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Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents

Anonymous

Abstract

Augmenting large language models (LLMs) with external tools has
emerged as a promising approach to extend their utility, enabling
them to solve practical tasks. Previous methods manually parse tool
documentation and create in-context demonstrations, transforming
tools into structured formats for LLMs to use in their step-by-step
reasoning. However, this manual process requires domain expertise
and struggles to scale to large toolsets. Additionally, these meth-
ods rely heavily on ad-hoc inference technique or special tokens
to integrate free-form LLM generation with tool-calling actions,
limiting the LLM’s flexibility in handling diverse tool specifications
and integrating multiple tools.

In this work, we propose AutoTools, a framework that enables
LLMs to automate the tool-use workflow. Specifically, the LLM au-
tomatically transforms tool documentation into callable functions,
verifying syntax and runtime correctness. Then, the LLM integrates
these functions into executable programs to solve practical tasks,
flexibly grounding tool-use actions into its reasoning processes.
Extensive experiments on existing and newly collected, more chal-
lenging benchmarks illustrate the superiority of our framework.
Inspired by these promising results, we further investigate how
to improve the expertise of LLMs, especially open-source LLMs
with fewer parameters, within AutoTools. Thus, we propose the
AutoTools-Learning approach, training the LLMs with three
learning tasks on 34k instances of high-quality synthetic data, in-
cluding documentation understanding, relevance learning and func-
tion programming. Fine-grained results validate the effectiveness of
our overall training approach and each individual task. Our meth-
ods are an important step towards the use of LLMs for solving
real-world tasks with external tools.

Keywords

Large Language Models, Tool learning

1 Introduction

Large language models (LLMs) have shown promising capabilities
such as in-context learning and real-world planning [1, 34, 39]. To
further increase their utility, the tool learning task [19, 23] is pro-
posed to augment LLMs with external tools, e.g., a Weather App,
enabling them to interact with the physical world [2, 18, 37], e.g.,
look up the daily weather. And most recent work further integrates
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rain = func1(..)    
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Program

generation

as ReAct/CoT... template

(a) Previous tool-use framework

human experts

Reformat

(b) Ours AutoTools framework

Figure 1: The comparison between conventional tool-use flow

(a) and our proposed framework (b).

tool-use LLMs with advanced inference techniques, such as Re-
Act [28, 33, 43] and tree-based search [20] or A-star algorithm [51],
allowing them to server as agents to solve practical tasks.
Augmenting LLMwith tools.Most previous work usually designs
specific tool-use workflow for LLMs, integrating diverse tool-calling
actions into the LLM generation process to solve practical tasks.
Typically, they first pre-process toolset into a unified structure by
manually understanding the development documentation of tools,
such as web requests [28] or customized interfaces [23, 26], e.g.,
translate[source] -> target. Based on human expertise, de-
velopers craft elaborated instructions and few-shot demonstrations,
instructing LLMs pre-defined usage templates and steering the gen-
eration format of LLMs. As shown in Figure 1, the LLM are guided
to select useful tools in a step-by-step procedure, generate argu-
ments for each selected tool in a pre-defined, customized format,
and incorporate the response into subsequent action predictions.

However, these methods usually suffer from two challenges in
realistic scenarios. First, it requires intensive expertise to effectively
parse tool documentation and create valuable usage demonstrations,
struggling to scale to large toolsets in practical applications. Con-
sequently, LLMs show diminished performance when in-context
examples are incomplete or missing, which potentially limits the
scope of available tools to LLMs. Second, the tool-use workflow of
LLM it is also ad-hoc to manually define the tool-use procedure
and tool-calling format for LLM, showing limited generalization
to diverse tool specifications. For example, ReAct [43] and ToolAl-
paca [31] separately utilize each tool step-by-step, restricting their
flexibility in integrating multiple tools dynamically in a once tool-
calling action; The tool-calling template introduced in ToolLLM [20]

1
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is far from that in ToolFormer [23], struggling to apply the Tool-
LLM to the resource of ToolFormer. Therefore, a natural question
is raised:

Can we empower LLMs to automate tool-use flow and

effectively manipulate diverse tools in the wild?

LLMs as automated tool agents. In this work, we propose a novel
framework named AutoTools, which diverges from previous work
by enabling LLMs as agents to automate tool-use workflow. As
shown in Figure 1(b), AutoTools consists of two stages: (1) Tool
Encapsulation and (2) Tool Programming.

In the Tool Encapsulation stage, AutoTools automatically trans-
forms the toolset into a list of well-structured, callable functions
with generated demonstrations. Specifically, for each tool, the LLM
is provided with its raw documentation and is induced to encap-
sulate it into a callable function. To verify the correctness, besides
the syntax compilation, the LLM is stimulated to generate function-
calling instances for each function to test the runtime correctness.
Since relevant tools are the same resource and show strong input-
output dependencies, we also propose an integration verification
method, which enables LLM to integrate relevant functions to gen-
erate verification. The correct functions are augmented with its test
instance as a usage demonstration and are gathered as a function
library for the subsequent stage.

In the Tool Programming stage, the LLM is prompted to read
the encapsulated functions and flexibly integrate them through a
unified programming language (e.g., Python). Concretely, we first
load the encapsulated functions to initialize an execution environ-
ment. Then, the LLM is equipped with the created function library
and generates executable programs as a solution. The programs
sequentially call a chain of functions, parse useful intermediates
to resolve input-output dependencies among functions, and ulti-
mately derive the final answer. By enabling the LLM as tool agents
above, AutoTools can benefit from the LLM’s powerful abilities to
transform abstract tool documentation into executable functions,
yielding promising results in our pilot experiments.

Moreover, we further investigate how to improve the LLM’s
expertise within AutoTools, especially for LLMs with fewer pa-
rameters. We propose AutoTools-Learning, a multi-task learning
approach that trains the LLM as an automated tool agent from
synthetic datasets. We design three core learning tasks: (1) docu-
mentation understanding, where the LLM is trained to parse di-
verse tool documentation and generate structured functions; (2)
relevance learning, where the LLM learns to select relevant tools
based on a query and a candidate tool list; and (3) function learn-
ing, where we optimize the LLM to call in-context functions and
solve practical queries. To enable this learning process, we filter
and synthesize training data from large-scale public resources for
each task, transforming it into a unified format. This enables us to
collect high-quality examples without intensive human annotation.
ExperimentsWe first evaluate our framework on two established
benchmarks: RestBench [28] and ToolBench [20]. We also create
a new benchmark named AutoTools-Eval, including 224 tasks
across 107 real-world tools, evaluating our framework in more
challenging scenarios. AutoTools-Eval diverges from the existing
benchmarks by its more long-term planning tasks, complex tool
documentation, and strong input-output dependencies among tools.

The results show that (1) LLMs like GPT-4 exhibit strong capabili-
ties in understanding abstract tool documentation and generating
callable functions; (2) AutoTools substantially surpasses previ-
ous baselines with higher efficiency, and (3) AutoTools-Learning
further enhances the expertise of LLMs within AutoTools.
Contributions Our contributions are as follows: (1) We propose
AutoTools, a framework combining tool encapsulation and tool
programming, enabling LLMs to function as automated tool learn-
ers. (2) We introduce AutoTools-Learning, a multi-task learning
approach, and release 34k high-quality training data, further im-
proving LLMs within AutoTools. (3) Extensive experiments on
both existing and newly collected datasets validate the superiority
of our method. We will open-source AutoTools for public use.

