QDMR310

FILTER steps into SUPERLATIVE and switching311

between the COUNT and SUM operations.312

4 Experiments313

Our experiments target two main research ques-314

tions. First, given access to weak supervision of315

question-answer pairs and QDMRs, we wish to316

measure the percentage of SQL queries that can be317

automatically synthesized. Therefore, in §4.2 we318

measure the SQL synthesis coverage using 9,313319

examples taken from five benchmark datasets. Sec-320

ond, in §4.3 we use the synthesized SQL to train321

NL-to-SQL models and compare their performance322

to those trained on gold SQL annotations.323

4.1 Setting324

Datasets We evaluate both the SQL synthesis325

coverage and NL-to-SQL accuracy using five NL-326

to-SQL datasets (see Table 3). The first four327

datasets contain questions over a single database:328

ACADEMIC (Li and Jagadish, 2014) has questions329

over the Microsoft Academic Search database;330

GEO880 (Zelle and Mooney, 1996) concerns US331

geography; IMDB and YELP (Yaghmazadeh et al.,332

2017) contain complex questions on a film and333

restaurants database, respectively. The SPIDER334

dataset (Yu et al., 2018) measures domain general-335

ization between databases, and therefore contains336

questions over 160 different databases. For QDMR337

data we use the BREAK dataset (Wolfson et al.,338

2020). The only exception is 259 questions of 339

IMDB and YELP, outside of BREAK, which we 340

(authors) annotate with corresponding QDMRs and 341

release with our code. See Appendix C for license. 342

Training We fine-tune the T5-large sequence-to- 343

sequence model (Raffel et al., 2020) for both NL- 344

to-SQL and QDMR parsing (§4.2). Namely, for 345

each task we fine-tune the pre-trained model on 346

its specific data. For NL-to-SQL, we fine-tune on 347

mapping utterances xi; cols(Di) to SQL, where se- 348

quence cols(Di) is a serialization of all columns in 349

database Di, in an arbitrary order. In QDMR pars- 350

ing, input questions are mapped to output QDMR 351

strings. We use the T5 implementation by Hugging- 352

Face (Wolf et al., 2020) and train using the Adam 353

optimizer (Kingma and Ba, 2014). Following fine- 354

tuning on the dev sets, we adjust the batch size to 355

128 and the learning rate to 1e-4 (after experiment- 356

ing with 1e-5, 1e-4 and 1e-3). All models were 357

trained on an NVIDIA GeForce RTX 3090 GPU. 358

4.2 SQL Synthesis Coverage 359

Our first challenge is to measure our ability to syn- 360

thesize accurate SQL using weak supervision. To 361

evaluate SQL synthesis we define its coverage as 362

the percentage of examples where it successfully 363

produces SQL Q̂ which executes to the correct an- 364

swer. To ensure our synthesis procedure is domain 365

independent, we test it on examples from five dif- 366

ferent datasets, spanning across 164 DBs (Table 3). 367

Annotated QDMRs The upper rows of Table 3 368

list the SQL synthesis coverage when using man- 369

ually annotated QDMRs from BREAK. Overall, 370

we evaluate on 9,313 QDMR annotated examples, 371

reaching a coverage of 77.8%. Synthesis coverage 372

for single-DB datasets tends to be slightly higher 373

than that of SPIDER, which we attribute to its larger 374

size and diversity. To further ensure the quality of 375

synthesized SQL, we manually validate a random 376

5

Dataset DB # Examples Synthesized Coverage %

ACADEMIC 1 195 155 79.5
GEO880 1 877 736 83.9
IMDB 1 131 116 88.5
YELP 1 128 100 78.1
SPIDER dev 20 1,027 793 77.2
SPIDER train 140 6,955 5,349 76.9
Total: 164 9,313 7,249 77.8

SPIDER pred. 20 1,027 797 77.6

Table 3: SQL synthesis coverage scores across datasets.

Error Description %

Nonstandard
QDMR

Annotated QDMR contains a step that does not fol-
low any of the pre-specified operation templates

42

DB-specific
language

Phrase entails an implicit condition, e.g., “female
workers”→ emp.gender = ‘F’

23

Phrase-
column link.

The correct phrase-column assignment falls out-
side of the top-k candidates (§3.2)

13

Gold SQL An error due to an incorrectly labeled gold SQL 6

Table 4: SQL synthesis error analysis.

