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Abstract

Model merging, a method that combines the parameters and embeddings of mul-
tiple fine-tuned large language models (LLMs), offers a promising approach to
enhance model performance across various tasks while maintaining computational
efficiency. This paper introduces Activation-Informed Merging (AIM), a technique
that integrates the information from the activation space of LLMs into the merging
process to improve performance and robustness. AIM is designed as a flexible,
complementary solution that is applicable to any existing merging method. It aims
to preserve critical weights from the base model, drawing on principles from con-
tinual learning (CL) and model compression. Utilizing a task-agnostic calibration
set, AIM selectively prioritizes essential weights during merging. We empirically
demonstrate that AIM significantly enhances the performance of merged models
across multiple benchmarks. Our findings suggest that considering the activation-
space information can provide substantial advancements in the model merging
strategies for LLMs with up to 40% increase in benchmark performance. Our code
is publicly available at https://github.com/ahnobari/ActivationInformedMerging.

1 Introduction

Foundation models are rapidly becoming the dominant force for building Artificial Intelligence (AI)
systems. In many cases, researchers build their machine learning models by starting from pre-trained
foundation models and fine-tuning (FT) these pre-trained models for some desired target task [27]. In
such a paradigm, numerous fine-tuned models are developed for various tasks. However, an important
opportunity is missed, as these fine-tuned task-specialized models typically operate in isolation
without leveraging the rich features that each possesses [35]. This fact highlights the importance of a
growing area of research focused on combining multiple task-specialized models fine-tuned from the
same base foundation model.

In particular, as large language models (LLMs) continue to evolve, it becomes increasingly important
to develop methods that can effectively fuse the specialized knowledge of various fine-tuned models
derived from the same foundation model. Model merging has shown broad applications, including
enhancing accuracy and robustness [40], improving generalization [28], multi-modal models [37],
and model alignment to human feedback [29, 30]. Given these benefits, a substantial amount of
attention has been devoted to developing more effective merging algorithms for LLMs.

In the vast majority of cases, merging LLMs is done using algorithms that explore the weight space
of models and do not leverage the information in the activation space. Activation space information
has been widely used to develop model pruning and compression methods, both in the context of
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Figure 1: Overview of the proposed activation-informed merging (AIM) in LLMs.

general deep learning methods [12], and more specifically for large language models [23]. However,
this direction has remained underexplored for developing more robust merging algorithms. We
hypothesize that the activation space information may hold key insights useful for model merging
and explore this in our work.

In this paper, we view the problem of merging from a continual learning perspective. Specifically, we
explore how FT models and merging them can significantly deviate from the pre-trained base model,
potentially leading to overall performance degradation. This is analogous to the common catastrophic
forgetting problem in continual learning [10, 35, 39]. Given this perspective, we incorporate the
activation space information, taking into account the importance of the base model in preserving its
pre-trained capabilities while integrating new knowledge from fine-tuned models. To achieve this,
we introduce a new method named Activation-Informed Merging (AIM), which modifies the update
step in the merging process to ensure that the most influential weights of the base model, identified
through its activations, undergo minimal changes. Figure | demonstrates this basic process of AIM.

AIM fundamentally relates to the widely used approach of weight regularization in continual learning
[1,22, 31]. When merging large language models fine-tuned from the same base model, the goal
is to maintain the base model’s performance while improving the merged model’s expertise using
the fine-tuned models. Various methods have been proposed to merge fine-tuned LLMs [7, 19, 21,
25,40, 42, 46, 47]. Although useful, these methods are fragile to outliers and low-quality fine-tuned
models and may perform worse than the base model. Hence, we take a new perspective toward
merging and adopt the continual learning view to prevent catastrophic forgetting. Our extensive
experimental study shows that AIM is a complementary solution that can be applied in conjunction
with any prior merging methods and consistently improves their performances across all tested
benchmarks—including math, code, and instruction following—by up to 40%. Despite its simplicity,
AIM shows the effectiveness and importance of the activation space information for more effective
model merging.

2 Background and Related Work

LLM Merging. Fine-tuning pre-trained language models has become the prevalent paradigm for
building downstream NLP models. Often, fine-tuned models are readily available, but their training
data is not due to data privacy or intellectual property concerns [8]. With many fine-tuned checkpoints
from the same pre-trained model, LLM merging has emerged as a complementary approach to fine-
tuning, combining multiple task-specialized models into a unified architecture. This technique offers
several advantages: it reduces storage and inference costs by consolidating expertise into a single
model, facilitates compositional generalization by integrating specialized capabilities from different
fine-tuned models, and supports decentralized model development by allowing independently trained
models to be merged efficiently [43].

Model soup, proposed by Wortsman et al. [40], demonstrates that even simple averaging of the
weights of multiple fine-tuned models can enhance accuracy and robustness in image classification
and natural language processing applications. Further, Ramé et al. [28] show that model merging can
improve out-of-distribution generalization performance. Extending this approach beyond unimodal
settings, Sung et al. [37] empirically demonstrate that model merging is also effective in multimodal
setups. Beyond generalization benefits, model merging has also been explored for alignment; WARP
[30] and WARM [29] introduce weight merging strategies to improve alignment in reinforcement
learning from human feedback. WARP demonstrates that merging rewarded policies enhances model
quality and alignment, while WARM shows that weight-averaged reward models improve robustness
and help mitigate reward hacking.



Recently, many methods have been proposed to go beyond simple weight averaging to merge fine-
tuned LLMs into a multitask model by combining their capabilities. Spherical Linear intERPolation
(SLERP) [34], originally proposed for animating rotations, which interpolates between two check-
points, can be seen as a modification to simple weight averaging that finds a spherical path instead of
a linear path in models’ parameter space. A main shortcoming of this approach is that it does not
support merging more than two models. Jang et al. [20] also leverages geometric insights, showing
that merging only two fine-tuned models can provide superior in-distribution and out-of-distribution
performance compared to ensembling multiple models.

Task Arithmetic [19] generalizes simple weight averaging by introducing task vectors. It suggests
moving the base model parameters in the direction of a weighted average of fine-tuned model
differences with respect to the base model. Followed by the introduction of task vectors, Model
Breadcrumbs [7], Trim, Elect Sign & Merge (TIES merging) [42], and Drop And REscale (DARE)
[46] leverage pruning techniques for better and more scalable ways of merging task vectors. Welght
DisENtanglement based merging (WIDEN) [47] takes a more sophisticated approach to model
merging by disentangling and analyzing weight components. Another line of work on model merging
takes advantage of the information in the model activations of the training data. Matena and Raffel
[25] propose Fisher merging, which leverages the Laplace approximation by using the diagonal of
each model’s Fisher information. Jin et al. [21] attempt to minimize prediction differences between
the merged model and the individual models and introduce the Regression Mean (RegMean) method
that calculates the optimal weights with respect to Euclidean distance to model predictions.

