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Abstract

Effectively decoding semantic frames in task-001
oriented dialogue systems remains a challenge,002
which typically includes intent detection and003
slot filling. Although RNN-based neural mod-004
els show promising results by jointly learning005
of these two tasks, dominant RNNs are pri-006
marily focusing on modeling sequential depen-007
dencies. Rich graph structure information hid-008
den in the dialogue context is seldomly ex-009
plored. In this paper, we propose a novel010
Graph-to-Sequence model to tackle the spoken011
language understanding problem by modeling012
both temporal dependencies and structural in-013
formation in a conversation. We introduce a014
new Graph Convolutional LSTM (GC-LSTM)015
encoder to learn the semantics contained in016
the dialogue dependency graph by incorporat-017
ing a powerful graph convolutional operator.018
Our proposed GC-LSTM can not only capture019
the spatio-temporal semantic features in a di-020
alogue, but also learn the co-occurrence rela-021
tionship between intent detection and slot fill-022
ing. Furthermore, a LSTM decoder is utilized023
to perform final decoding of both slot filling024
and intent detection, which mutually improves025
both tasks through global optimization. Exper-026
iments on benchmark ATIS and Snips datasets027
show that our model achieves state-of-the-art028
performance and outperforms existing models.029

1 Introduction030

Spoken language understanding (SLU) in task-031

oriented dialogue systems, including intent detec-032

tion and slot filling (Tur and Mori, 2011), has033

been greatly advanced by deep learning techniques.034

It aims to parse users’s utterances into semantic035

frames in order to capture a conversation’s core036

meaning. The input of SLU is a sequence of words,037

whereas the output is a sequence of predefined slot038

types represented in In-Out-Begin (IOB) format. A039

specific intent label is also assigned for the whole040

sentence. For example, in Table 1, given an ut-041

terance "Flights from Charlotte to Miami", SLU is042

Sentence Flights from Charlotte to Miami
Intent Flight
Slots O O B-fromloc O B-toloc

Table 1: An example utterance annotated with its intent
and semantic slots (IOB format).

supposed to determine the users’ intention as Flight 043

and to map each word into predefined slots. 044

Early studies modeled intent detection and slot 045

filling separately in a pipelined manner, and were 046

insufficient to take full advantage of all supervised 047

signals, as they intrinsically shared semantic knowl- 048

edge. What’s more, in the pipelined architecture, 049

errors made in upper stream modules may propa- 050

gate and be amplified in downstream components, 051

which, however, could possibly be eased in joint 052

models (Zhang and Wang, 2016). Thus, jointly 053

modeling intent detection and slot filling has at- 054

tracted significant attention, and achieved promis- 055

ing results with recurrent neural networks (RNNs) 056

(Liu and Lane, 2016; Goo et al., 2018; Li et al., 057

2018). However, these RNN-based models are 058

primarily focusing on modeling sequential depen- 059

dencies, and inherently unstable over long-time 060

sequences as RNNs tend to focus more on short- 061

term memories (Weston et al., 2014). Indeed, this 062

weakness of sequential RNN-based models leads 063

to a large portion of slot filling errors (Tur et al., 064

2010). 065

Subsequently, Zhang et al. (2020) attempted to 066

address the limitation of sequential models by uti- 067

lizing S-LSTM to learn the graph structure in dia- 068

logue utterances, and achieved promising improve- 069

ment compared with sequential RNNs. Neverthe- 070

less, this model still suffers from three major is- 071

sues: 1) Modeling dialogue graphs. Although 072

the n-gram context graph used in S-LSTM has to 073

some extent captured the influence of neighboring 074

words within a specific window, closely-related 075

words, such as "parents", "children" and "siblings" 076
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in a dialogue graph can be outside this window077