2 Related Work

Tool learning with foundation models Augmenting LLMs with
real-world tools has been proven a promising method for enhancing
their utility and enabling interactions with the physical world [2,
10, 18, 25]. To ground LLM with various tools, previous work first
manually read development documentations of specific tools and
process them into callable functions. In solving practical tasks,
LLMs use tools by mimicking the handcrafted usage defined in
their system prompts, typically generating parameters in structured
formats to match predefined functions. Common practices include
generating JSON (e.g., RestGPT [28], ToolLLM [20]), special tokens
(e.g., ToolKenGPT [8]), or private function-calling messages (e.g.,
OpenAI’s GPT). However, manually converting various tools into
executable functions and carefully designing in-context examples
for LLMs requires domain knowledge and experience, making it
large to scale to massive toolsets. In this work, we investigate LLMs’
expertise to automatically encapsulate tools into directly callable
functions, thereby automating the above workflow.
Programming-enhanced LLMs. Recent work has shown the po-
tential of using programming languages (PLs) to enhance the plan-
ning and reasoning capability of LLMs [11, 35, 41]. For example,
previous work enables LLMs to generate a programmatic chain of
thought to solve complex numeric reasoning tasks [3, 5], which ex-
hibits remarkable performance. Compared with natural languages
(NLs), recent studies also show that LLMs can generate Python
code snippets as actions [33] or iteratively refine existing code [47].
In tool learning tasks, generating PLs benefits LLMs by integrating
widely used packages such as TensorFlow [17] or Python pan-
das [33]. However, most existing work limits LLMs to using only
well-processed functions, either manually simplified and encapsu-
lated or frequently encountered during pre-training. In this work,
our AutoTools takes a further step by enabling LLMs to act as
more automated tool-use agents, automatically generating directly
callable functions grounded in corresponding tool documentation
and creating demonstrations for in-contxt learning.
Learning from external feedback. Training LLMs using syn-
thetic data is a widely-used method to improve their task-solving
abilities and align them with following instructions [13, 16, 36].
Common practices for data synthesis include: (1) filtering data from
large corpora like Common Crawl [32], (2) refining data quality
through manual or automated processes [50], and (3) using LLMs
to generate training data from scratch, as seen in approaches like

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Tool Learning in the Wild:
Empowering Language Models as Automatic Tool Agents Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: An overview of the proposed framework AutoTools, in which the LLM (1) automatically encapsulates diverse tools

into unified callable functions and (2) directly utilizes these functions through programming.

SELF-instruct [34] and Magpie [40]. In the tool-learning task, previ-
ous work typically uses the third approach, specifically employing
self-instruct [34] techniques to synthesize massive query-solution
pairs [31, 42]. For example, ToolLLM [20] and Confucius [6] prompt
LLMs to generate tool-use queries, then supplement them with
chain-of-thought solutions that interleave tool names, tool argu-
ments, and tool responses. Despite their advancements, generating
data from scratch suffers from low diversity and uncontrollable
quality [4, 13]. In contrast, our AutoTools-Learning method syn-
thesizes training data by filtering and reformatting various estab-
lished datasets. Moreover, different from previous tool-use training,
AutoTools-Learning comprises three learning tasks, providing
fine-grained supervision for tool understanding, query-tool rele-
vance, and programmatic tool-use skills.

3 The Proposed Method: AutoTools

Our framework AutoTools is proposed to empower LLMs as au-
tomated tool agents to unified diverse tool-use specification and
flexibly integrate them for task-solving, minimizing manual guid-
ance. As illustrated in Figure 2, AutoTools consists of two core
stages: (1) tool encapsulation and (2) tool programming. In the first
stage, the LLM understand the development documentation 𝑑 of
each tool 𝑡 and encapsulates it into a well-structured, callable func-
tion 𝑓 . To verify the runtime correctness, we propose the integration
verification method, which dynamically generates test instances
to integrate relevant functions and check their execution result.
The correct functions are augmented with test instances and gath-
ered as a function library. In the second stage, instead of using
original tools, the LLM directly integrates encapsulated functions
by generating executable programs. Compared to other tool-use
frameworks, AutoTools (1) automatically transforms abstract tool
documentation into a callable function library and (2) allows the
LLM to flexibly integrate multiple tools with different usage using
a unified programming language.

3.1 Encapsulation: Tools

LLM−→ Functions

We first introduce how to encapsulate a single tool into a well-
structured function. As shown in Figure 2 (1), the LLM takes the
tool documentation 𝑑 as input, which provides meta-information

in general natural language, such as tool arguments, functional-
ity, optional access URLs and state code. The LLM aggregates the
natural language descriptions of how to use the tool and grounds
it to transform the abstract documentation into a directly callable
function. Formally, this process can be represented as:

𝑓 = M𝜃 (𝑡, 𝑑,I𝐸 ), (1)

where I𝐸 represents the instruction for our encapsulation process.
We use raw documentation as input 𝑑 since it can be easily ob-
tained from official sources (e.g., RapidAPI platforms), minimizing
the manual effort required by users in practical interactions. Since
the LLMmay hallucinate andmiss necessary tool argument [52], we
automatically compile the generated function into syntax tree [17]
for syntax check. If any parameter name or type in the function
signature does not exactly match the definitions in the tool docu-
mentation, the function is considered to fail the syntax check. If an
error occurs, we repeat the Eq 3.1 for up to𝑚 times.

3.2 Integration verification: Funcs

verify

−→ Func lib

Since syntax compilation fails to detect runtime errors in functions,
it is crucial to design function-calling instances and verify the ex-
ecution results. An intuitive approach to automate this process
is utilizing the creative thinking abilities of LLMs [9, 24, 30], e.g.,
stimulating them to brainstorm test instances for each function
individually. However, in large toolsets, tools within the same appli-
cation often exhibit strong input-output dependencies. For example,
a tool may require specific, private arguments derived from the
output of another tool (e.g., retrieving movie credits relies on a
unique ID as input). To address this, we propose integration verifi-
cation, which identifies input-output dependencies between tools
and verifies each encapsulated function by testing it in combination
with its prerequisite functions.

Given a list of tools 𝑇 , we sequentially encapsulate each tool 𝑡𝑖
into a function: 𝑓𝑖 = M𝜃 (𝑡𝑖 , 𝑑𝑖 ,IE), and initialize a cacheH to store
the correctly verified functions. The initial order can be a random
permutation. To enable our integration verification, the LLM selects
functions F̃ relevant to 𝑓𝑖 from the cache H :

F̃ = M𝜃 (𝑓𝑖 , F ,IRel) . (2)
3
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```get movie id by name```
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Figure 3: Details for our integration verification (Section 3.2).

Here,IRel is the instruction for relevance selection and the functions
in F̃ can be empty ifH is empty or the 𝑓𝑖 has no private argument
requirements. Then, the LLM obtain the necessary input parameters
for function 𝑓𝑖 using F̃ and generate a test instance 𝑒𝑖 :

𝑒𝑖 = M𝜃 (𝑓𝑖 , F̃ ,IE) (3)

If function 𝑓𝑖 is verified as correct, it is moved from T to H . We
repeat this process for each tool in T along the initial order. This
iterative traversal continues until T is empty or up to the maximum
traversal times. We augment the correct functions from cacheH
with its instance as an in-context demonstration.

3.3 Tool Programming: LLM

Func lib−→ solution

In the tool programming stage, AutoTools allows LLM to seam-
lessly integrate the executable functions for task-solving instead
of using abstract tool documentation as previous work. Using the
pre-encapsulated and verified functions can reduce potential misun-
derstanding towards abstract tool documentation. Besides, different
from using customized output templates or special token, the Au-
toTools allows LLMs to directly manipulate multiple functions
using an unified programming language. The LLM flexibly inte-
grates function-calling actions into its generation by generating
executable programs.

