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Abstract

Text-to-SQL parsers are crucial in enabling
non-experts to effortlessly query relational data.
Training such parsers, by contrast, generally
requires expert annotation of natural language
(NL) utterances paired with corresponding SQL
queries. In this work, we propose a weak su-
pervision approach for training text-to-SQL
parsers. We take advantage of the recently pro-
posed question meaning representation called
QDMR, an intermediate between NL and for-
mal query languages. We show that given ques-
tions, their QDMR structures (annotated by
non-experts or automatically predicted), and
the answers, we can automatically synthesize
SQL queries that are then used to train text-
to-SQL models. Extensive experiments test
our approach on five benchmark datasets. The
results show that our models perform competi-
tively with those trained on annotated NL-SQL
data. Overall, we effectively train text-to-SQL
parsers, using zero SQL annotations.

1 Introduction

The development of natural language interfaces
to databases has been extensively studied in re-
cent years (Affolter et al., 2019; Kim et al., 2020;
Thorne et al., 2021). The current standard is Ma-
chine Learning (ML) models which map utterances
in natural language (NL) to executable SQL queries
(Wang et al., 2020; Rubin and Berant, 2021). These
models rely on supervised training examples of NL
questions labeled with their corresponding SQL
queries. Labeling copious amounts of data is cost-
prohibitive as it requires experts that are familiar
both with SQL and with the underlying database
structure (Yu et al., 2018). Furthermore, it is of-
ten difficult to re-use existing training data in one
domain in order to generalize to new ones (Suhr
et al., 2020). Adapting the model to a new domain
requires new NL-SQL training examples, which
results in yet another costly round of annotation.

In this paper we propose a weak supervision ap-
proach for training text-to-SQL parsers. We avoid
the use of manually labeled NL-SQL examples and
rely instead on data provided by non-expert users.
Fig. 1 presents a high-level view of our approach.
The input (left corner, in red) is used to automat-
ically synthesize SQL queries (step 3, in green)
which, in turn, are used to train an NL-to-SQL
model. The supervision signal consists of the ques-
tion’s answer and uniquely, a structured representa-
tion of the question decomposition, called QDMR.
The annotation of both these supervision sources
can be effectively crowdsourced to non-experts (Be-
rant et al., 2013; Pasupat and Liang, 2015; Wolfson
et al., 2020). In a nutshell, QDMR is a series of
computational steps, expressed by semi-structured
utterances, that together match the semantics of the
original question. The bottom left corner of Fig. 1
shows an example QDMR of the question “Which
authors have more than 10 papers in the PVLDB
journal?”. The question is broken into five steps,
where each step expresses a single logical oper-
ation (e.g., select papers, filter those in PVLDB)
and may refer to previous steps. As QDMR is de-
rived entirely from its question, it is agnostic to the
underlying form of knowledge representation and
has been used for questions on images, text and
databases (Subramanian et al., 2020; Geva et al.,
2021; Saparina and Osokin, 2021). In our work,
we use QDMR as an intermediate representation
for SQL synthesis. Namely, given an input QDMR
we implement an automatic procedure mapping it
to SQL. The QDMR can either be manually anno-
tated or effectively predicted by a trained model, as
shown in our experiments.

We continue to describe the main components of
our system, using the aforementioned supervision
(Fig. 1). The SQL Synthesis component (step 1)
attempts to convert the input QDMR into a cor-
responding SQL query. To this end, Phrase DB
linking matches phrases in the QDMR with rele-
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Phrase DB linking:

1. papers -> publication.title | writes.pid | ...
2.#1in PVLDB - journal.name = “PVLDB"

3. authors of #2 -> auther-aid | author.name | ...

Question: “Which authors
have more than 10 papers
in the PVLDB journal?”

Answer:
[Jane Doe, Ben Kahn, ...]

Join path inference:

publication, writes, author, journal
publication.pid = writes.pid, @
writes.aid = author.aid,

publication.jid = journal.jid

QDMR Parser / Annotation

SQL Mapper:

SELECT author.aid FROM publication, writes
author, journal WHERE publication.pid =
writes.pid AND writes.aid = author.aid AND
publication.jid = journal.jid AND journal.name =
'PVLDB' GROUP BY author.aid

HAVING COUNT(publication.title) > 10

Question Decomposition:

1. papers

2.#1in PVLDB

3. authors of #2

4. number of #2 for each #3

5. #3 where #4 is more than 10

Execution-guided SQL

2
candidate search

3 ) Training a Text-to-SQL Model
Candidate SQL:

SELECT author.aid FROM publication,
writes, author, journal WHERE ...
GROUP BY author.aid ...

Question: “Which authors have more than 10
papers in the PVLDB journal?”

Automatically Synthesized SQL:

SELECT author.name FROM publication,
writes, author, journal WHERE publication.pid
= writes.pid AND writes.aid = author.aid AND

Incorrect execution result:
[11088, 11228, ...]

publication.jid = journal.jid AND journal.name
= 'PVLDB' GROUP BY author.name HAVING

New candidate SQL: COUNT(publication.title) > 10

SELECT author.name FROM publication,
writes, author, journal WHERE ...
GROUP BY author.name ...

Correct execution result:
[Jane Doe, Ben Kahn, ...]

Figure 1: Our pipeline for training a Text-to-SQL model on data synthesized using weak supervision.

vant columns and values in the database. Next,
SQL join paths are automatically inferred given
the database schema structure. Last, the QDMR,
DB-linked columns and inferred join paths are con-
verted to SQL by the SQL Mapper. In step 2, we
rely on question-answer supervision to filter out in-
correct candidate SQL. Thus, our Execution-guided
SQOL Search returns the first candidate query which
executes to the correct answer.

Given our synthesis procedure, we evaluate its
ability to produce accurate SQL, using weak su-
pervision. To this end, we run our synthesis on
9,313 examples of questions, answers and QDMRs
from five standard NL-to-SQL benchmarks (Zelle
and Mooney, 1996; Li and Jagadish, 2014; Yagh-
mazadeh et al., 2017; Yu et al., 2018). Overall,
our solution successfully synthesizes SQL queries
for 77.8% of examples, thereby demonstrating its
applicability to a broad range of target databases.

