
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents

Anonymous

Abstract

Augmenting large language models (LLMs) with external tools has
emerged as a promising approach to extend their utility, enabling
them to solve practical tasks. Previous methods manually parse tool
documentation and create in-context demonstrations, transforming
tools into structured formats for LLMs to use in their step-by-step
reasoning. However, this manual process requires domain expertise
and struggles to scale to large toolsets. Additionally, these meth-
ods rely heavily on ad-hoc inference technique or special tokens
to integrate free-form LLM generation with tool-calling actions,
limiting the LLM’s flexibility in handling diverse tool specifications
and integrating multiple tools.

In this work, we propose AutoTools, a framework that enables
LLMs to automate the tool-use workflow. Specifically, the LLM au-
tomatically transforms tool documentation into callable functions,
verifying syntax and runtime correctness. Then, the LLM integrates
these functions into executable programs to solve practical tasks,
flexibly grounding tool-use actions into its reasoning processes.
Extensive experiments on existing and newly collected, more chal-
lenging benchmarks illustrate the superiority of our framework.
Inspired by these promising results, we further investigate how
to improve the expertise of LLMs, especially open-source LLMs
with fewer parameters, within AutoTools. Thus, we propose the
AutoTools-Learning approach, training the LLMs with three
learning tasks on 34k instances of high-quality synthetic data, in-
cluding documentation understanding, relevance learning and func-
tion programming. Fine-grained results validate the effectiveness of
our overall training approach and each individual task. Our meth-
ods are an important step towards the use of LLMs for solving
real-world tasks with external tools.

Keywords

Large Language Models, Tool learning

1 Introduction

Large language models (LLMs) have shown promising capabilities
such as in-context learning and real-world planning [1, 34, 39]. To
further increase their utility, the tool learning task [19, 23] is pro-
posed to augment LLMs with external tools, e.g., a Weather App,
enabling them to interact with the physical world [2, 18, 37], e.g.,
look up the daily weather. And most recent work further integrates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

LLM

Thought: planning

Action: ToolName[{…}]

× N times...Documentation

Toolset

Unified format
Toolset

Function library

Usage instance

for i in [1,2,3,4]:
rain = func1(..)

if not rain:
hotel = func2(..)Documentation

Large
Toolset

LLM

LLM

Craft
demonstrations

Encapsulate

Program

generation

as ReAct/CoT... template

(a) Previous tool-use framework

human experts

Reformat

(b) Ours AutoTools framework

Figure 1: The comparison between conventional tool-use flow

(a) and our proposed framework (b).

tool-use LLMs with advanced inference techniques, such as Re-
Act [28, 33, 43] and tree-based search [20] or A-star algorithm [51],
allowing them to server as agents to solve practical tasks.
Augmenting LLMwith tools.Most previous work usually designs
specific tool-use workflow for LLMs, integrating diverse tool-calling
actions into the LLM generation process to solve practical tasks.
Typically, they first pre-process toolset into a unified structure by
manually understanding the development documentation of tools,
such as web requests [28] or customized interfaces [23, 26], e.g.,
translate[source] -> target. Based on human expertise, de-
velopers craft elaborated instructions and few-shot demonstrations,
instructing LLMs pre-defined usage templates and steering the gen-
eration format of LLMs. As shown in Figure 1, the LLM are guided
to select useful tools in a step-by-step procedure, generate argu-
ments for each selected tool in a pre-defined, customized format,
and incorporate the response into subsequent action predictions.

However, these methods usually suffer from two challenges in
realistic scenarios. First, it requires intensive expertise to effectively
parse tool documentation and create valuable usage demonstrations,
struggling to scale to large toolsets in practical applications. Con-
sequently, LLMs show diminished performance when in-context
examples are incomplete or missing, which potentially limits the
scope of available tools to LLMs. Second, the tool-use workflow of
LLM it is also ad-hoc to manually define the tool-use procedure
and tool-calling format for LLM, showing limited generalization
to diverse tool specifications. For example, ReAct [43] and ToolAl-
paca [31] separately utilize each tool step-by-step, restricting their
flexibility in integrating multiple tools dynamically in a once tool-
calling action; The tool-calling template introduced in ToolLLM [20]

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anonymous

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

is far from that in ToolFormer [23], struggling to apply the Tool-
LLM to the resource of ToolFormer. Therefore, a natural question
is raised:

Can we empower LLMs to automate tool-use flow and

effectively manipulate diverse tools in the wild?

LLMs as automated tool agents. In this work, we propose a novel
framework named AutoTools, which diverges from previous work
by enabling LLMs as agents to automate tool-use workflow. As
shown in Figure 1(b), AutoTools consists of two stages: (1) Tool
Encapsulation and (2) Tool Programming.

In the Tool Encapsulation stage, AutoTools automatically trans-
forms the toolset into a list of well-structured, callable functions
with generated demonstrations. Specifically, for each tool, the LLM
is provided with its raw documentation and is induced to encap-
sulate it into a callable function. To verify the correctness, besides
the syntax compilation, the LLM is stimulated to generate function-
calling instances for each function to test the runtime correctness.
Since relevant tools are the same resource and show strong input-
output dependencies, we also propose an integration verification
method, which enables LLM to integrate relevant functions to gen-
erate verification. The correct functions are augmented with its test
instance as a usage demonstration and are gathered as a function
library for the subsequent stage.

In the Tool Programming stage, the LLM is prompted to read
the encapsulated functions and flexibly integrate them through a
unified programming language (e.g., Python). Concretely, we first
load the encapsulated functions to initialize an execution environ-
ment. Then, the LLM is equipped with the created function library
and generates executable programs as a solution. The programs
sequentially call a chain of functions, parse useful intermediates
to resolve input-output dependencies among functions, and ulti-
mately derive the final answer. By enabling the LLM as tool agents
above, AutoTools can benefit from the LLM’s powerful abilities to
transform abstract tool documentation into executable functions,
yielding promising results in our pilot experiments.

Moreover, we further investigate how to improve the LLM’s
expertise within AutoTools, especially for LLMs with fewer pa-
rameters. We propose AutoTools-Learning, a multi-task learning
approach that trains the LLM as an automated tool agent from
synthetic datasets. We design three core learning tasks: (1) docu-
mentation understanding, where the LLM is trained to parse di-
verse tool documentation and generate structured functions; (2)
relevance learning, where the LLM learns to select relevant tools
based on a query and a candidate tool list; and (3) function learn-
ing, where we optimize the LLM to call in-context functions and
solve practical queries. To enable this learning process, we filter
and synthesize training data from large-scale public resources for
each task, transforming it into a unified format. This enables us to
collect high-quality examples without intensive human annotation.
ExperimentsWe first evaluate our framework on two established
benchmarks: RestBench [28] and ToolBench [20]. We also create
a new benchmark named AutoTools-Eval, including 224 tasks
across 107 real-world tools, evaluating our framework in more
challenging scenarios. AutoTools-Eval diverges from the existing
benchmarks by its more long-term planning tasks, complex tool
documentation, and strong input-output dependencies among tools.

The results show that (1) LLMs like GPT-4 exhibit strong capabili-
ties in understanding abstract tool documentation and generating
callable functions; (2) AutoTools substantially surpasses previ-
ous baselines with higher efficiency, and (3) AutoTools-Learning
further enhances the expertise of LLMs within AutoTools.
Contributions Our contributions are as follows: (1) We propose
AutoTools, a framework combining tool encapsulation and tool
programming, enabling LLMs to function as automated tool learn-
ers. (2) We introduce AutoTools-Learning, a multi-task learning
approach, and release 34k high-quality training data, further im-
proving LLMs within AutoTools. (3) Extensive experiments on
both existing and newly collected datasets validate the superiority
of our method. We will open-source AutoTools for public use.

2 Related Work

Tool learning with foundation models Augmenting LLMs with
real-world tools has been proven a promising method for enhancing
their utility and enabling interactions with the physical world [2,
10, 18, 25]. To ground LLM with various tools, previous work first
manually read development documentations of specific tools and
process them into callable functions. In solving practical tasks,
LLMs use tools by mimicking the handcrafted usage defined in
their system prompts, typically generating parameters in structured
formats to match predefined functions. Common practices include
generating JSON (e.g., RestGPT [28], ToolLLM [20]), special tokens
(e.g., ToolKenGPT [8]), or private function-calling messages (e.g.,
OpenAI’s GPT). However, manually converting various tools into
executable functions and carefully designing in-context examples
for LLMs requires domain knowledge and experience, making it
large to scale to massive toolsets. In this work, we investigate LLMs’
expertise to automatically encapsulate tools into directly callable
functions, thereby automating the above workflow.
Programming-enhanced LLMs. Recent work has shown the po-
tential of using programming languages (PLs) to enhance the plan-
ning and reasoning capability of LLMs [11, 35, 41]. For example,
previous work enables LLMs to generate a programmatic chain of
thought to solve complex numeric reasoning tasks [3, 5], which ex-
hibits remarkable performance. Compared with natural languages
(NLs), recent studies also show that LLMs can generate Python
code snippets as actions [33] or iteratively refine existing code [47].
In tool learning tasks, generating PLs benefits LLMs by integrating
widely used packages such as TensorFlow [17] or Python pan-
das [33]. However, most existing work limits LLMs to using only
well-processed functions, either manually simplified and encapsu-
lated or frequently encountered during pre-training. In this work,
our AutoTools takes a further step by enabling LLMs to act as
more automated tool-use agents, automatically generating directly
callable functions grounded in corresponding tool documentation
and creating demonstrations for in-contxt learning.
Learning from external feedback. Training LLMs using syn-
thetic data is a widely-used method to improve their task-solving
abilities and align them with following instructions [13, 16, 36].
Common practices for data synthesis include: (1) filtering data from
large corpora like Common Crawl [32], (2) refining data quality
through manual or automated processes [50], and (3) using LLMs
to generate training data from scratch, as seen in approaches like

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: An overview of the proposed framework AutoTools, in which the LLM (1) automatically encapsulates diverse tools

into unified callable functions and (2) directly utilizes these functions through programming.