Given a practical query 𝑞, the LLM is equipped with its generated
function library F = {(𝑓𝑖 , 𝑐𝑖 , 𝑟𝑖 ) | 𝑖 ≤ |F |}. Here, 𝑓𝑖 is a callable
function with a well-structured docstring, 𝑐𝑖 provides a default
usage example, and 𝑟𝑖 specifies the expected execution result type.
We first load these functions into the execution environment 𝐸 and
initialize a session to interact with the LLM. We instruct the LLM
M𝜃 to generate an executable program as a solution 𝑠 . The program
𝑠 sequentially calls pre-encapsulated functions, parses execution
results for further use, and simplifies the task-solving process with
concise programmatic control flow statements like for-loop. The
final result 𝑟 is derived by executing the generated program, which
returns either the correct result or error messages. During the inter-
action, our execution session caches variables defined by the LLM
for reuse in subsequent programs. The session terminates when the
LLM outputs Finish. Formally, this process can be formulated as:

𝑠 𝑗 = M𝜃 (𝑞, F ,IP, {(𝑠< 𝑗 , 𝑟< 𝑗 )}) (4)

Here, the IP indicates a concise instruction for program generation
operation, which is provided in Appendix A.5. We set the maximum
interaction number as𝑚.

4 Learning with AutoTools

Our AutoTools empowers the LLM as a tool agent, which benefits
from the LLM’s powerful abilities to transform abstract tool docu-
mentation into executable functions. In our pilot experiment, LLMs
like GPT-4, when equipped with AutoTools, show substantial
improvements. Motivated by these promising results, we further
investigate how to improve the LLM’s expertise within AutoTools,
especially for open-source LLMs with fewer parameters. To achieve
this, we propose AutoTools-Learning, which consists of three
learning tasks in which the LLM M𝜃 learns to encapsulate tools
into functions and effectively utilize these functions. In this section,
we introduce the objective of each learning task and detail how to
synthesize the training data to enable this learning process.

4.1 Learning Tasks and Objectives

We propose the following three learning tasks.
Tool understanding In this task, we train the LLM to comprehend
complex tool documentation, which provides raw information on
how to invoke the tool. Formally, given a tool 𝑡 , the LLM is trained
to generate a well-structured function 𝑓 based on the tool docu-
mentation 𝑑 . It can be formulated as:

LUnd = − log 𝑃𝜃 (𝑓 |IE, 𝑡, 𝑑) (5)

The IE indicates the instruction for encapsulation operation men-
tioned in Eq 3.1. The function 𝑓 encapsulates detailed tool-calling
information from 𝑑 , such as web request headers, base URLs, and
exception handling. Additionally, it includes a standard function sig-
nature and a docstring to demonstrate its arguments and expected
execution results.
Relevance learning Since solving a user’s query in practical sce-
narios typically involves multiple tools, we design a relevance learn-
ing task, teaching the LLM how to select the most useful tools from
a candidate toolset. Given a list of tools F with detailed docstring,
we formulate this learning process as a generative task, where the
LLM is trained to autoregressively generate the identifiers (i.e.,
names) of relevant functions. Assume the F̃ = 𝑓𝑖 | 𝑖 ≤ |F̃ | is the
ground truth function relevant to a query 𝑞, we concatenate the
identifiers of relevant functions as 𝑦 = 𝑓1 ⊕ 𝑓2 ⊕ · · · ⊕ 𝑓 | F̃ | , Then,
we apply the standard language modeling loss:

LRel = −
|𝑦 |∑︁
𝑡=1

log 𝑃𝜃 (𝑦𝑡 |𝑦 (<𝑡 ) ,IRel, 𝑞, F ), (6)

where IRel is the task instruction for relevance selection. This list-
wise selection manner allows the LLM to compare multiple similar
tools and determine the query-tools relevance during the token-by-
token prediction process [29].
Function learning Our function learning grounds the LLM in the
practical task-solving process with the assistance of the provided
functions. Startingwith a user query𝑞, we establish amulti-turn ses-
sion between the LLM and the execution environment. Specifically,
the LLM is trained to generate programs that call various functions
F = {𝑓𝑖 |𝑖 ≥ |F |} provided in-context, receiving execution results

4
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Table 1: The data scale of our synthetic training dataset and

detailed average statistics per example.

Statistic

# The data scale 34,183
# The average length of input 664.80
# The average length of output 264.40
# The average number of candidate tools 8.23
# The average turn of interaction 2.66

from the environment to determine its next step. Assuming ℎ 𝑗 is
the interaction history up to turn 𝑗 , the optimization objective for
𝑗th turn can be formulated as:

LFunc = − log 𝑃𝜃 (𝑐 𝑗 |IFunc, 𝑞, F , {(𝑐< 𝑗 , 𝑟< 𝑗 )}) (7)

By generating executable programming language, the LLM can
inherently manipulate tools using built-in control flow statements,
(e.g., for-loops and if-else statements), and store useful intermedi-
ates for subsequent reuse.

4.2 Training Data Synthesis

For the tool understanding task, we first collect a large number
of tools from the ToolBench [20] dataset. Each tool is originally
crawled from the RapidAPI platform and has been manually supple-
mented with its callable function, making it inherently similar to the
setting of this learning task. For the relevance learning task, we
gather data from various tool retrievals datasets, such as COLT [21]
and APIGen [15], where each example consists of a query, a list
of candidate tools, and the target tools. We first transform these
tools into a unified function through our encapsulation operation
in Section 3.1. Then, we unify this data into a listwise selection
format similar to RankGPT [29]. For the function learning task,
we collect step-level task-solving trajectories from existing tool-use
datasets. We then use a powerful LLM, i.e., GPT-4o, to generate
program solutions by referencing the originally provided ground
truth, aligning the data with our function learning setting.

To ensure data quality, we apply strict filtering strategies, such as
removing examples with empty tool responses, unsolvable queries,
or incorrect tool-calling parameters. Ultimately, we collect 7,243/12,
251/14,689 examples for the three tasks, respectively. We also refor-
mat these datasets into a unified interactive format, similar to prior
work [45, 48]. Each formatted example begins with a system instruc-
tion describing the task and initial input, followed by interactions
between two roles: the user and the LLM, or the LLM and the execu-
tion environment. We report the statistics of the final training data
in Table 1 with additional details provided in Appendix A.1. Our
overall optimization combines the three tasks, enhancing the LLM’s
expertise in AutoTools through a multi-task learning approach.

5 Dataset and Evaluation Setup

5.1 Dataset

Existing Datasets We first conduct experiments on two widely
used benchmarks: RestBench [28] and ToolBench. RestBench con-
sists of two subsets: (1) TMDB, a high-quality, human-annotated
dataset comprising 54 movie-related tools, and (2) Spotify, a dataset

Table 2: The comparison between our newly collected bench-

mark AutoTools-Eval with existing benchmarks (test set).

Dataset # Task # Tool Path len. Doc len.

AutoTools-Eval 224 7.31 107 552.92

RestBench [28] 157 2.36 94 716.69
ToolBench [20] 600 2.56 1806 159.47
ToolBench-sam [38] 895 5.35 232 66.98
APIbank [12] 272 1.99 101 75.85
ToolEyes [44] 382 2.00 568 72.06

containing 40 music-related tools. ToolBench includes various prac-
tical tasks across diverse scenarios. Each tool in the RestBench is
paired with a lengthy documentation, making it inherently appro-
priate to benchmark the tool understanding capability of LLMs.