We refer the reader to Yang et al. [44] for a more comprehensive literature overview. The study
provides a detailed discussion of model merging methods and theories, explores their applications in
LLMs and multimodal large language models, and highlights future research directions.

Continual Learning. Continual learning strategies can be categorized into five overarching ap-
proaches: regularization, where parameters are constrained or updated based on past data; replay,
where past data is replayed for the model as it encounters new data; optimization, where the loss
function and optimizer are targeted; representation, where new data representations and learned
embeddings can be exploited for less forgetting; and architecture, where models and parameters can
expand as new data arrives [39]. To avoid catastrophic forgetting of the base model’s abilities, we
view the model merging problem through the lens of CL, primarily focusing on regularization-based
methods. Regularization-based methods penalize deviation from the base model according to some
norm [33]. Various methods have been proposed to mitigate catastrophic forgetting, e.g., Aljundi
et al. [1], Kirkpatrick et al. [22], Ritter et al. [31]. In particular, Elastic Weight Consolidation (EWC)
employs a Fisher Information Matrix to identify and protect parameters crucial for previous tasks
by adding a quadratic penalty on the parameter shifts. Integrating CL approaches into the merging
framework involves defining a weighted regularization term that selectively constrains parameter
updates in critical areas for retaining previously learned tasks. This integration not only mitigates the
risk of catastrophic forgetting but also enhances the adaptability and utility of the merged model.

Model Compression. Using activation space information has been shown to be useful in the
context of model compression. Frantar and Alistarh [12] show that using a calibration dataset, deep
learning models can be quantized and/or pruned efficiently. [23] introduce Activation-aware Weight
Quantization (AWQ) for LLM compression and show that protecting only 1% salient weights can
greatly reduce quantization error.

Building on these ideas, this paper presents a complementary merging approach that utilizes base
model activations and principles from AWQ. Our method efficiently sketches delta parameters,
ensuring the base model retains its original capabilities while incorporating expertise from fine-tuned
models.

3 Methodology: Activation-Informed Merging

As discussed in Section 2, most existing approaches for merging FT LLMs primarily focus on the
weight space of the models being merged. However, it is well established that the activation space of
these models contains crucial insights into the degree of importance of different parameters of LLMs.
This was shown to be the case, for instance, in the work done by Lin et al. [23] on Activation-aware
Weight Quantization (AWQ), outperforming traditional quantization methods by including insight
from the activation space of LLMs. Given this, we hypothesize that the activation space of LLMs



likely holds useful clues for model merging as well. Inspired by AWQ, we introduce Activation-
Informed Merging (AIM) for merging FT LLMs. In this section, we detail our proposed solution and
discuss some of the inner workings of AIM.

3.1 The Merging Problem and Connections to Continual Learning

Consider the merging of N models with parameters 6, 05, - - - , 0 fine-tuned on different tasks from
a common pre-trained model with parameters 0. For each fine-tuned LLM, we are essentially
creating experts on specific tasks that move away from the generalist pre-trained model, hence usually
degrading performance in some tasks while improving performance on the task for which the model
is fine-tuned. In this sense, each FT model with parameters 6,, can be seen as a model fitted to a new
task D,, = {X,,, Y, } in a continual learning scenario with the potential for catastrophic forgetting on
the generalist pre-trained model, which may not perform as well on the specific task but will have a
more balanced performance across various tasks. As such, we hypothesize that when merging FT
LLMs adapted from the same base model, emphasis on the base model can build better robustness
to large performance degradation across numerous tasks while still allowing for capturing each FT
expert’s capabilities. AIM seeks to achieve this by relaxing the changes to the salient weights of the
base model in the final merged model. In this way, AIM is analogous to weight regularization in many
continual learning approaches [1, 22, 31, 33, 39]. Notably, the saliency of weights is determined by
analyzing the activation space (sensitivities) of the base model rather than just regularizing based on
the weight space, similar to [10, 26].

3.2 Activation Space Analysis

AIM determines the saliency of a model’s weights by looking at the scale of activations by passing
a calibration dataset to the model and recording the scale of activations in each channel. To better
understand why, we will analyze how perturbation of the weights of a given model affects the model
outputs. Let the original weights be w € RY*M and the perturbation be 6w € RY*  such that the
perturbed weights are w’ = w + dw. The output of a linear layer with input z € R**¥ and perturbed
weights is

Yy = zw' = z(w + dw) = zw + x(dw). (1)

The magnitude of the error due to this perturbation, Error = ¢’ — y = x(dw), scales with the
magnitude of activation x:

N M
[Errorll, = || diag(2)dwl|, < || diag(a)dwlly <D lail Y [6wiyl. @
i=1 j=1

For any specific input channel z;, the error contribution from perturbation in the i-th row of w, dw; is
amplified by the magnitude of the same channel in the input. As such, one could selectively regularize
the weights based on the importance of the input channels, i.e., their magnitudes. In this way, we use
a calibration dataset to capture the average magnitude of the input channels for each layer of the base
model and determine the saliency of weights in the base model from the activation space.

3.3 Calibration Data and Robustness to Calibration Data

We choose the calibration dataset to be a subset of the validation data from the pile dataset [13],
which is similar in distribution to most pre-training datasets. Most notably, this dataset has been
utilized in model compression for both quantization in AWQ [23] and pruning in WANDA [36]. This
calibration dataset is considered to be fairly diverse and not task-specific, which should allow us to
quantify weights’ saliency in a robust manner.