SELF-instruct [34] and Magpie [40]. In the tool-learning task, previ-
ous work typically uses the third approach, specifically employing
self-instruct [34] techniques to synthesize massive query-solution
pairs [31, 42]. For example, ToolLLM [20] and Confucius [6] prompt
LLMs to generate tool-use queries, then supplement them with
chain-of-thought solutions that interleave tool names, tool argu-
ments, and tool responses. Despite their advancements, generating
data from scratch suffers from low diversity and uncontrollable
quality [4, 13]. In contrast, our AutoTools-Learning method syn-
thesizes training data by filtering and reformatting various estab-
lished datasets. Moreover, different from previous tool-use training,
AutoTools-Learning comprises three learning tasks, providing
fine-grained supervision for tool understanding, query-tool rele-
vance, and programmatic tool-use skills.

3 The Proposed Method: AutoTools

Our framework AutoTools is proposed to empower LLMs as au-
tomated tool agents to unified diverse tool-use specification and
flexibly integrate them for task-solving, minimizing manual guid-
ance. As illustrated in Figure 2, AutoTools consists of two core
stages: (1) tool encapsulation and (2) tool programming. In the first
stage, the LLM understand the development documentation 𝑑 of
each tool 𝑡 and encapsulates it into a well-structured, callable func-
tion 𝑓 . To verify the runtime correctness, we propose the integration
verification method, which dynamically generates test instances
to integrate relevant functions and check their execution result.
The correct functions are augmented with test instances and gath-
ered as a function library. In the second stage, instead of using
original tools, the LLM directly integrates encapsulated functions
by generating executable programs. Compared to other tool-use
frameworks, AutoTools (1) automatically transforms abstract tool
documentation into a callable function library and (2) allows the
LLM to flexibly integrate multiple tools with different usage using
a unified programming language.

3.1 Encapsulation: Tools

LLM−→ Functions

We first introduce how to encapsulate a single tool into a well-
structured function. As shown in Figure 2 (1), the LLM takes the
tool documentation 𝑑 as input, which provides meta-information

in general natural language, such as tool arguments, functional-
ity, optional access URLs and state code. The LLM aggregates the
natural language descriptions of how to use the tool and grounds
it to transform the abstract documentation into a directly callable
function. Formally, this process can be represented as:

𝑓 = M𝜃 (𝑡, 𝑑,I𝐸), (1)

where I𝐸 represents the instruction for our encapsulation process.
We use raw documentation as input 𝑑 since it can be easily ob-
tained from official sources (e.g., RapidAPI platforms), minimizing
the manual effort required by users in practical interactions. Since
the LLMmay hallucinate andmiss necessary tool argument [52], we
automatically compile the generated function into syntax tree [17]
for syntax check. If any parameter name or type in the function
signature does not exactly match the definitions in the tool docu-
mentation, the function is considered to fail the syntax check. If an
error occurs, we repeat the Eq 3.1 for up to𝑚 times.

3.2 Integration verification: Funcs

verify

−→ Func lib

Since syntax compilation fails to detect runtime errors in functions,
it is crucial to design function-calling instances and verify the ex-
ecution results. An intuitive approach to automate this process
is utilizing the creative thinking abilities of LLMs [9, 24, 30], e.g.,
stimulating them to brainstorm test instances for each function
individually. However, in large toolsets, tools within the same appli-
cation often exhibit strong input-output dependencies. For example,
a tool may require specific, private arguments derived from the
output of another tool (e.g., retrieving movie credits relies on a
unique ID as input). To address this, we propose integration verifi-
cation, which identifies input-output dependencies between tools
and verifies each encapsulated function by testing it in combination
with its prerequisite functions.

Given a list of tools 𝑇 , we sequentially encapsulate each tool 𝑡𝑖
into a function: 𝑓𝑖 = M𝜃 (𝑡𝑖 , 𝑑𝑖 ,IE), and initialize a cacheH to store
the correctly verified functions. The initial order can be a random
permutation. To enable our integration verification, the LLM selects
functions F̃ relevant to 𝑓𝑖 from the cache H :

F̃ = M𝜃 (𝑓𝑖 , F ,IRel) . (2)
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anonymous

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

encapsulate

def t1(name: str) -> id:
```get movie id by name```

encapsulate

def t2(id: str) -> int:
```get movie credit by id```

def t1(..)

generate

empty

select
from cache

Encapsulate & Verify

𝑡! 𝑡" 𝑡# .. 𝑡" 𝑡# ..
cache cache

def t1

verify

empty cache, no select

instancegenerate verify

𝑡$

instance

𝑡$

𝑡! Encapsulate & Verify 𝑡"

LLM LLM

Figure 3: Details for our integration verification (Section 3.2).

Here,IRel is the instruction for relevance selection and the functions
in F̃ can be empty ifH is empty or the 𝑓𝑖 has no private argument
requirements. Then, the LLM obtain the necessary input parameters
for function 𝑓𝑖 using F̃ and generate a test instance 𝑒𝑖 :

𝑒𝑖 = M𝜃 (𝑓𝑖 , F̃ ,IE) (3)

If function 𝑓𝑖 is verified as correct, it is moved from T to H . We
repeat this process for each tool in T along the initial order. This
iterative traversal continues until T is empty or up to the maximum
traversal times. We augment the correct functions from cacheH
with its instance as an in-context demonstration.

3.3 Tool Programming: LLM

Func lib−→ solution

In the tool programming stage, AutoTools allows LLM to seam-
lessly integrate the executable functions for task-solving instead
of using abstract tool documentation as previous work. Using the
pre-encapsulated and verified functions can reduce potential misun-
derstanding towards abstract tool documentation. Besides, different
from using customized output templates or special token, the Au-
toTools allows LLMs to directly manipulate multiple functions
using an unified programming language. The LLM flexibly inte-
grates function-calling actions into its generation by generating
executable programs.

Given a practical query 𝑞, the LLM is equipped with its generated
function library F = {(𝑓𝑖 , 𝑐𝑖 , 𝑟𝑖) | 𝑖 ≤ |F |}. Here, 𝑓𝑖 is a callable
function with a well-structured docstring, 𝑐𝑖 provides a default
usage example, and 𝑟𝑖 specifies the expected execution result type.
We first load these functions into the execution environment 𝐸 and
initialize a session to interact with the LLM. We instruct the LLM
M𝜃 to generate an executable program as a solution 𝑠 . The program
𝑠 sequentially calls pre-encapsulated functions, parses execution
results for further use, and simplifies the task-solving process with
concise programmatic control flow statements like for-loop. The
final result 𝑟 is derived by executing the generated program, which
returns either the correct result or error messages. During the inter-
action, our execution session caches variables defined by the LLM
for reuse in subsequent programs. The session terminates when the
LLM outputs Finish. Formally, this process can be formulated as:

𝑠 𝑗 = M𝜃 (𝑞, F ,IP, {(𝑠< 𝑗 , 𝑟< 𝑗)}) (4)

Here, the IP indicates a concise instruction for program generation
operation, which is provided in Appendix A.5. We set the maximum
interaction number as𝑚.

4 Learning with AutoTools

Our AutoTools empowers the LLM as a tool agent, which benefits
from the LLM’s powerful abilities to transform abstract tool docu-
mentation into executable functions. In our pilot experiment, LLMs
like GPT-4, when equipped with AutoTools, show substantial
improvements. Motivated by these promising results, we further
investigate how to improve the LLM’s expertise within AutoTools,
especially for open-source LLMs with fewer parameters. To achieve
this, we propose AutoTools-Learning, which consists of three
learning tasks in which the LLM M𝜃 learns to encapsulate tools
into functions and effectively utilize these functions. In this section,
we introduce the objective of each learning task and detail how to
synthesize the training data to enable this learning process.

