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ABSTRACT

Visual encoding followed by token condensing has become the standard architec-
tural paradigm in multi-modal large language models (MLLMs). Many recent
MLLMs increasingly favor global naive-resolution visual encoding over slice-
based methods. To investigate this trend, we systematically compare their behav-
ior on vision-language understanding and attention patterns, revealing that global
encoding enhances overall capability but at the expense of greater computational
overhead. To address this issue, we present LLaVA-UHD v3, an MLLM centered
upon our proposed Progressive Visual Compression (PVC) method, which can be
seamlessly integrated into standard Vision Transformer (ViT) to enable efficient
naive-resolution encoding. The PVC approach consists of two key modules: (i) re-
fined patch embedding, which supports flexible patch-size scaling for fine-grained
visual modeling, (ii) windowed token compression, hierarchically deployed across
ViT layers to progressively aggregate local token representations. Jointly modu-
lated by these two modules, a widely pretrained ViT can be reconfigured into
an efficient architecture while largely preserving generality. Evaluated across ex-
tensive benchmarks, the transformed ViT, termed ViT-UHD, demonstrates com-
petitive performance with MoonViT while reducing TTFT (time-to-first-token)
by 2.4×, when developed within an identical MLLM architecture. Building upon
ViT-UHD, LLaVA-UHD v3 also achieves competitive performance to Qwen2-VL,
while further reducing TTFT by 1.9×. We will release all code and checkpoints
to support future research on efficient MLLMs.

1 INTRODUCTION

Recent advances in Multimodal Large Language Models (MLLMs) (Wang et al. (2024); Team et al.
(2025b); Li et al. (2024a); Wang et al. (2025b)) have significantly expanded the capabilities of
vision-language understanding across diverse scenario, including optical character recognition (Hu
et al. (2024); Lv et al. (2023)), remote sensing (Wang et al. (2025a); Kuckreja et al. (2024); Yao
et al. (2025)), and mobile agents(Team et al. (2025a); Wu et al. (2024a)). To efficiently support such
broad applicability, visual encoding followed by token condensing has become the general vision
embedding paradigm in MLLMs, enabling more standardized and scalable multi-modal training.

This encode-then-compress framework, however, entails considerable computational overhead, as
the vision encoder must process an excessive number of tokens before any reduction, which is exac-
erbated when image resolution increases (Yao et al. (2024b); Fan et al. (2024); Yao et al. (2024a)).
Early MLLMs alleviated this problem through slice-based encoding (Li et al. (2024c); Zhang et al.
(2024); Li et al. (2024d); Guo et al. (2024)), which encodes smaller image crops independently
to reduce computation. However, this line of methods inevitably leads to a fragmented semantic
context and limited global awareness. Previous studies (Huang et al. (2025); Yao et al. (2025)) man-
ually design cross-slice interaction modules to supplement global information, yet these adapters are
generally lack large-scale pretraining and so far have found limited adoption in industrial MLLMs.

By contrast, there is a growing trend toward adopting global naive-resolution encoding in recent
state-of-the-art MLLMs (Wang et al. (2024); Liu et al. (2025b); Hong et al. (2025); Liu et al.
(2024g)), which processes the entire image in a single forward pass. Although intuitively well-
motivated, the principles behind this approach remain insufficiently explored.
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Figure 1: ViT-UHD and LLaVA-UHD v3 exhibit a superior trade-off between efficiency and perfor-
mance. (a) Within the LLaVA training paradigm, ViT-UHD achieves higher average performance
across 6 benchmarks, such as MMBench and AI2D, compared to state-of-the-art vision encoders,
while maintaining substantially greater computational efficiency (e.g., achieving a 2.4× reduction
in latency relative to MoonViT). (b) LLaVA-UHD v3 attains performance comparable to advanced
MLLMs (e.g., Qwen2-VL) across 15 diverse benchmarks, while delivering 1.9× efficiency gains.

In this work, we conduct controlled pilot experiments to investigate the mechanisms of global naive-
resolution versus slice-based encoding in terms of spatial and semantic understanding. Moreover,
we further analyze the internal patterns of attention activation. Our experiments indicate that global
naive-resolution encoding yields stronger cross-modal understanding, yet its associated computa-
tional overhead remains substantial.

To address this issue, we introduce LLaVA-UHD v3, an MLLM built upon a novel Progressive
Visual Compression (PVC) framework, which can be seamlessly integrated into standard ViT to
enable efficient naive-resolution encoding. The PVC framework consists of two key components.
(i) Refined patch embedding (RPE). As the tokenizer of images, the ViT patch-embedding layer
fundamentally determines the granularity of visual tokenization. By scaling the patch size to finer
levels via an equivalent weight-transformation scheme (Beyer et al. (2023)), this module supports
more detailed visual modeling while preserving compatibility with pretrained ViTs. (ii) Windowed
token compression (WTC). We insert lightweight, learnable local compressors within the encoder
to progressively merge tokens inside local windows (e.g., 2×2) across ViT layers, reducing sequence
length during encoding. Initialized with average pooling and trained to produce content-adaptive
weights, the module preserves local semantics while lowering ViT computation and LLM prefill
cost. Jointly modulated by these two modules, a widely pretrained ViT can be reconfigured into a
more efficient architecture, e.g., via adjusting patch size, compressor count, and insertion indices.

Under the PVC framework, a widely pretrained ViT could be reconfigured into ViT-UHD. In the
LLaVA setting (Guo et al. (2024); Li et al. (2024c)) with a Qwen2-7B (Team (2024b)) as the LLM,
ViT-UHD achieves competitive performance across 6 benchmarks under varying input resolutions,
while reducing time-to-first-token (TTFT) by up to 2.4× relative to MoonViT Team et al. (2025b), as
shown in Fig. 1(a). (Please refer to Appendix A.1 for details.) Building on ViT-UHD, LLaVA-UHD
v3 attains comparable performance on 15 vision–language benchmarks compared to Qwen2-VL,
yet delivers 1.9× lower TTFT latency, shown in Fig. 1(b).

Our contributions are summarized as three manifolds. (1) We conduct controlled probes of global
naive-resolution versus slice-based encoding, evidencing superior cross-modal understanding for
the former and clarifying its underlying mechanisms. (2) We introduce a PVC framework, which
jointly modulates refined patch embedding and windowed token compression to reconfigure widely
pretrained ViTs into efficient naive-resolution ones. (3) Evaluations on extensive vision–language
benchmarks demonstrates the effectiveness and efficiency of ViT-UHD and LLaVA-UHD v3.
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Location 73.564.7

Distance 60.451.3

Count 71.255.7

Area 89.278.7

Question :What is the position of 
the pentagon relative to the 
diamond?
 A. right  B. bottom left  C. left  D. 
above
Answer: C. left

Question: The diamond is closer 
to the parallelogram than the 
pentagon. 
Answer: No

Question : How many diamonds 
are in the image? 
Answer:  1

Question : The blue one has a 
larger area than the red one.
Answer: Yes

(a) Example from the ShapeGrid bench
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(b) Performance comparison of two methods
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Figure 2: ShapeGrid and model performance. (a) Examples from ShapeGrid bench, with each subset
matched with color boxes. (b) Performance comparison between global naive-resolution encoding
(GNE) and slice-based encoding (SBE) across different general benchmarks and ShapeGrid subsets.

2 PILOT EXPERIMENT

First, we start with a series of controlled pilot experiments that systematically contrast global naive-
resolution visual encoding (GNE) and slice-based encoding (SBE) with respect to their capacities
in semantic understanding and spatial perception. To guarantee experimental fairness, we adopt
an identical model architecture, utilize an equivalent training corpus, and perform evaluation on
a consistent suite of general-purpose benchmarks. Moreover, to decouple spatial perception from
semantic understanding, we introduce a synthetic probe benchmark for spatial analysis.