Next, we show our synthesized queries to be
an effective alternative to training on expert an-
notated SQL. We compare a text-to-SQL model,
trained on the queries synthesized from questions,
answers and QDMRs, to one trained using gold
SQL. As our model of choice we use T5-large,
which is widely used for sequence-to-sequence
modeling tasks (Raffel et al., 2020). Following
past work (Shaw et al., 2021; Herzig et al., 2021),
we fine-tune TS5 to map text to SQL. We experi-
ment with the SPIDER and GEO880 datasets (Yu
et al., 2018; Zelle and Mooney, 1996) and com-
pare model performance based on the training su-
pervision. When training on manually annotated
ODMRs, the weakly supervised models achieve
91% to 97% of the accuracy of models trained on
gold SQL. We further extend our approach to use
automatically predicted QDMRs, requiring zero
annotation of in-domain QDMRs. Notably, when
training on predicted QDMRs models still reach

86% to 93% of the fully supervised versions ac-
curacy. In addition, we evaluate cross-database
generalization of models trained on SPIDER (Suhr
et al., 2020). We test our models on four addi-
tional datasets and show that the weakly supervised
models are generally better than the fully super-
vised ones in terms of cross-database generaliza-
tion. Overall, our findings show that weak supervi-
sion, in the form of question, answers and QDMRs
(annotated or predicted) is nearly as effective as
gold SQL when training text-to-SQL parsers.
Our codebase and data are publicly available.!

2 Background

Weakly Supervised ML The performance of su-
pervised ML models hinges on the quantity and
quality of their training data. In practice, label-
ing large-scale datasets for new tasks is often cost-
prohibitive. This problem is further exacerbated in
semantic parsing tasks (Zettlemoyer and Collins,
2005), as utterances need to be labeled with formal
queries. Weak supervision is a broad class of meth-
ods aimed at reducing the need to manually label
large training sets (Hoffmann et al., 2011; Ratner
et al., 2017; Zhang et al., 2019). An influential line
of work has been dedicated to weakly supervised
semantic parsing, using question-answer pairs, re-
ferred to as learning from denotations (Clarke et al.,
2010; Liang et al., 2011). Past work has shown
that non-experts are capable of annotating answers
over knowledge graphs (Berant et al., 2013) and
tabular data (Pasupat and Liang, 2015). This ap-
proach could potentially be extended to databases
by sampling subsets of its tables, such that question-
answer examples can be manually annotated. A key
issue in learning text-to-SQL parsers from denota-
tions is the vast search space of potential candidate
queries. Therefore, past work has focused on con-
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straining the search space, which limited applica-
bility to simpler questions over single tables (Wang
et al., 2019). Here, we handle arbitrary SQL by
using QDMR to constrain the search space.

Question Decomposition QDMR expresses the
meaning of a question by breaking it down into sim-
pler sub-questions. Given a question z, its QDMR
s is a sequence of reasoning steps s, ..., s/l re-
quired to answer z. Each step s* is an intermediate
question which represents a relational operation,
such as projection or aggregation. Steps may con-
tain phrases from z, tokens signifying a query oper-
ation (e.g., “for each”) and references to previous
steps. Operation tokens indicate the structure of
a step, while its arguments are the references and
question phrases. A key advantage of QDMR is
that it can be annotated by non-experts and at scale
(Wolfson et al., 2020). Moreover, unlike SQL, an-
notating QDMR requires zero domain expertise as
it is derived entirely from the original question.

3 Weakly Supervised SQL Synthesis

Our input data contains examples of question x;,
database D;, the answer a;, and s;, which is the
QDMR of z;. The QDMR is either annotated or
predicted by a trained model f, such that f(x;) =
s;. For each example, we attempt to synthesize a
SQL query Q;, that matches the intent of z; and
executes to its answer, QAZ(Dl) = a;. The success-
fully synthesized examples (x;, Q;) are then used
to train an NL-to-SQL model.

3.1 Synthesizing SQL from QDMR

Given QDMR s; and database D;, we automati-
cally map s; into SQL. Alg. 1 describes the synthe-
sis process, where candidate query Qz is incremen-
tally synthesized by iterating over the QDMR steps.
Given step sf, its phrases are automatically linked
to columns and values in D;. Then, relevant join
paths are inferred between the columns. Last, each
step is automatically mapped to SQL based on its
QDMR operator and its arguments (see Table 1).

3.1.1 Phrase DB Linking

As discussed in §2, a QDMR step may have
a phrase from x; as its argument. When map-
ping QDMR to SQL these phrases are linked
to corresponding columns or values in D;. For
example, in Table 1 the phrases “ships” and
“injuries” are linked to columns ship.id and
death.injured respectively. We perform

Algorithm 1 SQL Synthesis

1: procedure SQLSYNTH(s: QDMR, D: database)

2 mapped < |]

3 for s¥ ins = (s',...,s™) do

4 cols <~ PHRASECOLUMNLINK(D, %)

5: refs < REFERENCEDSTEPS (s")

6: Jjoin <+ []

7 for s7 in refs do

8: other_cols < synth[j].cols

9: Jjoin < join 4+ JOINP(D, cols, other_cols)
10: op + OPTYPE(s")

11: Q + MAPSQL (op, cols, join, refs, mapped)
12: mapped[k] + (s*, cols, Q)

13:  return mappedn].Q

phrase-column linking automatically by ranking
all columns in D; and returning the top one. The
ranked list of columns is later used in §3.2 when
searching for a correct assignment to all phrases
in the QDMR. To compute phrase-column simi-
larity, we tokenize both the phrase and column,
then lemmatize their tokens using the WordNet
lemmatizer.> The similarity score is the average
GloVe word embeddings similarity (Pennington
et al., 2014) between the phrase and column tokens.
All columns in D; are then ranked based on their
word overlap and similarity with the phrase: (1) we
return columns whose lemmatized tokens are iden-
tical to those in the phrase; (2) we return columns
who share (non stop-word) tokens with the phrase,
ordered by phrase-column similarity; (3) we return
the remaining columns, ordered by similarity.

We assume that literal values in D;, such as
strings or dates, appear verbatim in the database
as they do in the question. Therefore, using string
matching, we can identify the columns containing
all literal values mentioned in s;. If a literal value
appears in multiple columns, they are all returned
as potential links. This assumption may not always
hold in practice due to DB-specific language, e.g.,
the phrase “women” may correspond to the condi-
tion gender = ‘F’.Consequently, we measure
the effect of DB-specific language in §4.2.

3.1.2 Join Path Inference

In order to synthesize SQL (Codd, 1970), we infer
join paths between the linked columns returned in
§3.1.1. Following past work (Guo et al., 2019; Suhr
et al., 2020), we implement a heuristic returning the
shortest join path connecting two sets of columns.
To compute join paths, we convert D; into a graph
where the nodes are its tables and edges exist for
every foreign-key constraint connecting two tables.
The JOINP procedure in Alg. 1 joins the tables of
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QDMR Step Phrase-DB Linking SQL

1. ships 1. SELECT (ship.id)
2. SELECT (death.injured)

3. GROUP (count, #2, #1)

2. injuries
3. number of #2 for each #1

SELECT ship.id FROM ship;
SELECT death.injured FROM death;
SELECT COUNT (death.injured) FROM ship, death WHERE

death.caused_by_ship_id = ship.id GROUP BY ship.id;

4. #1 where #3 is highest 4. SUPERLATIVE (max, #1, #3)

SELECT ship.id FROM ship, death WHERE death.caused_by_ship_id =

ship.id GROUP BY ship.id ORDER BY COUNT (death.injured) DESC LIMIT 1;