Robustness to Calibration Data The use of activation spaces from calibration data has been
thoroughly studied in model compression, by Lin et al. [23] and Sun et al. [36]. In both cases, authors
conduct extensive studies on the robustness of their methods, which, like ours, rely on the magnitude
of activations, and both concur in two important findings. 1) When using calibration data to quantify
activation space magnitudes to be used by algorithms for model quantization or pruning, performance
is robust to dataset quality. This is in contrast to methods that require fine-tuning or retraining
after compression. This observation is made clear in both studies and confirms that sensitivity to
the quality of the data is much less in methods that require only activation space analysis without



training. 2) Most notably, ablation studies on the size of the calibration set also show robustness
to the size of calibration data, with both studies confirming that only 8-32 sample sequences of
length approximately 2048 tokens are enough for model compression algorithms to produce robust
outcomes [23, 36]. Despite this robustness, we use the same 256 total sequences (approximately
524K tokens) that the authors of both studies use in their main experiments; however, this robustness
to dataset size is noted as an important tool for reducing computational cost and time for running
algorithms such as ours. We also study this matter in an ablation study and show that, like those
studies, AIM is also robust to dataset size and can be made much more efficient if need be.

3.4 Adaptable Relaxation Scheme

As discussed, we introduce an adaptable relaxation scheme based on the activations of the base
model, which we wish not to stray away from significantly. To make the scheme adaptable to any
merging algorithm in the weight space, we formulate our relaxation scheme in terms of the changes
in the weights. Given a task-agnostic representative calibration corpus D. We can pass this corpus
through the model and accumulate the activations from each token in the dataset. This will yield
the average magnitude of activations for each channel in all layers of the model. As previously
noted, averaging the inputs over the calibration set yields a vector z € R1*¥ for each linear layer.
Constructing a diagonal matrix from the absolute values of this vector gives diag(|z|) € RV*YN. By
normalizing diag(|z|) using its maximum value, we obtain a diagonal matrix Ay € [0, 1]V >V, This
matrix serves to modulate weight updates based on input saliency, allowing for consistent control
of merging through a universal hyperparameter w. Next, we define the action of any given merging
method by the changes that it applies to the model weights with respect to each of the fine-tuned
models being merged (i.e., 01,605, ...,0,). Specifically, we denote the weight update contributed

by a fine-tuned model (with parameters 6;) to the model parameters by A; (e.g., A; = 9O for
weight averaging). Now, we propose an adaptive relaxation scheme that adjusts the ﬁnal model. For
simplicity of notation, let § refer to weights of a linear layer (i.e., an NV x M matrix), then the AIM
relaxation scheme can be written as:
N
dwamm = emerged - epre = (1 - Apre(1 - W)) Z A, 3
i=1
where dwapy is the relaxation change and the subscript pre refers to the pre-trained model and w
is the relaxation factor that controls how much relaxation is applied (an w of 0.0 would revert the
most salient weight to the base weights and an w of 1.0 applies no relaxation), effectively w is scaling
error/deviation from the base model, and )\; are the weight factors for each A;. Note that )\; is
internal to each merging algorithm and not part of the AIM relaxation; however, in general, one
could selectively apply this if desired. In this work, since we do not explicitly look at the merging
algorithm’s inner workings, we can simply fuse the terms Zfil A:A; into a single algorithm-agnostic
term Amerged and simplify the relaxation scheme to:

9AIM - opre + (]- - AApre(1 - w))Amerged~ (4)

Note that in general Ap. is not a single matrix, rather a mapping of activations for all model
parameters obtained as we described prior. In our experiments, we apply this relaxation scheme to
several different merging methods and explore how the hyperparameter w affects the merged model’s
behavior, and present these results in Section 5.

Sensitivity-Based Formulation An alternative way of choosing the importance scores for changing
the model weights—which has been used, e.g., in continual learning [10, 26], out-of-distribution
detection [32], and meta-learning [2]—is to use the partial derivatives of the (base) model with respect
to the parameters, i.e., sensitivities, which correspond to a scaled version of the activations. This is in
contrast with using the activations directly, common in model compression Formally, let fo denote
the model with parameters 6, and 0[] be one of the weights; then gg;) = =2 09[;] | determines how

sensitive the output is to perturbing the weight 6[j]. We develop a sensmVlty -based formulation of
AIM by incorporating sensitivity scores calculated from the gradients and replacing activations with
sensitivity scores. We consider fy(z) to be the logits of the model with parameter 6 and L to be the
entropy function, similar to Farajtabar et al. [10]’s suggested approach for classification problems.
Now let Gpre = \%\ be the magnitude of the gradient for all parameters of the pretrained model for
samples in a calibration corpus D. Then the sensitivity-based formulation can be written as follows:



GAIM,G = epre + (1 - C;pre(1 - W))Amerged- (5)

In other words, the sensitivity-based formulation of the problem suggests that regularization of weights
through relaxation should be done based on model gradients. However, we note that computing
gradients for a calibration corpus can be computationally expensive and will require significantly
more memory and compute resources than storing activations, which is akin to performing inference
on the model. To verify that using activations retains the same performance and fidelity as this
formulation, we conduct our experiments for both AIM and the sensitivity-based formulation. We
present the results of the continual learning view in Appendix C, and we see that when comparing
results of AIM (Table 1) and the sensitivity-based formulation (Table 4), the performance boost of
both approaches is very similar, with AIM being computationally more efficient.

4 Experimental Setup and Evaluation Metrics

We conduct two separate experiments with AIM: 1) we apply AIM to 5 different merging methods
including the two latest works on the topic with different numbers of experts being merged and report
the performance of the models on 6 different benchmarks; 2) we conduct an ablation study on the
w parameter in AIM and analyze how w affects each of the merging methods in a scenario where 3
different experts are being merged.

4.1 Selection of FT Expert LLMs

To understand how AIM reacts with different merging methods, we conduct experiments with merging
different experts fine-tuned from the same base model. The set of experts we use is the same set of
experts used by the two latest LLM merging algorithms in the literature, namely DARE [46] and
WIDEN [47], which use the same three experts fine-tuned from Llama-2-13b [38]. These experts
include the WizardLM-13B [41] model fine-tuned for instruction following, WizardMath-13B [24]
fine-tuned for superior mathematical reasoning, and llama-2-13b-code-alpaca, which serves as the
code expert [4]. See Appendix A for more details.

4.2 Merging Methods Implementations

In our experiments, we implement the latest merging methods in the literature for LLM merging.
These include newly developed DARE and WIDEN [46, 47] methods as well as some of the long-
established approaches of TIES merging [42], and task arithmetic [19]. For all merging methods
except WIDEN, we use the comprehensive MergeKit implementations developed by Goddard et al.
[15], and for WIDEN, we use the publicly available implementation provided by the authors of the

paper.