and unfortunately neglected. Actually, these words078

should have substantial impact on slot tag decod-079

ing. Furthermore, unrelated words within the n-080

gram window are acting as noise, leading to more081

slot filling errors. 2) Learning spatial structures082

in dialogues. S-LSTM is incapable of capturing083

spatial structures in a conversational context, and084

we observe that this property plays a vital role085

in modeling a fully graph-structured dialogue. 3)086

Jointly decoding intent detection and slot filling087

in a stand-alone decoder. Zhang et al. (2020) uti-088

lized a S-LSTM to both encode dialogue states and089

decode final intents and slot tags. This puts too090

much burden on the S-LSTM and deteriorates SLU091

performance.092

In this paper, we propose a novel Graph-to-093

Sequence (Graph-to-Seq) framework to perform094

joint intent detection and slot filling in task-oriented095

dialogue systems. The proposed model learns096

spatio-temporal semantic features hidden in dia-097

logues by modeling dialogue structure as a depen-098

dency graph, and by employing a Graph Convolu-099

tional LSTM (GC-LSTM). Graph Convolutional100

operation further enables a deeper level of semantic101

modeling of the dialogue context. A separate SLU102

decoder is also used to jointly decode slot tags and103

intents in a globally optimal way.104

In short, our contributions are threefold:105

• To the best of our knowledge, our work is the106

first one that introduces spectral graph convo-107

lution to model the graph structures in SLU.108

• We propose a novel GC-LSTM to effectively109

learn graph-structured representations in di-110

alogues. We model a dialogue graph as an111

enhanced dependency tree by adding forward112

and backward edges between words in order113

to capture both sequential and structural infor-114

mation in dialogues.115

• We introduce a novel Graph-to-Seq frame-116

work to perform joint SLU. A stand-alone117

RNN decoder is greatly beneficial to improve118

SLU performance by relieving encoders from119

decoding burden, and by enabling the interac-120

tion between intent detection and slot filling.121

2 Related Work122

Joint Intent Detection and Slot Filling Zhang123

and Wang (2016) proposed a joint work using124

RNNs for learning the correlation between intents 125

and slots. Hakkani-Tür et al. (2016) adopted a 126

RNN for slot filling and the last hidden state of 127

the RNN was used to predict the utterance intent. 128

Liu and Lane (2016) introduced an attention-based 129

RNN encoder-decoder model to jointly perform 130

intent detection and slot filling. 131

Most recently, some work modeled the intent in- 132

formation for slot filling explicitly in joint models. 133

Goo et al. (2018); Li et al. (2018) proposed a gating 134

mechanism to explore incorporating the intent in- 135

formation for slot filling. However, as the sequence 136

becomes longer, it is risky to simply rely on the 137

gate function to sequentially summarize and com- 138

press all slots and context information in a single 139

vector (Cheng et al., 2016). Zhang et al. (2018a) 140

proposed a hierarchical capsule neural network to 141

model the hierarchical relationship among words, 142

slots, and intents in an utterance. Niu et al. (2019) 143

introduced a SF-ID network to establish the interre- 144

lated mechanism for slot filling and intent detection 145

tasks. However, these RNN-based models suffer 146

from being weak at capturing long-range depen- 147

dencies. Then Wu et al. (2021) explicitly modeled 148

the long-term slot context via a key-value memory 149

network beneficial to both slot filling and intent 150

detection. Unfortunately, None of these models did 151

take the rich structure information in dialogues into 152

consideration. Subsequently, Zhang et al. (2020) 153

attempted to address the limitation of sequential 154

models by utilizing S-LSTM with a context-gated 155

mechanism to learn the local context in dialogue 156

utterances, and achieved promising improvement 157

compared with sequential RNN models. Compared 158

with this work, our work differs significantly by 159

proposing a novel Graph-to-Seq framework with 160

Graph Convolution LSTM on enhanced dialogue 161

dependency graphs. 162

Graph Convolutional LSTM Graph convolu- 163

tional networks (GCNs) generalize convolutional 164

neural networks to graphs. Spectral GCNs trans- 165

form graph signals on graph spectral domains and 166

then apply spectral filtering on graph signals. Def- 167

ferrard et al. (2016) proposed a spectral formulation 168

for the convolutional operator on graph with fast 169

localized convolutions. Kipf and Welling (2017) 170

introduced Spectral GCNs for semi-supervised clas- 171

sification on graph-structured data. Subsequently, 172

in order to incorporate temporal features, Seo et al. 173

(2016) proposed a graph convolutional LSTM to 174

capture the spatial-temporal features of graph struc- 175
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tures. This was an extension of GCNs to have176