5. the name of #4 5. PROJECT (ship.name, #4)

SELECT ship.name FROM ship, death WHERE death.caused_by_ship_id =

ship.id AND ship.id IN (#4);

Table 1: Mapping the QDMR of the question “What is the ship name that caused most total injuries?” to SQL.

x: “What are the populations of states through which the Mississippi river runs?”

x: “What papers were written by H. V. Jagadish and Yunyao Li?"

s:  the Mississippi river; states #1 runs through; the populations of #2

s papers; #1 by H. V. Jagadish; #2 by Yunyao Li

. SELECT (river.river_name = ‘Mississippi’
2. PROJECT (state.state_name, #1)
3. PROJECT (state.population, #2)

1.  SELECT (publication.title)
2. FILTER(#1, author.name
3. FILTER(#2, author.name

‘H. V. Jagadish’)
‘Yunyao Li’)

1. SELECT river.river_name FROM river WHERE
river.river_name = ‘Mississippi’;

2. SELECT state.state_name FROM state, river
WHERE river.traverse = state.state_name AND
river.river_name IN (#1);

3. SELECT state.population FROM state, river
WHERE river.traverse = state.state_name AND
state.state_name IN (#2);

Figure 2: Previously mapped QDMR steps (with opera-
tions and arguments) used as nested SQL queries.

columns mentioned in step s* (cols) with those
mentioned in the previous steps which s* refers
to (other_cols). If multiple shortest paths exist, it
returns the first path which contains either ¢; € cols
as its start node or ¢; € other_cols as its end node.
Step 3 of Table 1 underlines the join path between
the death and ship tables.

3.1.3 QDMR to SQL Mapper

The MAPSQL procedure in Alg. 1 maps QDMR
steps into executable SQL. First, the QDMR op-
eration of each step is inferred from its utterance
template using the OPTYPE procedure of Wolfson
et al. (2020). Then, following the previous DB link-
ing phase, the arguments of each step are either the
linked columns and values or references to previous
steps (second column of Table 1). MAPSQL uses
the step operation type and arguments to automati-
cally map s* to SQL query Q. Each operation has
a unique mapping to SQL as shown in Table 2. The
mapping is performed incrementally for each step,
while using parts of the mapped SQL of previous
steps (stored in the mapped array) when these are
referenced. Furthermore, our mapping procedure
is able to handle complex SQL that may involve
nested queries (Fig. 2) and self-joins (Fig. 3).

3.2 Execution-guided SQL Candidate Search

At this point we have Qi, which is a potential SQL
candidate. However, this candidate may be incor-
rect due to a wrong phrase-column linking or due to

1. SELECT publication.title FROM author, publication;

2. SELECT publication.title FROM author, publica-
tion, writes WHERE publication.pid= writes.pid AND
writes.aid = author.aid AND author.name = ‘H. V. Ja-
gadish’;

3. SELECT publication.title FROM author, publica-
tion, writes WHERE publication.pid = writes.pid AND
writes.aid = author.aid AND author.name = ‘Yunyao Li’
AND publication.title IN (#2);

Figure 3: Handling Self-joins in QDMR mapping. The
two FILTER steps have conflicting assignments to the
same column and are identified as a self-join. This is
resolved by using a nested query in the SQL of step 3.

its original QDMR structure. To mitigate these is-
sues, we search for accurate SQL candidates using
the answer supervision.

Following phrase DB linking (§3.1.1), each
phrase is assigned its top ranked column in D;.
However, this assignment may potentially be
wrong. In step 1 of Fig. 1 the phrase “authors’
is incorrectly linked to author.aid instead of
author.name. Given our weak supervision, we
do not have access to the gold phrase-column link-
ing and rely instead on the gold answer a;. Namely,
we iterate over phrase-column assignments and syn-
thesize their corresponding SQL. Once an assign-
ment whose SQL executes to a; has been found, we
return it as our result. We iterate over assignments
that cover only the top-k ranked columns for each
phrase, shown to work very well in practice (§4.2).

Failing to find a correct candidate SQL may
be due to QDMR structure rather than phrase-
column linking. As s; is derived entirely from
the question it may fail to capture database-
specific language. E.g., in the question “How
many students enrolled during the semester?”
the necessary aggregate operation may change
depending on the database structure. If D;
has the column course.num_enrolled, the
query should sum its entries for all courses in
the semester. Conversely, if D; has the col-
umn course.student_id, the corresponding

>



QDMR Operation SQL Mapping

SELECT (t.col) SELECT t.col FROM t;

FILTER (#x, =, val)

SELECT #x[SELECT] FROM #x[FROM] WHERE #x[WHERE] AND t.col = val;

PROJECT (t.col, #x)

SELECT t.col FROM t, #x[FROM]

WHERE Join(t, #x[FROM]) AND #x[SELECT] IN (#x);

AGGREGATE (count, #x)

SELECT COUNT (#x[SELECT]) FROM #x[FROM] WHERE #x[WHERE];

GROUP (avyg, #x, #Y)

SELECT AVG (#x[SELECT]) FROM #x[FROM], #y[FROM] WHERE Join (#x[FROM], #y[FROM]) AND

#x [WHERE] AND #y[WHERE] GROUP BY #y[SELECT];

SUPERLATIVE (max, k, #x, #y)

SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join (#x[FROM], #y[FROM]) AND #x[WHERE]

AND #y[WHERE] ORDER BY #y[SELECT] DESC k;

Table 2: QDMR to SQL mapping rules for six operations. The full set of mapping rules, for all QDMR operations,
is provided in the Appendix A. #x denotes a previously mapped SQL query while #x[CLAUSE] denotes its relevant
SQL clause. For example, #x[FROM] returns all tables in the FROM clause of SQL query #x.

query would need to count the number of enrolled
students. We account for these structural mis-
matches by implementing three additional search
heuristics which modify the structure of a candidate
Q;. If the candidate executes to the correct result
following modification, it is returned by the search
process. These modifications are described in de-
tail in Appendix B. Namely, they include the ad-
dition of a DISTINCT clause, converting QDMR
FILTER steps into SUPERLATIVE and switching
between the COUNT and SUM operations.

4 [Experiments

Our experiments target two main research ques-
tions. First, given access to weak supervision of
question-answer pairs and QDMRs, we wish to
measure the percentage of SQL queries that can be
automatically synthesized. Therefore, in §4.2 we
measure the SQL synthesis coverage using 9,313
examples taken from five benchmark datasets. Sec-
ond, in §4.3 we use the synthesized SQL to train
NL-to-SQL models and compare their performance
to those trained on gold SQL annotations.