subset of 100 queries out of the 7,249 that were syn-377

thesized. Our analysis reveals 95% of the queries378

to be correct interpretations of their original ques-379

tion. In addition, we evaluate synthesis coverage380

on a subset of 8,887 examples whose SQL deno-381

tations are not the empty set. As SQL synthesis382

relies on answer supervision, discarding examples383

with empty denotations eliminates the false posi-384

tives of spurious SQL which incidentally execute385

to an empty set. Overall, coverage on examples386

with non-empty denotations is nearly identical, at387

77.6% (see Appendix D). We also perform an error388

analysis on a random set of 100 failed examples,389

presented in Table 4. SQL synthesis failures are390

mostly due to QDMR annotation errors or implicit391

database-specific conditions. E.g., in GEO880 the392

phrase “major river” should implicitly be mapped393

to the condition river.length > 750. As394

our SQL synthesis is domain-general, it does not395

memorize any domain-specific jargon or rules.396

Predicted QDMRs While QDMR annotation397

can be crowdsourced to non-experts (Wolfson et al.,398

2020), moving to a new domain may incur anno-399

tating new in-domain examples. Our first step to400

address this issue is to evaluate the coverage of401

SQL synthesis on predicted QDMRs, for out-of-402

domain questions. As question domains in SPIDER403

dev differ from those in its training set, it serves as404

our initial testbed. We further explore this setting in405

§4.3.4. Our QDMR parser (§4.1) is fine-tuned on406

BREAK for 10 epochs and we select the model with407

highest exact string match (EM) on BREAK dev.408

Evaluating on the hidden test set reveals our model409

scores 42.3 normalized EM,3 on par with the state- 410

of-the-art on BREAK.4 The predicted QDMRs, are 411

then used in SQL synthesis together with examples 412

⟨xi, ai, Di⟩. In Table 3, the last row shows that 413

coverage on SPIDER dev is nearly identical to that 414

of manually annotated QDMRs (77.6% to 77.2%). 415

4.3 Training NL to SQL Models 416

Next, we compare NL-to-SQL models trained on 417

our synthesized data to training on expert annotated 418

SQL. Given examples ⟨xi, Di⟩ we test the follow- 419

ing settings: (1) A fully supervised training set, 420

that uses gold SQL annotations {⟨xi, Qi, Di⟩}ni=1. 421

(2) A weakly supervised training set, where given 422

answer ai and QDMR si, we synthesize queries 423

Q̂i. As SQL synthesis coverage is less than 100%, 424

the process returns a subset of m < n examples 425

{⟨xi, Q̂i, Di⟩}mi=1 on which the model is trained.5 426

4.3.1 Training Data 427

We train models on two NL-to-SQL datasets: SPI- 428

DER (Yu et al., 2018) and GEO880 (Zelle and 429

Mooney, 1996). As our weakly supervised training 430

sets, we use the synthesized examples ⟨xi, Q̂i, Di⟩, 431

described in §4.2, (using annotated QDMRs). We 432

successfully synthesized 5,349 training examples 433

for SPIDER and 547 examples for GEO880 train. 434

4.3.2 Models and Evaluation 435

Models We fine-tune T5-large for NL-to-SQL, 436

using the hyperparameters from §4.1. We choose 437

T5 as it is agnostic to the structure of its input se- 438

quences. Namely, it has been shown to perform 439

competitively on different text-to-SQL datasets, re- 440

gardless of their SQL conventions (Shaw et al., 441

2021; Herzig et al., 2021). This property is partic- 442

ularly desirable in our cross-database evaluation 443

(§4.3.3), where we test on multiple datasets. 444

We train and evaluate the following models: 445

• T5-SQL-G trained on {⟨xi, Qi, Di⟩}ni=1, using 446

gold SQL, annotated by experts 447

• T5-QDMR-G trained on {⟨xi, Q̂i, Di⟩}mi=1 with 448

Q̂i that were synthesized using weak supervision 449

• T5-SQL-Gpart trained on {⟨xi, Qi, Di⟩}mi=1, us- 450

ing gold SQL. This models helps us measure the 451

degree to which the smaller size of the synthe- 452

sized training data and its different query struc- 453

ture (compared to gold SQL) affects performance 454

3The metric is a strict lower bound on performance.
4https://leaderboard.allenai.org/break
5In practice, we do not train directly on Q̂i but on si

following its phrase-column linking. This representation is
then automatically mapped to SQL to evaluate its execution.

6

https://leaderboard.allenai.org/break

Model Supervision Training set Exec. %

T5-SQL-G ⟨xi, Qi, Di⟩ 7,000 68.0± 0.3
T5-SQL-Gpart ⟨xi, Qi, Di⟩ 5,349 66.4± 0.8
T5-QDMR-G ⟨xi, ai, si, Di⟩ 5,349 65.8± 0.3
T5-QDMR-P ⟨xi, ai, Di⟩* 5,075 62.9± 0.8

Table 5: SPIDER trained model results on the dev set.
*Supervision for T5-QDMR-P also includes 700 anno-
tated QDMRs of SPIDER train questions.

Model ACADEMIC GEO880 IMDB YELP

T5-SQL-G 8.2± 1.3 33.6± 2.5 19.8± 3.6 22.7± 1.2
T5-SQL-Gpart 4.9± 1.5 32.4± 1.3 20.9± 0.8 20.7± 1.4
T5-QDMR-G 10.7± 0.7 40.4± 1.8 27.1± 3.6 16.2± 4.7
T5-QDMR-P 8.2± 0.4 39.7± 1.4 23.6± 5.5 16.7± 3.7

Table 6: SPIDER trained models zero-shot performance
on cross-database (XSP) examples.

Evaluation Metric Due to our SQL being auto-455

matically synthesized, its syntax is often different456

from that of the gold SQL (see Appendix E.2). As457

a result, the ESM metric of Yu et al. (2018) does458

not fit our evaluation setup. Instead, we follow459

Suhr et al. (2020) and evaluate NL-to-SQL models460

using the execution accuracy of output queries. We461

define execution accuracy as the percentage of out-462

put queries which, when executed on the database,463

result in the same set of tuples (rows) as ai.464

4.3.3 Training on Annotated QDMRs465

We begin by comparing the models trained using466

annotated QDMRs to those trained on gold SQL.467

Meanwhile, the discussion of T5-QDMR-P, trained468

using predicted QDMRs, is left for §4.3.4. The469

results in Tables 5-7 list the average accuracy and470

standard deviation of three model instances, trained471

using separate random seeds.472

SPIDER & XSP Evaluation Tables 5-6 list the473

results of the SPIDER trained models. All mod-474

els were trained for 150 epochs and evaluated on475

the dev set of 1,034 examples. When compar-476

ing T5-QDMR-G to the model trained on gold477

SQL, it achieves 96.8% of its performance (65.8478

to 68.0). The T5-SQL-Gpart model, trained on the479

same 5,349 examples as T5-QDMR-G, performs480

roughly on par, scoring +0.6 points (66.4 to 65.8).481

As SPIDER is used to train cross-database mod-482

els, we further evaluate our models performance483

on cross-database semantic parsing (XSP) (Suhr484

et al., 2020). In Table 6 we test on four additional485

NL-to-SQL datasets (sizes in parenthesis): ACA-486

DEMIC (183), GEO880 (877), IMDB (113) and487

YELP (66). For ACADEMIC, IMDB and YELP we488

removed examples whose execution result in an489

Model Supervision Train. set Exec. %

T5-SQL-G ⟨xi, Qi, Di⟩ 547 82.1± 1.9
T5-SQL-Gpart ⟨xi, Qi, Di⟩ 454 79.4± 0.4
T5-QDMR-G ⟨xi, ai, si, Di⟩ 454 74.5± 0.2
T5-QDMR-P ⟨xi, ai, Di⟩ 432 70.4± 0.2