2.1 EXPERIMENTAL PROTOCOL

Probe benchmarking. For evaluating general semantic understanding, we adopt a set of widely
used multi-modal benchmarks, including MMBench, etc., shown in Fig. 2(b). These benchmarks
comprehensively cover diverse capabilities such as object attribution recognition, position relation
recognition, optical character recognition (OCR), and visual reasoning. To assess spatial perception,
it is important to note that the slicing operation intrinsic to slice-based visual encoding tends to
fragment objects in natural images, which in turn introduces semantic discontinuities and makes
it difficult to disentangle spatial perception from semantic understanding. To solve this problem,
we construct a controlled synthetic dataset, ShapeGrid. The ShapeGrid bench is generated from a
template pool of parameterized geometric shapes, incorporating controlled variations in color, scale,
and position. Final images are composed using predefined layouts aligned with slice-based encoding
strategies. The dataset supports four spatial perception tasks as shown in Fig. 2(a). Construction
details are detailed in the Appendix A.2.2.

Model configuration and training setup. We adopt a standard MLLM architecture with SigLIP2-
SO400M (Tschannen et al. (2025)) as the vision encoder, a pixel-unshuffle (Dong et al. (2024)) pro-
jector, and Qwen2-7B (Team (2024b)) as the LLM. Training follows a two-stage paradigm (Zhang
et al. (2024)), first optimizing the vision encoder and projector while freezing the LLM, then fine-
tuning all parameters. Both GNE and SBE methods are configured with a maximum resolution of
1008×1008 pixels. Details are provided in Appendix A.2.1.

2.2 EXPERIMENTAL ANALYSIS

Overall performance. In Fig. 2(b), GNE method achieves significantly higher performance than
SBE method, with clear improvements observed on both the general semantic benchmarks and the
ShapeGrid. On average, it improves general semantic understanding by 2.1% (69.6% vs. 67.5%)
and spatial perception by 11.0% (73.6% vs. 62.6%), indicating that preserving holistic visual context
consistently benefits both semantic understanding and spatial perception.
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Top-left Bottom-right

Question: What is the position of the 
object relative to the red star? 
A. top-left  B. bottom-center  C. right  D. top-right

(a) Example from the Sudoku subset (b) Heatmap of accuracy (c) Attention bias of GNE minus SBE
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Figure 3: Illustration and analysis on ShapeGrid-Sudoku subset. (a) Example from the Sudoku
subset. (b) Accuracy heatmap of models with global naive-resolution encoding (GNE) vs. slice-
based encoding (SBE) on the Sudoku subset. (c) Attention score bias map showing the difference in
attention activation between GNE and SBE.

Behavior on spatial directional perception. To better evaluate spatial positional understanding,
we extend the original location subset into a Sudoku-style variant, where directional localization is
explicitly isolated for clear evaluation. As for data construction, each image follows a 3×3 layout
with a fixed central anchor and surrounding objects sampled from the template pool and additional
real-world categories, which contains 8,000 image-query pairs focused on relative direction pre-
diction, as shown in Fig. 3(a). Further details are provided in the Appendix A.2.2. As shown in
Fig. 3(b), GNE method yields uniformly high accuracy on Sudoku subset across all directions, re-
flecting balanced spatial understanding. In contrast, SBE method suffers systematic degradation
along the vertical and horizontal axes, forming a clear cross-shaped bias. These results reveal an in-
herent systematic flaws in SBE approach. The trend that GNE alleviates such flaws more effectively
can also be observed when comparing Qwen2.5-VL (GNE) and MiniCPM-o 2.6 (SBE), as shown in
Appendix A.2.3.

Attention pattern analysis. To further investigate this phenomenon, we analyze the attention ac-
tivation patterns of GNE and SBE methods. Specifically, we compute the average attention from
answer text tokens to image tokens within the ground-truth cell and visualize the differences in
Fig. 3(c). The results reveal a clear anisotropy in SBE: attention to the top, bottom, left, and right
positions is markedly weaker, whereas the four corners exhibit similar activation levels. This sug-
gests that image partitioning in SBE disrupts spatial uniformity, introducing a systematic directional
bias. In contrast, GNE maintains a more evenly distributed and coherent attention pattern, thereby
preserving holistic spatial relationships and enabling more accurate localization.

2.3 CONCLUSIONS ON PILOT EXPERIMENT

In summary, we demonstrate that global naive-resolution encoding consistently outperforms slice-
based methods across both general semantic benchmarks and spatial perception probes. The su-
periority is particularly pronounced in directional localization, where global encoding eliminates
the cross-shaped bias inherent in slice-based methods and maintains balanced attention distribu-
tions. These findings indicate that global encoding not only enhances overall capability in vision-
language understanding but also provides mechanistic insights into its advantage in spatial reason-
ing. Nevertheless, global encoding still incurs substantial computational cost, as discussed in previ-
ous work (Yao et al. (2024b); Liu et al. (2021); Li et al. (2022)), underscoring the urgent need for a
naive and efficient visual encoding paradigm.

3 LLAVA-UHD V3

Building upon conclusions of pilot experiments, we propose LLaVA-UHD v3, an MLLM equipped
with our Progressive Visual Compression (PVC) approach for efficient naive-resolution encoding.
LLaVA-UHD v3 follows the standard MLLM architecture of a vision encoder, a projector, and a
large language model (LLM), as illustrated in Fig. 4. PVC framework is applied within the vision
encoder, where it integrates two modules: Refined patch embedding (RPE) and Windowed token
compression (WTC). By progressively condensing tokens while preserving global contextual infor-
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Figure 4: Overview of the architecture of LLaVA-UHD v3. ViT-UHD first utilizes Refined Patch
Embedding (RPE) to tokenize images with naive-resolution into fine-grained tokens. Window Token
Compression (WTC) modules are inserted at multiple stages to progressively reduce token length
while learning local semantics. The final vision tokens are then projected into the LLM.

mation, these components reconfigure a pretrained ViT into an efficient and generalizable model,
referred to as ViT-UHD.

3.1 VIT-UHD

ViTs are built upon the transformer architecture, where self-attention serves as the core opera-
tion (Vaswani et al. (2017)). Although this design offers strong representational capacity, a key
limitation lies in its quadratic complexity with respect to token length. Higher input resolutions sub-
stantially increase visual token counts, resulting in elevated memory demands and inference latency
during both visual encoding and LLM pre-filling. A more fundamental alternative is to replace
self-attention with linear variants (Choromanski et al. (2020)) or RNN-style architectures (Yang
et al. (2024); Peng et al. (2023)). However, such designs typically require large-scale training from
scratch and fail to inherit the well-established modeling capacity of pretrained transformer-based
models. Therefore, the core idea of our approach is to keep the token length within a controllable
range while enriching fine-grained visual features. To achieve this, we apply RPE to flexibly expand
visual granularity, and then employ WTC to progressively condense tokens and reduce redundancy.