4.1 Setting

Datasets We evaluate both the SQL synthesis
coverage and NL-to-SQL accuracy using five NL-
to-SQL datasets (see Table 3). The first four
datasets contain questions over a single database:
ACADEMIC (Li and Jagadish, 2014) has questions
over the Microsoft Academic Search database;
GE0880 (Zelle and Mooney, 1996) concerns US
geography; IMDB and YELP (Yaghmazadeh et al.,
2017) contain complex questions on a film and
restaurants database, respectively. The SPIDER
dataset (Yu et al., 2018) measures domain general-
ization between databases, and therefore contains
questions over 160 different databases. For QDMR
data we use the BREAK dataset (Wolfson et al.,

2020). The only exception is 259 questions of
IMDB and YELP, outside of BREAK, which we
(authors) annotate with corresponding QDMRs and
release with our code. See Appendix C for license.

Training We fine-tune the T5-large sequence-to-
sequence model (Raffel et al., 2020) for both NL-
to-SQL and QDMR parsing (§4.2). Namely, for
each task we fine-tune the pre-trained model on
its specific data. For NL-to-SQL, we fine-tune on
mapping utterances x;; cols(D;) to SQL, where se-
quence cols(D;) is a serialization of all columns in
database D;, in an arbitrary order. In QDMR pars-
ing, input questions are mapped to output QDMR
strings. We use the TS implementation by Hugging-
Face (Wolf et al., 2020) and train using the Adam
optimizer (Kingma and Ba, 2014). Following fine-
tuning on the dev sets, we adjust the batch size to
128 and the learning rate to 1e-4 (after experiment-
ing with 1le-5, 1e-4 and le-3). All models were
trained on an NVIDIA GeForce RTX 3090 GPU.

4.2 SQL Synthesis Coverage

Our first challenge is to measure our ability to syn-
thesize accurate SQL using weak supervision. To
evaluate SQL synthesis we define its coverage as
the percentage of examples where it successfully
produces SQL Q which executes to the correct an-
swer. To ensure our synthesis procedure is domain
independent, we test it on examples from five dif-
ferent datasets, spanning across 164 DBs (Table 3).

Annotated QDMRs The upper rows of Table 3
list the SQL synthesis coverage when using man-
ually annotated QDMRs from BREAK. Overall,
we evaluate on 9,313 QDMR annotated examples,
reaching a coverage of 77.8%. Synthesis coverage
for single-DB datasets tends to be slightly higher
than that of SPIDER, which we attribute to its larger
size and diversity. To further ensure the quality of
synthesized SQL, we manually validate a random



Dataset DB#  Examples  Synthesized  Coverage %
ACADEMIC 1 195 155 79.5
GEO0880 1 871 736 83.9
IMDB 1 131 116 88.5
YELP 1 128 100 78.1
SPIDER dev 20 1,027 793 77.2
SPIDER train 140 6,955 5,349 76.9
Total: 164 9,313 7,249 77.8
SPIDER pred. 20 1,027 797 71.6

Table 3: SQL synthesis coverage scores across datasets.

Error Description %

Nonstandard ~ Annotated QDMR contains a step that does not fol- 42

QDMR low any of the pre-specified operation templates
DB-specific Phrase entails an implicit condition, e.g., “female 23
language workers” — emp.gender = ‘F’

Phrase- The correct phrase-column assignment falls out- 13
column link. side of the top-k candidates (§3.2)

Gold SQL An error due to an incorrectly labeled gold SQL 6

Table 4: SQL synthesis error analysis.

subset of 100 queries out of the 7,249 that were syn-
thesized. Our analysis reveals 95% of the queries
to be correct interpretations of their original ques-
tion. In addition, we evaluate synthesis coverage
on a subset of 8,887 examples whose SQL deno-
tations are not the empty set. As SQL synthesis
relies on answer supervision, discarding examples
with empty denotations eliminates the false posi-
tives of spurious SQL which incidentally execute
to an empty set. Overall, coverage on examples
with non-empty denotations is nearly identical, at
77.6% (see Appendix D). We also perform an error
analysis on a random set of 100 failed examples,
presented in Table 4. SQL synthesis failures are
mostly due to QDMR annotation errors or implicit
database-specific conditions. E.g., in GEO880 the
phrase “major river” should implicitly be mapped
to the condition river.length > 750. As
our SQL synthesis is domain-general, it does not
memorize any domain-specific jargon or rules.

Predicted QDMRs While QDMR annotation
can be crowdsourced to non-experts (Wolfson et al.,
2020), moving to a new domain may incur anno-
tating new in-domain examples. Our first step to
address this issue is to evaluate the coverage of
SQL synthesis on predicted QDMRs, for out-of-
domain questions. As question domains in SPIDER
dev differ from those in its training set, it serves as
our initial testbed. We further explore this setting in
§4.3.4. Our QDMR parser (§4.1) is fine-tuned on
BREAK for 10 epochs and we select the model with
highest exact string match (EM) on BREAK dev.
Evaluating on the hidden test set reveals our model

scores 42.3 normalized EM,? on par with the state-
of-the-art on BREAK.* The predicted QDMRs, are
then used in SQL synthesis together with examples
(x;,a;, D;). In Table 3, the last row shows that
coverage on SPIDER dev is nearly identical to that
of manually annotated QDMRs (77.6% to 77.2%).

4.3 Training NL to SQL Models

Next, we compare NL-to-SQL models trained on
our synthesized data to training on expert annotated
SQL. Given examples (x;, D;) we test the follow-
ing settings: (1) A fully supervised training set,
that uses gold SQL annotations {(x;, Q;, D;) }7";.
(2) A weakly supervised training set, where given
answer a; and QDMR s;, we synthesize queries
Qi. As SQL synthesis coverage is less than 100%,
the process returns a subset of m < n examples
{(xs,Qq, D;)}7, on which the model is trained.’

4.3.1 Training Data

We train models on two NL-to-SQL datasets: SPI-
DER (Yu et al., 2018) and GEO880 (Zelle and
Mooney, 1996). As our weakly supervised training
sets, we use the synthesized examples (x;, Qi, D;),
described in §4.2, (using annotated QDMRs). We
successfully synthesized 5,349 training examples
for SPIDER and 547 examples for GEO880 train.