Table 7: GEO880 trained models results on the test set.
Supervision for T5-QDMR-P does not include any in-
domain annotated QDMRs.

empty set. Otherwise, the significant percentage of 490

such examples would result in false positives of pre- 491

dictions which incidentally execute to an empty set. 492

In practice, evaluation on the full datasets remains 493

mostly unchanged and is provided in Appendix E. 494

Similarly to Suhr et al. (2020), the results in Table 6 495

show that SPIDER trained models struggle to gen- 496

eralize to XSP examples. However, T5-QDMR-G 497

performance is generally better on XSP examples, 498

which further indicates that QDMR and answer 499

supervision is effective, compared to gold SQL. 500

Example predictions are shown in Appendix E.2. 501

GEO880 Table 7 lists the execution accuracy of 502

models trained on GEO880. Models were trained 503

for 300 epochs, fine-tuned on the dev set and then 504

evaluated on the 280 test examples. We note that 505

T5-QDMR-G achieves 90.7% of the performance 506

of T5-SQL-G (74.5 to 82.1). The larger perfor- 507

mance gap, compared to SPIDER models, may be 508

partly to due to the dataset size. As GEO880 has 509

547 training examples, fewer synthesized SQL to 510

train T5-QDMR-G on (454) may have had a greater 511

effect on its accuracy. 512

4.3.4 Training on Predicted QDMRs 513

We extend our approach by replacing the annotated 514

QDMRs with the predictions of a trained QDMR 515

parser (a T5-large model, see §4.1). In this setting, 516

we now have two sets of questions: (1) questions 517

used to train the QDMR parser; (2) questions used 518

to synthesize NL-SQL data. We want these two sets 519

to be as separate as possible, so that training the 520

QDMR parser would not require new in-domain 521

annotations. Namely, the parser must generalize 522

to questions in the NL-SQL domains while being 523

trained on as few of these questions as possible. 524

SPIDER Unfortunately, SPIDER questions make 525

up a large portion of the BREAK training set, used 526

to train the QDMR parser. We therefore experiment 527

with two alternatives to minimize the in-domain 528

QDMR annotations of NL-SQL questions. First, 529

is to train the parser using few-shot QDMR anno- 530

tations for SPIDER. Second, is to split SPIDER to 531

7

questions used as the NL-SQL data, while the rest532

are used to train the QDMR parser.533

In Table 5, T5-QDMR-P is trained on 5,075534

queries, synthesized using predicted QDMRs (and535

answer supervision) for SPIDER train questions.536

The predictions were generated by a QDMR parser537

trained on a subset of BREAK, excluding all SPI-538

DER questions save 700 (10% of SPIDER train).539

Keeping few in-domain examples minimizes addi-540

tional QDMR annotation while preserving the pre-541

dictions quality. Training on the predicted QDMRs,542

instead of the annotated ones, resulted in accuracy543

being down 2.9 points (65.8 to 62.9) while the544

model achieves 92.5% of T5-SQL-G performance545

on SPIDER dev. On XSP examples, T5-QDMR-P546

is competitive with T5-QDMR-G (Table 6).547

In Table 8, we experiment with training T5-548

QDMR-P without in-domain QDMR annotations.549

We avoid any overlap between the questions and550

domains used to train the QDMR parser and those551

used for SQL synthesis. We randomly sample552

30-40 databases from SPIDER and use their cor-553

responding questions exclusively as our NL-SQL554

data. For training the QDMR parser, we use555

BREAK while discarding the sampled questions.556

We experiment with 3 random samples of SPIDER557

train, numbering 1,348, 2,028 and 2,076 exam-558

ples, with synthesized training data of 1,129, 1,440559

and 1,552 examples respectively. Results in Ta-560

ble 8 show that, on average, T5-QDMR-P achieves561

95.5% of the performance of T5-SQL-G. This in-562

dicates that even without any in-domain QDMR563

annotations, data induced from answer supervision564

and out-of-domain QDMRs is effective in training565

NL-to-SQL models, compared to gold SQL.566

GEO880 For predicted QDMRs on GEO880, we567

train the QDMR parser on BREAK while discard-568

ing all of its 547 questions. Therefore, the parser569

was trained without any in-domain QDMR anno-570

tations for GEO880. SQL synthesis using the pre-571

dicted QDMRs resulted in 432 queries. In Table 7,572

T5-QDMR-P reaches 85.7% of T5-SQL-G perfor-573

mance while being trained using question-answer574

supervision and no in-domain QDMR annotations.575

5 Related Work576

For a thorough review of NL interfaces to databases577

see Affolter et al. (2019); Kim et al. (2020). Re-578

search on parsing text-to-SQL gained significant579

traction in recent years with the introduction of580

large supervised datasets for training models and581

Model Supervision Train. set DB # Exec. %

T5-SQL-G ⟨xi, Qi, Di⟩ 1,348 30 48.4
T5-SQL-Gpart ⟨xi, Qi, Di⟩ 1,129 30 47.4
T5-QDMR-P ⟨xi, ai, Di⟩ 1,129 30 46.2

T5-SQL-G ⟨xi, Qi, Di⟩ 2,028 40 54.7
T5-SQL-Gpart ⟨xi, Qi, Di⟩ 1,440 40 51.3
T5-QDMR-P ⟨xi, ai, Di⟩ 1,440 40 52.1

T5-SQL-G ⟨xi, Qi, Di⟩ 2,076 40 56.2
T5-SQL-Gpart ⟨xi, Qi, Di⟩ 1,552 40 53.7
T5-QDMR-P ⟨xi, ai, Di⟩ 1,552 40 53.8

Table 8: SPIDER models results on the dev set. T5-
QDMR-P is trained without using any QDMR annota-
tions for training set questions. We train separate models
on the three randomly sampled training sets.

