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Abstract

Despite progress in Large Vision-Language Models (LVLMs), their capacity for
visual reasoning is often limited by the binding problem: the failure to reliably
associate perceptual features with their correct visual referents. This limitation un-
derlies persistent errors in tasks such as counting, visual search, scene description,
and spatial relationship understanding. A key factor is that current LVLMs pro-
cess visual features largely in parallel, lacking mechanisms for spatially grounded,
serial attention. This paper introduces Visual Input Structure for Enhanced Rea-
soning (VISER), a simple, effective method that augments visual inputs with low-
level spatial structures and pairs them with a textual prompt that encourages se-
quential, spatially-aware parsing. We empirically demonstrate substantial perfor-
mance improvements across core visual reasoning tasks, using only a single-query
inference. Specifically, VISER improves GPT-40 performance on visual search,
counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively,
and reduces edit distance error in scene description by 0.32 on 2D datasets. Fur-
thermore, we find that the visual modification is essential for these gains; purely
textual strategies, including Chain-of-Thought prompting, are insufficient and can
even degrade performance. VISER underscores the importance of visual input de-
sign over purely linguistically based reasoning strategies and suggests that visual
structuring is a powerful and general approach for enhancing compositional and
spatial reasoning in LVLMs.

1 Introduction

Large Language Models (LLMs) have recently achieved remarkable progress, matching or even
surpassing human performance across a range of complex tasks [1-5]. Despite significant advance-
ments, Large Vision-Language Models (LVLMs) still lag behind LLMs in core reasoning capa-
bilities. While LLMs show strong symbolic and abstract reasoning, LVLMs struggle with essen-
tial aspects of visual understanding. They frequently miscount objects in cluttered or overlapping
scenes [6, 7], perform poorly in spatial reasoning (e.g., identifying left of or above) [8], and often
fail to accurately locate or recognize salient targets during visual search [9]. Moreover, composi-
tional and relational reasoning, where understanding critically depends on structured relationships
between objects, remains a major challenge [6]. These limitations indicate that LVLMs, despite
their power, lack key mechanisms for structured visual reasoning. Consequently, their performance
in these areas does not yet match that of language-only models in comparable text-based reasoning
tasks.
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Figure 1: The input image is augmented with low-level visual structure using three horizontal lines,
optionally accompanied by row annotations on the left side of the image. A corresponding textual
prompt (Scan the image sequentially based on horizontal lines) is appended to encourage the model
to adopt a spatially guided, sequential parsing strategy.

The limitations in visual reasoning tasks can largely be attributed to a fundamental challenge known
as the binding problem [9]. Originating from cognitive science and neuroscience, the binding prob-
lem refers to the difficulty of correctly associating visual features (like shape and color) and spatial
properties (such as location and orientation) with the right objects in a scene. It arises when a system
must handle multiple entities simultaneously, leading to interference and misattribution of features
[10-12]. In the context of LVLMs, the binding problem manifests as errors in compositional under-
standingmodels may recognize individual objects correctly but confuse or conflate their attributes.
These issues are particularly prevalent in complex, cluttered scenes and persist across a range of
model architectures and benchmarks. As a result, reliable multi-object reasoning and generalization
of visual concepts to novel settings remain difficult for current LVLMs.

Inspired by neuroscientific studies on human scene perception, we propose Visual Input Structure
for Enhanced Reasoning (VISER), a novel approach to improve LVLM binding performance. Our
approach augments visual inputs with low-level spatial structures, such as horizontal or grid lines,
complemented by appending a textual instruction to the input prompt (see Figure 1 as an example).
The motivation behind our strategy is to encourage sequential processing in LVLMs guided by these
structures in the inputs. Our method can be viewed as a visual analogue of Chain-of-Thought (CoT)
prompting[13] for LLMs, as it injects an inductive bias directly into the visual input to implicitly
decompose the problem and guide the models reasoning.

Despite its simplicity, VISER yields significant performance improvements. The method is gen-
eral and input-agnostic, requiring no additional processing for specialized image manipulation. We
empirically show that both the visual structure and the textual part of our method are necessary
and complementary. In particular, textual prompts for sequential scanning alone prove insufficient
to resolve binding failures, and even attempts to elicit more structured reasoning through complex
prompting strategies, such as CoT, can paradoxically degrade performance on these visual tasks [14].
In contrast, the inclusion of visual cues stimulates more structured internal processing in LVLMs
and promotes spatial parsing mechanisms, enhancing the models ability to bind features accurately.
These findings highlight the potential of targeted visual input modifications to improve graphical
reasoning and compositional understanding in LVLMs. In summary, the main contributions of this
paper are:

* We propose VISER, a novel method that combines explicit visual scaffolding (e.g., horizontal
lines) with targeted textual prompts to improve feature-object binding in LVLMs.