We note that in many of the merging algorithms, many hyperparameters can be adjusted. In these cases,
we use the author-recommended values where available and the default parameters recommended by
Goddard et al. [15]. Note that it is possible to perform a grid search on these hyperparameters to find
optimal values for each benchmark; however, this would essentially be over-fitting on benchmarks
and does not provide any value to our analysis of the proposed complementary relaxation scheme,
which applies adjustments to the merged models. For reproducibility, all of our checkpoints and code
to reproduce the results will be made publicly available.

4.3 Benchmarks Used For Evaluations

Given that the expert models we use in our experiments involve fine-tuning on instruction following,
mathematical reasoning, and code generation, we use several common benchmarks for each of these
tasks. Specifically, we measure model performance on language understanding with the MMLU [16]
benchmark, instruction following with IFEval [48] benchmark, code generation with HumanEval [5]
and MBPP [3] benchmarks, and mathematical reasoning with the MATH [17] and GSMS8K [6]
benchmarks. For all benchmarks, we use the latest versions and up-to-date implementations developed
by Gao et al. [14] except for mathematical reasoning, for which we use the chain of thought prompting
used by Luo et al. [24] to replicate the results of the original model as closely as possible. The code
we use for these benchmark results will also be made publicly available for reproducibility.



In addition to the common benchmarks that we use to evaluate merged models, we also propose
a new evaluation metric for LLM merging (or merging of different experts in general), which we
believe helps better contextualize the value added by any given merging algorithm and which we
discuss in the following section.

4.4 Measuring Performance From an Optimization Perspective

We note that in most cases, LLMs are not meant to operate as narrow expert models, unlike a large
portion of deep learning applications where models are trained to perform very specific tasks such
as classification or regression. LLMs, in contrast, are generalist language models aiming to assist
across a wide variety of tasks and applications. As such, LLMs can be viewed from a multi-objective
optimization perspective. In merging scenarios specifically, multiple expert models are brought
together to create a merged model aiming to find the balance of performance across the different
expertise of the fine-tuned models. In this sense, each expert can be thought of as optimized for a
specific objective. This perspective lends itself rather well to a multi-objective optimization view of
the problem. Given this, only looking at how each model performs on each of the benchmarks does
not give us a full picture of the multi-objective goal of merging.

To obtain a more comprehensive view of merging performance, we propose a hypervolume-based
metric that quantifies the contribution of the merged model to the multi-objective frontier of FT
LLMs. Consider a performance space defined over N benchmarks, where each model’s performance
is represented as a point in an N-dimensional space. The performance on each benchmark is
normalized to the range [0, 1], where 0 represents the worst-case (reference point), and 1 represents
the best possible performance with 100% accuracy on the benchmark in question.

Letr = (r1,r2,...,7n) denote the reference point in this space, which we set to (0,0, ...,0) to
ensure hypervolume calculations are consistently defined. Given a set S of FT models and the
pre-trained base model, let S* C S denote the subset of models that are Pareto-optimal, i.e., models
that are not dominated by any other model in S. The hypervolume of this set, denoted as HV (S™*), is
defined as:

HV(S*) = A ( J dom(x, r)) : (6)
xES*

where \(-) denotes the Lebesgue measure (i.e., volume in R™V), and dom(x, r) represents the hyper-

volume dominated by x with respect to the reference point r.

When a merged model M is introduced, the new set becomes S’ = S U {M}, and the updated
Pareto-optimal set is denoted as S"*. Given this set including the merged model, we can measure the
added value of the merged model from a multi-objective perspective as the normalized hypervolume
gain (HV Gain) as a result of adding this merged model:

HV Gain = {/HV(S"*) — HV(S*) (7

Where d is the number of dimensions/benchmarks. Since hypervolume is computed only over Pareto-
optimal models, we have HV(S"*) > HV(S*), ensuring that HV Gain > 0. This metric provides an
aggregated measure of merging effectiveness, capturing trade-offs across multiple benchmarks rather
than focusing on isolated improvements, thus providing a full picture of merging performance. In our
experiments, we track HV Gain along with the 6 aforementioned benchmarks.

5 Experiments and Results

In this section, we present our results on applying AIM to different merging methods as well as an
ablation study on how the w hyperparameter affects the performance of each merging method. All
experiments are run using 4 H100 GPUs, and each set of benchmarks takes roughly 15 minutes to
run for each checkpoint.

5.1 AIM Applied to Various Merging Approaches

To demonstrate the effectiveness of AIM, we conduct experiments on 5 different merging methods
under 4 different scenarios. As mentioned before, we use 3 different FT LLM experts in our
experiments. As such, we merge models using each merging method for all 4 possible permutations



16

R = 36 - 36 L]
-
14 n
" 34 'Y
12 34 .
M 32
10 32 .
et o 30
s & &
s w30 w28
6
26
4 28 *
24
2 26 -
* * 22
52.0 525 53.0 535 54.0 545 55.0 51 52 53 54 55 00 25 50 75 100 125 150
MMLU MMLU MATH
% Pre-Trained Model Merged Models ® AIMMerged Models @ FT Models Merged Pareto AlMPareto  —— FT Pareto

Figure 2: The Pareto fronts of models under different scenarios. Note that the points in these plots represent all
models benchmarked in Table 1, for better readability, we only visualize the dominating points in each case. The
measured increases in HV Gain when AIM is applied can be clearly seen in the Pareto frontier shifting further
forward when AIM is applied compared to when only a population of merged models is evaluated.

Table 1: Benchmark Results Across Various Merging Methods. Percentage changes are shown relative to models
merged without AIM. The highest-performing fine-tuned and base models are highlighted in yellow, and the
best-performing merged models are marked in blue. The results demonstrate that applying AIM significantly
enhances the performance of merged models.