evaluating their performance (Zhong et al., 2017; 582

Yu et al., 2018). Recent approaches relied on spe- 583

cialized architectures combined with pre-trained 584

language models (Guo et al., 2019; Wang et al., 585

2020; Lin et al., 2020; Yu et al., 2021; Deng et al., 586

2021; Scholak et al., 2021). As our solution syn- 587

thesizes NL-SQL pairs (using weak supervision) it 588

can be used to train supervised NL-to-SQL models. 589

Also related is the use of intermediate meaning 590

representations (MRs) in mapping NL-to-SQL. In 591

contrast to QDMR, past MRs were either annotated 592

by experts (Yaghmazadeh et al., 2017; Kapanipathi 593

et al., 2020), or were directly induced from such 594

annotations as a way to simplify the target MR 595

(Guo et al., 2019; Herzig et al., 2021). Similarly 596

to us, Saparina and Osokin (2021) map QDMR to 597

SPARQL. Contrastly, our SQL synthesis does not 598

rely on the annotated linking of question phrases 599

to DB elements (Lei et al., 2020). We further train 600

models without gold QDMR annotations and test 601

our models on four datasets in addition to SPIDER. 602

6 Conclusions 603

This work presents a weakly supervised approach 604

for generating NL-SQL training data, using answer 605

and QDMR supervision. We implemented an au- 606

tomatic SQL synthesis procedure, capable of gen- 607

erating effective training data for dozens of target 608

databases. Experiments on multiple NL-to-SQL 609

benchmarks demonstrate the efficacy of our synthe- 610

sized training data. Namely, our weakly-supervised 611

models achieve 91%-97% of the performance of 612

fully supervised models trained on annotated SQL. 613

Further constraining our models supervision to few 614

or zero in-domain QDMRs still reaches 86%-93% 615

of the fully supervised models performance. Over- 616

all, we provide an effective solution to train text-to- 617

SQL parsers while requiring zero SQL annotations. 618

8

References619

Katrin Affolter, Kurt Stockinger, and A. Bernstein. 2019.620
A comparative survey of recent natural language in-621
terfaces for databases. The VLDB Journal, 28:793 –622
819.623

J. Berant, A. Chou, R. Frostig, and P. Liang. 2013. Se-624
mantic parsing on Freebase from question-answer625
pairs. In Empirical Methods in Natural Language626
Processing (EMNLP).627

J. Clarke, D. Goldwasser, M. Chang, and D. Roth.628
2010. Driving semantic parsing from the world’s re-629
sponse. In Computational Natural Language Learn-630
ing (CoNLL), pages 18–27.631

Edgar F Codd. 1970. A relational model of data for632
large shared data banks. Communications of the633
ACM, 13(6):377–387.634

Xiang Deng, Ahmed Hassan Awadallah, Christopher635
Meek, Oleksandr Polozov, Huan Sun, and Matthew636
Richardson. 2021. Structure-grounded pretraining637
for text-to-sql. In NAACL.638

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,639
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui640
Zhang, and Dragomir Radev. 2018. Improving text-641
to-SQL evaluation methodology. In Proceedings642
of the 56th Annual Meeting of the Association for643
Computational Linguistics (Volume 1: Long Papers),644
pages 351–360, Melbourne, Australia. Association645
for Computational Linguistics.646

Mor Geva, Tomer Wolfson, and Jonathan Berant. 2021.647
Break, perturb, build: Automatic perturbation of rea-648
soning paths through question decomposition. ArXiv,649
abs/2107.13935.650

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-651
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-652
wards complex text-to-sql in cross-domain database653
with intermediate representation. In Association for654
Computational Linguistics (ACL).655

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin656
Guu, Panupong Pasupat, and Yuan Zhang. 2021. Un-657
locking compositional generalization in pre-trained658
models using intermediate representations. ArXiv,659
abs/2104.07478.660

R. Hoffmann, C. Zhang, X. Ling, L. S. Zettlemoyer,661
and D. S. Weld. 2011. Knowledge-based weak su-662
pervision for information extraction of overlapping663
relations. In Association for Computational Linguis-664
tics (ACL), pages 541–550.665

Pavan Kapanipathi, I. Abdelaziz, Srinivas Ravishankar,666
S. Roukos, Alexander G. Gray, Ramón Fernández667
Astudillo, Maria Chang, Cristina Cornelio, S. Dana,668
Achille Fokoue, Dinesh Garg, A. Gliozzo, Sairam669
Gurajada, Hima Karanam, Naweed Khan, Dinesh670
Khandelwal, Youngsuk Lee, Yunyao Li, Francois671
Luus, Ndivhuwo Makondo, Nandana Mihindukula-672
sooriya, Tahira Naseem, Sumit Neelam, L. Popa, Re-673
vanth Reddy, R. Riegel, G. Rossiello, Udit Sharma,674

G P Shrivatsa Bhargav, and M. Yu. 2020. Question 675
answering over knowledge bases by leveraging se- 676
mantic parsing and neuro-symbolic reasoning. ArXiv, 677
abs/2012.01707. 678

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and 679
Hongrae Lee. 2020. Natural language to sql: Where 680
are we today? Proc. VLDB Endow., 13:1737–1750. 681

D. Kingma and J. Ba. 2014. Adam: A method 682
for stochastic optimization. arXiv preprint 683
arXiv:1412.6980. 684

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, 685
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020. 686
Re-examining the role of schema linking in text-to- 687
sql. In EMNLP. 688

Fei Li and Hosagrahar Visvesvaraya Jagadish. 2014. 689
Nalir: an interactive natural language interface for 690
querying relational databases. In International Con- 691
ference on Management of Data, SIGMOD. 692

P. Liang, M. I. Jordan, and D. Klein. 2011. Learning 693
dependency-based compositional semantics. In Asso- 694
ciation for Computational Linguistics (ACL), pages 695
590–599. 696

Xi Victoria Lin, Richard Socher, and Caiming Xiong. 697
2020. Bridging textual and tabular data for cross- 698
domain text-to-SQL semantic parsing. In Findings 699
of the Association for Computational Linguistics: 700
EMNLP 2020, pages 4870–4888, Online. Association 701
for Computational Linguistics. 702