» Through extensive experiments, we demonstrate that our method significantly enhances LVLM
performance across a range of core visual reasoning tasks, including visual search, counting,
scene description, and spatial relationship understanding. For example, on 2D benchmark,
VISER improves GPT-40 performance on visual search, counting, and spatial reasoning by
25.0%, 26.8%, and 9.5% (absolute), respectively, and reduces the edit-distance error in scene
description by 0.32.

* Our results establish that purely textual interventions are insufficient to overcome binding
limitations, and explicit visual manipulation is crucial for this purpose.

» The proposed approach achieves these improvements efficiently, operating within a single
query and incurring negligible computational overhead. Its effectiveness, simplicity, and gen-
erality (both task- and model-agnostic) distinguish our method from multi-query or agentic
approaches that rely on additional processing or tool use.



2 Related Work

LLM and LVLM Reasoning. While early LLMs were regarded as next-token predictors with little
reasoning ability [15, 16], recent work has begun to extensively challenge this problem [17-20].
Todays state-of-the-art models deliver high performance across many tasks, including graduate-level
question answering [21] and competitive programming. The improved reasoning abilities of LLMs
have naturally sparked interest in reasoning for LVLMs. Initial approaches include Visual Chain-of-
Thought [22], knowledge graph integration [23], and tree search [24]. Although these techniques
show promise, LVLMs still struggle with tasks such as counting, visual search, scene description,
and spatial reasoning, as demonstrated by benchmarks like EMMA [14] and SPACE [25]. Our work
aims to incorporate an explicit reasoning pathway into the visual component of the model to improve
its performance on these challenging tasks.

Binding Problem. The binding problem provides a key explanation for the limitations of state-
of-the-art LVLMs in reliably linking visual features to their corresponding objects [26, 27]. Prior
work attributes performance issues in tasks such as counting, visual search, and scene description
to failures in this featureobject binding in LVLMs [9]. Recent neuroscience research has shown
that grid-based frameworks enhance visual recognition memory [28] and improve face recognition
performance [29]. Additionally, humans reduce interference by detecting individual objects itera-
tively [30, 10], and grid structures facilitate movement-based object recognition [31], thus providing
insight into how the human brain can deal with the binding problem. Inspired by these insights,
we use horizontal lines in images to enhance model reasoning, both with synthetic images and real-
world datasets, such as the Learning To Count Everything benchmark [32].

Agentic LVLMs. An emerging line of research treats LVLMs as autonomous tool users that can
invoke external modules or produce executable artefacts to compensate for perceptual or reasoning
gaps. LVLM-COUNT [33] decomposes enumerative queries into sub-counts solved by a specialized
counting utility, yielding gains on counting benchmarks. Visual Sketchpad [34] endows multimodal
LMs with a drawable canvas, letting them sketch auxiliary lines and marks. Code execution agents
such as ViperGPT [35] translate natural-language questions into Python scripts that orchestrates
off-the-shelf vision tools, achieving state-of-the-art results on compositional visual queries. Tool-
former [36] shows that language models can self-supervise decisions about when and how to call
external APIs. Although such tool-using approaches improve task performance, they do not nec-
essarily enrich models’ intrinsic reasoning capabilities. In contrast, our work embeds an explicit
reasoning pathway directly into the visual input to overcome these limitations.

3 Proposed Method

The binding problem, a fundamental challenge in cognitive science and neuroscience, concerns
how perceptual systems correctly associate features like color, shape, and location with the right
objects in complex visual scenes [10, 12]. When multiple objects share representational resources,
the system can produce illusory conjunctions, i.e., erroneous confusion of features from different
objects (e.g., mistakenly perceiving a red square when shown a red circle and a green square) [11].
These misbindings reveal the difficulty of forming coherent, object-specific representations from
distributed visual inputs; their analysis provides a useful framework for evaluating visual reasoning
systems.