a recurrent architecture. Si et al. (2019) further177

improved graph convolutional LSTM network by178

introducing attention to effectively extract discrim-179

inative spatial and temporal features in Skeleton-180

Based Action Recognition.181

3 Proposed Model182

Given a sequence of words w = (w1, w2, ..., wn)183

in an utterance and an associated dialogue depen-184

dency relation graph G = (V, E), intent detection185

can be defined as a classification task that out-186

puts an expected intent label oI , where V and E187

denote the set of word nodes and relations in G,188

and n is the utterance length. Slot filling can be189

seen as a sequence labeling task that maps the in-190

put utterance w into a predefined slot sequence191

oS = (oS1 , o
S
2 ..., o

S
n).192

3.1 Model Overview193

We propose a novel Graph-to-Seq framework to194

combine the merits of S-LSTM and GCNs to ef-195

fectively learn the spatio-temporal representation196

of the dialogue context. Our proposed model is197

composed of two major components: a GC-LSTM198

encoder, and a SLU decoder, as shown in Figure 1.199

The GC-LSTM encoder learns fixed-length vec-200

tors to represent the dialogue context structurally.201

Not only can it model spatial graph structure infor-202

mation, but also it learns the semantic correlation203

between slots and intents. Message passing in our204

graph convolutional operation improves on captur-205

ing the long-range dependencies. We further add206

a context gate to improve our model’s ability to207

utilize local context information. In our decoder, a208

dedicated LSTM is employed to integrate hidden209

states of the GC-LSTM for generating slot tagging210

and final intents. Our decoder first decodes slot211

tags and then outputs an expected intent. We inten-212

tionally choose this mechanism to improve intent213

accuracy since the slot information is beneficial to214

intent detection. Both intent detection and slot fill-215

ing are optimized simultaneously via joint learning.216

In the following sections we detail each component217

thoroughly.218

3.2 Spectral Graph Convolutions219

Graph convolutional neural networks are an effec-220

tive framework for learning the representation of221

graph structured data. As it is difficult to express222

a meaningful translation operator in the vertex do-223

main, Defferrard et al. (2016) proposed a spectral 224

formulation for the convolutional operator on graph 225

∗G . Based on this definition, a spectral convolution 226

on graphs is defined as the multiplication of a graph 227

signal x ∈ RN (a scalar for every node) with a 228

non-parametric kernel filter gθ = diag(θ) parame- 229

terized by θ ∈ RN in Fourier domain, where N is 230

the number of vertices, as follows: 231

gθ ∗G x = UgθU
Tx (1) 232

where U ∈ RN×N is the matrix of eigenvectors 233

of the normalized graph Laplacian L = IN − 234

D−
1
2AD−

1
2 = UΛUT with a diagonal matrix of 235

its eigenvalues Λ and UTx being the graph Fourier 236

transform of x. gθ can be thought as a function 237

of eigenvalues of L, i.e. gθ(Λ). However, evaluat- 238

ing Equation (1) is computationally expensive as 239

the multiplication with U is O(N2). What’s more, 240

calculating the eigendecomposition of L might be 241

prohibitively expensive for large graphs. Thus, Def- 242

ferrard et al. (2016) parameterized gθ as a truncated 243

expansion, up to (K − 1)th order of Chebyshev 244

polynomials Tk such that: 245

gθ(Λ) ≈
K−1∑
k=0

θkTk(Λ̃) (2) 246

where the parameter θ ∈ RK is the vector of 247

Chebyshev coefficients and Tk(Λ̃) is the Cheby- 248

shev polynomial of order k evaluated at Λ̃ = 249

2Λ/λmax − IN . λmax denotes the largest eigen- 250

value of L. The graph filtering operation can then 251

be written as 252

gθ ∗G x ≈
K−1∑
k=0

θkTk(L̃)x (3) 253

where L̃ = 2L/λmax − IN . Equation (3) can 254

be evaluated by using the stable recurrent relation 255

Tk(x) = 2xTk−1(x) − Tk−2(x) with T0 = 1 and 256

T1 = x in O(K|E|) operations, where E is the 257

number of edges. As pointed out by Defferrard 258

et al. (2016), when the filtering operation Equa- 259

tion (3) is an order K polynomial of the Laplacian, 260

it is K-localized and depends only on nodes that 261

are maximum K hops away from the central node, 262

that is, the K-neighborhood. 263

3.3 Graph Convolutional LSTM Encoder 264

Based on the graph convolutional operation defined 265

in Equation (3), we propose a GC-LSTM encoder 266
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Figure 1: Graph-to-Sequence model for joint intent detection and slot filling.