4.3.2 Models and Evaluation

Models We fine-tune T5-large for NL-to-SQL,
using the hyperparameters from §4.1. We choose
TS as it is agnostic to the structure of its input se-
quences. Namely, it has been shown to perform
competitively on different text-to-SQL datasets, re-
gardless of their SQL conventions (Shaw et al.,
2021; Herzig et al., 2021). This property is partic-
ularly desirable in our cross-database evaluation
(§4.3.3), where we test on multiple datasets.
We train and evaluate the following models:
* T5-SQL-G trained on {(z;, Q;, D;)}7-,, using
gold SQL, annotated by experts
* T5-QDMR-G trained on {(z;, Q;, D;)}", with
Q; that were synthesized using weak supervision
* T5-SQL-Gpar trained on {(x;, Q;, D;) }i, us-
ing gold SQL. This models helps us measure the
degree to which the smaller size of the synthe-
sized training data and its different query struc-
ture (compared to gold SQL) affects performance

3The metric is a strict lower bound on performance.
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5In practice, we do not train directly on Ql but on s;
following its phrase-column linking. This representation is
then automatically mapped to SQL to evaluate its execution.
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Model Supervision Training set Exec. %

T5-SQL-G (xq, Qs, Dy) 7,000 68.0 £0.3
T5-SQL-Gpart (i, Qi, Dy) 5,349 66.4 +0.8
T5-QDMR-G (i, ai, i, D;) 5,349 65.8 £0.3
T5-QDMR-P (i, ai, Di)* 5,075 629 £ 0.8

Table 5: SPIDER trained model results on the dev set.
*Supervision for T5-QDMR-P also includes 700 anno-
tated QDMRs of SPIDER train questions.

Model ACADEMIC GEO0880 IMDB YELP

T5-SQL-G 82413 33.6 £25 198+3.6 227+12
T5-SQL-Gpart 49+ 15 324+£13 209+08 207414
T5-QDMR-G 10.7 £ 0.7 404 +18 27.1+36 162+ 4.7
T5-QDMR-P 82+04 39.7+£14 23.6£55 16.7 £3.7

Table 6: SPIDER trained models zero-shot performance
on cross-database (XSP) examples.

Evaluation Metric Due to our SQL being auto-
matically synthesized, its syntax is often different
from that of the gold SQL (see Appendix E.2). As
a result, the ESM metric of Yu et al. (2018) does
not fit our evaluation setup. Instead, we follow
Suhr et al. (2020) and evaluate NL-to-SQL models
using the execution accuracy of output queries. We
define execution accuracy as the percentage of out-
put queries which, when executed on the database,
result in the same set of tuples (rows) as a;.

4.3.3 Training on Annotated QDMRs

We begin by comparing the models trained using
annotated QDMRs to those trained on gold SQL.
Meanwhile, the discussion of T5-QDMR-P, trained
using predicted QDMRs, is left for §4.3.4. The
results in Tables 5-7 list the average accuracy and
standard deviation of three model instances, trained
using separate random seeds.

SPIDER & XSP Evaluation Tables 5-6 list the
results of the SPIDER trained models. All mod-
els were trained for 150 epochs and evaluated on
the dev set of 1,034 examples. When compar-
ing T5-QDMR-G to the model trained on gold
SQL, it achieves 96.8% of its performance (65.8
to 68.0). The T5-SQL-Gp,e model, trained on the
same 5,349 examples as T5-QDMR-G, performs
roughly on par, scoring +0.6 points (66.4 to 65.8).

As SPIDER is used to train cross-database mod-
els, we further evaluate our models performance
on cross-database semantic parsing (XSP) (Suhr
et al., 2020). In Table 6 we test on four additional
NL-to-SQL datasets (sizes in parenthesis): ACA-
DEMIC (183), GE0880 (877), IMDB (113) and
YELP (66). For ACADEMIC, IMDB and YELP we
removed examples whose execution result in an

Model Supervision Train. set Exec. %

T5-SQL-G (zi, Qi, Dy) 547 82.1£19
T5-SQL-Gpart (zi, Qi, D;) 454 794+ 04
T5-QDMR-G (i, ai,s:, D) 454 745 4+0.2
T5-QDMR-P (i, ai, D;) 432 704 +£0.2

Table 7: GEO880 trained models results on the test set.
Supervision for T5-QDMR-P does not include any in-
domain annotated QDMRs.

empty set. Otherwise, the significant percentage of
such examples would result in false positives of pre-
dictions which incidentally execute to an empty set.
In practice, evaluation on the full datasets remains
mostly unchanged and is provided in Appendix E.
Similarly to Suhr et al. (2020), the results in Table 6
show that SPIDER trained models struggle to gen-
eralize to XSP examples. However, T5S-QDMR-G
performance is generally better on XSP examples,
which further indicates that QDMR and answer
supervision is effective, compared to gold SQL.
Example predictions are shown in Appendix E.2.

GEO0880 Table 7 lists the execution accuracy of
models trained on GEO880. Models were trained
for 300 epochs, fine-tuned on the dev set and then
evaluated on the 280 test examples. We note that
T5-QDMR-G achieves 90.7% of the performance
of T5-SQL-G (74.5 to 82.1). The larger perfor-
mance gap, compared to SPIDER models, may be
partly to due to the dataset size. As GEO880 has
547 training examples, fewer synthesized SQL to
train T5-QDMR-G on (454) may have had a greater
effect on its accuracy.

4.3.4 Training on Predicted QDMRs

We extend our approach by replacing the annotated
QDMRs with the predictions of a trained QDMR
parser (a T5-large model, see §4.1). In this setting,
we now have two sets of questions: (1) questions
used to train the QDMR parser; (2) questions used
to synthesize NL-SQL data. We want these two sets
to be as separate as possible, so that training the
QDMR parser would not require new in-domain
annotations. Namely, the parser must generalize
to questions in the NL-SQL domains while being
trained on as few of these questions as possible.

SPIDER Unfortunately, SPIDER questions make
up a large portion of the BREAK training set, used
to train the QDMR parser. We therefore experiment
with two alternatives to minimize the in-domain
QDMR annotations of NL-SQL questions. First,
is to train the parser using few-shot QDMR anno-
tations for SPIDER. Second, is to split SPIDER to



questions used as the NL-SQL data, while the rest
are used to train the QDMR parser.

In Table 5, T5-QDMR-P is trained on 5,075
queries, synthesized using predicted QDMRs (and
answer supervision) for SPIDER train questions.
The predictions were generated by a QDMR parser
trained on a subset of BREAK, excluding all SPI-
DER questions save 700 (10% of SPIDER train).
Keeping few in-domain examples minimizes addi-
tional QDMR annotation while preserving the pre-
dictions quality. Training on the predicted QDMRs,
instead of the annotated ones, resulted in accuracy
being down 2.9 points (65.8 to 62.9) while the
model achieves 92.5% of T5-SQL-G performance
on SPIDER dev. On XSP examples, T5S-QDMR-P
is competitive with T5-QDMR-G (Table 6).

In Table 8, we experiment with training T5-
QDMR-P without in-domain QDMR annotations.
We avoid any overlap between the questions and
domains used to train the QDMR parser and those
used for SQL synthesis. We randomly sample
30-40 databases from SPIDER and use their cor-
responding questions exclusively as our NL-SQL
data. For training the QDMR parser, we use
BREAK while discarding the sampled questions.
We experiment with 3 random samples of SPIDER
train, numbering 1,348, 2,028 and 2,076 exam-
ples, with synthesized training data of 1,129, 1,440
and 1,552 examples respectively. Results in Ta-
ble 8 show that, on average, T5-QDMR-P achieves
95.5% of the performance of T5-SQL-G. This in-
dicates that even without any in-domain QDMR
annotations, data induced from answer supervision
and out-of-domain QDMRSs is effective in training
NL-to-SQL models, compared to gold SQL.