P. Pasupat and P. Liang. 2015. Compositional semantic 703
parsing on semi-structured tables. In Association for 704
Computational Linguistics (ACL). 705

J. Pennington, R. Socher, and C. D. Manning. 2014. 706
GloVe: Global vectors for word representation. In 707
Empirical Methods in Natural Language Processing 708
(EMNLP), pages 1532–1543. 709

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 710
ine Lee, Sharan Narang, Michael Matena, Yanqi 711
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the 712
limits of transfer learning with a unified text-to-text 713
transformer. Journal of Machine Learning Research, 714
21(140):1–67. 715

A. Ratner, Stephen H. Bach, Henry R. Ehrenberg, Ja- 716
son Alan Fries, Sen Wu, and C. Ré. 2017. Snorkel: 717
Rapid training data creation with weak supervision. 718
Proceedings of the VLDB Endowment. International 719
Conference on Very Large Data Bases. 720

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi- 721
autoregressive bottom-up semantic parsing. In Pro- 722
ceedings of the 2021 Conference of the North Amer- 723
ican Chapter of the Association for Computational 724
Linguistics: Human Language Technologies, pages 725
311–324, Online. Association for Computational Lin- 726
guistics. 727

9

https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29

Irina Saparina and Anton Osokin. 2021. Sparqling728
database queries from intermediate question decom-729
positions. In EMNLP.730

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-731
danau. 2021. PICARD: Parsing incrementally for732
constrained auto-regressive decoding from language733
models. In Proceedings of the 2021 Conference on734
Empirical Methods in Natural Language Processing,735
pages 9895–9901, Online and Punta Cana, Domini-736
can Republic. Association for Computational Lin-737
guistics.738

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and739
Kristina Toutanova. 2021. Compositional generaliza-740
tion and natural language variation: Can a semantic741
parsing approach handle both? In ACL/IJCNLP.742

Sanjay Subramanian, Ben Bogin, Nitish Gupta, Tomer743
Wolfson, Sameer Singh, Jonathan Berant, and Matt744
Gardner. 2020. Obtaining faithful interpretations745
from compositional neural networks. In Proceedings746
of the 58th Annual Meeting of the Association for747
Computational Linguistics, pages 5594–5608, Online.748
Association for Computational Linguistics.749

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-750
ton Lee. 2020. Exploring unexplored generalization751
challenges for cross-database semantic parsing. In752
ACL.753

James Thorne, Majid Yazdani, Marzieh Saeidi, F. Sil-754
vestri, S. Riedel, and A. Halevy. 2021. From natu-755
ral language processing to neural databases. Proc.756
VLDB Endow., 14:1033–1039.757

Bailin Wang, Richard Shin, Xiaodong Liu, Olek-758
sandr Polozov, and M. Richardson. 2020. Rat-sql:759
Relation-aware schema encoding and linking for text-760
to-sql parsers. ArXiv, abs/1911.04942.761

Bailin Wang, Ivan Titov, and Mirella Lapata. 2019.762
Learning semantic parsers from denotations with la-763
tent structured alignments and abstract programs. In764
EMNLP.765

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien766
Chaumond, Clement Delangue, Anthony Moi, Pier-767
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-768
icz, Joe Davison, Sam Shleifer, Patrick von Platen,769
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,770
Teven Le Scao, Sylvain Gugger, Mariama Drame,771
Quentin Lhoest, and Alexander Rush. 2020. Trans-772
formers: State-of-the-art natural language processing.773
In Proceedings of the 2020 Conference on Empirical774
Methods in Natural Language Processing: System775
Demonstrations, pages 38–45, Online. Association776
for Computational Linguistics.777

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-778
ner, Yoav Goldberg, Daniel Deutch, and Jonathan779
Berant. 2020. Break it down: A question understand-780
ing benchmark. Transactions of the Association for781
Computational Linguistics, 8:183–198.782

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and 783
Thomas Dillig. 2017. Sqlizer: query synthesis from 784
natural language. Proceedings of the ACM on Pro- 785
gramming Languages, 1:1 – 26. 786

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, 787
Yi Chern Tan, Xinyi Yang, Dragomir R. Radev, 788
Richard Socher, and Caiming Xiong. 2021. Grappa: 789
Grammar-augmented pre-training for table semantic 790
parsing. In 9th International Conference on Learning 791
Representations, ICLR 2021, Virtual Event, Austria, 792
May 3-7, 2021. OpenReview.net. 793

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 794
Dongxu Wang, Zifan Li, James Ma, Irene Li, 795
Qingning Yao, Shanelle Roman, Zilin Zhang, and 796
Dragomir R. Radev. 2018. Spider: A large-scale 797
human-labeled dataset for complex and cross-domain 798
semantic parsing and text-to-sql task. In Empirical 799
Methods in Natural Language Processing (EMNLP). 800

M. Zelle and R. J. Mooney. 1996. Learning to parse 801
database queries using inductive logic programming. 802
In Association for the Advancement of Artificial In- 803
telligence (AAAI), pages 1050–1055. 804

L. S. Zettlemoyer and M. Collins. 2005. Learning to 805
map sentences to logical form: Structured classifi- 806
cation with probabilistic categorial grammars. In 807
Uncertainty in Artificial Intelligence (UAI), pages 808
658–666. 809

Zhen-Yu Zhang, Peng Zhao, Yuan Jiang, and Z. Zhou. 810
2019. Learning from incomplete and inaccurate su- 811
pervision. Proceedings of the 25th ACM SIGKDD 812
International Conference on Knowledge Discovery 813
& Data Mining. 814

V. Zhong, C. Xiong, and R. Socher. 2017. Seq2sql: 815
Generating structured queries from natural lan- 816
guage using reinforcement learning. arXiv preprint 817
arXiv:1709.00103. 818