A new benchmark – AutoTools-Eval As shown in Table 2,
to the best of our knowledge, no existing benchmarks containing
complex tools with complex tool documentation while involving
long-term planning tool-use tasks. Therefore, we build a new test
set named AutoTools-Eval to fill this gap. We first collect 107
tools with long documentation across 4 real-world domains, e.g.,
Weather and Game, from 16k public tools of the ToolBench [20]
dataset. Then, we invite 7 well-trained experts working on NLP re-
search to provide solutions for 224 complex task. Each task requires
long-term reasoning and at least 7 times tool-callings. AutoTools-
Eval also diverges from existing benchmarks by its strong inter-
connection among the tools (the arguments of subsequent tools can
only be extracted from the response of previous tools) and stability
(the task solution is not time-varying). We provide more details of
AutoTools-Eval in Appendix A.3.

5.2 Evaluation metrics

Following previous work [20, 27, 28, 42], we evaluate the task-
solving performance of our AutoTools and tool-use framework
using the following metrics. For RestBench, we use three evaluation
metrics including: (1) Success Rate (Success%), which measures
whether all the required tools (ground truth tools) are correctly
called to solve the task [28, 42]; (2) Correct Path Rate (Path%), which
calculates the proportion of ground truth tools in model-generated
tool callings; (3) Correct Tool Precision (Prec%), which calculates
the precision score between the model-generated tool callings and
ground truth tool sequence. For ToolBench, we also use the Pass
Rate as a metric following its official evaluation script, which eval-
uates whether the model successfully completes a solvable task or
try necessary tools but give up a unsolvable task. Additionally, to
evaluate the LLMs’ performance in encapsulating tools, we use the
number of correctly encapsulated tools as a evaluation metric.

5.3 Baselines

Wemainly compare ourAutoToolswith the well-known baselines,
including: (1) ReAct [43], which prompts LLM to generate the chain-
of-thought and actions in an interleaved manner; (2) CodeAct [33],
which prompts LLM to iteratively generate code snippets as ac-
tions to call manually demonstrated tools. (3) ToolLLM-DFSDT[20],
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which enhances LLMs with the Depth First Search-based Decision
Tree (DFSDT) to select tools to solve a task; (4) RestGPT [28], which
includes a coarse-to-fine planning module and a tool executor; (5)
ConAgents [27], which enables the cooperation of three special-
ized LLMs to solve complex tasks. For further comparison, We also
establish two baselines, i.e., ReAct@3 and ToolLLM@3, which are
up to three times runs of their vanilla method (ReAct or ToolLLM)
until the input task is successfully completed.

We follow the official implementation for each baseline method,
providing LLMs with well-demonstrated usage and detailed in-
struction in their system prompt to master the tool usage. And we
mark the baseline which relies on OpenAI’s official function-calling
technique1 with †. Besides, following previous work [20, 31], each
evaluation task is officially paired with a candidate toolset about
20 tools as the input for all the methods. Each toolset contains the
required tools (ground truth) and randomly sampled tools.

6 Experimental Results

In this section, we conduct extensive experiments to answer the
following research questions:

RQ1: Can LLMs understand documentation and automatically
encapsulate functions?

RQ2: To what extent does our AutoTools improve the perfor-
mance of LLMs?

RQ3: To what extent does AutoTools-Learning enhance the
ability of the LLM in AutoTools?

RQ4: Is AutoTools more efficient for task-solving compared to
existing approaches?

6.1 RQ1 – Performance on tool encapsulation.

We first investigate the LLMs’ expertise in tool encapsulation. For
comprehensive evaluation, we conduct experiments on a series of
widely used LLMs, including: (1) GPT-4-turbo, (2) GPT-3.5-turbo-16k,
(3)Mixtral-8x7B, (4)Mistral-7B-instruct, and (5) Llama-3-8B-instruct.
Specifically, we report the number of correctly encapsulated func-
tions as the evaluation metric. The sampling number 𝑛 is set to 3,
and the maximum traversal number is set to 4.

Experiment results Table 3 shows the number of correctly
encapsulated tools. We observe that powerful LLMs, such as GPT-4,
can encapsulate almost 90%∼95% tools into well-structured func-
tions, exhibiting remarkable performance. Besides, the open-source
model Mixtral-8x7B correctly encapsulate 82.5% to 88.2% tools into
functions, achieving promising results. These findings illustrate
that LLMs are capable of understanding tool documentation and
generating callable functions. A potential explanation is that LLMs
have been trained on large-scale web corpora that include diverse
code and API documentation resources, allowing them to acquire
the necessary understanding skills during the pre-training stage.
Ablation study. In our experiment, we verify the correctness of
the encapsulated functions via syntax compilation (Section 3.1)
and integration verification (Section 3.2). We compare our vanilla
method with two ablative variants: (1) w/o syntax, which removes
the syntax compilation, and (2) w/o integrate, which sequentially
encapsulates each tool without integrating relevant tools. As shown
in Table 3, in terms of the number of correct encapsulation numbers,
1https://platform.openai.com/docs/guides/function-calling

Table 3: The number of correctly encapsulated tools using our

vanilla method and two variants on benchmarks (test set).

Ours-Eval indicates our collected dataset AutoTools-Eval.

Backbone TMDB Spotify Ours-Eval ToolBench

Totally 54 40 107 3211

gpt-4-turbo 54 38 102 3071
mixtral-8x7B-inst. 48 35 95 2793
mistral-7B-inst. 45 32 92 2647
Llama-3-8B-inst. 42 32 90 2582
gpt-3.5-turbo-16k 54 38 98 2990
- w/o syntax 50↓4 35↓3 91↓7 2497↓493
- w/o integrate 47↓7 17↓21 87↓11 2655↓335

we observe 3-7 point decreases for w/o syntax, which indicates that
the LLMs may fail to generate a correct program at one pass. We
further analyze the error cases and find that LLMs may halluci-
nate by generating non-self-contained functions that depend on
undefined or randomly fabricated variables. Besides, we find a sub-
stantial decrease between our vanilla method and the w/o integrate
variant. These results demonstrate the necessity of optimizing the
integration of the function with strong input-output dependence.

6.2 RQ2 – Overall Performance

The results of RQ1 demonstrate that LLMs show promising capa-
bility in automatically encapsulating tools into callable functions.
In RQ2, we further evaluate the LLMs’ expertise in manipulating
pre-encapsulated functions to solve practical tasks within the pro-
posed AutoTools. We set the maximum interaction turns to𝑚 = 5
(Section 3.3) and conduct comprehensive experiments on LLMs
with varying parameter scales.

Results on existing benchmarks As shown in Table 4, the
LLM, when equipped with our framework, surpasses all the base-
lines on the RestBench and ToolBench benchmark across all metrics.
For example, AutoTools achieves 89.00% in success rate metrics
on the TMDB (RestBench) dataset, which substantially improves
both the commonly used ReAct and the more advanced ToolLLM.
Table 5 further illustrates that our framework achieves the best
performance with various backbone LLMs, i.e., the Mistral-8x7B
and GPT-4. These results indicate that our framework effectively en-
ables LLM to master executable functions and effectively integrate
them to solve complex tasks. The performance of two runs is tested
using a two-tailed paired t-test where no significant difference is
found (𝑝 > 0.05), showing the stability of our method.