3.1.1 REFINED PATCH EMBEDDING

Generally, the objective of this module is to reduce the patch size P employed in patch embedding
(e.g., from 14 × 14 to 10 × 10), which increases the modeling granularity of visual tokens, while
preserving the representational equivalence of the original embeddings. Specifically, for an orig-
inal patch embedding kernel weights W ∈ RD×(C∗P∗P ), where C denotes the number of input
channels (e.g., 3 for RGB images), and D the embedding dimension, we define the transformed
weights Ŵ ∈ RD×(C∗P̂∗P̂ ), where P̂ < P . Given a patch vector of the image t ∈ R1×(C∗P∗P )

and its finer-level counterpart t̂ ∈ R1×(C∗P̂∗P̂ ), we can derive a linear transformation matrix
B ∈ R(C∗P∗P )×(C∗P̂∗P̂ ) that maps the coarse patch to the finer one, i.e., t̂ = tB. To ensure rep-
resentational equivalence between the original patch embedding tW⊤ ∈ R1×D and refined patch
embedding t̂Ŵ⊤ ∈ R1×D, we require tW⊤ ≈ t̂Ŵ⊤. Since t̂ = tB, this condition can be rewrit-
ten as BŴ⊤ ≈ W⊤. Following previous work (Beyer et al. (2023)), we utilize the least-squares
solution to this relation and yields Ŵ = (B⊤)+W , where (B⊤)+ denotes the pseudo-inverse of
B⊤. Through this weight transformation, we update a patch embedding weights W into new one
Ŵ , which could encode each finer-level patch vector into an image token.

So that, given an input image I of size HI ×WI , patch embedding with transformed weights Ŵ ∈
RD×(C∗P̂∗P̂ ) produces a token feature map of size hI × wI = (HI/P̂ ) × (WI/P̂ ), which can be
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flattened into N visual tokens {xi = tiW
⊤}Ni=1, where N = hI × wI , ti ∈ R1×(C∗P̂∗P̂ ) is i-th

image patch vector.

3.1.2 WINDOWED TOKEN COMPRESSION

Following patch embedding, a large number of visual tokens are forwarded into transformer layers
for further encoding. Especially, when the patch size decreases using RPE, the number of visual
tokens increases quadratically, leading to heavy computational overhead. To mitigate the burden
on the ViT backbone as well as the pre-filling stage of the LLM, we insert a set of lightweight
compression layers within the ViT. These layers hierarchically reduce the token sequence length,
thereby partitioning the backbone into J stages with progressive compression, as shown in Fig. 4.

Plain pooling strategy. In the j-th compression stage, we predefine a local window of size 2 × 2
and partition the entire feature map into non-overlapping windows. Within each window, an average
pooling strategy is applied to aggregate the tokens as

xavg =
1

2× 2

2×2∑
i=1

xi, (1)

so that after the j-th compression stage, the token feature map resolution is downsampled by 2×
and the number of visual tokens is condensed to {xi}N/4j

i=1 . Although this simple pooling operation
assigns uniform weights to all tokens and ignores their semantic importance, our experiments show
that it facilitates more stable and effective convergence. In contrast, parameterized methods such as
pixel-unshuffle (Wang et al. (2025b)) intuitively provide enhanced local semantic modeling capacity
but exhibit convergence challenges when inserted in early ViT layer (see Appendix A.5.1).

Enhanced pooling mechanism. To enhance the expressiveness of pooling operation while main-
taining efficient convergence, we introduce a content-adaptive pooling mechanism. Specifically, it
first performs feature average pooling to obtain an aggregated token xavg ∈ R1×D as mentioned
in Equ. 1. This token is then concatenated to each of the tokens {xi}4i=1 within the local window
to form extended representations x̂i = [xi;xavg] ∈ R1×2D, followed by passing through an MLP
(fθ : R1×2D → R1×D) to compute channel-wise attention logits ai = fθ(x̂i). In the end, the Equ. 1
can be improved as a learnable weighted aggregation like

xavg =

2×2∑
i=1

wixi =

4∑
i=1

exp(ai)∑4
i=1 exp(ai)

xi. (2)

During early training, attention weights wi tend to be uniform by zero initializing the MLP fθ, which
effectively approximates the average pooling for stabilize optimization. As training progresses, fθ
gradually learns semantically meaningful aggregation weights, allowing the model to preserve key
spatial and semantic structures while reducing the token count.

3.1.3 JOINT MODULATION

Building on the two proposed modules, the PVC framework reconfigures a pretrained ViT by jointly
modulating key structural factors. The patch size P in refined patch embedding controls token
granularity, while the number of J WTC and their positions j in ViT layers govern hierarchical
token reduction. Following established design principles (Liu et al. (2021; 2023a)), these factors
systematically transform a naive-resolution ViT into a more efficient architecture.

3.2 VISION PROJECTOR AND LLM

MLP projector. Considering that ViT-UHD already integrates hierarchical token compression
within the vision encoder, the role of the projector is simplified to the pure feature alignment. We
concretely employ a simple MLP like (Li et al. (2024c;a)) to directly map the visual tokens into the
language embedding space. Such a design avoids redundant manual engineering and offers a more
standardized and scalable solution, facilitating large-scale MLLM training.

Large language model. Compared with slice-based methods such as (Guo et al. (2024); Wang
et al. (2025b); Yao et al. (2024b)), our design encodes images at naive-resolution and thus obviates
the need for inserting special tokens (e.g., “,” and “/n”) to explicitly inform the LLM of slice layouts.
Instead, we simply adopt the <image> and </image> placeholders to delimit the visual context,
allowing all tokens to be seamlessly injected into the language model as contextual inputs.
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Config Stage 1 Stage 2 Stage 3

Data type Image-text pairs,
OCR caption

OCR/Doc/Chart/detailed captions,
interleaved data,
pure text corpus

Instruction-following data,
reasoning data,

pure text SFT data

Data volume & Batch size 4.3M, 256 5M, 128 13.3M, 128

Trainable Parts & LR ViT-UHD: 1e-5
Projector: 2e-4

ViT-UHD/Projector: 1e-5
LLM: 2e-5

ViT-UHD/Projector: 1e-5
LLM: 2e-5

Table 1: Training configuration for LLaVA-UHD v3.

4 EXPERIMENTS

In this section, we introduce the training recipe, detail the experiment setting , analyze the model
performance and further conduct the ablation study.

4.1 TRAINING RECIPE

Overall training strategy. We adopt a three-stage training paradigm to gradually enhance the
capabilities of LLaVA-UHD v3, as shown in Tab. 1. Stage 1 focuses on vision-language alignment,
where a plain ViT initialized from MoonViT-SO-400M is transformed into ViT-UHD and aligned
with a Qwen2-7B LLM via an MLP projector. Stage 2 conducts joint multi-modal pre-training,
aligning vision and language features in a unified space. Stage 3 applies supervised fine-tuning
with instruction and reasoning dataGuo et al. (2025) for coherent response generation. The overall
training period is ∼300h with 32× 80G-A100 GPUs. Details are provided in Appendix A.3.

Ablation training strategy. The MLLM uses SigLIP2-SO-400M as the vision encoder, an
MLP projector, and Qwen2-7B as the LLM, with training and inference fixed at a resolution of
1024×1024. We follow the LLaVA pipeline, using LLaVA-Pretrain-558K for vision-language align-
ment and SFT-858K Zhang et al. (2024) for supervised fine-tuning. For the baseline, we insert a
WTC layer using pixel-unshuffle in the last ViT layer. For the PVC incremental setting, an extra
ViT pre-alignment stage is added before standard LLaVA training to mitigate the perturbation of
ViT feature modeling introduced by PVC. The pre-alignment data is a subset of stage 1 in Tab. 1.
More details are supplied in Appendix A.4.