Method [ Model's) [ATM | Humanbval MEPP MMLT MATH GSMSK TFEval | AV Gam
Base Models
Base B ‘ 1707 2750 5218 070 320 2510
Code - 17.07 3160 5291 6.00 2410 2625
Instruction Tuned - 2683 3480 5341 7.50 4340 35.67
Math - 1524 27.60 51.89 13.10 59.10 21.58
Merged Models
Codo + Tstraction Tumed No 7653 3240 5353 540 7580 027
h Yes | 2927(+9.00%) 3600 (+4.65%) SAI8(+121%) 830 (-1.19%) 4620 (+0.87%)  32.00 (-4.2 0.28 (+2.49%)
Code + Math No 16.46 2860 K 15.10 64.70 2.02 023
DARE Task Arithmetic Yes | 1585(371%)  29.60 (+3.50%) 5250 (+1.04%) 1480 (-1.99%) 6410 (:0.93%) 2191 (0.50%) | 0.23(-165%)
s Instruction Tuned + Math No 5.49 19.01 51.08 9.80 5430 3235 0.18
s : Yes | 1220 (+12202%) 2820 (+48.42%) 12.90 (+31.63%) 6220 (+14.55%)  31.96 (121%) | 0.26 (+40.71%)
Code + Instruction Tuned + Math | NO 11.59 19.60 9.10 4970 33.20 0.16
Yes | 1585(+36.76%)  27.00 (+37.76%) 1220 (+34.07%) 6070 (+22.13%) 3359 (+1.17%) | 0.23 (+40.59%)
Code + Instraction Tuned No 3049 3520 0 860 3620 3328 028
Yes 3049 36:80 (+4.55%)7] 54.02 (+1.16%) 8.60 4720 (+2.16%)  33.16 (-0.36%) | 0.29 (+1.63%)
Code + Math No 17.07 27.40 51.92 1490 63.60 2.53 023
DARE Ties : Yes | 17.68(+357%)  29.00 (+5.84%) 5261 (+133%) 1520 (+201%) 6390 (+0.47%)  21.10 (-6.35%) | 0.24 (+4.00%)
s Instruction Tuned + Math No 8.54 23.80 51.39 9.20 5410 33.89 0.20
" Yes | 15.85 (+85.60%) 3020 (+26.89%) 5289 (+2.92%) 1160 (+26.00%)  ST.80 (+6.84%)  35.63 (+5.13%) | 0.26 (+31.22%)
. No 13.41 2120 5115 8.70 51.50 35.75 0.17
Code + Instruction Tuned + Math | yoi | 19,51 (44549%)  28.60 (+34.91%) 52,63 (+2.89%) 1160 (+33.33%)  57.00 (+10.68%) | 36:20 (1.26%) | 0.24 (+41.28%)
Code + Instraction Tuned No 29727 33.80 5344 .60 3710 3160 028
Yes | 29.88(+2.08%) 3580 (+5.92%) S412(+127%)  780(930%) 4660 (1.06%) 3201 (+1.30%) | 028 (+0.61%)
Code + Math No 18.29 28.60 52.10 15.00 64.70 2192 024
Task Arithmetic Yes | 17.68(-334%) 2920 (+2.10%) 5252 (+081%) 1460 (2.67%)  64.50(-0.31%) 2154 (1.73%) | 024 (-2.65%)
Instruction Tuned + Math No 427 2020 51.50 10.00 54.20 3131
: Yes | 8.54(+10000%) 2640 (+30.69%) 52.83 (+2.58%) 12.80 (+28.00%) 6130 (+13.10%) 32.62 (+4.18%
) No 11.59 19.60 51.20 9.00 527 32.87
Code + Instruction Tuned + Math | yoi | 1504 (43149%) 2740 (+39.80%)  52.63 (+2.79%) 12,00 (+33.33%)  58.10 (+10.25%)  33.91 (+3.16%)
Codo + Tstraction Tumed No 16.46 2360 270 270 540 2448 0.00
: Yes | 1524(-741%) 2420 (+254%) 5315 (+085%)  2.60(-370%)  520(3.70%)  22.87(-6.58%) | 0.05 (+inf%)
Code + Math No 1585 26.80 51.86 1430 62.60 21.63 020
Ties Mergin Yes 1585 28.60 (+6.72%) 5229 (+0.83%) | 1530 (+6.99%) 6380 (+1.92%)  22.64 (+4.67%) | 023 (+13.55%)
s Merging Ins Tuned + Math No 28.05 34.60 54.45 8.70 44.70 34.04 023
nstruction Tuned + Matl Yes | 2744(217%) 3500 (+1.16%) 5474 (+0.53%) 930 (+6.90%)  46.10 (+3.13%) 3451 (+138%) | 025 (+6.38%)
Code + Instruction Tuned + Math | N 2134 2920 53. 6.30 29.20 26.95 0.1
Yes | 2073 (:2.86%) 2020 5446 (+0.91%) 570 (-9.52%) 2370 (-18.84%) 2598 (-:3.60%) | 0.11 (+4.33%)
Code 1 Instraction Tuned No 2622 3560 5490 830 3500 3042 027
Yes | 2561 (-233%) 3460 (281%) 5497 (+0.13%)  820(-120%)  44.10(-2.00%)  31.60 (+388%) | 0.26(-0.93%)
Code + Math No 17.07 29.40 53.35 14, 64.40 02 024
WIDEN Yes 17.07 20.60 (+0.68%)  53.36 (+0.02%) 1430 (+0.70%) 6220 (3.42%)  23.95(0.29%) | 024 (-1.22%)
Instruction Tuned + Math No 2439 3040 54.20 y 66.00 30.82 030
Yes | 2378(250%) 3200 (+5.26%) 5460 (+0.90%) 1510 (+3.42%) | 6820 (+333%) 3123 (+1.33%) 031 (+2.54%)
Code + Instruction Tuned + Math | NO 25.00 3320 54.58 13.50 64.21 3144 ‘ 029
s Yes | 2683 (+732%)  32.80(-1.20%) | 5498 (+073%) 1440 (16.67%) _ 64.00 (-0.31%)  32.82 (+439%) | 030 (+4.70%)

of these expert LLMs. Then we apply AIM to all merged models and measure the performance of
each model in all 6 benchmarks. We also report the HV gain for each merged model compared to the
population of the base model and the models being merged (in cases with 2 models, the population
will only include the models used for merging). These results are presented in Table 1. For this
experiment, we used w = 0.4, which we found to be the best balance of performance among the
various merging methods we use. This choice was informed by our analysis in Section 5.2. In Table 1,
we have highlighted the gain/loss of performance for each benchmark due to AIM and we can see that
in the vast majority of cases, AIM causes a significant performance boost, with an Average Change
of 13% (ignoring the Inf value) and more than 40% HV Gain in 20% cases, further highlighted by
the fact that the top performers on each benchmark, as well as the largest hypervolume gain, are all in
models merged with AIM. We observe HumanEval (10 out of 20) and MBPP (17 out of 20) often see
large boosts with AIM, especially when merging Instruction Tuned models with others. Some merges
also reveal small drops in GSM8K or IFEval even when other benchmarks improve, reflecting the
inherent trade-offs in merging specialized models. Overall, a clear majority (80%) of merges exhibit
improved HV Gain under AIM, reinforcing that the method often enhances multi-task performance
overall. We can further visualize this increase in hypervolume by looking at how AIM pushes the
Pareto frontier. Figure 2 shows how applying AIM to existing merging methods extends the Pareto
optimal frontier, which we also quantitatively measured using HV gain. These results showcase the



efficacy of the proposed method across a variety of merging methods and reinforce the hypothesis
that the activation space encompasses useful insight for merging.