4.1 Learning Tasks and Objectives

We propose the following three learning tasks.
Tool understanding In this task, we train the LLM to comprehend
complex tool documentation, which provides raw information on
how to invoke the tool. Formally, given a tool 𝑡 , the LLM is trained
to generate a well-structured function 𝑓 based on the tool docu-
mentation 𝑑 . It can be formulated as:

LUnd = − log 𝑃𝜃 (𝑓 |IE, 𝑡, 𝑑) (5)

The IE indicates the instruction for encapsulation operation men-
tioned in Eq 3.1. The function 𝑓 encapsulates detailed tool-calling
information from 𝑑 , such as web request headers, base URLs, and
exception handling. Additionally, it includes a standard function sig-
nature and a docstring to demonstrate its arguments and expected
execution results.
Relevance learning Since solving a user’s query in practical sce-
narios typically involves multiple tools, we design a relevance learn-
ing task, teaching the LLM how to select the most useful tools from
a candidate toolset. Given a list of tools F with detailed docstring,
we formulate this learning process as a generative task, where the
LLM is trained to autoregressively generate the identifiers (i.e.,
names) of relevant functions. Assume the F̃ = 𝑓𝑖 | 𝑖 ≤ |F̃ | is the
ground truth function relevant to a query 𝑞, we concatenate the
identifiers of relevant functions as 𝑦 = 𝑓1 ⊕ 𝑓2 ⊕ · · · ⊕ 𝑓 | F̃ | , Then,
we apply the standard language modeling loss:

LRel = −
|𝑦 |∑︁
𝑡=1

log 𝑃𝜃 (𝑦𝑡 |𝑦 (<𝑡) ,IRel, 𝑞, F), (6)

where IRel is the task instruction for relevance selection. This list-
wise selection manner allows the LLM to compare multiple similar
tools and determine the query-tools relevance during the token-by-
token prediction process [29].
Function learning Our function learning grounds the LLM in the
practical task-solving process with the assistance of the provided
functions. Startingwith a user query𝑞, we establish amulti-turn ses-
sion between the LLM and the execution environment. Specifically,
the LLM is trained to generate programs that call various functions
F = {𝑓𝑖 |𝑖 ≥ |F |} provided in-context, receiving execution results

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: The data scale of our synthetic training dataset and

detailed average statistics per example.

Statistic

The data scale 34,183
The average length of input 664.80
The average length of output 264.40
The average number of candidate tools 8.23
The average turn of interaction 2.66

from the environment to determine its next step. Assuming ℎ 𝑗 is
the interaction history up to turn 𝑗 , the optimization objective for
𝑗th turn can be formulated as:

LFunc = − log 𝑃𝜃 (𝑐 𝑗 |IFunc, 𝑞, F , {(𝑐< 𝑗 , 𝑟< 𝑗)}) (7)

By generating executable programming language, the LLM can
inherently manipulate tools using built-in control flow statements,
(e.g., for-loops and if-else statements), and store useful intermedi-
ates for subsequent reuse.

4.2 Training Data Synthesis

For the tool understanding task, we first collect a large number
of tools from the ToolBench [20] dataset. Each tool is originally
crawled from the RapidAPI platform and has been manually supple-
mented with its callable function, making it inherently similar to the
setting of this learning task. For the relevance learning task, we
gather data from various tool retrievals datasets, such as COLT [21]
and APIGen [15], where each example consists of a query, a list
of candidate tools, and the target tools. We first transform these
tools into a unified function through our encapsulation operation
in Section 3.1. Then, we unify this data into a listwise selection
format similar to RankGPT [29]. For the function learning task,
we collect step-level task-solving trajectories from existing tool-use
datasets. We then use a powerful LLM, i.e., GPT-4o, to generate
program solutions by referencing the originally provided ground
truth, aligning the data with our function learning setting.

To ensure data quality, we apply strict filtering strategies, such as
removing examples with empty tool responses, unsolvable queries,
or incorrect tool-calling parameters. Ultimately, we collect 7,243/12,
251/14,689 examples for the three tasks, respectively. We also refor-
mat these datasets into a unified interactive format, similar to prior
work [45, 48]. Each formatted example begins with a system instruc-
tion describing the task and initial input, followed by interactions
between two roles: the user and the LLM, or the LLM and the execu-
tion environment. We report the statistics of the final training data
in Table 1 with additional details provided in Appendix A.1. Our
overall optimization combines the three tasks, enhancing the LLM’s
expertise in AutoTools through a multi-task learning approach.

5 Dataset and Evaluation Setup

5.1 Dataset

Existing Datasets We first conduct experiments on two widely
used benchmarks: RestBench [28] and ToolBench. RestBench con-
sists of two subsets: (1) TMDB, a high-quality, human-annotated
dataset comprising 54 movie-related tools, and (2) Spotify, a dataset

Table 2: The comparison between our newly collected bench-

mark AutoTools-Eval with existing benchmarks (test set).

Dataset # Task # Tool Path len. Doc len.

AutoTools-Eval 224 7.31 107 552.92

RestBench [28] 157 2.36 94 716.69
ToolBench [20] 600 2.56 1806 159.47
ToolBench-sam [38] 895 5.35 232 66.98
APIbank [12] 272 1.99 101 75.85
ToolEyes [44] 382 2.00 568 72.06

containing 40 music-related tools. ToolBench includes various prac-
tical tasks across diverse scenarios. Each tool in the RestBench is
paired with a lengthy documentation, making it inherently appro-
priate to benchmark the tool understanding capability of LLMs.

A new benchmark – AutoTools-Eval As shown in Table 2,
to the best of our knowledge, no existing benchmarks containing
complex tools with complex tool documentation while involving
long-term planning tool-use tasks. Therefore, we build a new test
set named AutoTools-Eval to fill this gap. We first collect 107
tools with long documentation across 4 real-world domains, e.g.,
Weather and Game, from 16k public tools of the ToolBench [20]
dataset. Then, we invite 7 well-trained experts working on NLP re-
search to provide solutions for 224 complex task. Each task requires
long-term reasoning and at least 7 times tool-callings. AutoTools-
Eval also diverges from existing benchmarks by its strong inter-
connection among the tools (the arguments of subsequent tools can
only be extracted from the response of previous tools) and stability
(the task solution is not time-varying). We provide more details of
AutoTools-Eval in Appendix A.3.

5.2 Evaluation metrics

Following previous work [20, 27, 28, 42], we evaluate the task-
solving performance of our AutoTools and tool-use framework
using the following metrics. For RestBench, we use three evaluation
metrics including: (1) Success Rate (Success%), which measures
whether all the required tools (ground truth tools) are correctly
called to solve the task [28, 42]; (2) Correct Path Rate (Path%), which
calculates the proportion of ground truth tools in model-generated
tool callings; (3) Correct Tool Precision (Prec%), which calculates
the precision score between the model-generated tool callings and
ground truth tool sequence. For ToolBench, we also use the Pass
Rate as a metric following its official evaluation script, which eval-
uates whether the model successfully completes a solvable task or
try necessary tools but give up a unsolvable task. Additionally, to
evaluate the LLMs’ performance in encapsulating tools, we use the
number of correctly encapsulated tools as a evaluation metric.

5.3 Baselines

Wemainly compare ourAutoToolswith the well-known baselines,
including: (1) ReAct [43], which prompts LLM to generate the chain-
of-thought and actions in an interleaved manner; (2) CodeAct [33],
which prompts LLM to iteratively generate code snippets as ac-
tions to call manually demonstrated tools. (3) ToolLLM-DFSDT[20],

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anonymous

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

which enhances LLMs with the Depth First Search-based Decision
Tree (DFSDT) to select tools to solve a task; (4) RestGPT [28], which
includes a coarse-to-fine planning module and a tool executor; (5)
ConAgents [27], which enables the cooperation of three special-
ized LLMs to solve complex tasks. For further comparison, We also
establish two baselines, i.e., ReAct@3 and ToolLLM@3, which are
up to three times runs of their vanilla method (ReAct or ToolLLM)
until the input task is successfully completed.

We follow the official implementation for each baseline method,
providing LLMs with well-demonstrated usage and detailed in-
struction in their system prompt to master the tool usage. And we
mark the baseline which relies on OpenAI’s official function-calling
technique1 with †. Besides, following previous work [20, 31], each
evaluation task is officially paired with a candidate toolset about
20 tools as the input for all the methods. Each toolset contains the
required tools (ground truth) and randomly sampled tools.

6 Experimental Results

In this section, we conduct extensive experiments to answer the
following research questions:

RQ1: Can LLMs understand documentation and automatically
encapsulate functions?

RQ2: To what extent does our AutoTools improve the perfor-
mance of LLMs?

RQ3: To what extent does AutoTools-Learning enhance the
ability of the LLM in AutoTools?

RQ4: Is AutoTools more efficient for task-solving compared to
existing approaches?

6.1 RQ1 – Performance on tool encapsulation.

We first investigate the LLMs’ expertise in tool encapsulation. For
comprehensive evaluation, we conduct experiments on a series of
widely used LLMs, including: (1) GPT-4-turbo, (2) GPT-3.5-turbo-16k,
(3)Mixtral-8x7B, (4)Mistral-7B-instruct, and (5) Llama-3-8B-instruct.
Specifically, we report the number of correctly encapsulated func-
tions as the evaluation metric. The sampling number 𝑛 is set to 3,
and the maximum traversal number is set to 4.