to encode graph structures in dialogue utterances.267

Utterance words are firstly transformed to word268

embeddings e = (e1, e2, ..., en) by using the pre-269

trained ELMo embeddings (Peters et al., 2018).270

They are then fed into the GC-LSTM at each time271

step. After T steps, our GC-LSTM generates word-272

level hidden states for decoding slot labels, and273

sentence-level hidden states for predicting intents.274

Dialogue Graph We model word relationships275

by using dependency trees, as dependency links276

are close to the semantic relationships for the next277

stage of interpretation. In order to enable learning278

various relationships of words such as dependency279

relations, we first use the off-the-shelf parsing tool280

called Spacy1 to extract dependency relation graph281

G among words in dialog utterances as shown in282

Figure 2. To further support bi-directional infor-283

mation flow, we explicitly add reverse edges and284

sequential relations (i.e., Next and Prev) as well.285

Enhanced dependency graphs allow information286

flow between dependent words and head words287

bidirectionally, enabling the learning process to288

capture the rich semantic representation between289

them.

Figure 2: An example of our dialogue utterance graph

290

Graph Convolutional LSTM We introduce a291

new GC-LSTM by extending S-LSTM (Zhang292

1https://spacy.io/

et al., 2018b) to include a powerful graph con- 293

volutional operator in order to better learn graph- 294

structured semantics in a dialogue. GC-LSTM 295

views the whole sentence as a single graph G, con- 296

sisting of word-level nodes hi and a sentence-level 297

node g. At each time step t, the graph state is 298

represented as: Ht = (ht1, h
t
2, ..., h

t
n, gt). 299

Like S-LSTM, GC-LSTM uses a recurrent state 300

transition process to model information between 301

sub states, which enriches state representations in- 302

crementally. Unlike S-LSTM, GC-LSTM updates 303

its word hidden states using the graph convolution 304

operation in order to capture spatial features of the 305

semantics. The graph state transition from Ht−1 to 306

Ht consists of word-level node state change from 307

ht−1 to ht, and sentence-level state transition from 308

gt−1 to gt. We set initial state h0i = g0 = h0 in 309

H0, where h0 is a parameter. The hidden state hti 310

is a function of word embedding ei, its neighboring 311

node hidden state ht−1j , and sentence-level state 312

gt−1, where j ∈ N (i) and N (i) is the neighbor 313

nodes of word node i. This updating function is 314

formulated as follow: 315

ît = δ(Wi ∗G ht−1 + Uie
t + Vig

t−1 + bi)

f̂ t = δ(Wf ∗G ht−1 + Ufe
t + Vfg

t−1 + bf )

ŝt = δ(Ws ∗G ht−1 + Use
t + Vsg

t−1 + bs)

ot = δ(Wo ∗G ht−1 + Uoe
t + Vog

t−1 + bo)

ut = δ(Wu ∗G ht−1 + Uue
t + Vug

t−1 + bu)

it, f t, st = softmax(̂it, f̂ t, ŝt)

ct = f t � ct−1 + st � ct−1g + it � ut

ht = ot � tanh(ct)

(4) 316

where Wx, Ux, Vx and bx are model parameters 317

(x ∈ {i, f, s, o, u}), δ is the sigmoid function, and 318

� denotes Hadamard product. 319
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Different than S-LSTM, GC-LSTM only con-320

tains three gates: an input gate it, a forget gate f t,321

and an output gate ot. But similar to S-LSTM, GC-322

LSTM also has one sentence gate st controlling323

information from sentence cell ct−1g . These control324

gates are normalized by a softmax function and325

then served as probability weights to regulate new326

cell states ct and hidden states ht.327

Following Zhang et al. (2018b), the sentence-328

level node gt is updated based on all word-level329

nodes:330

h̄ = avg(ht−11 , ht−12 , ..., ht−1n )

f̃ tg = δ(Wgg
t−1 + Ugh̄+ bg)

f̃ ti = δ(Wfg
t−1 + Ufh

t−1
i + bf̃ )

õtg = δ(Wogg
t−1 + Uogh̄+ bog)

f ′
t
1, ..., f

′t
n, f

′t
g = softmax(f̃ t1, ..., f̃

t
n, f̃

t
g)

ctg = f ′
t
g � ct−1g +

n∑
i=1

f ′
t
i � ct−1i

gt = otg � tanh(ctg)