4.2 EXPERIMENT SETTING

Benchmarks. We evaluate our model on a comprehensive suite of multi-modal benchmarks,
which are divided into four categories: (1) General benchmarks including MME (Fu et al. (2024)),
MMB (Liu et al. (2024d)), SEED (Li et al. (2024b)) and MMStar (Chen et al. (2024a)). (2) Knowl-
edge benchmarks such as SQA (Lu et al. (2022)), MMMU (Yue et al. (2024)), AI2D (Kembhavi
et al. (2016)) and MathVista (Lu et al. (2024)). (3) OCR&Chart benchmarks consist of OCR-
Bench (Liu et al. (2024f)), TextVQA (Singh et al. (2019)), DocVQA (Mathew et al. (2021)) and
ChartQA (Masry et al. (2022)). (4) Visual reasoning benchmarks like HallusionBench (Guan et al.
(2024)), RealWorldQA (XAI (2024)) and CV-Bench (Tong et al. (2024)).

Evaluation Metrics. (1) We present the amount of training image-text pairs (#Data) for fair com-
parison. For methods that reports the number of training tokens (#token), we roughly compute the
number of image-text pairs by dividing #token by a standard maximum token limitation (i.e., 4096)
in a single batch. (2) We compute the compression ratio as the final LLM token count divided by
the number of tokens after the ViT patch embedding, where a higher value indicates denser visual
information and more efficient inference. (3) We report Time-to-First-Token (TTFT) under a fixed
resolution of 1024× 1024, averaged across 100 inferences, using FlashAttention2 (Dao (2023)) and
bf16 data type on one single 80G-A100 GPU for the whole model. (4) In ablation study, we report
the average accuracy of benchmarks within each sub-category.

Counterparts. The compared models are categorized as three manifold. (1) Commercial open-
source MLLMs, trained large corpora (e.g. over 100M vision-language samples) by indus-
try labs, which includes MiniCPM-V2.6 (Yao et al. (2024b)), Qwen2-VL (Wang et al. (2024)),
DeepSeek-VL2 (Wu et al. (2024b)), InternVL2 (Chen et al. (2024b)), POINTS (Liu et al. (2024e)),
VILA2 (Fang et al. (2024)) and etc. (2) Academic-scale MLLMs like LLaVA-OneVision (Li et al.
(2024a)), Cambrain-1 (Tong et al. (2024)), FastVLM (Vasu et al. (2025)), Valley2 (Wu et al. (2025))
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Model LLM #Data Ratio
General Knowledge

MME MMB SEED-Image MMStar MMMU AI2D SQA MathVista
Academic Open-source MLLMs
FastVLM Vicuna-7B 1.6M 64 - - - - 37.3 - 74.1 -
VILA2 Llama3-8B 57.5M 1 - 76.6 66.1 - 40.8 - 87.6 -
LLaVA-OneVision Qwen2-7B 9.4M 4 1998.0 80.8 75.4 61.7 48.8 81.4 96.0 63.2
Cambrain-1 Llama-3-8B 9.5M 16 - 75.9 74.7 - 42.7 73.0 80.4 49.0
Valley2 Qwen2.5-7B 27.2M 4 - 80.7 - 61.0 57.0 82.5 - 64.6
Closed-source MLLMs
GPT-4o-mini - - - 2041.0∗ 76.8∗ 72.5∗ 50.0∗ 54.1∗ 73.7∗ 82.6∗ 52.5∗
Gemini-1.5-Pro - - - - 73.9 - 59.1 60.6 79.1 - 58.3
Step-1.5V-mini - - - - 79.7 - 54.7 51.7 81.3 - 57.8

Commercial Open-source MLLMs
InternVL2 InternLM2.5-7B ∼100M 4 2210.3 79.5 76.2∗ 60.7 54.1 83.0 84.6 58.3
POINTS Qwen-2.5-7B 431.0M 4 2195.2 83.2 74.8 61.0 49.4 80.9 94.8 63.1
MiniCPM-V-2.6 Qwen2-7B 460.0M 16 2348.4 78.0 74.1 57.5 49.8 82.1 96.9∗ 60.6
Qwen2-VL Qwen2-7B ∼700.0M 4 2326.8 80.7 75.3∗ 60.7 54.1 83.0 84.6∗ 58.2
DeepSeek-VL2 DeepSeekMoE-16B ∼203.0M 4 2123.0 79.9 76.8∗ 57.5 49.7 81.7 96.2∗ 61.9

LLaVA-UHD-v3 (ours) Qwen2-7B 20.1M 64 2183.6 81.3 77.2 60.5 50.2 82.9 97.0 64.2

Table 2: Performance comparison of LLaVA-UHD v3 and state-of-the-art MLLMs on general and
knowledge benchmarks. The performance is reported from its technical paper or OpenCompass
leaderboard. ”*” indicates the performance we reproduce using VLMEval-Kit. ”Ratio” denotes the
compression ratio defined in Sec.4.2.

Model LLM #Data Ratio
Visual Reasoning OCR & Chart

HallusionBench RealworldQA CV-Bench-2D OCRBench TextVQA DocVQA ChartQA
Academic Open-source MLLMs
FastVLM Vicuna-7B 1.6M 64 - - - - 67.4 62.8 -
VILA2 Llama3-8B 57.5M 1 - - - - 73.4 - -
LLaVA-OneVision Qwen2-7B 9.4M 4 31.6 66.3 69.7∗ 62.2 75.9∗ 87.5 80.0
Cambrain-1 Llama-3-8B 9.5M 16 - 64.2 - 62.4 71.7 77.8 73.3
Valley2 Qwen2.5-7B 27.2M 4 48.0 - - 84.2 - - -

Closed-source MLLMs
GPT-4o-mini - - - 42.5∗ 67.2∗ 69.9∗ 78.5∗ 68.0∗ 78.2∗ 29.04∗

Gemini-1.5-Pro - - - 45.6 - - 75.4 - - -
Step-1.5V-mini - - - 46.7 - - 77.3 - - -

Commercial Open-source MLLMs
InternVL2 InternLM2.5-7B ∼100M 4 45.2 64.4 70.1∗ 79.4 77.4 91.6 83.3
POINTS Qwen-2.5-7B 431.0M 4 46.0 67.3 - 72.0 - - -
MiniCPM-V-2.6 Llama-3-8B 460.0M 16 48.1 65.5∗ 69.7∗ 85.2 80.1 90.8 79.4∗

Qwen2-VL Qwen2-7B ∼700.0M 4 50.6 70.1 76.0∗ 86.6 84.3 94.5 83.0
DeepSeek-VL2 DeepSeekMoE-16B ∼203.0M 4 43.8 65.4 - 83.2 83.4 92.3 84.5
LLaVA-UHD-v3 (ours) Qwen2-7B 20.1M 64 52.2 70.3 73.5 82.7 79.8 92.8 82.8

Table 3: Performance comparison of LLaVA-UHD v3 and state-of-the-art MLLMs on OCR&Chart
and visual reasoning benchmarks.

and etc. (3) Closed-source MLLMs such as GPT-4o-mini (OpenAI (2024)), Gemini-1.5-Pro (Team
(2024a)) and Step-1.5V-mini (Team (2025)).
4.3 MODEL PERFORMANCE

In Tab. 2, compared with commercial open-source MLLMs, our LLaVA-UHD v3 achieves strong
performance despite using one order of magnitude less training data than Qwen2-VL ( 20.1M vs.
700.0M). On general benchmarks, it demonstrates clear advantages, particularly on MMB (81.3
vs. 80.7) and SEED-Image (77.2 vs 75.3), showing the effectiveness of our approach in general
multimodal understanding. On knowledge benchmarks, especially MathVista, our model surpasses
both InternVL2 and MiniCPM-V-2.6, highlighting the superior capability of our global encoding
mechanism in capturing complex geometric and spatial relationships.