Experiment results Table 3 shows the number of correctly
encapsulated tools. We observe that powerful LLMs, such as GPT-4,
can encapsulate almost 90%∼95% tools into well-structured func-
tions, exhibiting remarkable performance. Besides, the open-source
model Mixtral-8x7B correctly encapsulate 82.5% to 88.2% tools into
functions, achieving promising results. These findings illustrate
that LLMs are capable of understanding tool documentation and
generating callable functions. A potential explanation is that LLMs
have been trained on large-scale web corpora that include diverse
code and API documentation resources, allowing them to acquire
the necessary understanding skills during the pre-training stage.
Ablation study. In our experiment, we verify the correctness of
the encapsulated functions via syntax compilation (Section 3.1)
and integration verification (Section 3.2). We compare our vanilla
method with two ablative variants: (1) w/o syntax, which removes
the syntax compilation, and (2) w/o integrate, which sequentially
encapsulates each tool without integrating relevant tools. As shown
in Table 3, in terms of the number of correct encapsulation numbers,
1https://platform.openai.com/docs/guides/function-calling

Table 3: The number of correctly encapsulated tools using our

vanilla method and two variants on benchmarks (test set).

Ours-Eval indicates our collected dataset AutoTools-Eval.

Backbone TMDB Spotify Ours-Eval ToolBench

Totally 54 40 107 3211

gpt-4-turbo 54 38 102 3071
mixtral-8x7B-inst. 48 35 95 2793
mistral-7B-inst. 45 32 92 2647
Llama-3-8B-inst. 42 32 90 2582
gpt-3.5-turbo-16k 54 38 98 2990
- w/o syntax 50↓4 35↓3 91↓7 2497↓493
- w/o integrate 47↓7 17↓21 87↓11 2655↓335

we observe 3-7 point decreases for w/o syntax, which indicates that
the LLMs may fail to generate a correct program at one pass. We
further analyze the error cases and find that LLMs may halluci-
nate by generating non-self-contained functions that depend on
undefined or randomly fabricated variables. Besides, we find a sub-
stantial decrease between our vanilla method and the w/o integrate
variant. These results demonstrate the necessity of optimizing the
integration of the function with strong input-output dependence.

6.2 RQ2 – Overall Performance

The results of RQ1 demonstrate that LLMs show promising capa-
bility in automatically encapsulating tools into callable functions.
In RQ2, we further evaluate the LLMs’ expertise in manipulating
pre-encapsulated functions to solve practical tasks within the pro-
posed AutoTools. We set the maximum interaction turns to𝑚 = 5
(Section 3.3) and conduct comprehensive experiments on LLMs
with varying parameter scales.

Results on existing benchmarks As shown in Table 4, the
LLM, when equipped with our framework, surpasses all the base-
lines on the RestBench and ToolBench benchmark across all metrics.
For example, AutoTools achieves 89.00% in success rate metrics
on the TMDB (RestBench) dataset, which substantially improves
both the commonly used ReAct and the more advanced ToolLLM.
Table 5 further illustrates that our framework achieves the best
performance with various backbone LLMs, i.e., the Mistral-8x7B
and GPT-4. These results indicate that our framework effectively en-
ables LLM to master executable functions and effectively integrate
them to solve complex tasks. The performance of two runs is tested
using a two-tailed paired t-test where no significant difference is
found (𝑝 > 0.05), showing the stability of our method.

Results on AutoTools-Eval Table 4 presents the results on
our AutoTools-Eval benchmark. We find that our AutoTools-
Eval poses a substantial challenge for previous baselines, with
the best performance only achieving a 44.70% success rate using
GPT-3.5 as the backbone. In contrast, our method improves the
success rate to 60.21%, representing a 15.51 point increase. This
improvement is attributed to our AutoTools framework, which
grounds LLMs with diverse tools by enabling them to integrate pre-
encapsulated functions through programming. The LLM generates

6

https://platform.openai.com/docs/guides/function-calling

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Experiment results on three datasets with gpt-3.5-turbo as the backbone. The Path Rate, Precision, and Success%

indicate Correct Path Rate, Correct Path Precision, and Successful Rate metrics.
∗
The Precision of ToolLLM is substantially

lower than other baselines since it employs a DFS search algorithm to repeatedly call incorrectness tools instead of stopping.

Method

TMDB (RestBench) Spotify (RestBench) AutoTools-Eval ToolBench

Success% Path Rate Precision Success% Path Rate Precision Success% Path Rate Precision Pass Rate
gpt-3.5-turbo-16k

ReAct† [43] 61.00 77.13 52.30 50.88 74.64 44.79 22.76 60.75 68.03 39.39
CodeAct [27] 63.00 80.91 83.72 54.30 76.64 79.81 27.82 57.93 66.23 -
ToolLLM† [20] 72.00 78.29 49.41 61.40 82.82 25.33∗ 42.14 71.02 65.24 66.39
RestGPT [28] 65.00 77.49 80.15 64.91 73.94 88.71 26.83 40.95 62.21 63.88
ConAgents [27] 76.00 78.29 82.31 63.16 78.21 82.71 60.21 78.31 72.45 69.84
ReAct@3† 70.00 80.96 48.01 59.65 81.80 30.48 28.35 66.66 66.21 66.12
ToolLLM@3† 74.00 83.29 45.41 66.67 83.41 23.73 44.70 73.85 60.77 68.77
AutoTools (ours) 89.00 84.71 83.87 78.95 78.54 91.46 60.21 78.31 72.45 75.21

Table 5: Experiment results on more widely-used LLMs to

validate the effectiveness of our AutoTools.

Method

TMDB AutoTools-Eval

Success% Path Rate Success% Path Rate
gpt-4-turbo

ReAct† 77.00 86.05 25.99 65.98
ReAct@3† 80.00 89.21 30.98 67.55
ToolLLM@3† 82.00 90.62 50.46 76.73
Ours 94.00 92.68 65.74 83.54

mixtral-8x7B-instruct

ReAct 24.74 73.34 10.53 41.37
ReAct@3 37.88 76.85 18.95 52.40
ToolLLM@3 45.00 74.40 22.54 51.85
Ours 58.00 78.17 29.87 59.14

Llama3-8B

ReAct@3 15.00 56.25 0.00 25.59
ToolLLM@3 15.15 50.51 1.74 31.04
Ours 18.00 54.31 5.36 36.24

mistral-7B-instruct

ReAct@3 12.00 57.10 4.35 35.95
ToolLLM@3 18.00 60.14 5.09 37.32
Ours 23.00 59.62 10.71 40.31

directly executable programs, flexibly integrating multiple tool-
calling actions into the long-term reasoning process.

Analysis on interaction turns. We further investigate the
LLM’s performance as the maximum interaction turns𝑚 vary from
1 to 5, with the results shown on two datasets in Figure 4. On the
AutoTools-Eval dataset, we observe an increasing success rate
as 𝑚 shifts from 1 to 4, followed by a relatively stable trend as
𝑚 increases from 4 to 5. These results indicate that the LLM can
correctly call the required tools and revise errors in approximately
three steps. Given that each task in AutoTools-Eval requires an
average of 7.31 tool calls (see Table 2), our AutoTools enables
the LLM to generate executable programs that directly integrate
multiple functions. A similar trend is observed in the TMDB dataset,

0

20

40

60

80

100

1 2 3 4 5

Iteration turns

TMDB

0

20

40

60

80

1 2 3 4 5

Iteration turns

AutoTools-Eval

Ours

ReAct ReAct

Ours

Figure 4: The step (turn) level performance evaluation.

Table 6: Ablation study of our AutoTools-Learning. We

investigate the effectiveness of each learning task.

Method

TMDB AutoTools-Eval

Success% Path% Success% Path%

mistral-7B-instruct

Ours (vanilla) 23.00 59.62 10.71 40.31
Ours (trained) 29.00 64.10 16.52 44.56

- w/o L
Und

26.00↓3.0 62.13↓2.0 14.29↓2.2 42.35↓2.2
- w/o L

Rel
26.00↓3.0 61.04↓3.1 15.18↓1.3 41.37↓3.2

- w/o LFunc 25.00↓4.0 62.76↓1.3 13.39↓2.1 42.52↓2.0

where the LLM completes tasks in just 2 turns, compared to an
average task path length of 2.36 in TMDB.

6.3 RQ3 – Further improvement

Our AutoTools-Learning is proposed to further improve the
LLM’s expertisewithinAutoTools, which trains open-source LLMs
using synthetic examples through the multi-task learning. We em-
ploy the DeepSpeed ZeRO-3 strategy [22], with a learning rate of
2𝑒−5 and 3 training epochs on 8 NVIDIA A100-PCIE-80GB GPUs.
We compare the performance of AutoTools with both trained and
vanilla (i.e., out-of-the-box) LLMs. Table 6 presents the experiment
results. We obverse that our AutoTools-Learning substantially

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anonymous

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

ReAct

ReAct@3

ToolLLM

ToolLLM@3

Ours

55

65

75

85

95

15 20 25 30

Cost token (x 1,000)

TMDB

ReAct

ReAct@3 ToolLLM

ToolLLM@3
Ours

15

30

45

60

75

15 35 55 75 95

Cost token (x 1,000)

AutoTools-EvalSuccess % Success %

Figure 5: Average consumed tokens along with performance

(success rate) for different methods.

improves overall performance of the Mistral-7B. For example, it
pushes the success rate to 16.52 in the AutoTools-Eval dataset.