To validate AIM’s generalizability beyond the Llama-2 family, we conducted a new experiment on a
different architecture and modality: the Qwen 2.5-VL-7B vision-language model. We merged two
distinct experts, Video-R1 model for video reasoning [1 1] and CAD-Coder model for image-to-code-
based CAD geometry generation [9], with their instruct base model.

We evaluated this merge on 6 benchmarks: IFEval and MMLU for instruct base model capabilities,
Video MMMU [ 18] and VSI-Bench [45] for video reasoning, and two CAD-Coder benchmarks for
code generation from rendered and real images [9]. As shown in Table 2, AIM consistently improves
the underlying merge methods across these diverse tasks and improves the Hypervolume Gain under
all four merging methods. This demonstrates that AIM’s benefits are not architecture-specific and
generalize effectively to multimodal models.

For merging, therefore, we have two experts, one for CAD and one for video reasoning, with a base
model that is instruction-tuned. Therefore, to assess performance, we perform the IF-Eval and MMLU
benchmarks (the base model knowledge and instruction following) as well as expert benchmarks
for video reasoning, Video MMMU [ 18] and VSI-Bench [45], and CAD generation benchmarks of
CAD-Coder benchmark (on rendered CAD images) [9] and CAD-Coder Real benchmark (on real 3D
printed images) [9]. As shown in Table 2 below, AIM consistently improves the performance of the
underlying merging method across diverse tasks while also showing that the overall hypervolume
gain is raised in all merging scenarios, demonstrating AIM’s benefits are not limited to the Llama-2
architecture, and AIM does provide a path towards higher quality merging with little computational
and data overhead.

Table 2: AIM generalizes across architectures and modalities. We evaluated merging two Qwen 2.5-VL-7B
experts (Video-R1 and CADCoder, with an instruction-tuned base). AIM consistently improves performance
across benchmarks, increasing the multi-task Hypervolume Gain in all cases.

Method [ AIM | TFEval MMLU Video VST Video MMMU  CAD test100 CAD R400 HV Gain |
Base Models
Instruct - 0.68 0.67 0.21 0.47 0.04 0.05
Video-R1 - 0.64 0.61 0.38 0.49 0.00 0.03
CADCoder - 0.27 0.66 0.00 0.00 0.61 0.32
Merged Models

TIES No 0.57 . 0.68 0.23 0.41 0.6]» 0.32 0.44

Yes 0.58 (+1.75%) 0.68 0.23 0.45 (+9.76%) | 0.65 (+6.56%) 0.32 0.45 (+2.26%)
DARE No 0.54 0.67 0.25 0,{2 0.54 ) 0.32 .43

Yes 0.56 (+3.70%) 0.67 0.26 (+4.00%) 0.45 (+7.14%)  0.55 (+1.85%) 0.32 0.44 (+3.47%)

. . No 0.25 0.64 0.25 0.43 0.54 0.33 0.38

DARE Task Arithmetic | yoi | 0,56 (+124.00%) [067GA69%)7 026 (+4.00%)  0.45 (+4.65%) 054 034 (3.03%)7 045 (+17.42%)
WIDEN No 0.35 0.66 09? 0.26 0.61 0.33 0.32

Yes 0.35 0.66 0.14 (+75.00%)  0.32 (+23.08%)  0.64 (+4.92%) 0.33 0.36 (+13.24%)

5.2 Ablation study

To understand the effects of changing w in AIM, we conduct an ablation study on the case of merging
all three expert LLMs. For this study, we apply AIM with w € {0.0,0.2,0.4,0.6,0.8} and run
the benchmarks on each merged model with each value of w. For brevity, we do not report all
benchmark results for each value here; instead, we track the hypervolume gain (The full set of results
are presented in Appendix B). Specifically, to better visualize the effect of w, we measure the relative
change in HV Gain compared to no AIM (i.e., w = 1.0). We present these results in Figure 3. In most
merging methods, we see that decreasing w to even 0 benefits the model performance. However, in
TIES merging particularly, we see that decreasing w beyond 0.4 seems to degrade performance, and
setting w to the most extreme case of 0.0 does see some degradation in WIDEN as well. Given this, it
seems that in these experiments, a value of 0.4 balances the performance gains in methods responding
well to AIM and the potential degradation of methods that benefit less from AIM. However, given
this observation that in some cases pushing w to 0 still yields benefits, there may be some value in
exploring non-linear scaling of activation magnitudes and non-linear relaxation schemes that could
further boost performance in some cases.

To empirically validate the sensitivity to the calibration set, we conducted an ablation study on the
calibration set size. We applied AIM to the DARE TIES merge of all three Llama-2 experts from
Table 1, varying the number of calibration blocks from 1 to 256. As shown in Figure 4, the results
demonstrate that AIM is highly robust. The Hypervolume Gain (HV Gain) increases substantially
with just one block and stabilizes by 8 blocks (sourced from the Pile corpus Gao et al. [13]). This
confirms that the data overhead for AIM is minimal and the method is highly practical.



&0 7 Y S —
50 X = k= o 7
S (g 0.22 1
£
8 r g 0.21 1
E 30 '_o‘
. £ 020
£ 10 4 £ 018
A T
S A 0.16 1
-10 1 20 2t 22 23 4 5 26 7 2B
e T Calibration Set Size (blocks)
Task Arithmetic —v DARE Task Arithmetic —o- WIDEN .
DARE Ties 4 Ties Merging * AIM ----- Baseline
. . Figure 4: AIM’s Robustness to Calibration Set Size.
Figure 3: The Impact of the Relaxation Factor HV-Gain is plotted against the number of calibration
won Merged.Model Performance: This figure blocks (log scale) for the DARE TIES merge. The
plots the.relat{ve change in HV—Gal.n compared dashed line is the baseline performance without AIM.
to scenarios without AIM. The x-axis represents Significant improvement is achieved with small data,
1 — w, reflecting that decreasing w results in more and performance stabilizes at only 8 blocks.

relaxation. The plot indicates that for some tasks,
smaller values of w continue to yield benefits. An
w of 0.4-0.6 appears to strike a balance.