Visual reasoning and OCR&Chart tasks require more fine-grained visual representations. As illus-
trated in Tab. 3, although our LLaVA-UHD v3 has the highest compression ratio (64), it signifi-
cantly outperforms the slice-based encoding methods MiniCPM-V-2.6 (ratio = 16) and Intern-VL-2
(ratio = 4) on spatial reasoning datasets such as HallusionBench and CV-Bench. Moreover, on
the OCR&Chart subset, our MLLM delivers comparable performance compared to Qwen2-VL and
MiniCPM-V-2.6, demonstrating that our high-compression global encoding not only preserves but
also enhances fine-grained visual understanding required for text-rich and structured visual tasks.

4.4 ABLATION STUDY

To better understand the contributions of the proposed components in ViT-UHD and the best modula-
tion configuration, we conduct a comprehensive ablation study, some of which are in Appendix A.5.
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Method Patch Size # WTC Layer Id Tokens↓ TTFT (ms)↓ Avg↑ General↑ OCR&Chat↑ Visual Reasoning↑ Knowledge↑
Baseline 16 1 27 1024 233 62.1 69.8 61.8 55.7 59.7
+ WTC

- Avg-pooling 16 2 4,18 256 82 59.2 68.9 53.4 53.2 59.6
- CA-pooling 16 2 4,18 256 83 60.7 70.5 55.6 55.2 59.9
- Pixel-unshuffle 16 2 4,18 256 83 57.5 64.9 53.5 52.9 57.5

+ RPE 8 3 4,18,27 256 160 63.0 70.3 64.6 55.6 59.8

Table 4: Evaluation on proposed modules including refined patch embedding (RPE) and windowed
token compression (WTC). “# WTC” denotes the number of inserted WTC in ViT, “CA pooling” the
brief of content-adaptive pooling described in Sec. 3.1.2. For all configurations, the WTC inserted
at the 27-th layer is implemented using pixel-unshuffle.

(16384 tokens)

(4096 tokens)

(1024 tokens)
(256 tokens)

(64 tokens)

Compression Position (Layer id)

TT
FT

 (m
s)

Figure 5: Efficiency of varying compression
position. Optimal trade-off are shown in the
light blue region. 4× denotes a different
compression ratio.

Module ablations. As shown in Tab. 4, introduc-
ing WTC using average pooling substantially im-
proves inference efficiency (from 233 ms to 82 ms).
However, the sharp token reduction (1024 to 256)
weakens fine-grained representation, leading to se-
vere OCR&Chart degradation. In contrast, our
content-adaptive pooling alleviates this issue and im-
proves performance on the general subset, highlight-
ing the importance of dynamically modeling local
semantics, while incurring nearly no extra cost com-
pared to average pooling. Utilizing a parameterized
module like pixel-unshuffle as WTC causes notable
performance degradation due to convergence chal-
lenges. Combining RPE with 3 WTC layers yields
a favorable trade-off, delivering 1.5× higher effi-
ciency (160 ms vs. 233 ms) and boosting average accuracy (63.0 vs. 62.1) across all benchmarks.

Joint modulation for superior trade-off. We evaluate the impact of different configuration of
WTC on the TTFT latency of LLaVA-UHD v3 under a patch size of P = 8 and an input resolution
of 1024×1024. As shown in Fig. 5, adding 1 or 2 WTC layers significantly improves efficiency,
with earlier inserted layers yielding greater latency reduction. Interestingly, when 3 WTC layers
are introduced, the efficiency gain reaches saturation, and further increasing the number of layers or
adjusting their positions brings negligible benefit.

5 RELATED WORKS

Sliced-based Visual Encoding. Slice-based encoding improves efficiency by dividing high-
resolution images into smaller slices, processing each independently with a ViT, and then concate-
nating their features (Liu et al. (2024b); Zhai et al. (2023); Liu et al. (2024a); Huang et al. (2025)).
LLaVA-UHD (Guo et al. (2024)) computes an optimal slicing strategy while preserving aspect ra-
tios, and SPHINX (Liu et al. (2024a)) reduces sequence length by padding partial slices with “/n”
tokens. Naive-Resolution Image Encoding. Naive-resolution encoding directly processes images
at their original resolution without resizing (Dehghani et al. (2023)), preserving holistic spatial infor-
mation. Recent works such as Qwen2.5-VL (Bai et al. (2025)) and MiMo-VL (Team et al. (2025a))
improve this approach through window attention mechanism and position embedding like 2d-RoPE.
Visual Feature Compression. To handle the long token sequences output by ViTs, projectors are
used for feature compression and alignment. Common designs include MLPs (Liu et al. (2023b)),
Q-Formers (Li et al. (2023)), and Re-samplers (Barr et al. (2022); Bai et al. (2023)), with recent
variants exploring pooling and attention-based compression (Cha et al. (2024); Liu et al. (2025a)).

6 CONCLUSION

We introduced LLaVA-UHD v3, an MLLM built upon Progressive Visual Compression (PVC) for
efficient naive-resolution encoding. By integrating refined patch embedding and windowed token
compression, a standard ViT will be reconfigured into an efficient yet generalizable encoder. Exten-
sive evaluations demonstrate competitive performance and significantly reduced inference latency
compared with SoTA ViTs and MLLMs.
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A APPENDIX

In this appendix, we provide comprehensive supplementary materials to support the main paper. We
first present the detailed model architecture illustrated in Fig. 1, followed by a description of the
training data, evaluation metrics, and result analyses. We then elaborate on the construction and
experimental setup of the pilot experiment, as well as the complete training dataset composition and
training details of the overall LLaVA-UHD v3 training. Additional experiments are further reported
to validate the effectiveness of the proposed method, and finally, we include future work and case
studies for qualitative analysis.

A.1 TRAINGING SETTING FOR FIG.1

A.1.1 COMPARISON OF LATENCY–PERFORMANCE TRADE-OFF ACROSS VISION
BACKBONES

A.1.1.1 Model Configuration

We compare the performance of our ViT-UHD with recent open-source state-of-the-art vision en-
coders like Qwen2.5-ViT, MoonViT-SO400M, and SigLIP2-SO400M in MLLMs scenario. To bal-
ance efficiency and performance, we adopt different projectors for different vision encoders. Specifi-
cally, ViT-UHD and SigLIP2-SO400M adopt an MLP projector, while Qwen2.5-ViT and MoonViT-
SO400M use pixel-unshuffle projector. All MLLMs adopt the same LLM (Qwen2-7B).

• SigLIP2-SO400M: A vision encoder pre-trained using a mixture of objectives, including
image-text contrastive learning, self-masked image modeling, and auto-regressive language
modeling. The patch size is 16.

• Qwen2.5-ViT: The pre-trained vision encoder of Qwen2.5-VL Bai et al. (2025). Qwen2.5-
ViT is a naive-resolution ViT that replaces most global attention layers with window at-
tention to improve efficiency, retaining only 4 global attention layers. The patch size of
Qwen2.5-ViT is 14.

• MoonViT-SO400M: The pre-trained vision encoder of Kimi-VL Team et al. (2025b) can
encoding image with any resolution. The patch size is 14.

• ViT-UHD (ours): A naive-resolution ViT equipped with the proposed RPE and WTC mod-
ules. In this setting, the patch size in ViT-UHD is set to 10, and two WTC modules with
content-adaptive pooling are inserted at the 4th and 18th layers of the original ViT, which
is initialized from MoonViT-SO400M. Model details are detailed in Sec.3.1.