To further evaluate the effectiveness of the three learning tasks in
the AutoTools-Learning, we also conduct a fine-grained ablation
study, removing each task in turn and training the LLM with only
the remaining two tasks.

w/o L
Und

. We remove the document understanding task for-
mated in Eq 5. As illustrated in Table 6, the success rate decreases by
3.00 points in the TMDB dataset and by 1.3 points in theAutoTools-
Eval dataset. These results highlight the importance of the docu-
ment understanding task in enhancing overall performance.

w/o L
Rel

.We remove the relevance learning task defined in Eq 6.
A decrease in the correct path rate metric is observed across both
datasets, validating the necessity of learning the relevance between
the query and candidate tools.

w/o LFunc We remove the function learning task formulated in
Section 7. The success rate decreases by 4.00 points in the TMDB
dataset (17.39% relative improvement) and by 2.1 points in the
AutoTools-Eval dataset (19.61% relative improvement). Besides,
removing this task has themost pronounced impact compared to the
removal of the document understanding or relevance learning tasks.
This finding suggests that function learning is more fundamental
to our AutoTools-Learning, and training the LLM with this task
is crucial to optimize its performance within the AutoTools.

6.4 RQ4 – Efficiency analysis

We further analyze the efficiency of our framework compared to
strong baselines in the task-solving process. Figure 5 shows the to-
ken consumption alongside the performance results for a more intu-
itive comparison. We show their consumed token along with their
performance results on to explain more intuitively. We observe that,
despite achieving better performance, our framework consumes
fewer tokens compared to all baselines. The reason is that our
framework allows the LLM to flexibly integrate well-encapsulated
functions and transform multi-step tool-callings into a concise,
structured program. We also compute the token consumption for
our encapsulation process in Table 8. Given comprehensive tool doc-
umentation, we find that GPT-3.5-turbo-16k only consumes 2703
tokens to encapsulate a tool into a callable function with usage
examples. These encapsulated functions can be cached and loaded
for subsequent reuse. More details can be found in A.2.

Table 7: The statistics of the error of our framework.

Error analysis Percent%

1. Selection error : confuse similar tools or only
select part of required tools 44.0%

2. Arguments error : make up non-exist variables 25.2%
3. Parse Error : hallucinate the structure and
type of function return value 30.8%

7 Discussion

Statistics of error cases.To further evaluate the potential strengths
and weaknesses of our method, we analyze the types of failure
cases, categorizing them into three groups, as shown in Table 7.
Most errors stem from selecting incorrect functions or mismatch-
ing the expected return value types of similar functions. Thus, we
conducted an additional experiment under the same conditions as
Table 4, except that we reduce the number of candidate tools for
each test query from 20 to 10. We observe a 2-3 point improvement
in performance across the RestBench, AutoTools-Eval, and Tool-
Bench datasets. Thus, we believe that a solution to mitigate the
errors identified in Table 7 is to filter out irrelevant functions (e.g.,
using embedding or retrieval models) as proposed in [21], thereby
reducing noise for tool-use LLMs.
Case study. Besides automatic evaluation in our experiment, we
also conduct case studies and human evaluation for a comprehen-
sive evaluation. The concrete examples and results are shown in
Appendix A.4 for an intuitive explanation.

8 Conclusions

We presented AutoTools, a framework that enables LLMs to act as
automated tool learners, automating the tool-use workflow. Within
AutoTools, the LLM first transforms tool documentation into
callable functions, verifying both syntax and runtime correctness.
It then integrates these functions into executable programs, flex-
ibly grounding tool-use actions within its reasoning processes to
solve practical tasks. AutoTools addresses two key challenges in
existing tool learning methods: (1) reliance on intensive human
expertise to process diverse and complex tool documentation into
structured formats with in-context examples, and (2) the limita-
tions of handcrafted, ad-hoc control flows to integrate LLM gen-
eration with diverse tool-calling actions. Extensive experiments
on existing datasets and a newly created challenging benchmark
demonstrate the effectiveness of our framework. Inspired by the
promising performance of AutoTools, we further propose the
AutoTools-Learning, which enhances LLM capabilities, partic-
ularly for open-source LLMs with fewer parameters. We expect
future research to integrate our framework into vision foundation
models, developing multi-modal agents for real-world task-solving.

Ethical Use of Data and Informed Consent

We followed ethical standards, using publicly accessible tools and
benchmarks to ensure transparency, reproducibility, and fairness
in our research. we ensured that our methods are free from harm
or deception and do not produce toxic outputs.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Saaket Agashe, Yue Fan, and Xin Eric Wang. 2023. Evaluating multi-agent coor-
dination abilities in large language models. In arXiv preprint arXiv:2310.03903.

[2] Andres M Bran, Sam Cox, Andrew DWhite, and Philippe Schwaller. 2023. Chem-
Crow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376 (2023).

[3] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. 2022. Program
of thoughts prompting: Disentangling computation from reasoning for numerical
reasoning tasks. arXiv preprint arXiv:2211.12588 (2022).

[4] Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. 2024. Strong Model Collapse.
arXiv preprint arXiv:2410.04840 (2024).

[5] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. PAL: Program-aided Language Models.
In Proceedings of Machine Learning Research: PMLR.

[6] Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, Xin Xin, Pengjie Ren,
Zhumin Chen, Jun Ma, and Zhaochun Ren. 2024. Confucius: Iterative tool learn-
ing from introspection feedback by easy-to-difficult curriculum. In Proceedings

of the AAAI Conference on Artificial Intelligence: AAAI.
[7] Zhicheng Guo, Sijie Cheng, HaoWang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan

Liu, Maosong Sun, and Yang Liu. 2024. StableToolBench: Towards Stable Large-
Scale Benchmarking on Tool Learning of Large Language Models. arXiv preprint
arXiv:2403.07714 (2024).

[8] Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. 2023. ToolkenGPT:
Augmenting Frozen Language Models with Massive Tools via Tool Embeddings.
arXiv (2023).

[9] Mohsen Jamali, Ziv M Williams, and Jing Cai. 2023. Unveiling theory of mind in
large language models: A parallel to single neurons in the human brain. arXiv
preprint arXiv:2309.01660 (2023).

[10] Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu. 2024. Genegpt: Augmenting
large language models with domain tools for improved access to biomedical
information. Bioinformatics (2024).

[11] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav
Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi,
Hanna Moazam, et al. 2023. Dspy: Compiling declarative language model calls
into self-improving pipelines. arXiv preprint arXiv:2310.03714 (2023).

[12] Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhou-
jun Li, Fei Huang, and Yongbin Li. 2023. API-Bank: A Comprehensive Benchmark
for Tool-Augmented LLMs. In Association for Computational Linguistics: EMNLP.

[13] Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao,
Steven Zheng, Daiyi Peng, Diyi Yang, Denny Zhou, et al. 2024. Best Practices and
Lessons Learned on Synthetic Data. In First Conference on Language Modeling.

[14] Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Zhengying Liu, Yuanqing Yu, et al. 2024. ToolACE: Winning
the Points of LLM Function Calling. arXiv preprint arXiv:2409.00920 (2024).

[15] Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane,
Juntao Tan, Weiran Yao, Zhiwei Liu, Yihao Feng, et al. 2024. Apigen: Automated
pipeline for generating verifiable and diverse function-calling datasets. arXiv
preprint arXiv:2406.18518 (2024).

[16] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730–27744.

[17] Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. 2023. Go-
rilla: Large Language Model Connected with Massive APIs. arXiv preprint

arXiv:2305.15334 (2023).
[18] Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin,

Xu Han, Ning Ding, Huadong Wang, Ruobing Xie, Fanchao Qi, Zhiyuan Liu,
Maosong Sun, and Jie Zhou. 2023. WebCPM: Interactive Web Search for Chinese
Long-form Question Answering. In Association for Computational Linguistics:

ACL.
[19] Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni

Zeng, Yufei Huang, Chaojun Xiao, Chi Han, et al. 2023. Tool learning with
foundation models. arXiv preprint arXiv:2304.08354 (2023).

[20] Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, Ya-Ting Lu, Yankai Lin,
Xin Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023.
ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs.
International Conference on Learning Representations: ICLR (2023).

[21] Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin,
Jun Xu, and Ji-Rong Wen. 2024. COLT: Towards Completeness-Oriented Tool
Retrieval for Large Language Models. arXiv preprint arXiv:2405.16089 (2024).

[22] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
Speed: System Optimizations Enable Training Deep Learning Models with Over
100 Billion Parameters. In SIGKDD.

[23] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer:
Language Models Can Teach Themselves to Use Tools. Neural Information

Processing Systems: NeurIPS (2023).
[24] Murray Shanahan and Catherine Clarke. 2023. Evaluating Large Language Model

Creativity from a Literary Perspective. arXiv preprint arXiv:2312.03746 (2023).
[25] Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming Yan, Xiaojun Quan, Hehong

Chen, Ji Zhang, and Fei Huang. 2024. Small llms are weak tool learners: A
multi-llm agent. arXiv preprint arXiv:2401.07324 (2024).