Results on AutoTools-Eval Table 4 presents the results on
our AutoTools-Eval benchmark. We find that our AutoTools-
Eval poses a substantial challenge for previous baselines, with
the best performance only achieving a 44.70% success rate using
GPT-3.5 as the backbone. In contrast, our method improves the
success rate to 60.21%, representing a 15.51 point increase. This
improvement is attributed to our AutoTools framework, which
grounds LLMs with diverse tools by enabling them to integrate pre-
encapsulated functions through programming. The LLM generates
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Table 4: Experiment results on three datasets with gpt-3.5-turbo as the backbone. The Path Rate, Precision, and Success%

indicate Correct Path Rate, Correct Path Precision, and Successful Rate metrics.
∗
The Precision of ToolLLM is substantially

lower than other baselines since it employs a DFS search algorithm to repeatedly call incorrectness tools instead of stopping.

Method

TMDB (RestBench) Spotify (RestBench) AutoTools-Eval ToolBench

Success% Path Rate Precision Success% Path Rate Precision Success% Path Rate Precision Pass Rate
gpt-3.5-turbo-16k

ReAct† [43] 61.00 77.13 52.30 50.88 74.64 44.79 22.76 60.75 68.03 39.39
CodeAct [27] 63.00 80.91 83.72 54.30 76.64 79.81 27.82 57.93 66.23 -
ToolLLM† [20] 72.00 78.29 49.41 61.40 82.82 25.33∗ 42.14 71.02 65.24 66.39
RestGPT [28] 65.00 77.49 80.15 64.91 73.94 88.71 26.83 40.95 62.21 63.88
ConAgents [27] 76.00 78.29 82.31 63.16 78.21 82.71 60.21 78.31 72.45 69.84
ReAct@3† 70.00 80.96 48.01 59.65 81.80 30.48 28.35 66.66 66.21 66.12
ToolLLM@3† 74.00 83.29 45.41 66.67 83.41 23.73 44.70 73.85 60.77 68.77
AutoTools (ours) 89.00 84.71 83.87 78.95 78.54 91.46 60.21 78.31 72.45 75.21

Table 5: Experiment results on more widely-used LLMs to

validate the effectiveness of our AutoTools.

Method

TMDB AutoTools-Eval

Success% Path Rate Success% Path Rate
gpt-4-turbo

ReAct† 77.00 86.05 25.99 65.98
ReAct@3† 80.00 89.21 30.98 67.55
ToolLLM@3† 82.00 90.62 50.46 76.73
Ours 94.00 92.68 65.74 83.54

mixtral-8x7B-instruct

ReAct 24.74 73.34 10.53 41.37
ReAct@3 37.88 76.85 18.95 52.40
ToolLLM@3 45.00 74.40 22.54 51.85
Ours 58.00 78.17 29.87 59.14

Llama3-8B

ReAct@3 15.00 56.25 0.00 25.59
ToolLLM@3 15.15 50.51 1.74 31.04
Ours 18.00 54.31 5.36 36.24

mistral-7B-instruct

ReAct@3 12.00 57.10 4.35 35.95
ToolLLM@3 18.00 60.14 5.09 37.32
Ours 23.00 59.62 10.71 40.31

directly executable programs, flexibly integrating multiple tool-
calling actions into the long-term reasoning process.

Analysis on interaction turns. We further investigate the
LLM’s performance as the maximum interaction turns𝑚 vary from
1 to 5, with the results shown on two datasets in Figure 4. On the
AutoTools-Eval dataset, we observe an increasing success rate
as 𝑚 shifts from 1 to 4, followed by a relatively stable trend as
𝑚 increases from 4 to 5. These results indicate that the LLM can
correctly call the required tools and revise errors in approximately
three steps. Given that each task in AutoTools-Eval requires an
average of 7.31 tool calls (see Table 2), our AutoTools enables
the LLM to generate executable programs that directly integrate
multiple functions. A similar trend is observed in the TMDB dataset,
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Iteration turns

TMDB
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20

40
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80
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AutoTools-Eval

Ours

ReAct ReAct

Ours

Figure 4: The step (turn) level performance evaluation.

Table 6: Ablation study of our AutoTools-Learning. We

investigate the effectiveness of each learning task.

Method

TMDB AutoTools-Eval

Success% Path% Success% Path%

mistral-7B-instruct

Ours (vanilla) 23.00 59.62 10.71 40.31
Ours (trained) 29.00 64.10 16.52 44.56

- w/o L
Und

26.00↓3.0 62.13↓2.0 14.29↓2.2 42.35↓2.2
- w/o L

Rel
26.00↓3.0 61.04↓3.1 15.18↓1.3 41.37↓3.2

- w/o LFunc 25.00↓4.0 62.76↓1.3 13.39↓2.1 42.52↓2.0

where the LLM completes tasks in just 2 turns, compared to an
average task path length of 2.36 in TMDB.

6.3 RQ3 – Further improvement

Our AutoTools-Learning is proposed to further improve the
LLM’s expertisewithinAutoTools, which trains open-source LLMs
using synthetic examples through the multi-task learning. We em-
ploy the DeepSpeed ZeRO-3 strategy [22], with a learning rate of
2𝑒−5 and 3 training epochs on 8 NVIDIA A100-PCIE-80GB GPUs.
We compare the performance of AutoTools with both trained and
vanilla (i.e., out-of-the-box) LLMs. Table 6 presents the experiment
results. We obverse that our AutoTools-Learning substantially
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Figure 5: Average consumed tokens along with performance

(success rate) for different methods.

improves overall performance of the Mistral-7B. For example, it
pushes the success rate to 16.52 in the AutoTools-Eval dataset.

To further evaluate the effectiveness of the three learning tasks in
the AutoTools-Learning, we also conduct a fine-grained ablation
study, removing each task in turn and training the LLM with only
the remaining two tasks.

w/o L
Und

. We remove the document understanding task for-
mated in Eq 5. As illustrated in Table 6, the success rate decreases by
3.00 points in the TMDB dataset and by 1.3 points in theAutoTools-
Eval dataset. These results highlight the importance of the docu-
ment understanding task in enhancing overall performance.

w/o L
Rel

.We remove the relevance learning task defined in Eq 6.
A decrease in the correct path rate metric is observed across both
datasets, validating the necessity of learning the relevance between
the query and candidate tools.

w/o LFunc We remove the function learning task formulated in
Section 7. The success rate decreases by 4.00 points in the TMDB
dataset (17.39% relative improvement) and by 2.1 points in the
AutoTools-Eval dataset (19.61% relative improvement). Besides,
removing this task has themost pronounced impact compared to the
removal of the document understanding or relevance learning tasks.
This finding suggests that function learning is more fundamental
to our AutoTools-Learning, and training the LLM with this task
is crucial to optimize its performance within the AutoTools.

6.4 RQ4 – Efficiency analysis

We further analyze the efficiency of our framework compared to
strong baselines in the task-solving process. Figure 5 shows the to-
ken consumption alongside the performance results for a more intu-
itive comparison. We show their consumed token along with their
performance results on to explain more intuitively. We observe that,
despite achieving better performance, our framework consumes
fewer tokens compared to all baselines. The reason is that our
framework allows the LLM to flexibly integrate well-encapsulated
functions and transform multi-step tool-callings into a concise,
structured program. We also compute the token consumption for
our encapsulation process in Table 8. Given comprehensive tool doc-
umentation, we find that GPT-3.5-turbo-16k only consumes 2703
tokens to encapsulate a tool into a callable function with usage
examples. These encapsulated functions can be cached and loaded
for subsequent reuse. More details can be found in A.2.

Table 7: The statistics of the error of our framework.