(5)331

where Wx, Ux and bx are model parameters (x ∈332

{g, f, og}). f ′t1, ..., f
′t
n and f ′tg are gates con-333

trolling information from ct−11 , ..., ct−1n and ct−1g ,334

whereas otg is an output gate regulating the recur-335

rent cell ctg to gt.336

At each time step, word-level nodes capture an337

increasingly larger scope of the dialogue graph,338

building up knowledge incrementally. On the other339

hand, the sentence-level node gathers information340

from all the word-level nodes to refine the whole341

utterance representation. Slot nodes and the in-342

tent node are interacting with each other via Equa-343

tions (4) and (5), which learns the correlation be-344

tween intent detection and slot filling. Unlike an345

LSTM which uses only one state to represent the ut-346

terances sequentially, our GC-LSTM uses multiple347

states (i.e. n word-level states and 1 sentence-level348

state) to learn deeper context information incre-349

mentally with the aid of our graph convolutional350

operation. In this way, our GC-LSTM can cap-351

ture long-range dependencies. Finally, after T time352

steps, word-level hidden states hT and the sentence-353

level hidden state gT are used for predicting slot354

labels and an expected intent.355

Gated Context In order to make our encoder356

fully context-aware, we introduce a context gate to357

capture the contextual information for each token358

like Zhang et al. (2020). The context gate includes359

a convolution unit and a self-attention unit. The 360

convolution unit captures local context information, 361

such as the internal correlation of phrase structure. 362

Multi-head self-attention (Vaswani et al., 2017) is 363

used to capture diverse global contextual informa- 364

tion. The context gating is expressed as follow with 365

details in Zhang et al. (2020): 366

Z = ContextGating(HT ) (6) 367

Encoder Output The final output of our GC- 368

LSTM encoder with context gating is: 369

h̃Ti = hTi � δ(zi)
U = (u1, ...un+1) = [h̃T1 , ..., h̃

T
n ||gT ]

(7) 370

3.4 SLU Decoder 371

Different than most existing joint models where 372

intent detection and slot filling are decoded sep- 373

arately, our framework decodes them in a shared 374

LSTM. We directly leverage the explicit slot decod- 375

ing context to help intent detection. By performing 376

a joint SLU decoding in a stand-alone LSTM, there 377

are mainly two advantages: 378

1. The architecture such as Zhang et al. (2020) 379

puts too much burden on one Graph LSTM 380

encoder as it is playing a dual role in both en- 381

coding and decoding. We observe that separat- 382

ing decoding from encoding can be beneficial 383

to overall performance improvement. Domi- 384

nant seq-to-seq models are primarily relying 385

on an independent autoregressive decoder to 386

generate slot tokens one-by-one conditioned 387

on all previously generated tokens. 388

2. Sharing slot decoding context with intent de- 389

tection improves intent detection performance 390

since those two tasks are related. This is sub- 391

stantiated by our following experimental re- 392

sults. With shared decoding states, the interac- 393

tion between intent detection and slot filling 394

can be further modeled and executed. 395

We use one unidirectional LSTM as a SLU de- 396

coder. At the decoding step i ∈ [1, n + 1], the 397

decoder state hDi can be formalized as: 398

hDi = LSTM(hDi−1, y
D
i−1, ui) (8) 399

where hD0 = tanh(WD
0 un), hDi−1 is the previous 400

decoder state, yDi−1 is the previous emitted slot label 401

distribution, and WD
0 is the model parameter. 402
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Finally, the slot filling is given by:403

ySi = softmax(WS
h h

D
i ) i ∈ [1, n]

oSi = argmax(ySi )
(9)404

The intent detection is defined as follows:405

yI = softmax(W I
hh

D
n+1)

oI = argmax(yI)
(10)406

3.5 Joint Training407

The loss function for intent detection is L1, and408

that for slot filling is L2, which are defined as cross409

entropy:410

L1 , −
nI∑
i=1

ŷI,i log
(
yI,i
)