[26] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting
Zhuang. 2024. Hugginggpt: Solving ai tasks with chatgpt and its friends in
hugging face. Advances in Neural Information Processing Systems (2024).

[27] Zhengliang Shi, Shen Gao, Xiuyi Chen, Lingyong Yan, Haibo Shi, Dawei Yin,
Zhumin Chen, Pengjie Ren, Suzan Verberne, and Zhaochun Ren. 2024. Learn-
ing to Use Tools via Cooperative and Interactive Agents. arXiv preprint

arXiv:2403.03031 (2024).
[28] Yifan Song, Weimin Xiong, Dawei Zhu, Chengzu Li, Ke Wang, Ye Tian, and

Sujian Li. 2023. RestGPT: Connecting Large Language Models with Real-World
Applications via RESTful APIs. arXiv (2023).

[29] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin
Chen, Dawei Yin, and Zhaochun Ren. 2023. Is ChatGPT good at search? investigat-
ing large language models as re-ranking agents. arXiv preprint arXiv:2304.09542
(2023).

[30] Ben Swanson, Kory Mathewson, Ben Pietrzak, Sherol Chen, and Monica Di-
nalescu. 2021. Story Centaur: Large Language Model Few Shot Learning as
a Creative Writing Tool. In Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Linguistics: System Demonstrations,
Dimitra Gkatzia and Djamé Seddah (Eds.).

[31] Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun.
2023. Toolalpaca: Generalized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301 (2023).

[32] Tristan Thrush, Christopher Potts, and Tatsunori Hashimoto. 2024. Improving
pretraining data using perplexity correlations. arXiv preprint arXiv:2409.05816
(2024).

[33] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng,
and Heng Ji. 2024. Executable code actions elicit better llm agents. arXiv preprint
arXiv:2402.01030 (2024).

[34] YizhongWang, Yeganeh Kordi, SwaroopMishra, Alisa Liu, Noah A. Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. 2023. Self-Instruct: Aligning Language Mod-
els with Self-Generated Instructions. In Association for Computational Linguistics:

ACL.
[35] ZihaoWang, Shaofei Cai, Guanzhou Chen, Anji Liu, XiaojianMa, and Yitao Liang.

2023. Describe, explain, plan and select: Interactive planning with large language
models enables open-world multi-task agents. arXiv preprint arXiv:2302.01560
(2023).

[36] Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T Le, Jin Miao, Zizhao Zhang,
Chen-Yu Lee, and Tomas Pfister. 2024. CodecLM: Aligning Language Models
with Tailored Synthetic Data. arXiv preprint arXiv:2404.05875 (2024).

[37] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebas-
tian Gehrmann, Prabhanjan Kambadur, David Rosenberg, and Gideon Mann.
2023. Bloomberggpt: A large language model for finance. arXiv preprint

arXiv:2303.17564 (2023).
[38] Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang.

2023. On the tool manipulation capability of open-source large language models.
arXiv preprint arXiv:2305.16504 (2023).

[39] Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can
Xu, Dacheng Tao, and Tianyi Zhou. 2024. A Survey on Knowledge Distillation
of Large Language Models. arXiv (2024).

[40] Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Pooven-
dran, Yejin Choi, and Bill Yuchen Lin. 2024. Magpie: Alignment Data Syn-
thesis from Scratch by Prompting Aligned LLMs with Nothing. arXiv preprint
arXiv:2406.08464 (2024).

[41] Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R Fung, Sha Li, Zixuan Huang,
Xu Cao, Xingyao Wang, Yiquan Wang, et al. 2024. If llm is the wizard, then code
is the wand: A survey on how code empowers large language models to serve as
intelligent agents. arXiv preprint arXiv:2401.00812 (2024).

[42] Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. 2023.
GPT4Tools: Teaching Large Language Model to Use Tools via Self-instruction.
Neural Information Processing Systems: NeurIPS (2023).

[43] Shunyu Yao, Jeffrey Zhao, Dian Yu, NanDu, Izhak Shafran, Karthik RNarasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. In International Conference on Learning Representations: ICLR.

[44] Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang, Yilong Wu, Sixian Li,
Xiaoran Fan, Shihan Dou, Qi Zhang, Tao Gui, et al. 2024. Tooleyes: Fine-grained
evaluation for tool learning capabilities of large language models in real-world
scenarios. arXiv preprint arXiv:2401.00741 (2024).

[45] Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang,
Yejin Choi, and Bill Yuchen Lin. 2023. Lumos: Learning agents with unified data,
modular design, and open-source llms. arXiv preprint arXiv:2311.05657 (2023).

[46] Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad
Shoeybi, and Bryan Catanzaro. 2024. RankRAG: Unifying Context Ranking

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anonymous

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

with Retrieval-Augmented Generation in LLMs. arXiv preprint arXiv:2407.02485
(2024).

[47] Lifan Yuan, Yangyi Chen, XingyaoWang, Yi R Fung, Hao Peng, and Heng Ji. 2024.
Craft: Customizing llms by creating and retrieving from specialized toolsets.
International Conference on Learning Representations: ICLR (2024).

[48] Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie
Tang. 2023. Agenttuning: Enabling generalized agent abilities for llms. arXiv
(2023).

[49] Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao,
Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. 2024. Lima: Less is more for
alignment. Advances in Neural Information Processing Systems 36 (2024).

[50] Fan Zhou, Zengzhi Wang, Qian Liu, Junlong Li, and Pengfei Liu. 2024. Program-
ming Every Example: Lifting Pre-training Data Quality like Experts at Scale.
arXiv preprint arXiv:2409.17115 (2024).

[51] Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor S. Bursztyn, Ryan A.
Rossi, Somdeb Sarkhel, and Chao Zhang. 2023. ToolChain*: Efficient Action
Space Navigation in Large Language Models with A* Search. ArXiv (2023).

[52] Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. 2023.
ToolQA: A Dataset for LLM Question Answering with External Tools. arXiv
(2023).

A Appendix

Ethical Use of Data and Informed Consent

The research conducted in this paper aims at the development
of empowering large language models (LLMs) as automated tool
learners. It enables LLMs to transform abstract tool documentation
into executable function libraries and to flexibly integrate functions
through programming to solve practical tasks. In the process of
conducting this research, we have adhered to ethical standards to
ensure the integrity and validity of our work. All tools used in this
study were obtained from publicly accessible platforms or widely-
used benchmarks, ensuring transparency and reproducibility in our
experiments and minimizing potential bias and promotes fairness.

We havemade an effort to ensure that our research does not harm
individuals or groups, nor does it involve any form of deception or
potential misuse of information. The tools used in this research do
not pose any harm, and there is no malicious behavior associated
with the LLMs or the tools. Additionally, we have ensured that the
LLMs do not produce harmful or toxic outputs. Our code, prompts,
and datasets will also be open-sourced to facilitate further research,
making them available after the anonymization period.

A.1 Training Data Synthetic

OurAutoTools-Learning trains the LLM using a synthetic dataset
through a multi-task learning approach, which includes three key
tasks: tool understanding, relevance learning, and function learning.
The AutoTools-Learning synthesizes training data by reformat-
ting established datasets into an interactive task-solving format,
simulating interactions between the user and the LLM, or the LLM
and the execution environment. Below, we detail the data resources
for each task, respectively.

Data synthetic for the tool understanding task.We first col-
lect a large number of tools (16k) from the ToolBench [20] dataset.
Each tool is originally crawled from the RapidAPI platform and
has been manually supplemented with its callable function, making
it inherently similar to the setting of our learning task. The input
for each training example in this task is the tool’s development
documentation, while the output is a well-structured Python func-
tion pre-created by ToolBench. The tool documentation includes
an abstract description of how to invoke the tools. The generated
functions are directly callable and executable.

Data synthetic for the tool understanding task. We gather
data from various tool retrieval datasets, including (1) ToolACE [14],
(2) ToolBench [20], (3) APIGen [15], (4) Confucius [6], and (5)
ToolAlpaca [31]. Each example consists of a query, a list of candi-
date tools, and the target tools. We first transform the tools into a
unified function using the encapsuluation operation in Section 3.1
and we unify this data into a listwise selection format, similar to
RankGPT [29] and RankRAG [46]. In this task, the input of each
training example is the concatenation of the query and the tools,
while the output is the unique ID of the ground truth tool. Here,
the unique ID for each tool specifically indicates the tool name.

Data synthetic for the function learning task. We collect
step-level task-solving trajectories from existing tool-use datasets,
including (1) ToolACE [14], (2) ToolBench [20], and (3) APIGen [15].

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

We selected these datasets because they have provided large-scale
training sets rather than just test sets. Each example in this task
consists of a practical query (e.g., fetch the past month’s Daily
4 lottery results?), a list of relevant tools, and the step-level
solution. The solution involves tool-use actions, such as selecting
relevant tools (e.g., Daily_4_History_API), specifying parameters
(e.g., start=2022-05-20, end=2022-06-20), and receiving the re-
sponse. We filter out low-quality examples that contain unsolvable
queries or empty tool responses. Then, we use a powerful LLM
(GPT-4o) to generate program solutions based on the originally
annotated solution, reformatting the customized tool-use actions
into unified programs. In this process, their pre-annotated solutions
are used as references to ensure the correctness of the reformatted
data. Besides, if a reformatted example contains syntax errors or
tool-calling parameters that differ from its pre-annotated solution,
it is discarded.