GEO0880 For predicted QDMRs on GEO880, we
train the QDMR parser on BREAK while discard-
ing all of its 547 questions. Therefore, the parser
was trained without any in-domain QDMR anno-
tations for GEO880. SQL synthesis using the pre-
dicted QDMRs resulted in 432 queries. In Table 7,
T5-QDMR-P reaches 85.7% of T5-SQL-G perfor-
mance while being trained using question-answer
supervision and no in-domain QDMR annotations.

5 Related Work

For a thorough review of NL interfaces to databases
see Affolter et al. (2019); Kim et al. (2020). Re-
search on parsing text-to-SQL gained significant
traction in recent years with the introduction of
large supervised datasets for training models and

Model Supervision Train. set DB#  Exec. %
T5-SQL-G (i, Qs, Dy) 1,348 30 48.4
T5-SQL-Gpart (i, Qi, Dy) 1,129 30 47.4
T5-QDMR-P (i, a;, D;) 1,129 30 46.2
T5-SQL-G (i, Qi, Dy) 2,028 40 547
T5-SQL-Gpart (i, Qi, Dy) 1,440 40 513
T5-QDMR-P (i,ai,D;) 1,440 40 52.1
T5-SQL-G (i, Qi, Dy) 2,076 40 56.2
T5-SQL-Gpar (24, Q45 Di) 1,552 40 537
T5-QDMR-P (i, a;, D;) 1,552 40 53.8

Table 8: SPIDER models results on the dev set. T5-
QDMR-P is trained without using any QDMR annota-
tions for training set questions. We train separate models
on the three randomly sampled training sets.

evaluating their performance (Zhong et al., 2017;
Yu et al., 2018). Recent approaches relied on spe-
cialized architectures combined with pre-trained
language models (Guo et al., 2019; Wang et al.,
2020; Lin et al., 2020; Yu et al., 2021; Deng et al.,
2021; Scholak et al., 2021). As our solution syn-
thesizes NL-SQL pairs (using weak supervision) it
can be used to train supervised NL-to-SQL models.

Also related is the use of intermediate meaning
representations (MRs) in mapping NL-to-SQL. In
contrast to QDMR, past MRs were either annotated
by experts (Yaghmazadeh et al., 2017; Kapanipathi
et al., 2020), or were directly induced from such
annotations as a way to simplify the target MR
(Guo et al., 2019; Herzig et al., 2021). Similarly
to us, Saparina and Osokin (2021) map QDMR to
SPARQL. Contrastly, our SQL synthesis does not
rely on the annotated linking of question phrases
to DB elements (Lei et al., 2020). We further train
models without gold QDMR annotations and test
our models on four datasets in addition to SPIDER.

6 Conclusions

This work presents a weakly supervised approach
for generating NL-SQL training data, using answer
and QDMR supervision. We implemented an au-
tomatic SQL synthesis procedure, capable of gen-
erating effective training data for dozens of target
databases. Experiments on multiple NL-to-SQL
benchmarks demonstrate the efficacy of our synthe-
sized training data. Namely, our weakly-supervised
models achieve 91%-97% of the performance of
fully supervised models trained on annotated SQL.
Further constraining our models supervision to few
or zero in-domain QDMRs still reaches 86%-93%
of the fully supervised models performance. Over-
all, we provide an effective solution to train text-to-
SQL parsers while requiring zero SQL annotations.
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A  QDMR to SQL Mapping Rules

Table 9 lists all of the QDMR operations along
with their mapping rules to SQL. For a thorough
description of QDMR semantics please refer to
Wolfson et al. (2020).

B SQL Candidate Search Heuristics

We further describe the execution-guided search
process for candidate SQL queries, that was intro-
duced in §3.2. Given the search space of candidate
queries, we use four heuristics to find candidates
Qi which execute to the correct answer, a;.

1. Phrase linking search: We avoid iterating
over each phrase-column assignment by ordering
them according to their phrase-column ranking,
as described in §3.1.1. The query le) is in-
duced from the top ranked assignment, where each
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QDMR Operation SQL Mapping

SELECT (t.col) SELECT t.col FROM t;

SELECT (val)

SELECT t.col FROM t WHERE t.col = val;

FILTER (#x, =, val) SELECT #x[SELECT]

FROM #x[FROM]

WHERE #x[WHERE] AND t.col = val;

PROJECT (t.col, #x) SELECT t.col FROM t,

#x [FROM]

WHERE Join(t, #x[FROM]) AND #x[SELECT] IN (#x);

AGGREGATE (count, #x) SELECT COUNT (#x [SELECT])

FROM #x[FROM] WHERE #x[WHERE] ;

GROUP (avg, #x, #y) SELECT AVG (#x[SELECT]) FROM #x[FROM], #y[FROM] WHERE Join (#x[FROM], #y[FROM]) AND
#x [WHERE] AND #y[WHERE] GROUP BY #y[SELECT];

SUPERLATIVE (max, k, #x, #y) SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join (#x[FROM], #y[FROM]) AND #x[WHERE]
AND #y[WHERE] ORDER BY #y[SELECT] DESC k;

COMPARATIVE (#x, #y, >, val) SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join (#x[FROM], #y[FROM]) AND #x[WHERE]
AND #y[WHERE] AND #y[SELECT] > val;

UNION (#x, #y) SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join (#x[FROM], #y[FROM]) AND (#x[WHERE]
OR #y[WHERE]) ;

UNION_COLUMN (#x, #y) SELECT #x[SELECT], #y[SELECT] FROM #x[FROM], #y[FROM] WHERE Join (#x[FROM], #y[FROM]) AND
#x [WHERE] AND #y [WHERE];

INTERSECT (t.col, #x, #y) SELECT t.col FROM t, #x[FROM], #y[FROM] WHERE Join(t, #x[FROM], #y[FROM]) AND #x[WHERE]
AND t.col IN ( SELECT t.col FROM t, #x[FROM], #y[FROM] WHERE Join(t, #x[FROM], #y[FROM])
AND #y [WHERE] );

SORT (#x, #y, asc) SELECT #x[SELECT] FROM #x[FROM], #y[FROM] WHERE Join (¥x[FROM], #y[FROM]) AND #x[WHERE]
ORDER BY #y[SELECT] ASC;

DISCARD (#x, #y) SELECT #x[SELECT] FROM #x[FROM] WHERE #x[WHERE] AND #x[SELECT] NOT IN ( #y );

ARITHMETIC (+, #x, #y) (#x ) + ( #y );