A.1.1.2 Training Recipe

Data Curation. We use a unified data setting for all MLLMs, consisting of two stages: (1) Stage 1
uses the LLaVA-Pretrain-558K Guo et al. (2024) dataset, which includes image-text pairs of coarse
image caption. (2) Stage 2 adopts the SFT-858K Zhang et al. (2024) dataset, covering diverse
instruction-following data and pure text corpus. For ViT-UHD, we introduce an additional ViT
pre-alignment stage prior to the two-stage training to address the perturbations in feature modeling
introduced by PVC. This pre-alignment data consists of about 4M samples, primarily sourced from
a combination of image-text pairs and OCR caption datasets. Specifically, it includes data from
LLaVA-Recap-118K, LLaVA-Recap-558K, and LLaVA-Recap-CC3M for image-text alignment, as
well as SynthdoG-EN/ZH and UReader-TR-Processed for OCR-related tasks. Please refer to Tab. 6
for more details.

Training Setting. All models follow the same two-stage training setup. (1) In Stage 1, the projector
is updated with learning rates 2e-4, while the ViT and LLM are frozen. (2) In Stage 2, we fine-tune
the parameters of the entire model. The ViT and projector are trained with a learning rate of 1e-5,
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and the LLM is optimized with a learning rate of 2e-5. For the ViT-UHD pre-alignment, we only
train the ViT-UHD and projector with learning rates of 1e-5 and 2e-4, respectively. Pre-alignment is
necessary. Since the RPE and WTC modules are directly integrated into the ViT architecture, they
inherently alter the original encoding flow and disrupt the pre-trained feature distribution. This pre-
alignment stage serves to adapt the modified network to these structural changes, ensuring that ViT-
UHD retains its fundamental representational capacity before proceeding with downstream training.

A.1.1.3 Experiment Setting

Benchmarks. We evaluate their performance across 6 representative benchmarks covering general
perception, visual reasoning, and knowledge understanding: MMB, SEED-Bench (Image), SQA,
HallusionBench, AI2D, and MMStar.

Evaluation Metrics. (1) We report the average accuracy across all 6 benchmarks as the main perfor-
mance indicator in Fig. 1(a) and Tab. 5. (2) For efficiency evaluation, we measure the Time-to-First-
Token (TTFT) latency under three input resolutions: 512×512, 768×768, and 1024×1024. TTFT
includes both the ViT encoding latency and the prefilling latency of visual token in Qwen2-7B,
based on the actual number of visual tokens generated by each encoder. We compute the TTFT in
a unified setup using FlashAttention-2 and bf16 precision on one single 80G-A100 GPU. (3) Token
counts are annotated alongside each input resolution.

A.1.1.4 Results and Analysis

As shown in Fig. 1(a) and Tab 5, ViT-UHD achieves the best trade-off between accuracy and latency.
It achieves competitive performance with other models in average accuracy while being 2.4× faster
than MoonViT-SO400M and 1.9× faster than Qwen2.5-ViT at 1024× 1024 resolution.

Model Resolution TTFT (ms)↓ Avg↑
Benchmark

MMB SEED-Image HallusionBench SQA AI2D MMStar

SigLIP2-SO400M 512 116 64.2 73.5 73.8 35.0 77.8 76.1 49.1

Qwen2.5-ViT
512 84 66.0 76.7 72.4 37.5 78.8 78.6 51.8
768 138 66.7 77.1 72.9 38.4 79.2 79.2 53.5
1024 225 66.3 76.0 72.4 38.2 78.9 79.2 53.1

MoonViT-SO400M
512 61 66.3 75.1 73.9 37.4 80.6 78.5 52.3
768 146 67.1 75.5 74.4 39.5 80.8 78.7 53.5
1024 296 66.9 75.0 74.5 38.8 81.1 78.6 53.5

ViT-UHD
512 55 66.8 77.2 73.5 37.6 80.8 78.5 53.1
768 76 67.4 77.6 74.4 38.6 81.2 79.2 53.5
1024 121 67.5 77.6 74.6 39.1 80.4 79.5 53.7

Table 5: Comprehensive comparison across different vision encoders under a unified Qwen2-7B
LLM.

A.1.2 COMPARISON OF LATENCY-PERFORMANCE ACROSS STATE-OF-THE-ART MLLMS

A.1.2.1 Counterparts

We select four open-source SoTA MLLMs with our LLaVA-UHD-v3 to conduct our efficiency com-
parison. Among our candidates, Qwen2-VL-7B and proposed LLaVA-UHD-v3 are global naive-
resolution encoding methods, and InternVL2-8B, LLaVA-OneVision-7B, and MiniCPM-V2.6-7B
are slice-based methods. We also add a SoTA close-source MLLM GPT-4o-mini for comprehensive
comparision.

Overall architecture of LLaVA-UHD v3. We employ ViT-UHD as the vision encoder, coupled
with an MLP projector and Qwen2-7B as the LLM. The ViT-UHD is configured with a patch size
of 10, and 3 WTC layers are integrated at the 4th, 18th, and 27th layers of the original ViT. These
WTC layers utilize content-adaptive pooling for the first two positions and pixel-unshuffle for the
final position, respectively.
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A.1.2.2 Experiment Setting

Benchmarks. We evaluate our model on a comprehensive suite of 15 multi-modal benchmarks,
which are divided into four categories: (1) General benchmarks including MME, MMB, SEED, and
MMStar. (2) Knowledge benchmarks such as SQA, MMMU, AI2D and MathVista. (3) OCR&Chart
benchmarks consist of OCRBench, TextVQA, DocVQA and ChartQA. (4) Visual reasoning bench-
marks like HallusionBench, RealWorldQA and CV-Bench.

Evaluation Metrics. (1) We report Time-to-First-Token (TTFT) as the primary latency metric,
measured under a unified setup using FlashAttention-2 and bf16 precision. All models are tested
using a fixed input resolution 1344×1344, ensuring consistent input conditions for fair architectural
comparison. (2) We report accuracy of each benchmark for comprehensive comparison.

A.1.2.3 Results and Analysis

As shown in Fig. 1(b) (top), LLaVA-UHD v3 achieves the lowest latency among all models, with a
TTFT of 153.8ms, representing a 49% reduction compared to Qwen2-VL-7B and a 10% reduction
over MiniCPM-V2.6-7B. These results highlight that our approach achieves higher efficiency than
slice-based encoding methods, while preserving the global modeling capability of naive-resolution
encoding, achieving competitive performance with Qwen2-VL shown in Fig. 1(b) (bottom). Note
that, for state-of-the-art performance, we additionally apply simple and reproducible test-time aug-
mentations to LLaVA-UHD v3. Specifically, we design task-specific prompt refinements for differ-
ent benchmarks and proportionally upscale original images in tasks requiring fine-grained text or
detail recognition. These enhancements are only applied to our model and are not used for baseline
results reported from prior papers. We highlight them here to ensure transparency, and the detailed
prompt adjustments, as well as up-scaling ratios can be found in our released evaluation code.

A.2 IMPLEMENTATION DETAILS OF PILOT EXPERIMENT

A.2.1 TRAINING SETTING OF PILOT EXPERIMENT

A.2.1.1 Model Configuration

For both global naive-resolution encoding (GNE) and slice-based methods (SBE), we adopt a unified
MLLM architecture with SigLIP2-SO400M (Tschannen et al. (2025)) as the vision encoder, a pixel-
unshuffle (Dong et al. (2024)) projector, and Qwen2-7B (Team (2024b)) as the LLM.

A.2.1.2 Training Recipe

Data Curation. We use a unified data setting for all models, consisting of two stages: (1) Stage 1
employs the 4.3M-scale dataset as defined in the overall Stage 1 setting as shown in Tab. 1, which
includes image-text pairs of coarse image caption. (2) Stage 2 adopts the SFT-858K Zhang et al.
(2024) dataset, covering diverse instruction-following data and pure text corpus.