In total, we collect 7,243/12,251/14,689 examples for the above
three tasks, respectively. We also reformat these datasets into a
unified interactive format, similar to previous work [31, 45]. Each
formatted example begins with a system instruction describing the
task and initial input, followed by interactions between two roles:
the user and the LLM, or the LLM and the execution environment.
Our overall optimization involves combining the three tasks to
optimize the LLM’s expertise in AutoTools through a multi-task
learning approach.

A.2 More Experiment Details

The tool encapsulation. In our experiments, we evaluate our
encapsulation method for four datasets, i.e., RestBench-TMDB,
RestBench-Spotify, AutoTools-Eval, and ToolBench, respectively.
We provide the cost statistic for this process in Table 8.

Table 8: Detailed statistic of our tool encapsulation.

Statistic

Maximum number of iterations per tool 4
Runtime iterations during the experiment 3
Avg. encapsulation attempts per tool 2.04
Avg. token consumption per tool 2703

The runtime consistency of our experiment. Since the non-deterministic
generation of LLMs by nature, we further explore the consistency
and stability of our framework. We repeat our method (ours) with
the same setting as Table 4 in RestBench. The statistical significance
of differences observed between the performance of two runs is
tested using a two-tailed paired t-test. We find no significant differ-
ence between the results of two randomly conducted experiments
(𝑝 > 0.05).

Human evaluation. ollowing previous work [20, 28], we conduct
a human evaluation on two metrics, including: (1) Executability
(Exec): whether multiple tools are invoked in a correct logical order
to complete the task; (2) Tool utilization (Uility): whether the model
can observe the relevant values from lengthy execution results
and incorporate them to predict the next action. We invite three

Table 9: The human evaluation on three datasets for exe-

cutability and utility. Scores are on a scale of 1–3.

ReAct CodeAct ToolLLM@3 AutoTools

Exec 1.61 1.79 2.19 2.41
Utility 1.86 1.97 2.19 2.40

well-educated volunteers to evaluate 30 cases randomly sampled
from our experiment benchmarks in Table 4. Details of human
evaluation. Specifically, the annotators manually evaluate the task-
solving trajectory step-by-step for Utility and Executability metrics
using the ground truth solution as a reference. To guarantee an-
notation quality, we ask at least two annotators to evaluate the
same example repeatedly. If there is a discrepancy between the two
annotators (i.e., two annotators give a different score), we ask a
third annotator to recheck it. The Kappa statistics for Executability
and Tool utilization metrics are 0.70 and 0.69, which illustrates the
agreement among annotators. Results of human evaluation. The
results are shown in Table 9. We find that our method achieves the
best in the Executability aspect with 0.21 absolute improvement
compared with strong baselines, e.g., ToolLLM@3. We also observe
that our method achieves higher performance on Utility. The rea-
son for our superiority is that our framework enables the LLM to
operate well-calibrated functions through programming, which is
more executable compared with the manually designed workflow
in previous work.

A.3 A new benchmark – AutoTools-Eval

Our AutoTools-Eval benchmark is proposed to evaluate tool-use
LLMs using more challenging tasks. Compared with the existing
benchmark, our AutoTools-Eval has the following advantages.
• Long-term planning. Most existing tool learning benchmarks

are relatively simple, with each task being solved using 2 or 3
steps. However, real-world tasks often require complex work-
flows, such as computing the rating scores for the top 10
newly released movies. To reflect the tool learning capability
of LLMs in realistic scenarios, each task in our AutoTools-Eval
benchmark is designed to involve at least 7 tool calls on average.

• Connected reasoning. Each task in our benchmark requires
the model to interact with tools multiple times. To increase the
challenge of the task, there is a strong interdependency among
the tools, meaning that the argument of the current tool can
only be extracted from the execution results of previous tools.
This interdependent nature forces the models to connect infor-
mation across all execution results of tools to solve a complex
task, instead of simply making multiple calls without further
reasoning.

• Consistency and stability: For high reproducibility, each task
in our benchmark does not involve specific time, and the outputs
of the tools are not time-varying.
We also compare our AutoTools-Eval with existing bench-

marks in Table 2.

A.3.1 Details for benchmark construction. Previous work like Tool-
Bench [20] directly employs LLMs to generate datasets. However,

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anonymous

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 10: The statistics of our collected AutoTools-Eval

benchmark, where we show the tool number and example

number for each domain.

Domain of the tools in our AutoTools-Eval Totally
Food Recipe Weather Game Movie

Tasks 64 50 50 60 224
Tools 22 11 20 54 107

it is proved to be less diverse or has unsolvable tasks [7, 49], raising
concern about the scope and effectiveness of the evaluation. In this
work, we adopt a bottom-up task collection approach driven by
manual effort. Specifically, we employ 7 experts (a.k.a., annotators)
who work on NLP research to brainstorm tasks for different com-
binations of tools. Each expert is encouraged to integrate various
tools to formulate a challenging task. Next, the experts need to
manually solve these tasks with the assistance of candidate tools
and annotate the ground truth solution, which includes the path of
required tools and corresponding arguments for each tool calling.
To establish a benchmark for highly consistent evaluations, we
exclude any tasks where the solution varies over time. Specifically,
a task is filtered out if the ground-truth solution path for the tool
differs between two runs. Ultimately, we construct 227 examples
across 107 tools from four domains. Table 11 shows an example
of our collected benchmark. Compared with existing benchmarks
which only list the required tools for each task, we further provide
a ground truth solution for reference, including the required tools
and corresponding arguments. Although the dataset is not large,
each task in our benchmark is of high quality and represents the
types of requests frequently made by users. The statistics of our
benchmark are shown in Table 10.

A.3.2 Strategy for quality improvement. To ensure the quality of
our constructed benchmark, we employ the following strategies.
• Detailed annotator training. We hold regular meetings to

ensure that each expert has no questions about the annotation
criteria. We also design pre-annotation tests, where each expert
undergoes detailed training to familiarize themselves with our
annotation task.

• Cross-check for potential discrepancies. To guarantee anno-
tation quality, we ask at least two experts to annotate the same
task repeatedly. If there is a discrepancy between the two experts,
i.e., two experts give different solutions for the same task, we ask
a third expert to recheck it. We also filter the task with ambiguity
to improve the reliability of our benchmark.

• Periodic audits: We conduct periodic audits of the annotations.
These audits involved cross-checking a subset of annotated ex-
amples to verify compliance with the established criteria. We
also held regular review meetings where annotation experts dis-
cussed challenging cases, ensuring a common understanding and
application of the rules.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 11: An example of our collected AutoTools-Eval benchmark.

Example of our AutoTools-Eval benchmark (Food domain)

Task:

Please help me find a steak recipe and a pasta recipe. These recipes should have a carbohydrate content no
higher than 80 grams per 100 grams, no lower than 5 grams per 100 grams. The protein content should be at
least 5 grams per 100 grams for each recipe. Among them, which recipe requires fewer pieces of equipment,
and how many ingredients does the recipe with fewer equipment contain?

Base url for tool:

https://spoonacular-recipe-food-nutrition-v1.p.rapidapi.com/

Ground truth solution:

1. GET /recipes/complexSearch

- arguments: {"query": "steak", "minCarbs":5, "maxCarbs": 80, "minProtein": 5, "number": 1}
2. GET /recipes/complexSearch

- arguments: {"query": "pasta", "minCarbs":5, "maxCarbs": 80, "minProtein": 5, "number": 1}
3. GET /recipes/recipe_id/equipmentWidget.json

- arguments:{"recipe_id": 1094259}
4. GET /recipes/recipe_id/ingredientWidget.json

- arguments: {"recipe_id": 1094259}
5. GET /recipes/recipe_id/equipmentWidget.json

- arguments: {"recipe_id": 532245}
6. GET /recipes/recipe_id/ingredientWidget.json

- arguments: {"recipe_id": 532245}

Ground truth tools:

1. GET /recipes/complexSearch
2. GET /recipes/{recipe_id}/equipmentWidget.json
3. GET /recipes/{recipe_id}/ingredientWidget.json
4. GET /recipes/{recipe_id}/equipmentWidget.json
5. GET /recipes/{recipe_id}/ingredientWidget.json
6. GET /recipes/{recipe_id}/similar

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anonymous

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

A.4 Case Study

We conduct comprehensive case studies and find that our framework AutoTools is effective at coordinating various tools to solve complex
tasks and our probing method can instruct the LLM to probe the input-output mechanism of tools, automatically synthesizing documentation.
We provide the following cases to intuitively explain the details of our method.

Example for Tool encapsulation. Given a tools (e.g., a tool from Spotify dataset), the LLM automatically understand the key information
in tool documentation, and transform abstract documentation into a well-encapsulated function. The function in our experiment is Python
format, which can is directly callable.

The tool documentation of a tool named “GET_search” is shown below.