6 Conclusion and Outlook

In this work, we introduced Activation-Informed Merging (AIM) as a complementary algorithm to
existing model merging techniques for large language models (LLMs). We hypothesized that the
activation space of LLMs harbors useful information that is often overlooked in model merging, as
most existing methods operate purely on the weight space. To explore this potential information
in the activation space, we viewed the problem from a continual learning perspective and proposed
leveraging the activation space information from a task-agnostic calibration set. This approach
selectively preserves critical weights from the pre-trained model, mitigating catastrophic forgetting
while incorporating knowledge from fine-tuned models, yielding overall higher-performing models.

Through extensive empirical evaluations across multiple merging methods and benchmark tasks,
and model architectures (including the Llama-2 and Qwen-VL families), we demonstrated that AIM
consistently improves performance, often yielding superior results in comparison to the original merg-
ing methods it was applied to. These results empirically confirm our hypothesis on the importance
of the activation space. Notably, AIM boosted merged model performance by up to 40% in some
cases, underscoring the crucial role and the potential of activation information in merging methods.
Furthermore, our ablation study confirmed AIM’s robustness, showing significant gains even with
minimal calibration data (as few as 8 blocks), highlighting the method’s practical applicability. Our
findings strongly highlight the necessity and benefit of incorporating activation-informed strategies
when merging multiple fine-tuned models.

Moving forward, our findings open up several promising directions for future research. First, our
results indicate that even aggressively preserving salient weights of the pre-trained model is effective
across many merging scenarios. This highlights the promise for more advanced activation-informed
strategies and non-linear relaxation methods to potentially further enhance performance. Beyond the
pre-trained activations explored in this work, there is room to improve existing merging methods by
leveraging the broader activation space of the models being merged. So far, AIM has only considered
the activations of the pre-trained model, while the activations of the expert LLMs remain unexplored.
Future research should focus on developing methods that also encompass information from the
expert model activations. Additionally, in future works, more theoretically grounded approaches
for incorporating the activation space of LLMs in merging should be developed and tested. These
integrations will hold great value in improving the quality and performance of merging methods in
an increasingly competitive and ever more efficient landscape of LLMs, which could benefit from
smaller and more efficient yet more powerful models.

Overall, AIM serves as a robust and adaptable augmentation to existing LLM merging techniques,
offering a principled way to incorporate activation information for more effective model fusion.
By prioritizing the activation-aware perspective, we take a step towards more stable, efficient, and
generalizable merged models, demonstrated across different architectures and modalities, that better
leverage the strengths of multiple fine-tuned experts.
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A Reproducibility Details
Here we provide the specific details for reproducing the results presented in the paper.

Checkpoints: Firstly, we specify the publicly available checkpoints we use in our experiments.
Below is a list of checkpoints used and the links to the publicly available weights for these models:

* Base Model: https://huggingface.co/unsloth/llama-2-13b

* Code Model: https://huggingface.co/layoric/llama-2-13b-code-alpaca

¢ Math Model: https://huggingface.co/vanillaOVO/WizardMath-13B-V1.0

¢ Instruction Tuned Model: https://huggingface.co/WizardLMTeam/Wizard LM-13B-V1.2

A Note On Weights: The weights we use in our experiments may not be exactly identical to the
weights used in the experiments by Yu et al. [46] and Yu et al. [47], since the referenced weights for
WizardMath-13B are no longer available publicly, instead we use a publicly available copy of the
model.

Code and Data: Aside from the checkpoint, we provide our code and the link to the
publicly available calibration data we use in our work. Our code is publicly available at
https://github.com/ahnobari/ActivationInformedMerging and the calibration data can be found at
https://huggingface.co/datasets/mit-han-lab/pile-val-backup.
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B Ablation Detailed Results

Here we present the full results of the ablation study we conducted. Table 3 includes the granular
values for all benchmarks we ran for different values of w.

Table 3: Performance metrics for different methods with varying w values.

Method w HumanEval MBPP MMLU MATH GSMSK IFEval HV Gain
00 1951 200 5432 46 176 2624 0.1015
02 1951 286 5435 53 212 2537 0.1069
Ties Merging 04 2073 200 5446 57 237 2598 01143
06 2012 278 5425 66 321 239 01155
08 2073 278 5409 66 337 2407 01131
10 2134 292 5397 63 202 2695 0.1096
00 1890 204 5342 138 605 3549 02623
02 1646 200 5298 129 615 3497  0.2434
04 1585 270 5259 122 607 3367 02257
DARE Task Arithmetic —'c 57 270 5218 118 581 3395 02142
08 1402 22 5153 99 540 3269 01828
10 1159 196 5089 9.1 497 332 0.1604
00 2561 206 5331 120 594 3464 02669
02 2134 204 5311 121 587 3676  0.2590
DARE Tics 04 1951 286 5263 116 570 362 02426
0.6 1585 260 5222 101 542 3482 02019
08  14.02 240 516 100 531 3551 0.1917
10 1341 202 5115 87 515 3575 01717
00 1890 204 5342 138 605 3549 02623
02 1524 276 5297 130 598 3527  0.2296
Task Atithmetic 04 1524 274 5263 120 581 3388 02165
06 1524 254 5213 114 574 3329 0.2069
08 1341 218 Sl6l 102 562 3274 0.1862
10 1159 196 5120 9.0 527 3295 01643
00 2744 332 5526 140 649 3239 03027
02 2805 330 5516 142 656 3239 03066
WIDEN 04 2683 328 5498 144 640 3276 03013
06 256 334 5477 142 630 3206 02947
08 2622 326 5464 140 641 3174 02941
10 2500 332 5458 135 642 3144 02879
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C Sensitivity-Based Formulation Comparison

In this section, we present the results of running post-merging relaxation using the gradient-based
sensitivity-based formulation discussed in the main body. We run the relaxation scheme based
on gradients with a w = 0.4, which we use in AIM. Table 4 shows how performance changes
across benchmarks with gradient-based relaxation. We observe that the resulting performance
boost remains very close to activation-based relaxation, with HV gain largely unchanged, with
both gradient-based and pure activation-based boost trading blows evenly (see Table 1). Noting
this and given that activations alone do not come with significant memory and computational cost,
activation-based relaxation, which does not require computing gradients, is a more memory-efficient
and computationally inexpensive process.

Table 4: Model performance comparison across different benchmarks, after relaxation applied using the gradients
of the models with respect to the calibration data.