(11)411

and412

L2 , −
n∑
j=1

nS∑
i=1

ŷS,ij log
(
yS,ij

)
(12)413

where ŷI,i and ŷS,ij are the gold intent label and414

gold slot label respectively, and nI and nS are the415

number of intent label types and the number of slot416

tag types, respectively.417

Finally the joint objective is formulated as fol-418

lows by using hyper-parameters α:419

Lθ = αL1 + L2 (13)420

4 Experimental Setup421

4.1 Datasets422

To evaluate our proposed model, we conduct exper-423

iments on two widely used benchmark datasets:424

ATIS (Airline Travel Information System) and425

Snips. Both datesets follow the same format and426

partition in Goo et al. (2018).427

ATIS This dataset (Hemphill et al., 1990) con-428

tains audio recordings of people making flight reser-429

vations. The training set has 4,478 utterances and430

the test set contains 893 utterances. We use another431

500 utterances for the development set. There are432

120 slot labels and 21 intent types in the training433

sets.434

Snips Dataset Snips (Coucke et al., 2018) is col-435

lected from the Snips personal voice assistant. The436

training set contains 13,804 utterances and the test437

set contains 700 utterances. We use another 700438

utterances as the development set. There are 72 slot439

labels and 7 intent types. Compared to the single-440

domain ATIS dataset, Snips is more complicated441

mainly due to its large vocabulary and the diversity442

of intents and slots (Goo et al., 2018).443

4.2 Training Details 444

We implement our model in Pytorch, and trained it 445

on NVIDIA GeForce RTX 2080 Ti. In our experi- 446

ments, we set the dimension of GC-LSTM hidden 447

state to 200, and that of ELMo embedding to 1024. 448

During training, ELMo parameters are not updated 449

in order to reduce training time. The decoder hid- 450

den state dimension is set to 124 for Snips, and to 451

90 for ATIS. Dropout ratio is set to 0.5 to prevent- 452

ing overfitting, and the batch size is set to 32. The 453

model is trained end-to-end using Adam optimizer 454

(Kingma and Ba, 2014) to minimize the cross- 455

entropy loss, with learning rate = 1e−3, β1 = 0.9, 456

β2 = 0.98, and ε = 1e−9. Finally our graph con- 457

volution operation is approximated by 1st-order 458

Chebyshev polynomials. 459

4.3 Baselines 460

We adopt three most popular evaluation metrics in 461

SLU studies: slot filling using F1 score, intent pre- 462

diction using accuracy, and sentence-level semantic 463

frame parsing using whole frame accuracy. 464

Baselines models are from some typical works 465

such as Joint Seq. (Hakkani-Tür et al., 2016), At- 466

tention BiRNN (Liu and Lane, 2016), Sloted-Gated 467

(Goo et al., 2018), CAPSULE-NLU (Zhang et al., 468

2019), SF-ID Network (Niu et al., 2019), Key-value 469

Memory (Wu et al., 2021), Unsupervised Transfer 470

+ ELMo (Siddhant et al., 2019) and Graph-LSTM 471

(Zhang et al., 2020). 472

5 Experimental Results 473

5.1 Automatic Evaluation Results 474

Table 2 shows the experimental results of our pro- 475

posed model on ATIS and Snips datasets. On 476

the ATIS dataset, our model substantially outper- 477

forms all the baselines by a noticeable margin in 478

all three aspects: slot filling (F1), intent detection 479

(Acc) and sentence accuracy (Acc), demonstrating 480

that explicitly modeling graph-structured dialogue 481

context and the correlation between slots and in- 482

tents can benefit SLU effectively via GC-LSTM. 483

Compared with the prior joint work Graph-LSTM 484

(Zhang et al., 2020), we achieve F1 score as 96.37% 485

and intent Acc 97.88%, a significant improvement 486

over 95.91% and 97.2%. This performance promo- 487

tion signifies that our GC-LSTM can effectively 488

model graph-structured dialogue context, and that 489

our Graph-to-Seq framework captures long-term 490

dependencies and models the correlation between 491

slot filling and intent detection. 492
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Model ATIS Dataset Snips Dataset
Slot(F1) Intent(Acc) Sent.(Acc) Slot(F1) Intent(Acc) Sent.(Acc)