Neuroscientific studies indicate that the human visual system operates in two distinct modes: a fast,
imprecise parallel processing (often likened to System 1 processing) and a more accurate sequential
attention (System 2 reasoning) [37]. While parallel processing enables rapid scene understanding, it
is prone to errors, particularly in cluttered environments where the demands for feature binding are
high. Given sufficient time, humans transition to sequential attention, which allows for more metic-
ulous feature binding and reduces errors. In contrast, current LVLMSs predominantly process visual
inputs largely in parallel. This approach, while beneficial for compositional representation learning
and generalization, inherently risks interference and binding errors if feature-to-object linkages are
not precisely managed [27].

To address the binding problem in LVLMs, we propose a lightweight, model-agnostic approach that
enhances structured visual reasoning through minimal visual scaffolding and spatially grounded
prompting. Inspired by cognitive science findings on serial attention and spatial structuring, our
method guides LVLMs to process visual information region-by-region and reduces interference ef-
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Figure 2: A brief summary of tasks with one example of synthetic data along the specific prompt for
each task. (a) Visual Search, (b) Scene Description, (c) Counting, and (d) Spatial Relationship.

fects from parallel processing, a known contributor to binding errors in human and machine vision.
This approach introduces negligible computational overhead, requires no task-specific fine-tuning
or multi-query visual processing, and comprises two main components, which are illustrated with
an example in Figure 1 and explained below:

Visual Structuring with Horizontal Lines We augment each input image with n equidistant
horizontal lines, creating n + 1 horizontal segments. Each segment is annotated with a numerical
label (1 through n + 1) placed sequentially from top to bottom. These lines serve as visual anchors,
promoting localized attention within each region to reduce cross-object interference and improve
feature-object binding. Unlike dense grid-based methods that may obscure content, our minimalist
design preserves clarity while providing sufficient spatial guidance. The value of n is set to 3 in our
experiments.

Sequential Scanning Prompt To align the models attention with the visual scaffold, we prepend
a fixed instruction, specifically: “Scan the image sequentially based on horizontal lines exists in the
image.” This prompt guides the model to adopt a structured, row-wise processing strategy, encour-
aging a systematic evaluation of the image content. For task-specific adaptation (e.g., counting or
spatial reasoning), we augment the base prompt with additional instructions (see Appendix C).

The use of manually added artifacts and the emphasis on sequential, region-based processing may
also align with the discussion of feature entropy in [9]. By partitioning the image into distinct seg-
ments, our method encourages focused processing on smaller subsets of objects. This can simplify
the distinction between objects within each segment by reducing the concurrent feature load, an ef-
fect pertinent to managing feature diversity (or entropy) as detailed therein. Such simplification is a
key factor contributing to improved visual reasoning, particularly in counting.

4 Experiments

4.1 Setup

Datasets To evaluate VISER, we use both synthetic and natural datasets. A Binding Problem
Generator [9] produces synthetic data that can be controlled in two and three dimensions and can
incorporate a variable number of objects. Additionally, we benchmark on two real-world tasks:
Learning To Count Everything [32] and the Spatial Reasoning [38] datasets.

Models We evaluated our proposed method across a carefully chosen mix of closed-source
and open-source LVLMs. Specifically, we include two leading closed-source systemsOpenAls
GPT-40 [39] and Anthropics Claude3.5-sonnet [40]selected for their cutting-edge capabilities and
solid performance on multimodal benchmarks. For GPT-40, we evaluate both our method and Chain-
of-Thought (CoT) prompting [13] to enable a direct comparison within the same architecture. Addi-
tionally, we benchmark two state-of-the-art open-source models: Qwen2.5-VL-7B-Instruct [41] and
LLaMad4-scout-17b-16e-Instruct [42]. Beyond these baselines, we assess the benefits of targeted
fine-tuning by incorporating Mulberry [24], a Qwen2.5VL-7B variant refined for enhanced multi-



Table 1: Performance comparison on the counting task using models GPT-40, Claude3.5-sonnet,
LLaMa4, and Qwen2.5-VL, evaluated with accuracy (%) . The comparison is conducted across 2D
and 3D datasets with varying numbers of objects in the scene, as well as a natural image dataset.
Results are shown for base models and VISER.