Method [ Models) T [ Humanbval MEBPP MMLO MATH GSMSK TFEval TV Gan
Base Models
B Base B 707 2750 5218 070 320 2510 B
Code - 17.07 3160 5291 6.00 24.10 2625 -
Instruction Tuned - 26.83 3480 53.41 7.50 43.40 35.67 -
ath - 1524 27.60 51.89 13.10 59.10 21.58 -
Merged Models
Codo + Inetraction Tuned No 7653 3240 - 7580 KEE ) 027
Yes 2927 (+9.09%) 36,00 (+4.65%) 830 (1.19%) 4620 (+0.87%)  32.00 (-4.25%)  0.28 (+2.49%)
Code + Math No 16.46 28.60 15.10 6470 2202 023
DARE Average | Yes 1585 (-371%)  29.60 (+3.50%) 1480 (-1.99%) 6410 (-0.93%) 2191 (-0.50%) 023 (-1.65%)
Instruction Tuned + Math No 5.49 19.00 9.80 54.30 3235 018
Yes 1220 (+122.02%) 2820 (+48.42%) 1290 (431.63%) 6220 (+1455%)  31.96 (-121%) 026 (+40.71%)
No 11.59 19.60 9.10 4970 3320 0.16
Code + Instruction Tuned + Math | ¢ 15.85 (+36.76%)  27.00 (+37.76%) 12.20 (+34.07%)  60.70 (+22.13%) 3359 (+1.17%) _ 0.23 (+40.59%)
- No 854 2350 ; 5410 3359 020
Instruction Tuned + Math Yes 15.85 (185.60%) 3020 (+26.89%) 1160 (126.09%)  57.80 (+6.84%)  35.63 (+5.13%) 0,26 (+31.22%)
Code + Instruction Tuned No 3049 3520 8.60 4620 33.28 028
DARE Ties Yes 3049 36.80 (+4.55%) 8.60 4720 (+2.16%) 3316 (-0.36%) 029 (+1.63%)
Code + Math No 17.07 27.40 51.92 1490 63.60 2253 023
Yes 1768 (+3.57%)  29.00 (+5.84%) 5261 (+133%) 1520 (+2.01%)  63.90 (+0.47%)  21.10 (:635%)  0.24 (+4.00%)
) No 13.41 2120 . 8.70 5150 3575 017
Code + Instruction Tuned + Math | yg 1951 (+45.49%) 28,60 (+34.91%) 1160 (+33.33%)  57.00 (+10.68%) 3620 (H126%)1 0.24 (+41.28%)
Codo + Inatraction Tuned No 2927 3350 360 7710 3160 028
: Yes 2088 (12.08%)  35.80 (+5.92%) 7.80 (930%) 4660 ((1.06%)  32.01 (+130%) 028 (+0.61%)
Instruction Tuned + Math No 427 2020 10.00 54.20 3131 0.1
Task Arithmetic Yes 8.54 (+100.00%) 2640 (+30.69%) 12.80 (+28.00%) 6130 (+13.10%)  32.62 (+4.18%) 024 (+34.52%)
s Code + Math No 18.29 28.60 15.00 6470 21.92 024
Yes 17.68 (-334%) 2920 (+2.10%) 1460 (2.67%) 6450 (031%) 2154 (173%) 024 (:2.65%)
No 11.59 19.60 5270 32.87 0.16
Code + Instruction Tuned + Math | y¢ 1524 (+31.49%)  27.40 (+39.80%) 58.10 (+10.25%)  33.91 (+43.16%) 022 (+31.97%)
No 1585 26,50 1230 62.60 216
Code+ Math Yes 15.85 28.60 (+6.72%) 1530(H6:99%)7 63.80 (+1.92%)  22.64 (+4.67%) 355%)
Instruction Tuned + Math No 28.05 34.60 8.70 4470 3404 023
“Ties Merging Yes 27.44(217%)  35.00 (+1.16%) 930 (+6.90%) 46,10 (+3.13%) 3451 (+1.38%) 025 (+6.38%)
s 2| Code + Instruction Tuncd No 16.4 234 52.70 2.7 540 24.48 X
: Yes 1524 (741%) 2420 (+2.54%)  53.15(+0.85%)  2.60(-3.70%) 520 (-370%) 2287 (:6.58%)  0.05 (+inf%)
) No 2134 2920 53.97 6.30 2920 2695 0.11
Code +Instruction Tuned + Math |y, 2920 54.46(+091%)  570(-952%) 2370 (-18.84%) 2598 (-3.60%) 0.1 (+4.33%)
Istraction Tuned + Math No 3040 5420 6.00 3082 030
Yes 32,00 (+5.26%) 5469 (+0.90%) 2%) | 6820 (+43.33%) | 3123 (+1.33%) | 031 (+2.54%)
Code + Math No 29.40 5335 1420 64.40 202 024
WIDEN Yes 2060 (+0.68%) 5336 (+0.02%) 1430 (10.70%) 6220 (3.42%)  23.95(029%) 024 (122%)
Code + Instruction Tuned No 35.60 54.90 8.30 45, 3042 027
Yes 3460 (2.81%) 5497 (+0.13%) 820 (-120%) 4410 (:2.00%)  31.60 (+3.88%) 026 (-0.93%)
No 33.20 54.58 13.50 6420 44 ;
Code + Instruction Tuned + Math | v 32.80 (-1.20%) 5498 (:0.73%) 1440 (+6.67%)  64.00 (-031%) 3282 (+439%)  0.30 (+4.70%)
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: claims made by the paper are quantitative and justified by experiments.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: experiments clearly state outcomes and performance, and future work needed
is discussed.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: [NA|
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: details on training procedures and experiments are made clear in the appendix
and main body. Code is also provided for exact replication.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
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Justification: code is provided to replicate the results, and the public checkpoints used are
clearly mentioned.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiments and what each benchmark measures and how it is measured are
made clear.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Experiments in these settings are not accompanied by error bars, since a single
model is used to run benchmarks and not a stochastic process that would involve differing
results across runs.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate the type of hardware used in benchmark experiments. No training
is needed so that is not mentioned.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: we have verified adherence to the code of conduct.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No relevant societal impacts unique to this paper (based on existing public
LLMs).

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: based on already public models so not applicable.
Guidelines: This paper does not contain such risks.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All sources of external data and model are mentioned.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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15.

16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Link to anonymized code is made available.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: no crowd-sourcing is involved in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: no crowdsourcing or human subjects involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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