Table 9: QDMR to SQL mapping rules for all QDMR operations. #x denotes a previously mapped SQL query while
#x[CLAUSE] denotes its relevant SQL clause. For example, #x[FROM] returns all tables in the FROM clause of
SQL query #x. Join, denotes the inferred join paths between sets of tables (see §3.1.2). Note that AGGREGATE
and GROUP steps may use the operations: min, max, count, sum and avg. SUPERLATIVE steps may use min,
max operations and COMPARATIVE steps use the operations: >, <, =, #, >, <. Last, SORT steps sort in either
ascending (asc) or descending (desc) order and ARITHMETIC steps use one of the following: +, —, x, +.

phrase in s; is assigned its top ranked column. If
le)(Di) # a; we continue the candidate search
using heuristics 2-4 (described below). Assuming
that the additional search heuristics failed to find
a candidate le), such that le)/(Di) = a;, we
return to the phrase linking component and resume
the process using the candidate SQL induced from
the following assignment QZ@), and so forth. In
practice, we limit the number of assignments and
review only those covering the top-k most similar
columns for each phrase in s;, where k£ = 20. Our
error analysis (Table 4) reveals that only a small
fraction of failures are due to limiting k. Step 2
in Fig. 1 represents the iterative process, where
o

lowing candidate QZ@) correctly links the phrase
“authors” to column author .name and executes
to a;, thereby ending the search.

executes to an incorrect result while the fol-

2. Distinct modification: Given a candidate SQL
Qi such that Q;(D;) # a, we add DISTINCT to
its SELECT clause. In Table 10 the SQL executes
to the correct result, following its modification.

3. Superlative modification: This heuristic auto-
matically corrects semantic mismatches between
annotated QDMR structures and the underlying
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database. Concretely, steps in s; that represent
PROJECT and FILTER operations may entail an
implicit ARGMAX/ARGMIN operation. For exam-
ple for the question “What is the size of the largest
state in the USA?” in the third row of Table 10.
Step (3) of the question’s annotated QDMR is the
PROJECT operation, “state with the largest #2”.
While conforming to the PROJECT operation tem-
plate, the step entails an ARGMAX operation. Using
the NLTK part-of-speech tagger, we automatically
identify any superlative tokens in the PROJECT
and FILTER steps of s;. These steps are then re-
placed with the appropriate SUPERLATIVE type
steps. In Table 10, the original step (3) is modified
to the step “#1 where #2 is highest”.

4. Aggregate modification: This heuristics re-
places instances of COUNT in QDMR steps with
SUM operations, and vice-versa. In Table 10, the
question “Find the total student enrollment for
different affiliation type schools.”, is incorrectly
mapped to a candidate query involving a COUNT
operation on university.enrollment. By
modifying the aggregate operation to SUM, the new
Qi correctly executes to a; and is therefore returned
as the output.



Heuristic

Question

Candidate SQL/QDMR

Modified Candidate SQL/QDMR

Phrase link-  What are the distinct majors SELECT DISTINCT student.major SELECT DISTINCT student.major

ing search that students with treasurer FROM student, voting_record FROM student, voting_record
votes are studying? WHERE student.stuid = wvot-— WHERE student.stuid = wvot-—

ing_record.stuid ing_record.treasurer_ vote

Distinct Find the number of different SELECT products.product_type_code SELECT DISTINCT prod-

modifica- product types. FROM products ucts.product_type_code FROM prod-

tion ucts

Superlative ~ What is the size of the largest (1) states in the usa; (2) size (1) states in the usa; (2) size

modifica- state in the USA? of #1; (3) state with the largest of #1; (3) #1 where #2 is high-

tion #2; (4) size of #3 est; (4) the size of #3

Aggregate Find the total student enroll- SELECT university.affiliation, SELECT university.affiliation,

modifica- ment for different affiliation COUNT (university.enrollment) SUM (university.enrollment) FROM

tion

type schools.

FROM university GROUP BY univer-—

university GROUP BY univer-—

sity.affiliation

sity.affiliation

Table 10: Examples of the four execution-guided search heuristics used during SQL synthesis.

C Data License

We list the license (when publicly available) and
release details of the datasets used in our paper.

The BREAK dataset (Wolfson et al., 2020) is
under the MIT License. SPIDER (Yu et al., 2018) is
under the CC BY-SA 4.0 License. GEO880 (Zelle
and Mooney, 1996) is available under the GNU
General Public License 2.0.

The text-to-SQL versions of GEO880 and
ACADEMIC (Li and Jagadish, 2014) were
made publicly available by Finegan-Dollak
et al. (2018) in: https://github.com/
jkkummerfeld/text2sgl-data/.

The IMDB and YELP datasets were publicly

released by Yaghmazadeh et al. (2017) in: goo.

gl/DbUBMM.

D SQL Synthesis Coverage

We provide additional results of SQL synthesis
coverage. Table 11 lists the coverage results, per
dataset, when discarding all examples whose SQL
executes to an empty set. Out of the 9,313 original
examples, 8,887 examples have non-empty denota-
tions. Coverage scores per dataset remain generally
the same as they do when evaluating on all exam-
ples. These results further indicate the effectiveness
of the SQL synthesis procedure. Namely, this en-
sures the synthesis results in Table 3 are faithful,
despite the potential noise introduced by SQL with
empty denotations.

E NL to SQL Models Results
E.1 Evaluation on the Full XSP Datasets

We provide additional results of the models trained
on SPIDER. Namely, we evaluate on all exam-
ples of the ACADEMIC, IMDB and YELP datasets,
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Dataset DB # Examples Synthesized Coverage %
ACADEMIC 1 183 148 80.9
GEO8380 1 846 707 83.6
IMDB 1 113 101 89.4
YELP 1 66 54 81.8
SPIDER dev 20 978 745 76.2
SPIDER train 140 6,701 5,137 76.7
Total: 164 8,887 6,892 77.6
SPIDER pred. 20 978 750 76.7

Table 11: SQL synthesis coverage scores for SQL
queries with non-empty denotations. We report the
coverage only for non-empty examples to minimize the
effect of potentially spurious SQL being synthesized.

including examples whose denotations are empty.
Table 12 lists the results of all the models trained on
the original training set of SPIDER. In Table 13 we
provide the XSP results of the models trained on
the random subsets of SPIDER train, used in §4.3.4.
Similar to our previous experiments, TS-QDMR-P
is generally better than T5-SQL-G in terms of its
cross-database generalization.

E.2

Table 14 includes some example predictions of our
SPIDER trained models from Tables 5-6. For each
example we describe its question and target (gold)
SQL annotation, followed by each model’s result.

Qualitative Results
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Model Supervision Training set ~ SPIDER dev. ACADEMIC GE0880 IMDB YELP

T5-SQL-G (i, Qi, Dy) 7,000 68.0 £ 0.3 79+13 33.6 £25 19.1£29 253£17
T5-SQL-Gpart (i, Qs, Ds) 5,349 66.4+0.8 49+ 1.7 324+13 21.14+07 261+1.0
T5-QDMR-G (i, ai, si, D;i) 5,349 65.8 0.3 112+ 1.0 404 +18 303+3.1 258 +5.1
T5-QDMR-P (i, ai, D;) 5,075 629 +0.8 84+09 39.7+14 27.0£5.1 282429

Table 12: Model execution accuracy on SPIDER and its performance on cross-database (XSP) examples. Evaluation
on ACADEMIC, IMDB and YELP is on the full datasets, including examples with empty denotations.