A QDMR to SQL Mapping Rules 819

Table 9 lists all of the QDMR operations along 820

with their mapping rules to SQL. For a thorough 821

description of QDMR semantics please refer to 822

Wolfson et al. (2020). 823

B SQL Candidate Search Heuristics 824

We further describe the execution-guided search 825

process for candidate SQL queries, that was intro- 826

duced in §3.2. Given the search space of candidate 827

queries, we use four heuristics to find candidates 828

Q̂i which execute to the correct answer, ai. 829

1. Phrase linking search: We avoid iterating 830

over each phrase-column assignment by ordering 831

them according to their phrase-column ranking, 832

as described in §3.1.1. The query Q̂
(1)
i is in- 833

duced from the top ranked assignment, where each 834

10

https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://doi.org/10.18653/v1/2020.acl-main.495
https://doi.org/10.18653/v1/2020.acl-main.495
https://doi.org/10.18653/v1/2020.acl-main.495
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1162/tacl_a_00309
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ

QDMR Operation SQL Mapping

SELECT(t.col) SELECT t.col FROM t;

SELECT(val) SELECT t.col FROM t WHERE t.col = val;

FILTER(#x, =, val) SELECT #x[SELECT] FROM #x[FROM] WHERE #x[WHERE] AND t.col = val;

PROJECT(t.col, #x) SELECT t.col FROM t, #x[FROM] WHERE Join(t, #x[FROM]) AND #x[SELECT] IN (#x);

AGGREGATE(count, #x) SELECT COUNT(#x[SELECT]) FROM #x[FROM] WHERE #x[WHERE];

GROUP(avg, #x, #y) SELECT AVG(#x[SELECT]) FROM #x[FROM], #y[FROM] WHERE Join(#x[FROM], #y[FROM]) AND
#x[WHERE] AND #y[WHERE] GROUP BY #y[SELECT];

SUPERLATIVE(max, k, #x, #y) SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join(#x[FROM], #y[FROM]) AND #x[WHERE]
AND #y[WHERE] ORDER BY #y[SELECT] DESC k;

COMPARATIVE(#x, #y, >, val) SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join(#x[FROM], #y[FROM]) AND #x[WHERE]
AND #y[WHERE] AND #y[SELECT] > val;

UNION(#x, #y) SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join(#x[FROM], #y[FROM]) AND (#x[WHERE]
OR #y[WHERE]);

UNION_COLUMN(#x, #y) SELECT #x[SELECT], #y[SELECT] FROM #x[FROM], #y[FROM] WHERE Join(#x[FROM], #y[FROM]) AND
#x[WHERE] AND #y[WHERE];

INTERSECT(t.col, #x, #y) SELECT t.col FROM t, #x[FROM], #y[FROM] WHERE Join(t, #x[FROM], #y[FROM]) AND #x[WHERE]
AND t.col IN (SELECT t.col FROM t, #x[FROM], #y[FROM] WHERE Join(t, #x[FROM], #y[FROM])
AND #y[WHERE]);

SORT(#x, #y, asc) SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join(#x[FROM], #y[FROM]) AND #x[WHERE]
ORDER BY #y[SELECT] ASC;

DISCARD(#x, #y) SELECT #x[SELECT] FROM #x[FROM] WHERE #x[WHERE] AND #x[SELECT] NOT IN (#y);

ARITHMETIC(+, #x, #y) (#x) + (#y);

Table 9: QDMR to SQL mapping rules for all QDMR operations. #x denotes a previously mapped SQL query while
#x[CLAUSE] denotes its relevant SQL clause. For example, #x[FROM] returns all tables in the FROM clause of
SQL query #x. Join, denotes the inferred join paths between sets of tables (see §3.1.2). Note that AGGREGATE
and GROUP steps may use the operations: min, max, count, sum and avg. SUPERLATIVE steps may use min,
max operations and COMPARATIVE steps use the operations: >, <, =, ̸=, ≥, ≤. Last, SORT steps sort in either
ascending (asc) or descending (desc) order and ARITHMETIC steps use one of the following: +, −, ×, ÷.

phrase in si is assigned its top ranked column. If835

Q̂
(1)
i (Di) ̸= ai we continue the candidate search836

using heuristics 2-4 (described below). Assuming837

that the additional search heuristics failed to find838

a candidate Q̂
(1)′

i such that Q̂(1)′

i (Di) = ai, we839

return to the phrase linking component and resume840

the process using the candidate SQL induced from841

the following assignment Q̂(2)
i , and so forth. In842

practice, we limit the number of assignments and843

review only those covering the top-k most similar844

columns for each phrase in si, where k = 20. Our845

error analysis (Table 4) reveals that only a small846

fraction of failures are due to limiting k. Step 2847

in Fig. 1 represents the iterative process, where848

Q̂
(1)
i executes to an incorrect result while the fol-849

lowing candidate Q̂
(2)
i correctly links the phrase850

“authors” to column author.name and executes851

to ai, thereby ending the search.852

2. Distinct modification: Given a candidate SQL853

Q̂i such that Q̂i(Di) ̸= a, we add DISTINCT to854

its SELECT clause. In Table 10 the SQL executes855

to the correct result, following its modification.856

3. Superlative modification: This heuristic auto-857

matically corrects semantic mismatches between858

annotated QDMR structures and the underlying859

database. Concretely, steps in si that represent 860

PROJECT and FILTER operations may entail an 861

implicit ARGMAX/ARGMIN operation. For exam- 862

ple for the question “What is the size of the largest 863

state in the USA?” in the third row of Table 10. 864

Step (3) of the question’s annotated QDMR is the 865

PROJECT operation, “state with the largest #2”. 866

While conforming to the PROJECT operation tem- 867

plate, the step entails an ARGMAX operation. Using 868

the NLTK part-of-speech tagger, we automatically 869

identify any superlative tokens in the PROJECT 870

and FILTER steps of si. These steps are then re- 871

placed with the appropriate SUPERLATIVE type 872

steps. In Table 10, the original step (3) is modified 873

to the step “#1 where #2 is highest”. 874

4. Aggregate modification: This heuristics re- 875

places instances of COUNT in QDMR steps with 876

SUM operations, and vice-versa. In Table 10, the 877

question “Find the total student enrollment for 878

different affiliation type schools.”, is incorrectly 879

mapped to a candidate query involving a COUNT 880

operation on university.enrollment. By 881

modifying the aggregate operation to SUM, the new 882

Q̂i correctly executes to ai and is therefore returned 883

as the output. 884

11

Heuristic Question Candidate SQL/QDMR Modified Candidate SQL/QDMR

Phrase link-
ing search

What are the distinct majors
that students with treasurer
votes are studying?