Joint Seq.(Hakkani-Tür et al., 2016) 94.30 92.60 80.70 87.30 96.90 73.20
Attention BiRNN(Liu and Lane, 2016) 94.20 91.10 78.90 87.80 96.70 74.10
Sloted-Gated(Goo et al., 2018) 95.42 95.41 83.73 89.27 96.86 76.43
CAPSULE-NLU(Zhang et al., 2019) 95.20 95.0 83.40 91.80 97.30 80.90
SF-ID Network(Niu et al., 2019) 95.58 96.58 86.00 90.46 97.0 78.37
Key-value Memory(Wu et al., 2021) 96.13 97.20 87.12 95.13 98.14 88.14
Unsupervised Transfer + ELMo(Siddhant et al., 2019) 95.62 97.42 87.35 93.90 99.29 85.43
Graph-LSTM(Zhang et al., 2020) 95.91 97.20 87.57 95.30 98.29 89.71
Graph-to-Seq 96.37 97.88 88.69 95.89 98.43 90.57

Table 2: SLU Performance evaluation results on ATIS and Snips datasets (%).

On the Snips dataset, our model also achieves493

good results in almost all cases, which indicates our494

model has a better generalization capability than495

baseline models. Specifically, for slot filling, we496

achieve a F1 score of 95.89%, a salient enhance-497

ment compared with 95.3% (Zhang et al., 2020),498

and our sentence accuracy reaches at 90.57%. The499

gain further demonstrates the effectiveness of our500

proposed Graph-to-Seq framework. Although the501

intent Acc. of Unsupervised Transfer + ELMo502

model is slightly higher than ours, this is at the cost503

of slot filling performance.504

Generally, the ATIS dataset is a simpler SLU505

task than Snips, so the room to be improved is rel-506

atively small. However, we still obtain noticeable507

improvement and set a new state-of-the-art result.508

On the other hand, Snips dataset is more complex509

crossing multiple domains. Thus, it is not surpris-510

ing that most of baseline models are doing poorly511

especially on slot filling. Surprisingly, our model512

achieves a great performance jump especially on513

slot filling. Again we attribute this to our Graph-to-514

seq framework and GC-LSTM.515

5.2 Ablation Study516

In this section, we explore how each component517

contributes to our full model by conducting three518

important scenarios: (1) With only GC-LSTM. In519

this case, we directly compare the performance be-520

tween GC-LSTM and S-LSTM (Zhang et al., 2020)521

to verify the effectiveness of our GC-LSTM. (2)522

With GC-LSTM and LSTM decoder but with-523

out decoding intent. This is to verify the effective-524

ness of a LSTM decoder. (3) With full Graph-to-525

Seq framework.526

Table 3 shows the SLU performance variance on527

these scenarios. First, we only consider GC-LSTM528

to model spatio-temporal features of dialogue utter-529

ances by replacing S-LSTM in Zhang et al. (2020).530

From Table 3, we can see that GC-LSTM does531

improve performance in almost all the cases espe- 532

cially on slot filling and shows its superiority over 533

S-LSTM. The result can be interpreted as that GC- 534

LSTM demonstrates great capability to model spa- 535

tial and temporal dependencies among the dialogue 536

context globally, whereas S-LSTM is more focused 537

on the local context. We then apply a stand-alone 538

LSTM decoder to perform slot decoding. It is no- 539

ticeable that slot filling is enhanced further, though 540

intent detection deteriorates. It is explainable that 541

using an autonomous autoregressive decoder to 542

generate slot tags token by token not only reduces 543

decoding errors by conditioning on all previously 544

generated tokens, but also alleviates the encoder’s 545

burden. However, this model unintentionally puts 546

too much weight on slot filling with the sacrific- 547

ing of intent detection performance, thus leading to 548

this unbalanced result. Finally, when we jointly per- 549

form decoding of slot filling and intent detection, 550

the performance further improves. We attribute this 551

to the fact that sharing slot decoding context not 552

only improves intent detection accuracy, but is also 553

beneficial to slot filling by minimizing intent detec- 554

tion objective function via joint training. To sum 555

up, in a joint SLU model leaning too much on one 556

task potentially worsens the other. Nevertheless, 557

it is salient that our model achieves a trade-off to 558

balance those two tasks. 559

Figure 3: SLU performance on various time steps.