Error analysis Percent%

# 1. Selection error : confuse similar tools or only
select part of required tools 44.0%

# 2. Arguments error : make up non-exist variables 25.2%
# 3. Parse Error : hallucinate the structure and
type of function return value 30.8%

7 Discussion

Statistics of error cases.To further evaluate the potential strengths
and weaknesses of our method, we analyze the types of failure
cases, categorizing them into three groups, as shown in Table 7.
Most errors stem from selecting incorrect functions or mismatch-
ing the expected return value types of similar functions. Thus, we
conducted an additional experiment under the same conditions as
Table 4, except that we reduce the number of candidate tools for
each test query from 20 to 10. We observe a 2-3 point improvement
in performance across the RestBench, AutoTools-Eval, and Tool-
Bench datasets. Thus, we believe that a solution to mitigate the
errors identified in Table 7 is to filter out irrelevant functions (e.g.,
using embedding or retrieval models) as proposed in [21], thereby
reducing noise for tool-use LLMs.
Case study. Besides automatic evaluation in our experiment, we
also conduct case studies and human evaluation for a comprehen-
sive evaluation. The concrete examples and results are shown in
Appendix A.4 for an intuitive explanation.

8 Conclusions

We presented AutoTools, a framework that enables LLMs to act as
automated tool learners, automating the tool-use workflow. Within
AutoTools, the LLM first transforms tool documentation into
callable functions, verifying both syntax and runtime correctness.
It then integrates these functions into executable programs, flex-
ibly grounding tool-use actions within its reasoning processes to
solve practical tasks. AutoTools addresses two key challenges in
existing tool learning methods: (1) reliance on intensive human
expertise to process diverse and complex tool documentation into
structured formats with in-context examples, and (2) the limita-
tions of handcrafted, ad-hoc control flows to integrate LLM gen-
eration with diverse tool-calling actions. Extensive experiments
on existing datasets and a newly created challenging benchmark
demonstrate the effectiveness of our framework. Inspired by the
promising performance of AutoTools, we further propose the
AutoTools-Learning, which enhances LLM capabilities, partic-
ularly for open-source LLMs with fewer parameters. We expect
future research to integrate our framework into vision foundation
models, developing multi-modal agents for real-world task-solving.

Ethical Use of Data and Informed Consent

We followed ethical standards, using publicly accessible tools and
benchmarks to ensure transparency, reproducibility, and fairness
in our research. we ensured that our methods are free from harm
or deception and do not produce toxic outputs.
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A Appendix

Ethical Use of Data and Informed Consent

The research conducted in this paper aims at the development
of empowering large language models (LLMs) as automated tool
learners. It enables LLMs to transform abstract tool documentation
into executable function libraries and to flexibly integrate functions
through programming to solve practical tasks. In the process of
conducting this research, we have adhered to ethical standards to
ensure the integrity and validity of our work. All tools used in this
study were obtained from publicly accessible platforms or widely-
used benchmarks, ensuring transparency and reproducibility in our
experiments and minimizing potential bias and promotes fairness.

We havemade an effort to ensure that our research does not harm
individuals or groups, nor does it involve any form of deception or
potential misuse of information. The tools used in this research do
not pose any harm, and there is no malicious behavior associated
with the LLMs or the tools. Additionally, we have ensured that the
LLMs do not produce harmful or toxic outputs. Our code, prompts,
and datasets will also be open-sourced to facilitate further research,
making them available after the anonymization period.

A.1 Training Data Synthetic

OurAutoTools-Learning trains the LLM using a synthetic dataset
through a multi-task learning approach, which includes three key
tasks: tool understanding, relevance learning, and function learning.
The AutoTools-Learning synthesizes training data by reformat-
ting established datasets into an interactive task-solving format,
simulating interactions between the user and the LLM, or the LLM
and the execution environment. Below, we detail the data resources
for each task, respectively.

Data synthetic for the tool understanding task.We first col-
lect a large number of tools (16k) from the ToolBench [20] dataset.
Each tool is originally crawled from the RapidAPI platform and
has been manually supplemented with its callable function, making
it inherently similar to the setting of our learning task. The input
for each training example in this task is the tool’s development
documentation, while the output is a well-structured Python func-
tion pre-created by ToolBench. The tool documentation includes
an abstract description of how to invoke the tools. The generated
functions are directly callable and executable.

Data synthetic for the tool understanding task. We gather
data from various tool retrieval datasets, including (1) ToolACE [14],
(2) ToolBench [20], (3) APIGen [15], (4) Confucius [6], and (5)
ToolAlpaca [31]. Each example consists of a query, a list of candi-
date tools, and the target tools. We first transform the tools into a
unified function using the encapsuluation operation in Section 3.1
and we unify this data into a listwise selection format, similar to
RankGPT [29] and RankRAG [46]. In this task, the input of each
training example is the concatenation of the query and the tools,
while the output is the unique ID of the ground truth tool. Here,
the unique ID for each tool specifically indicates the tool name.

Data synthetic for the function learning task. We collect
step-level task-solving trajectories from existing tool-use datasets,
including (1) ToolACE [14], (2) ToolBench [20], and (3) APIGen [15].
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We selected these datasets because they have provided large-scale
training sets rather than just test sets. Each example in this task
consists of a practical query (e.g., fetch the past month’s Daily
4 lottery results?), a list of relevant tools, and the step-level
solution. The solution involves tool-use actions, such as selecting
relevant tools (e.g., Daily_4_History_API), specifying parameters
(e.g., start=2022-05-20, end=2022-06-20), and receiving the re-
sponse. We filter out low-quality examples that contain unsolvable
queries or empty tool responses. Then, we use a powerful LLM
(GPT-4o) to generate program solutions based on the originally
annotated solution, reformatting the customized tool-use actions
into unified programs. In this process, their pre-annotated solutions
are used as references to ensure the correctness of the reformatted
data. Besides, if a reformatted example contains syntax errors or
tool-calling parameters that differ from its pre-annotated solution,
it is discarded.

In total, we collect 7,243/12,251/14,689 examples for the above
three tasks, respectively. We also reformat these datasets into a
unified interactive format, similar to previous work [31, 45]. Each
formatted example begins with a system instruction describing the
task and initial input, followed by interactions between two roles:
the user and the LLM, or the LLM and the execution environment.
Our overall optimization involves combining the three tasks to
optimize the LLM’s expertise in AutoTools through a multi-task
learning approach.

A.2 More Experiment Details

The tool encapsulation. In our experiments, we evaluate our
encapsulation method for four datasets, i.e., RestBench-TMDB,
RestBench-Spotify, AutoTools-Eval, and ToolBench, respectively.
We provide the cost statistic for this process in Table 8.

Table 8: Detailed statistic of our tool encapsulation.

Statistic

Maximum number of iterations per tool 4
Runtime iterations during the experiment 3
Avg. encapsulation attempts per tool 2.04
Avg. token consumption per tool 2703

The runtime consistency of our experiment. Since the non-deterministic
generation of LLMs by nature, we further explore the consistency
and stability of our framework. We repeat our method (ours) with
the same setting as Table 4 in RestBench. The statistical significance
of differences observed between the performance of two runs is
tested using a two-tailed paired t-test. We find no significant differ-
ence between the results of two randomly conducted experiments
(𝑝 > 0.05).

Human evaluation. ollowing previous work [20, 28], we conduct
a human evaluation on two metrics, including: (1) Executability
(Exec): whether multiple tools are invoked in a correct logical order
to complete the task; (2) Tool utilization (Uility): whether the model
can observe the relevant values from lengthy execution results
and incorporate them to predict the next action. We invite three

Table 9: The human evaluation on three datasets for exe-

cutability and utility. Scores are on a scale of 1–3.