SELECT DISTINCT student.major
FROM student, voting_record
WHERE student.stuid = vot-
ing_record.stuid

SELECT DISTINCT student.major
FROM student, voting_record
WHERE student.stuid = vot-
ing_record.treasurer_vote

Distinct
modifica-
tion

Find the number of different
product types.

SELECT products.product_type_code
FROM products

SELECT DISTINCT prod-
ucts.product_type_code FROM prod-
ucts

Superlative
modifica-
tion

What is the size of the largest
state in the USA?

(1) states in the usa; (2) size
of #1; (3) state with the largest
#2; (4) size of #3

(1) states in the usa; (2) size
of #1; (3) #1 where #2 is high-
est; (4) the size of #3

Aggregate
modifica-
tion

Find the total student enroll-
ment for different affiliation
type schools.

SELECT university.affiliation,
COUNT(university.enrollment)
FROM university GROUP BY univer-
sity.affiliation

SELECT university.affiliation,
SUM(university.enrollment) FROM
university GROUP BY univer-
sity.affiliation

Table 10: Examples of the four execution-guided search heuristics used during SQL synthesis.

C Data License885

We list the license (when publicly available) and886

release details of the datasets used in our paper.887

The BREAK dataset (Wolfson et al., 2020) is888

under the MIT License. SPIDER (Yu et al., 2018) is889

under the CC BY-SA 4.0 License. GEO880 (Zelle890

and Mooney, 1996) is available under the GNU891

General Public License 2.0.892

The text-to-SQL versions of GEO880 and893

ACADEMIC (Li and Jagadish, 2014) were894

made publicly available by Finegan-Dollak895

et al. (2018) in: https://github.com/896

jkkummerfeld/text2sql-data/.897

The IMDB and YELP datasets were publicly898

released by Yaghmazadeh et al. (2017) in: goo.899

gl/DbUBMM.900

D SQL Synthesis Coverage901

We provide additional results of SQL synthesis902

coverage. Table 11 lists the coverage results, per903

dataset, when discarding all examples whose SQL904

executes to an empty set. Out of the 9,313 original905

examples, 8,887 examples have non-empty denota-906

tions. Coverage scores per dataset remain generally907

the same as they do when evaluating on all exam-908

ples. These results further indicate the effectiveness909

of the SQL synthesis procedure. Namely, this en-910

sures the synthesis results in Table 3 are faithful,911

despite the potential noise introduced by SQL with912

empty denotations.913

E NL to SQL Models Results914

E.1 Evaluation on the Full XSP Datasets915

We provide additional results of the models trained916

on SPIDER. Namely, we evaluate on all exam-917

ples of the ACADEMIC, IMDB and YELP datasets,918

Dataset DB # Examples Synthesized Coverage %

ACADEMIC 1 183 148 80.9
GEO880 1 846 707 83.6
IMDB 1 113 101 89.4
YELP 1 66 54 81.8
SPIDER dev 20 978 745 76.2
SPIDER train 140 6,701 5,137 76.7
Total: 164 8,887 6,892 77.6

SPIDER pred. 20 978 750 76.7

Table 11: SQL synthesis coverage scores for SQL
queries with non-empty denotations. We report the
coverage only for non-empty examples to minimize the
effect of potentially spurious SQL being synthesized.

including examples whose denotations are empty. 919

Table 12 lists the results of all the models trained on 920

the original training set of SPIDER. In Table 13 we 921

provide the XSP results of the models trained on 922

the random subsets of SPIDER train, used in §4.3.4. 923

Similar to our previous experiments, T5-QDMR-P 924

is generally better than T5-SQL-G in terms of its 925

cross-database generalization. 926

E.2 Qualitative Results 927

Table 14 includes some example predictions of our 928

SPIDER trained models from Tables 5-6. For each 929

example we describe its question and target (gold) 930

SQL annotation, followed by each model’s result. 931

12

https://github.com/jkkummerfeld/text2sql-data/
https://github.com/jkkummerfeld/text2sql-data/
https://github.com/jkkummerfeld/text2sql-data/
goo.gl/DbUBMM
goo.gl/DbUBMM
goo.gl/DbUBMM

Model Supervision Training set SPIDER dev. ACADEMIC GEO880 IMDB YELP

T5-SQL-G ⟨xi, Qi, Di⟩ 7,000 68.0± 0.3 7.9± 1.3 33.6± 2.5 19.1± 2.9 25.3± 1.7
T5-SQL-Gpart ⟨xi, Qi, Di⟩ 5,349 66.4± 0.8 4.9± 1.7 32.4± 1.3 21.1± 0.7 26.1± 1.0
T5-QDMR-G ⟨xi, ai, si, Di⟩ 5,349 65.8± 0.3 11.2± 1.0 40.4± 1.8 30.3± 3.1 25.8± 5.1
T5-QDMR-P ⟨xi, ai, Di⟩ 5,075 62.9± 0.8 8.4± 0.9 39.7± 1.4 27.0± 5.1 28.2± 2.9

Table 12: Model execution accuracy on SPIDER and its performance on cross-database (XSP) examples. Evaluation
on ACADEMIC, IMDB and YELP is on the full datasets, including examples with empty denotations.