Tool: GET_search
Development documentation: {'method ': 'GET ', 'url ': 'https ://api.themoviedb.org/3/ search/person ', 'name ':
'GET_search_person ', 'description ': 'Search for people.', 'parameters ': [{'name ': 'query ', 'in ': 'query

', 'schema ': {'type ': 'string '}, 'description ': 'Pass a text query to search. This value should be URI
encoded.', 'required ': True}, {'name ': 'page ', 'in ': 'query ', 'schema ': {'type ': 'integer ', 'default ':
1}, 'description ': 'Specify which page to query.'}, {'name ': 'include_adult ', 'in ': 'query ', 'schema ': {'
type ': 'boolean ', 'default ': False}, 'description ': 'Choose whether to inlcude adult (pornography)
content in the results.'}, {'name ': 'region ', 'in ': 'query ', 'schema ': {'type ': 'string '}, 'description ':
'Specify a ISO 3166-1 code to filter release dates. Must be uppercase .'}], 'requestBody ': None , 'example

': '{\n "status_code ": 7,\n "status_message ": "Invalid API key: You must be granted a valid key.",\
n "success ": false\n}', "responses ": {" description ": "", "content ": { "application/json": {" schema ":
{"type": "object",

The LLM encapsulates the tool “GET_search” into a python function grounded with the above documentation, which is shown as below.

import requests

def search_person(query: str , api_key: str , page: int = 1, include_adult: bool = False , region: str =
None) -> dict:

"""
Call the GET_search_person API from TMDb to search for people.

Parameters:
query (str): The search term to find people (e.g., actor or director 's name).
api_key (str): Your TMDb API key.
page (int , optional): The page number for pagination (default is 1).
include_adult (bool , optional): Whether to include adult content (default is False).
region (str , optional): ISO 3166-1 code to filter results by release dates in a specific region.

Returns:
dict: The JSON response from TMDb API with the search results.
"""
url = 'https ://api.themoviedb.org/3/ search/person '

params = {
'query ': query ,
'api_key ': api_key ,
'page ': page ,
'include_adult ': include_adult

}

if region:
params['region '] = region

response = requests.get(url , params=params)

if response.status_code == 200:
return response.json()

else:
print(f"Error: {response.status_code}, {response.json().get('status_message ')}")
return {}

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

To verify the ecapsulated function, the LLM then generate a test instance using its commonsense knowledge, i.e., brainstorming a query
related to the tool’s description and required parameters. The generated instance by LLM is shown below. We have removed the user-specific
“API-Key” for anonymization.

api_key = "YOUR_API_KEY" # Replace with your valid TMDb API key
result = search_person(query=" Christopher Nolan", api_key=api_key)
print(result)

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference’17, July 2017, Washington, DC, USA Anonymous

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Example for LLM-generated program. During the functional programming (Section 3.3), the LLM utilize encapsulated functions by
generating executable programs. We show a specific example in our experiment, including query, LLM-generated program (i.e., solution) and
the encapsulated functions used in the program. The query is shown below.

Query: Give me some cover images of movies directed by Christopher Nolan.

The generated program by gpt-3.5-turbo and the execution results.

headers = {" Authorization ": f"Bearer eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOiIwZ "}
Search for Christopher Nolan
search_results = search_person (" Christopher Nolan", headers)
if len(search_results) > 0:

Get the person ID of Christopher Nolan
person_id = search_results [0]["id"]
Get movie credits for Christopher Nolan
movie_credits = get_movie_credits(person_id , headers)
Get the cover images of movies directed by Christopher Nolan
cover_images = get_director_movie_posters(movie_credits)
print(cover_images)

else:
print (" Christopher Nolan not found .")

Output: ['/ cXDFFv6nL0So.jpg ', '/rQ884232vY6Zp.jpg ', '/riVXh3EimGO5Itg.jpg ']

We also show the used function in LLM-generated program, which is pre- encapsulated by the LLM itself in our encapsulation stage
(Section 3.1).

def search_person(query: str , headers: dict) -> dict:
"""
Call the GET_search_person API to search for a person by name.

Parameters:
- query (str): The name of the person to search for.
- headers (dict): Authorization headers for the API request.

Returns:
- dict: {'id ': 'int ', 'keywords ': [{'id ': 'int ', 'name ': 'str '}]}
"""
url = "https ://api.themoviedb.org/3/ search/person"
params = { "query": query , "include_adult ": False}
response = requests.get(url=url , headers=headers , params=params)
if response.status_code == 200:

return response.json().get(" results", [])
else:

print(f"Error: {response.status_code }")
return {}

def get_movie_credits(person_id: int , headers: dict) -> dict:
"""
Call the GET_person_person_id_movie_credits API to get the movie credits for a person.

Parameters:
- person_id (int): The ID of the person whose movie credits to retrieve.
- headers (dict): Authorization headers for the API request.

Returns:
- dict: JSON response containing movie credits.
"""
url = f"https ://api.themoviedb.org/3/ person /{ person_id }/ movie_credits"
response = requests.get(url , headers=headers)
if response.status_code == 200:

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

return response.json()
else:

print(f"Error: {response.status_code }")
return {}

def get_director_movie_posters(movie_credits: dict) -> list:
"""
Extracts the poster paths for movies directed by the person from their movie credits.

Parameters:
movie_credits (dict): JSON response containing the movie credits.

Returns:
list: A list of poster paths for the movies directed by the person.
"""
cover_images = []
for movie in movie_credits.get("crew", []):

if movie.get("job") == "Director" and movie.get(" poster_path "):
cover_images.append(movie[" poster_path "])

return cover_images

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference’17, July 2017, Washington, DC, USA Anonymous

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

A.5 Experiment Instruction

We provide the instruction used in our experiment, including: (1) the instruction IE to instruct the LLM to encapsulate a tool into a directly
callable function; (2) the instruction IFunc to enable the LLM to integrate multiple pre-functions by generating a executable programs for
task-solving, and (3) the instruction IRel to instruct the LLM to select relevant tools. The three instructions are shown below. We use the “”
to indicate the query-specific input.

Instruction for Encapsulation.

I have a set of customized tools. Each API has a usage in its documentation to demonstrate how to access
it. According its usage , your task is to encapsulate them into well -structured Python functions , along
with a testing instance to demonstrate how to call these functions.

Your encapsulated functions should follow these key points:
1. Self -Contained: Each function must handle the API request (including making the call and processing
the response) and return the result. All required constants must be included within the function itself ,
rather than relying on external variables.
2. Function Flexibility: Ensure the function is flexible enough to accept necessary parameters based on
the API 's requirements.
3. Error Handling: The function should be robust enough to handle HTTP request errors. This includes
checking for unsuccessful status codes and faithfully returning the error message or exceptions
information.

Here is an output templte:```python
import necessary lib

def API_NAME(PARAMs: type):
""" Description: add the description of the functionality
Args:
- PARAM 1 (type): explain the params
- ...
"""
define the variable constants , like header or base url
...
request get/post /...
...
Error Handling for state code
...
return response

begin your testing instance
```

Here is the detailed development documentation of an API.
{t_doc}

Since you may need specific parameters , e.g., id, to call this API , I also provide you with some known
APIs to get the required value you need. For example , you should first obtain the requisite id or key
identifier of an entity and search the entity 's information using the id.
{docs}

Your output:```

Instruction for functional programming.

Here are some real -world functions. You need to answer my question by writing Python programs to call a
series of functions and `print` the final answer. The functions is directly callable and has been loaded
in the Python execution environment.

{functions}

Read the provide functions carefully and integrate necessary functions to solve my query: {query}.

18



2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

You need to provide Python code that can be executed directly. Please add the name of the used APIs in
Python comments for the attribution consideration. Try to write a correct Python program and avoid
grammar errors , e.g. `variable is not defined`.

Query: {query}
Your output:
```python
[Program]
```

Instruction for selecting relevant tools.

Here is an API along with its development documentation:
{doc}

This API has strong input -output dependencies with several other APIs listed below. Specifically , the
input parameters required for this API (e.g., id) can only be obtained from the output of one or more
APIs in the candidate list. To make a successful call to the given API , please help me select the related
APIs that can provide the necessary input parameters. Here is a list of candidate APIs:

{api_list}

Please select the relevant APIs by listing their names in Python List format in one line (e.g., ["API 1",
"API 2", ...]). You are encouraged to select any APIs you think might be useful.

Your output: [

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

19


	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Method: AutoTools
	3.1 Encapsulation: Tools Tools -> Functions Functions
	3.2 Integration verification: Funcs Funcs -> Funcs library Func lib
	3.3 Tool Programming: LLM LLM -> solution solution

	4 Learning with AutoTools
	4.1 Learning Tasks and Objectives
	4.2 Training Data Synthesis

	5 Dataset and Evaluation Setup
	5.1 Dataset
	5.2 Evaluation metrics
	5.3 Baselines

	6 Experimental Results
	6.1 RQ1 – Performance on tool encapsulation.
	6.2 RQ2 – Overall Performance
	6.3 RQ3 – Further improvement
	6.4 RQ4 – Efficiency analysis

	7 Discussion
	8 Conclusions
	References
	A Appendix
	A.1 Training Data Synthetic
	A.2 More Experiment Details
	A.3 A new benchmark – AutoTools-Eval
	A.4 Case Study
	A.5 Experiment Instruction 