Training Setting. All models follow the same two-stage training setup. (1) In Stage 1, the projector
is updated with learning rates 2e-4 and the vision encoder with 1e-5, while the LLM is frozen. (2)
In Stage 2, we fine-tune the parameters of the entire model. The ViT and projector are trained with
a learning rate of 1e-5, and the LLM is optimized with a learning rate of 2e-5.

Hyper-parameters of visual encoding. For GNE methods, images are preserved at their original
resolution. For SBE approach, we following Guo et al. (2024); Liu et al. (2024c). Specially, in the
stage 1, vision encoder only encoding a image thumbnail of 336×336 resolution. In the stage 2, it
partitions and encodes the image of naive resolution into 336×336 patches at any aspect ratio, with a
maximum of 9 slices per image. The input resolution is set to any value up to 1000×1008, ensuring
that the experimental results are not biased by the resolution range used during training. We use the
image of naive resolution for model inference.

A.2.2 CONSTRUCTION DETAILS OF SHAPEGRID

ShapeGrid subset. Each ShapeGrid image is constructed from a template pool, where each tem-
plate (336×336 pixels) contains a randomly sampled geometric shape. The pool covers 9 shape
categories (e.g., triangle, square, pentagram) and 7 color variants (e.g., red, yellow, blue), with ran-
dom perturbations in scale and position to increase variability. Final images (about 4000 samples)
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are assembled by sampling templates without replacement and arranging them into 5 predefined
layouts (1×2, 2×3, 2×2, and their transpose), deliberately aligned with the slicing configurations
of sliced-based encoding. Based on these images, we define four spatial perception tasks: relative
distance, relative position, relative area and counting, shown in Fig. 2(a).

Sudoku subset. To ensure that the behavior of the both global naive-resolution encoding and slice-
based encoding methods more accurately reflects their ability in spatial positional understanding, we
extend the original location subset into a Sudoku-style location subset. This subset can be regarded
as a refinement of the original location task, in which directional localization is explicitly isolated as
the primary factor for probing spatial perception. Each Sudoku image is arranged in a 3×3 grid, with
the center cell fixed as a red pentagram serving as the reference anchor, and the remaining eight cells
randomly selected from the template pool, including additional real-world categories (e.g., bear, car,
plane). This design produces 8,000 images, each paired with a query asking for the relative direction
of the target object with respect to the central pentagram, shown in Fig. 3(a).

A.2.3 SUDOKU ACCURACY ON COMMERCIAL OPEN MLLMS

To verify whether the performance of global naive-resolution visual encoding and slice-based en-
coding on the Sudoku subset exhibits consistent patterns observed in the pilot experiment, we further
evaluate the widely discussed approaches, like Qwen2.5-VL representing GNE and MiniCPM-o 2.6
representing SBE on the Sudoku subset. To increase the task complexity, we reformulate the prob-
lem by replacing relative position queries with absolute position queries, wherein the target may
appear at any location within the 3×3 grid, and the model is required to predict its precise row and
column indices. The results are shown in Fig. 6. It can be seen that Qwen2.5-VL achieves con-
sistently high accuracy across all positions in the Sudoku subset, whereas MiniCPM-o 2.6 exhibits
biases similar to those observed in Sec. 2.2, with significantly lower accuracy in the top and right
positions. This observation is consistent with our pilot experiment results and further demonstrates
that the inherent limitations of slice-based encoding cannot be mitigated even with large-scale data
training. For instance, although MiniCPM-o 2.6 7B and Qwen2.5-VL-7B achieve nearly equivalent
overall performance on OpenCompass (70.2 vs. 70.9), these structural weaknesses persist.

Qwen2.5-VL MiniCPM-o 2.6
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below: 
A.top-left  B.middle-center  C.middle-right D.bottom-left
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Figure 6: Accuracy heatmap of MiniCPM-o 2.6 and Qwen2.5-VL on the Sudoku subset.

A.3 OVERALL TRAINING RECIPE

A.3.1 DATA CURATION

We train our proposed LLaVA-UHD-v3 using a three-stage data pipeline, as shown in Tab. 6.

Stage 1: Vision-language alignment. We collect 4.3M general-purpose image-caption pairs from
LLaVA-Pretrain Liu et al. (2023c), LLaVA-OneVision-Pretrain Li et al. (2024a), and other sources
to facilitate vision-language alignment and vision encoder pretraining.

Stage 2: Joint multi-modal pretraining. We construct a 5M dataset comprising coarse-grained
OCR caption data, interleaved multimodal samples, and a subset of replayed Stage-1 data to further
unify the visual and language representations.
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Stage Dataset Type #Samples Total

Stage 1

LLaVA-Pretrain Image-Text Pairs 558K

4.3M

LLaVA-Recap-118K Image-Text pairs 118K
LLaVA-Recap-558K Image-Text pairs 558K
LLaVA-Recap-CC3M Image-Text pairs 2.8M
SynthdoG-EN/ZH OCR Caption 200K
UReader-TR-Processed OCR Caption 101K

Stage 2

Captioned OCR Data OCR 832K

5M

Coarse-grained Doc& Chart Data Doc, Chart 790K
Obelics Interleaved 658K
Pure Text Data Text 1M
Replayed Data From Stage-1 Image-Text Pairs 1.2M
Allava-Laion Detailed Image Caption 240K
Wit Detailed Image Caption 280K

Stage 3

MammothVL-12M Instruction-Following 12M

13.3M
LLaVA-SFT-858K Instruction-Following 858K
Video-R1-CoT Feng et al. (2025) Reasoning 80K
SiCOG Zhang et al. (2025) Detailed Image Caption, Reasoning 70K
PixMo OCR, Chart, Doc 310K

Table 6: Composition of training data across different stages.

Stage 3: Supervised fine-tuning. We build our SFT data pool based on MammothVL-12MGuo
et al. (2025), and enrich it with fine-grained charts, documents, and complex reasoning samples to
enhance the model’s instruction-following capabilities.

A.3.2 DETAILS OF TRAINING SETTING

Based on the Tab. 1, we employ a cosine learning rate schedule with a 3% warm-up phase at the
beginning of each stage, and optimize the model using AdamW with β = 0.9, 0.95 and a weight
decay of 0.

A.4 TRAINING SETTING FOR MODULE ABLATIONS

A.4.1 Model Configuration

For the baseline, we adopt SigLIP2-SO-400M as the vision encoder with a WTC (using pixel-
unshuffle) module appended in the last ViT layer , an MLP as the projector, and Qwen2-7B as
the LLM. For the PVC incremental model, we insert two WTC layers into the vision encoder, which
can be implemented as average pooling, content-adaptive pooling, or pixel unshuffle. For the RPE-
equipped model, we add two WTC layers with content-adaptive pooling and a resized patch embed-
ding layer with patch size 8.

A.4.2 Training Recipe

The training recipe is the same as that described in Appendix A.1.1. We also give the details as
following.

Data Curation. We use a unified data setting for both of baseline and module incremental develop-
ment, consisting of two stages: (1) Stage 1 uses the LLaVA-Pretrain-558K Guo et al. (2024) dataset
(2) Stage 2 adopts the SFT-858K Zhang et al. (2024) dataset. Note that, for module incremental
development, like inserting WTC in the 4/18-th layer, we introduce an additional ViT pre-alignment
stage prior to the two-stage training to address the perturbations in feature modeling introduced by
PVC.