Model Supervision Train. set DB # SPIDER dev. ACADEMIC GEO880 IMDB YELP

T5-SQL-G ⟨xi, Qi, Di⟩ 1,348 30 48.4 2.1 29.6 9.9 22.6
T5-SQL-Gpart ⟨xi, Qi, Di⟩ 1,129 30 47.4 2.6 26.9 14.5 16.9
T5-QDMR-P ⟨xi, ai, Di⟩ 1,129 30 46.2 8.4 29.0 16.0 16.9

T5-SQL-G ⟨xi, Qi, Di⟩ 2,028 40 54.7 6.3 28.3 18.3 21.0
T5-SQL-Gpart ⟨xi, Qi, Di⟩ 1,440 40 51.3 3.7 21.2 12.2 19.4
T5-QDMR-P ⟨xi, ai, Di⟩ 1,440 40 52.1 6.8 27.4 12.2 18.5

T5-SQL-G ⟨xi, Qi, Di⟩ 2,076 40 56.2 3.2 25.5 13.0 24.5
T5-SQL-Gpart ⟨xi, Qi, Di⟩ 1,552 40 53.7 2.3 17.8 10.2 22.8
T5-QDMR-P ⟨xi, ai, Di⟩ 1,552 40 53.8 6.1 32.3 19.8 21.8

Table 13: Model results on SPIDER dev when trained on predicted QDMRs versus gold SQL. We train separate
models on each of the three randomly sampled training sets. Results include the performance on XSP examples
where the evaluation on ACADEMIC, IMDB and YELP is on the full datasets, including examples with empty
denotations.

13

Question: Return me the total citations of papers in the VLDB conference in 2005.
Target SQL: select sum (publication_0.citation_num) from conference as conference_0,

publication as publication_0 where conference_0.name = "VLDB" and publica-
tion_0.year = 2005 and conference_0.cid = publication_0.cid;

T5-SQL-G: select sum(t1.citation_num) from publication as t1 join conference as t2 on
t1.cid = t2.cid where t2.name = "VLDB" and t1.year < 2005;

✓

T5-QDMR-G: SELECT SUM(cite.cited) FROM publication, cite, conference WHERE confer-
ence.cid = publication.cid AND publication.pid = cite.cited AND confer-
ence.cid IN (SELECT conference.cid FROM conference WHERE conference.name
= ’VLDB’) AND publication.year < 2005;

✗

T5-QDMR-P: SELECT SUM(cite.cited) FROM cite, publication, conference WHERE publica-
tion.pid = cite.cited AND conference.cid = publication.cid AND confer-
ence.cid IN (SELECT conference.cid FROM publication, conference WHERE
conference.cid = publication.cid AND conference.name = ’VLDB’ AND publi-
cation.year < 2005);

✗

Question: Return me the papers written by H. V. Jagadish and Yunyao Li after 2005.
Target SQL: select publication_0.title from author as author_0, author as author_1, pub-

lication as publication_0, writes as writes_0, writes as writes_1 where
author_0.name = "Yunyao Li" and author_1.name = "H. V. Jagadish" and pub-
lication_0.year > 2005 and author_0.aid = writes_0.aid and author_1.aid =
writes_1.aid and publication_0.pid = writes_0.pid and publication_0.pid =
writes_1.pid;

T5-SQL-G: select t3.title from author as t1 join writes as t2 on t1.aid = t2.aid join
publication as t3 on t2.citation_num = t3.pid where t1.name = "H. V. Ja-
gadish" intersect select t3.title from author as t1 join writes as t2 on
t1.aid = t2.aid join journal as t3 on t2.journal = t3.jid where t3.name =
"Yunyao Li";

✗

T5-QDMR-G: SELECT publication.abstract FROM author, publication, writes WHERE pub-
lication.pid = writes.pid AND writes.aid = author.aid AND author.name =
’h.v.jagadish’ AND publication.year > 2005

✗

T5-QDMR-P: SELECT journal.homepage FROM journal, author, publication, writes WHERE
journal.jid = publication.jid AND publication.pid = writes.pid AND
writes.aid = author.aid AND author.name = ’h.v.jagadish’ AND publica-
tion.year > 2005

✗

Question: What is the shortest river?
Target SQL: SELECT river.river_name FROM river WHERE river.length = (SELECT min

(river.length) FROM river);

T5-SQL-G: select length from river order by length limit 1; ✗

T5-QDMR-G: SELECT river.river_name FROM river WHERE river.river_name IN (SELECT
river.river_name FROM river) ORDER BY river.length ASC LIMIT 1;

✓

T5-QDMR-P: SELECT river.river_name FROM river WHERE river.river_name IN (SELECT
river.river_name FROM river) ORDER BY river.length ASC LIMIT 1;

✓

Question: Find the actor with most number of films.
Target SQL: select actor_0.name from actor as actor_0, cast as cast_0, movie as movie_0

where actor_0.aid = cast_0.aid and cast_0.msid = movie_0.mid order by
count(distinct(movie_0.title)) desc limit 1;

T5-SQL-G: select t1.name from actor as t1 join cast as t2 on t1.aid = t2.id group by
t1.aid order by count(*) desc limit 1;

✗

T5-QDMR-G: SELECT actor.name FROM actor, movie, cast WHERE actor.aid = cast.aid AND
cast.msid = movie.mid GROUP BY actor.name ORDER BY COUNT(movie.mid) DESC
LIMIT 1;

✓

T5-QDMR-P: SELECT actor.name FROM actor, cast, movie WHERE actor.aid = cast.aid AND
cast.msid = movie.mid GROUP BY actor.name ORDER BY COUNT(movie.mid) DESC
LIMIT 1;

✓

Question: Which business has the most number of checkins?
Target SQL: select business_0.name from business as business_0, checkin as checkin_0

where business_0.business_id = checkin_0.business_id group by busi-
ness_0.name order by sum(checkin_0.count) desc limit 1;

T5-SQL-G: select t1.name from business as t1 join checkin as t2 on t1.business_id =
t2.business_id group by t2.business_id order by count(*) desc limit 1;

✗

T5-QDMR-G: SELECT business.name FROM checkin, business WHERE business.business_id =
checkin.business_id GROUP BY business.name ORDER BY COUNT(checkin.cid) DESC
LIMIT 1;

✗

T5-QDMR-P: SELECT business.name FROM checkin, business WHERE business.business_id =
checkin.business_id GROUP BY business.name ORDER BY COUNT(checkin.cid) DESC
LIMIT 1;

✗

Table 14: Example predictions of the SPIDER trained models from Tables 5-6. We denote correct and incorrect
predictions by ✓and ✗.

14