Model Supervision Train. set DB#  SPIDER dev. ACADEMIC GE0880 IMDB YELP
T5-SQL-G (i, Qi, Dy) 1,348 30 484 2.1 29.6 9.9 22.6
T5-SQL-Gpare (i, Qi, Dy) 1,129 30 474 2.6 26.9 14.5 16.9
T5-QDMR-P (x4, a4, Dy) 1,129 30 46.2 8.4 29.0 16.0 16.9
T5-SQL-G (i, Qi, Dy) 2,028 40 54.7 6.3 28.3 18.3 21.0
T5-SQL-Gpart (i, Qi, Dy) 1,440 40 51.3 3.7 21.2 12.2 19.4
T5-QDMR-P (i, a;, D;) 1,440 40 52.1 6.8 274 12.2 18.5
T5-SQL-G (i, Qi, Dy) 2,076 40 56.2 32 25.5 13.0 24.5
T5-SQL-Gpart (i, Qi, Dy) 1,552 40 53.7 23 17.8 10.2 22.8
T5-QDMR-P (i, ai, D;i) 1,552 40 53.8 6.1 32.3 19.8 21.8

Table 13: Model results on SPIDER dev when trained on predicted QDMRs versus gold SQL. We train separate
models on each of the three randomly sampled training sets. Results include the performance on XSP examples
where the evaluation on ACADEMIC, IMDB and YELP is on the full datasets, including examples with empty
denotations.
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Question: Return me the total citations of papers in the VLDB conference in 2005.

Target SQL: select sum ( publication_O.citation_num ) from conference as conference_0,
publication as publication_0 where conference_0.name = "VLDB" and publica-
tion_O.year = 2005 and conference_0.cid = publication_0.cid;

T5-SQL-G: select sum(tl.citation_num) from publication as tl Jjoin conference as t2 on v
tl.cid = t2.cid where t2.name = "VLDB" and tl.year < 2005;

T5-QDMR-G: SELECT SUM(cite.cited) FROM publication, cite, conference WHERE confer— X

ence.cid = publication.cid AND publication.pid = cite.cited AND confer-
ence.cid IN ( SELECT conference.cid FROM conference WHERE conference.name
= 'VLDB’ ) AND publication.year < 2005;

T5-QDMR-P: SELECT SUM(cite.cited) FROM cite, publication, conference WHERE publica- X
tion.pid = cite.cited AND conference.cid = publication.cid AND confer-—
ence.cid IN ( SELECT conference.cid FROM publication, conference WHERE
conference.cid = publication.cid AND conference.name = 'VLDB’ AND publi-
cation.year < 2005 );

Question: Return me the papers written by H. V. Jagadish and Yunyao Li after 2005.

Target SQL: select publication_O.title from author as author_0, author as author_1, pub-
lication as publication_0, writes as writes_0, writes as writes_1 where
author_O.name = "Yunyao Li" and author_l.name = "H. V. Jagadish" and pub-

lication_0.year > 2005 and author_0.aid = writes_0.aid and author_1l.aid =
writes_1l.aid and publication_0.pid = writes_0.pid and publication_0O.pid =
writes_1l.pid;

T5-SQL-G: select t3.title from author as tl join writes as t2 on tl.aid = t2.aid join X
publication as t3 on t2.citation_num = t3.pid where tl.name = "H. V. Ja-
gadish" intersect select t3.title from author as tl join writes as t2 on
tl.aid = t2.aid join journal as t3 on t2.journal = t3.jid where t3.name =
"Yunyao Li";

T5-QDMR-G: SELECT publication.abstract FROM author, publication, writes WHERE pub- X
lication.pid = writes.pid AND writes.aid = author.aid AND author.name =
'h.v.jagadish’ AND publication.year > 2005

T5-QDMR-P: SELECT journal.homepage FROM journal, author, publication, writes WHERE X
journal.jid = publication.jid AND publication.pid = writes.pid AND
writes.aid = author.aid AND author.name = ’'h.v.jagadish’ AND publica-

tion.year > 2005

Question: What is the shortest river?

Target SQL: SELECT river.river_name FROM river WHERE river.length = (SELECT min
(river.length) FROM river);

T5-SQL-G: select length from river order by length limit 1; X

T5-QDMR-G: SELECT river.river_name FROM river WHERE river.river_name IN ( SELECT v

river.river_name FROM river ) ORDER BY river.length ASC LIMIT 1;

T5-QDMR-P: SELECT river.river_name FROM river WHERE river.river_name IN ( SELECT v
river.river_name FROM river ) ORDER BY river.length ASC LIMIT 1;

Question: Find the actor with most number of films.

TargetSQL: select actor_0.name from actor as actor_0, cast as cast_0, movie as movie_0
where actor_0.aid = cast_0.aid and cast_0.msid = movie_0.mid order by
count (distinct (movie_0.title)) desc limit 1;

T5-SQL-G: select tl.name from actor as tl join cast as t2 on tl.aid = t2.id group by X
tl.aid order by count (*) desc limit 1;

T5-QDMR-G: SELECT actor.name FROM actor, movie, cast WHERE actor.aid = cast.aid AND v
cast.msid = movie.mid GROUP BY actor.name ORDER BY COUNT (movie.mid) DESC
LIMIT 1;

T5-QDMR-P: SELECT actor.name FROM actor, cast, movie WHERE actor.aid = cast.aid AND v
cast.msid = movie.mid GROUP BY actor.name ORDER BY COUNT (movie.mid) DESC
LIMIT 1;

Question: Which business has the most number of checkins?

Target SQL: select business_0.name from business as business_0, checkin as checkin_0

where business_0.business_id = checkin_0.business_id group by busi-
ness_0O.name order by sum(checkin_O.count) desc limit 1;

T5-SQL-G: select tl.name from business as tl join checkin as t2 on tl.business_id = X
t2.business_id group by t2.business_id order by count (*) desc limit 1;

T5-QDMR-G: SELECT business.name FROM checkin, business WHERE business.business_id = X
checkin.business_id GROUP BY business.name ORDER BY COUNT (checkin.cid) DESC
LIMIT 1;

T5-QDMR-P: SELECT business.name FROM checkin, business WHERE business.business_id = X
checkin.business_id GROUP BY business.name ORDER BY COUNT (checkin.cid) DESC
LIMIT 1;

Table 14: Example predictions of the SPIDER trained models from Tables 5-6. We denote correct and incorrect
predictions by v/and X.
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