Furthermore, we also study how the parameter 560

time step in GC-LSTM impacts SLU performance. 561
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Model ATIS Dataset Snips Dataset
Slot(F1) Intent(Acc) Sent.(Acc) Slot(F1) Intent(Acc) Sent.(Acc)

Graph-LSTM baseline (Zhang et al., 2020) 95.91 97.20 87.57 95.30 98.29 89.71
With only GC-LSTM 96.21 97.01 87.68 95.40 98.43 89.71
With GC-LSTM and LSTM Decoder no decoding intent 96.30 96.75 87.23 95.68 98.0 89.57
Our full model: Graph-to-Seq 96.37 97.88 88.69 95.89 98.43 90.57

Table 3: Feature ablation study on our proposed model on ATIS and Snips datasets (%).

Figure 3 shows the performance change with dif-562

ferent time steps. It is easily observed that as the563

time steps go up, the sentence-level accuracy in-564

creases as well until reaching its peak. This is due565

to the message passing mechanism trying to enable566

word-level nodes to involve information spanning567

the whole dialogue graph. We find that the optimal568

time step for ATIS and snips datasets is 6 and 7,569

respectively.570

5.3 Dialogue Dependency Graph vs N-gram571

Context Graph572

Model ATIS Dataset
Slot(F1) Intent(Acc) Sent.(Acc)

N-gram graph with window 1 96.12 97.09 87.46
N-gram graph with window 2 96.27 96.64 87.57
N-gram graph with window 3 96.28 96.42 87.35
Our dependency graph 96.37 97.88 88.69

Table 4: Performance comparison of dialogue depen-
dency graph and n-gram context graph on ATIS (%).

Model Snips Dataset
Slot(F1) Intent(Acc) Sent.(Acc)

N-gram graph with window 1 95.77 98.00 90.29
N-gram graph with window 2 95.61 97.71 89.71
N-gram graph with window 3 95.25 98.0 88.71
Our dependency graph 95.89 98.43 90.57

Table 5: Performance comparison of dialogue depen-
dency graph and n-gram context graph on Snips (%).

We argue that modeling dialogue structural infor-573

mation by using our enhanced dependency graph is574

superior to the use of the n-gram context graphs. In575

order to verify this, we design some experiments to576

only replace our dialogue dependency graph with577

n-graph context graph with window size 1,2,3, re-578

spectively. From Tables 4 and 5, it is noticeable579

that our dependency graph constantly outperforms580

the n-gram context graph with variable window581

sizes in all cases. We attribute this to the fact that582

modeling dialogue structural dependencies by our583

enhanced dependency graph captures spatial fea-584

tures globally, whereas the n-gram context graph is585

more focusing on limited local context. Anything586

outside the n-gram window has no impact on the587

decision being made.588

5.4 Joint Model vs Separate Model 589

One of our main contributions is explicitly mod- 590

eling the correlation and interaction of slots and 591

intents by our GC-LSTM and joint decoding. The- 592

oretically, this explicit interaction between them 593

eventually promotes each other by achieving a 594

trade-off. To verify this conclusion, we compare 595

the SLU performance between the joint model 596

and separate models. The former is our proposed 597

model, whereas the latter is solely focusing on one 598

task, thus without any interaction between intent 599

detection and slot filling. It is easily observed from 600

Table 6 that the joint model generally performs 601

much better than two separate models. This further 602

buttresses our claim. 603

Model ATIS Dataset Snips Dataset
Slot(F1) Intent(Acc) Slot(F1) Intent(Acc)

Slot filling model 96.05 - 95.38 -
Intent detection model - 97.20 - 98.0
Joint model 96.37 97.88 95.89 98.43

Table 6: Comparison between our joint model and sep-
arate models (%).

6 Conclusion 604

In this chapter, we propose a novel Graph-to-Seq 605

framework to jointly perform intent detection and 606

slot filling. The Graph Convolutional LSTM en- 607

coder not only captures the spatio-temporal sematic 608

features in dialogue utterances, but also learns the 609

co-occurrence relationship between intent detec- 610

tion and slot filling. In addition, a LSTM decoder 611

is employed to perform final decoding of both slot 612

filling and intent detection to alleviate GC-LSTM’s 613

burden and to fully exploring the interaction be- 614

tween these two tasks. On one hand, slot decoding 615

context promotes intent detection accuracy. On 616

the other hand, reciprocally, joint optimization also 617

enhances slot filling performance further by op- 618

timizing intent detection objective. Experiments 619

on two public datasets show the effectiveness of 620

our proposed model and achieve state-of-the-arts 621

results.622
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