ReAct CodeAct ToolLLM@3 AutoTools

Exec 1.61 1.79 2.19 2.41
Utility 1.86 1.97 2.19 2.40

well-educated volunteers to evaluate 30 cases randomly sampled
from our experiment benchmarks in Table 4. Details of human
evaluation. Specifically, the annotators manually evaluate the task-
solving trajectory step-by-step for Utility and Executability metrics
using the ground truth solution as a reference. To guarantee an-
notation quality, we ask at least two annotators to evaluate the
same example repeatedly. If there is a discrepancy between the two
annotators (i.e., two annotators give a different score), we ask a
third annotator to recheck it. The Kappa statistics for Executability
and Tool utilization metrics are 0.70 and 0.69, which illustrates the
agreement among annotators. Results of human evaluation. The
results are shown in Table 9. We find that our method achieves the
best in the Executability aspect with 0.21 absolute improvement
compared with strong baselines, e.g., ToolLLM@3. We also observe
that our method achieves higher performance on Utility. The rea-
son for our superiority is that our framework enables the LLM to
operate well-calibrated functions through programming, which is
more executable compared with the manually designed workflow
in previous work.

A.3 A new benchmark – AutoTools-Eval

Our AutoTools-Eval benchmark is proposed to evaluate tool-use
LLMs using more challenging tasks. Compared with the existing
benchmark, our AutoTools-Eval has the following advantages.
• Long-term planning. Most existing tool learning benchmarks

are relatively simple, with each task being solved using 2 or 3
steps. However, real-world tasks often require complex work-
flows, such as computing the rating scores for the top 10
newly released movies. To reflect the tool learning capability
of LLMs in realistic scenarios, each task in our AutoTools-Eval
benchmark is designed to involve at least 7 tool calls on average.

• Connected reasoning. Each task in our benchmark requires
the model to interact with tools multiple times. To increase the
challenge of the task, there is a strong interdependency among
the tools, meaning that the argument of the current tool can
only be extracted from the execution results of previous tools.
This interdependent nature forces the models to connect infor-
mation across all execution results of tools to solve a complex
task, instead of simply making multiple calls without further
reasoning.

• Consistency and stability: For high reproducibility, each task
in our benchmark does not involve specific time, and the outputs
of the tools are not time-varying.
We also compare our AutoTools-Eval with existing bench-

marks in Table 2.

A.3.1 Details for benchmark construction. Previous work like Tool-
Bench [20] directly employs LLMs to generate datasets. However,
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Table 10: The statistics of our collected AutoTools-Eval

benchmark, where we show the tool number and example

number for each domain.

Domain of the tools in our AutoTools-Eval Totally
Food Recipe Weather Game Movie

Tasks 64 50 50 60 224
Tools 22 11 20 54 107

it is proved to be less diverse or has unsolvable tasks [7, 49], raising
concern about the scope and effectiveness of the evaluation. In this
work, we adopt a bottom-up task collection approach driven by
manual effort. Specifically, we employ 7 experts (a.k.a., annotators)
who work on NLP research to brainstorm tasks for different com-
binations of tools. Each expert is encouraged to integrate various
tools to formulate a challenging task. Next, the experts need to
manually solve these tasks with the assistance of candidate tools
and annotate the ground truth solution, which includes the path of
required tools and corresponding arguments for each tool calling.
To establish a benchmark for highly consistent evaluations, we
exclude any tasks where the solution varies over time. Specifically,
a task is filtered out if the ground-truth solution path for the tool
differs between two runs. Ultimately, we construct 227 examples
across 107 tools from four domains. Table 11 shows an example
of our collected benchmark. Compared with existing benchmarks
which only list the required tools for each task, we further provide
a ground truth solution for reference, including the required tools
and corresponding arguments. Although the dataset is not large,
each task in our benchmark is of high quality and represents the
types of requests frequently made by users. The statistics of our
benchmark are shown in Table 10.

A.3.2 Strategy for quality improvement. To ensure the quality of
our constructed benchmark, we employ the following strategies.
• Detailed annotator training. We hold regular meetings to

ensure that each expert has no questions about the annotation
criteria. We also design pre-annotation tests, where each expert
undergoes detailed training to familiarize themselves with our
annotation task.

• Cross-check for potential discrepancies. To guarantee anno-
tation quality, we ask at least two experts to annotate the same
task repeatedly. If there is a discrepancy between the two experts,
i.e., two experts give different solutions for the same task, we ask
a third expert to recheck it. We also filter the task with ambiguity
to improve the reliability of our benchmark.

• Periodic audits: We conduct periodic audits of the annotations.
These audits involved cross-checking a subset of annotated ex-
amples to verify compliance with the established criteria. We
also held regular review meetings where annotation experts dis-
cussed challenging cases, ensuring a common understanding and
application of the rules.
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Table 11: An example of our collected AutoTools-Eval benchmark.

Example of our AutoTools-Eval benchmark (Food domain)

Task:

Please help me find a steak recipe and a pasta recipe. These recipes should have a carbohydrate content no
higher than 80 grams per 100 grams, no lower than 5 grams per 100 grams. The protein content should be at
least 5 grams per 100 grams for each recipe. Among them, which recipe requires fewer pieces of equipment,
and how many ingredients does the recipe with fewer equipment contain?

Base url for tool:

https://spoonacular-recipe-food-nutrition-v1.p.rapidapi.com/

Ground truth solution:

1. GET /recipes/complexSearch

- arguments: {"query": "steak", "minCarbs":5, "maxCarbs": 80, "minProtein": 5, "number": 1}
2. GET /recipes/complexSearch

- arguments: {"query": "pasta", "minCarbs":5, "maxCarbs": 80, "minProtein": 5, "number": 1}
3. GET /recipes/recipe_id/equipmentWidget.json

- arguments:{"recipe_id": 1094259}
4. GET /recipes/recipe_id/ingredientWidget.json

- arguments: {"recipe_id": 1094259}
5. GET /recipes/recipe_id/equipmentWidget.json

- arguments: {"recipe_id": 532245}
6. GET /recipes/recipe_id/ingredientWidget.json

- arguments: {"recipe_id": 532245}

Ground truth tools:

1. GET /recipes/complexSearch
2. GET /recipes/{recipe_id}/equipmentWidget.json
3. GET /recipes/{recipe_id}/ingredientWidget.json
4. GET /recipes/{recipe_id}/equipmentWidget.json
5. GET /recipes/{recipe_id}/ingredientWidget.json
6. GET /recipes/{recipe_id}/similar
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A.4 Case Study

We conduct comprehensive case studies and find that our framework AutoTools is effective at coordinating various tools to solve complex
tasks and our probing method can instruct the LLM to probe the input-output mechanism of tools, automatically synthesizing documentation.
We provide the following cases to intuitively explain the details of our method.

Example for Tool encapsulation. Given a tools (e.g., a tool from Spotify dataset), the LLM automatically understand the key information
in tool documentation, and transform abstract documentation into a well-encapsulated function. The function in our experiment is Python
format, which can is directly callable.

The tool documentation of a tool named “GET_search” is shown below.