Training Setting. All experiments follow the same two-stage training setup. (1) In Stage 1, the
projector is updated with learning rates 2e-4, while the ViT and LLM are frozen. (2) In Stage 2, we
fine-tune the parameters of the entire model. The ViT and projector are trained with a learning rate
of 1e-5, and the LLM is optimized with a learning rate of 2e-5. For the pre-alignment, we only train
the transformed ViT and projector with learning rates of 1e-5 and 2e-4, respectively.
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Figure 7: Evaluations on hyper-parameters of WTC type and layer position. All the ablation is
conducted on SigLIP2 at 1024×1024 with patch size 16. (a) illustrates the final loss when using
pixel-unshuffle in different layer position. (b) shows the training loss curve when using different
WTC. (c) gives the performance comparison of different WTC.

A.5 ADDITIONAL ABLATION STUDY

We conduct additional experiment for comprehensive analysis on our proposed methods.

A.5.1 EXPERIMENT ON DIFFERENT WTC

As shown in Fig. 7(a), when integrating WTC with pixel-unshuffle into the ViT architecture, we
observe that placing WTC at lower layers leads to greater disruption of training convergence. This
demonstrates the point discussed in Appendix A.1.1, namely that inserting additional modules di-
rectly into the ViT disturbs the pre-trained feature modeling flow, thereby necessitating an extra
pre-alignment stage to stabilize the network. Moreover, in Fig. 7(b), we find that avg-pooling, de-
spite being parameter-free, achieves better convergence stability than pixel-unshuffle when inserted
at the same positions (i.e., 4-th and 18-th layers). Finally, our content-adaptive pooling further
enhances convergence stability and efficiency, shown in Fig. 7(b), yielding faster convergence and
achieving superior average performance across 15 benchmarks, as illustrated in Fig. 7(c).

A.5.2 EXPERIMENT ON DIFFERENT VISION ENCODER

To examine whether the proposed Progressive Visual Compression (PVC) method generalizes be-
yond a single ViT, we conducted transferability experiments on both MoonViT and SigLIP2. In
each case, we integrated PVC, including RPE and WTC into the backbone without modifying other
components. The results show consistent improvements: PVC reduces visual token count and time-
to-first-token (TTFT), while improving average accuracy. These findings demonstrate that PVC is
readily portable and yields reliable benefits across ViT architectures.

Backbone PVC Patch Size Layer Tokens↓ TTFT (ms)↓ Avg↑
MoonViT ✗ 14 None 1332 386.17 66.17
MoonViT ✓ 10 (4, 18) 655 186.24 66.33

SigLIP2 ✗ 16 None 1024 233.01 61.94
SigLIP2 ✓ 8 (4, 18) 256 159.69 64.71

Table 7: Performance and efficiency when integrating PVC on MoonViT and SigLIP2 vision en-
coder.

A.6 FUTURE WORK AND LIMITATION

A.6.1 LIMITATIONS

MLLM performance gains do not imply fully optimized ViT pretraining. We further investigate
whether the vision encoder in LLaVA-UHD v3 has reached its full potential by re-running the experi-
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ment in Fig. 1(a) using the trained ViT-UHD without applying the pre-alignment stage. Interestingly,
we find that its relative performance does not improve significantly, and in some benchmarks even
degrades, despite LLaVA-UHD v3 achieving state-of-the-art performance at the system level. This
suggests that the current MLLM training pipeline alone may be insufficient to fully optimize the
ViT, leaving its visual representation learning far from saturated.

Still faces quadratic complexity explosion. Although our method effectively controls compu-
tational overhead, it does not fundamentally overcome the quadratic complexity of self-attention.
When the input resolution grows exceedingly large (e.g., beyond 4K), the model still encounters
substantial computational costs and long inference latency.

A.6.2 FUTURE WORK

In future work, we will focus on MLLM-centric pretraining of vision encoders, aiming to build
a stronger visual backbone for more effective vision-language alignment and reasoning. To re-
duce training costs, we plan to initialize from existing pretrained models and further adapt them
through targeted post-training, while progressively replacing quadratic-complexity operators with
linear-complexity counterparts to achieve scalable and efficient multimodal modeling.
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A.7 CASE STUDY

A.7.1 COMPARISON WITH BASELINES

Comparison of LLaVA-UHD-v3 with Qwen2-VL and MiniCPM-V-2.6

Input image Key information highlighted

Question: What is the color of the band on the arm of the person sitting to the left of the white
girl in the picture?

Qwen2-VL Answer(✗): The band on the arm of the person sitting to the left of the white girl
in the picture is red.

MiniCPM-V-2.6 Answer(✗): The color of the band on the arm of the person sitting to the left
of the white girl is red.

LLaVA-UHD-v3 Answer(✓): The person sitting to the left of the white girl in the picture is
wearing a blue band on their arm. This detail stands out among the crowd, which appears to be

diverse and colorful, with many people wearing various colored shirts and accessories.

Input image Key information highlighted

Original Question: Based on the information in the table, explain which method performs
best in terms of BLEU on the English-to-French translation task.

Qwen2-VL Answer(✗): The Transformer (big) model performs best in terms of BLEU on the
English-to-French translation task, achieving a score of 41.0.

MiniCPM-V-2.6 Answer(✗): The best method for the English-to-French translation task, as
per the table, is the Transformer (big) model, which achieves a BLEU score of 41.0 on the

WMT 2014 test set.
LLaVA-UHD-v3 Answer(✓): The method that performs best in terms of BLEU on the

English-to-French translation task is the ”Transformer (big)” with a BLEU score of 41.8.
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A.7.2 SHOWCASE OF OUR MODEL’S CAPABILITIES

Image Captioning

Input image

Question: What is shown in this image?
LLaVA-UHD-v3: The image shows a charming street scene in Japan. In the foreground, there’s
a wooden crate filled with fresh strawberries and a stuffed animal dog holding a sign that says
”¥600”. Next to the dog is a white cup with a straw.
In the background, you can see people walking down the street, including a man in a blue suit
carrying a black bag and a woman in a tan coat with blue jeans. The buildings lining the street
have various signs, some of which appear to be in Japanese.
This scene captures a typical day on a Japanese street, blending everyday life with a touch of
whimsy from the stuffed animal and its strawberry display.
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OCR Case

Input image
Prompt: Convert to markdown.
LLaVA-UHD-v3:
| Meta l | R e a c t i o n | E l e c t r o d e P o t e n t i a l (V) |
|−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−|
| Gold | Au+ + e− = Au | +1.692 |
| S i l v e r | Ag+ + e− = Ag | +0.7996 |
| Copper | Cu2+ + 2 e− = Cu | +0.342 |
| I r o n | Fe3+ + 3 e− = Fe | −0.037 |
| Lead | Pb2+ + 2 e− = Pb | −0.126 |
| N i c k e l | Ni2+ + 2 e− = Ni | −0.257 |
| Cadmium | Cd2+ + 2 e− = Cd | −0.403 |
| I r o n | Fe2+ + 2 e− = Fe | −0.447 |
| Zinc | Zn2+ + 2 e− = Zn | −0.762 |
| Aluminum | Al3+ + 3 e− = Al | −1.662 |

Counting Case

Input image

Question: How many tennis rackets are in the image?
Options: A.9 B.10 C.13 D.11 E.12 F.0
LLaVA-UHD-v3: D.11
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High-Resolution Detail Case

High-Resolution (4K) Input Key information highlighted
Question: Below the flag on the left side of the image, there is a road sign. What is written on
it?
LLaVA-UHD-v3: The road sign below the flag on the left side of the image says ”ONE WAY”.
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