Tool: GET_search
Development documentation: {'method ': 'GET ', 'url ': 'https ://api.themoviedb.org/3/ search/person ', 'name ':
'GET_search_person ', 'description ': 'Search for people.', 'parameters ': [{'name ': 'query ', 'in ': 'query

', 'schema ': {'type ': 'string '}, 'description ': 'Pass a text query to search. This value should be URI
encoded.', 'required ': True}, {'name ': 'page ', 'in ': 'query ', 'schema ': {'type ': 'integer ', 'default ':
1}, 'description ': 'Specify which page to query.'}, {'name ': 'include_adult ', 'in ': 'query ', 'schema ': {'
type ': 'boolean ', 'default ': False}, 'description ': 'Choose whether to inlcude adult (pornography)
content in the results.'}, {'name ': 'region ', 'in ': 'query ', 'schema ': {'type ': 'string '}, 'description ':
'Specify a ISO 3166-1 code to filter release dates. Must be uppercase .'}], 'requestBody ': None , 'example

': '{\n "status_code ": 7,\n "status_message ": "Invalid API key: You must be granted a valid key.",\
n "success ": false\n}', "responses ": {" description ": "", "content ": { "application/json": {" schema ":
{"type": "object",

The LLM encapsulates the tool “GET_search” into a python function grounded with the above documentation, which is shown as below.

import requests

def search_person(query: str , api_key: str , page: int = 1, include_adult: bool = False , region: str =
None) -> dict:

"""
Call the GET_search_person API from TMDb to search for people.

Parameters:
query (str): The search term to find people (e.g., actor or director 's name).
api_key (str): Your TMDb API key.
page (int , optional): The page number for pagination (default is 1).
include_adult (bool , optional): Whether to include adult content (default is False).
region (str , optional): ISO 3166-1 code to filter results by release dates in a specific region.

Returns:
dict: The JSON response from TMDb API with the search results.
"""
url = 'https ://api.themoviedb.org/3/ search/person '

params = {
'query ': query ,
'api_key ': api_key ,
'page ': page ,
'include_adult ': include_adult

}

if region:
params['region '] = region

response = requests.get(url , params=params)

if response.status_code == 200:
return response.json()

else:
print(f"Error: {response.status_code}, {response.json().get('status_message ')}")
return {}
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To verify the ecapsulated function, the LLM then generate a test instance using its commonsense knowledge, i.e., brainstorming a query
related to the tool’s description and required parameters. The generated instance by LLM is shown below. We have removed the user-specific
“API-Key” for anonymization.

api_key = "YOUR_API_KEY" # Replace with your valid TMDb API key
result = search_person(query=" Christopher Nolan", api_key=api_key)
print(result)
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Example for LLM-generated program. During the functional programming (Section 3.3), the LLM utilize encapsulated functions by
generating executable programs. We show a specific example in our experiment, including query, LLM-generated program (i.e., solution) and
the encapsulated functions used in the program. The query is shown below.

Query: Give me some cover images of movies directed by Christopher Nolan.

The generated program by gpt-3.5-turbo and the execution results.

headers = {" Authorization ": f"Bearer eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOiIwZ "}
# Search for Christopher Nolan
search_results = search_person (" Christopher Nolan", headers)
if len(search_results) > 0:

# Get the person ID of Christopher Nolan
person_id = search_results [0]["id"]
# Get movie credits for Christopher Nolan
movie_credits = get_movie_credits(person_id , headers)
# Get the cover images of movies directed by Christopher Nolan
cover_images = get_director_movie_posters(movie_credits)
print(cover_images)

else:
print (" Christopher Nolan not found .")

Output: ['/ cXDFFv6nL0So.jpg ', '/rQ884232vY6Zp.jpg ', '/riVXh3EimGO5Itg.jpg ']

We also show the used function in LLM-generated program, which is pre- encapsulated by the LLM itself in our encapsulation stage
(Section 3.1).

def search_person(query: str , headers: dict) -> dict:
"""
Call the GET_search_person API to search for a person by name.

Parameters:
- query (str): The name of the person to search for.
- headers (dict): Authorization headers for the API request.

Returns:
- dict: {'id ': 'int ', 'keywords ': [{'id ': 'int ', 'name ': 'str '}]}
"""
url = "https ://api.themoviedb.org/3/ search/person"
params = { "query": query , "include_adult ": False}
response = requests.get(url=url , headers=headers , params=params)
if response.status_code == 200:

return response.json().get(" results", [])
else:

print(f"Error: {response.status_code }")
return {}

def get_movie_credits(person_id: int , headers: dict) -> dict:
"""
Call the GET_person_person_id_movie_credits API to get the movie credits for a person.

Parameters:
- person_id (int): The ID of the person whose movie credits to retrieve.
- headers (dict): Authorization headers for the API request.

Returns:
- dict: JSON response containing movie credits.
"""
url = f"https ://api.themoviedb.org/3/ person /{ person_id }/ movie_credits"
response = requests.get(url , headers=headers)
if response.status_code == 200:
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return response.json()
else:

print(f"Error: {response.status_code }")
return {}

def get_director_movie_posters(movie_credits: dict) -> list:
"""
Extracts the poster paths for movies directed by the person from their movie credits.

Parameters:
movie_credits (dict): JSON response containing the movie credits.

Returns:
list: A list of poster paths for the movies directed by the person.
"""
cover_images = []
for movie in movie_credits.get("crew", []):

if movie.get("job") == "Director" and movie.get(" poster_path "):
cover_images.append(movie[" poster_path "])

return cover_images
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A.5 Experiment Instruction

We provide the instruction used in our experiment, including: (1) the instruction IE to instruct the LLM to encapsulate a tool into a directly
callable function; (2) the instruction IFunc to enable the LLM to integrate multiple pre-functions by generating a executable programs for
task-solving, and (3) the instruction IRel to instruct the LLM to select relevant tools. The three instructions are shown below. We use the “”
to indicate the query-specific input.

Instruction for Encapsulation.

I have a set of customized tools. Each API has a usage in its documentation to demonstrate how to access
it. According its usage , your task is to encapsulate them into well -structured Python functions , along
with a testing instance to demonstrate how to call these functions.

Your encapsulated functions should follow these key points:
1. Self -Contained: Each function must handle the API request (including making the call and processing
the response) and return the result. All required constants must be included within the function itself ,
rather than relying on external variables.
2. Function Flexibility: Ensure the function is flexible enough to accept necessary parameters based on
the API 's requirements.
3. Error Handling: The function should be robust enough to handle HTTP request errors. This includes
checking for unsuccessful status codes and faithfully returning the error message or exceptions
information.

Here is an output templte:```python
# import necessary lib

def API_NAME(PARAMs: type):
""" Description: add the description of the functionality
Args:
- PARAM 1 (type): explain the params
- ...
"""
# define the variable constants , like header or base url
...
# request get/post /...
...
# Error Handling for state code
...
return response

# begin your testing instance
```

Here is the detailed development documentation of an API.
{t_doc}

Since you may need specific parameters , e.g., id, to call this API , I also provide you with some known
APIs to get the required value you need. For example , you should first obtain the requisite id or key
identifier of an entity and search the entity 's information using the id.
{docs}

Your output:```

Instruction for functional programming.

Here are some real -world functions. You need to answer my question by writing Python programs to call a
series of functions and `print` the final answer. The functions is directly callable and has been loaded
in the Python execution environment.

{functions}

Read the provide functions carefully and integrate necessary functions to solve my query: {query}.
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You need to provide Python code that can be executed directly. Please add the name of the used APIs in
Python comments for the attribution consideration. Try to write a correct Python program and avoid
grammar errors , e.g. `variable is not defined`.

Query: {query}
Your output:
```python
[Program]
```

Instruction for selecting relevant tools.

Here is an API along with its development documentation:
{doc}

This API has strong input -output dependencies with several other APIs listed below. Specifically , the
input parameters required for this API (e.g., id) can only be obtained from the output of one or more
APIs in the candidate list. To make a successful call to the given API , please help me select the related
APIs that can provide the necessary input parameters. Here is a list of candidate APIs:

{api_list}

Please select the relevant APIs by listing their names in Python List format in one line (e.g., ["API 1",
"API 2", ...]). You are encouraged to select any APIs you think might be useful.

Your output: [
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