GPT-40 Claude-sonnet LLaMa4 Qwen2.5-VL
Dataset Objects Baseline VISER Baseline VISER Baseline VISER Baseline VISER
2D 10 42.00 65.00 26.00 26.00 23.00 31.00 18.00 41.00
12 12.00 40.00 5.00 15.00 3.00 20.62 1.00 45.00
14 1.00 34.00 5.00 9.00 0.00 23.47 1.00 13.00
16 3.00 39.00 3.00 6.00 11.00 23.00 1.00 59.00
18 1.00 29.00 6.00 4.00 0.00 9.28 0.00 10.00
20 13.00 26.00 6.00 4.00 1.00 7.22 14.00 77.00
Avg 12.00 38.83 8.50 10.67 6.33 19.10 5.83 40.83
3D 10 52.00 62.00 56.00 54.00 32.00 60.42 20.83 66.00
12 12.00 38.00 26.00 28.00 0.00 34.69 8.16 20.00
14 6.00 14.00 14.00 24.00 12.00 38.00 4.08 24.00
16 16.00 24.00 8.00 14.00 40.00 44.00 6.00 16.00
18 2.00 18.00 0.00 8.00 0.00 18.75 0.00 14.00
20 2.00 30.00 0.00 4.00 0.00 22.45 12.00 20.00
Avg 15.00 31.00 17.33 22.00 14.00 36.39 8.51 26.67
Natural 29.82 35.65 2.09 6.42 29.22 31.65 18.91 17.29

modal reasoning. This breadth of model selection allows us to rigorously assess the generality and
robustness of our approach across diverse architectures, training scales, and access constraints.

Evaluation Metrics We use three metrics adopted in visual reasoning research: accuracy, har-
monic mean, and edit distance. Accuracy, used for counting and spatial relationship tasks [14],
measures the proportion of correct predictions. Harmonic mean evaluates visual search by balanc-
ing performance across visible and invisible object detection [9], ensuring that high scores require
consistent performance on both subtasks. Edit distance (Levenshtein distance) computes the mini-
mum number of insertions, deletions, or substitutions needed to transform a model-generated scene
description into the reference [9], offering a fine-grained measure of binding precision in generated
text.

In addition to the main experiments, ablation studies are provided in Appendix A, where we isolate
the effect of each component of VISER and evaluate various hyperparameters across different mod-
els. Specifically, we assess variants that use only the visual scaffolding or only the sequential prompt
(see Appendix A.l), as well as different numbers of structural lines. Moreover, we investigate the
impact of other design choices, such as the number and thickness of lines (Appendix A.2). These
analyses confirm that both components contribute to the overall performance gains and that VISER
remains effective across a reasonable range of hyperparameter settings. Finally, in Appendix B.3,
we show the significance of the proposed method by applying a binomial sign test on the results.

4.2 Counting

Counting involves determining the number of specific objects within a scene. Although it may ap-
pear simple, accurate enumerationespecially when multiple object types or attribute variations are
involvedrelies heavily on effective feature binding. Each object must be individuated, its defining
features correctly associated, and then counted as a distinct instance. Failures in binding can lead
to omissions, double-counting, or misclassification. Similar to human rapid estimation under time
constraints, LVLMs show capacity limits in counting. Performance often worsens as object num-
bers grow, or when high object similarity (low feature heterogeneity) increases the interference and
binding errors.

An instance of this task is demonstrated in Figure 2-(c); To evaluate our method, we generated 2D
and 3D images, using the synthetic data set described above, each containing between 10 and 20
instances of the target object to increase complexity. We measure performance using counting ac-
curacy; the results are summarized in Table 1. As presented, our countingspecific prompting yields
substantial gains on synthetic benchmarks: in 2D scenes, GPT-40 jumps from 12.00% to 38.83%,



Table 2: Harmonic mean comparison for the Visual Search task, evaluating VISER against base
models across GPT-40, Claude3.5-sonnet, LLaMa4, and Qwen2.5-VL on 2D and 3D datasets with
varying numbers of objects.

GPT-40 Claude-sonnet LLaMa4 Qwen2.5-VL
Dataset Objects Baseline VISER Baseline VISER Baseline VISER Baseline VISER
2D 20 0.71 0.91 0.55 0.82 0.00 0.06 0.31 0.43
30 0.50 0.80 0.54 0.70 0.00 0.00 0.28 0.37
40 0.25 0.64 0.18 0.59 0.00 0.00 0.14 0.23
50 0.46 0.55 0.10 0.55 0.00 0.00 0.47 0.56
Avg 0.48 0.73 0.34 0.66 0.00 0.02 0.30 0.40
3D 20 1.00 1.00 1.00 1.00 0.82 0.80 0.33 0.44
30 0.96 0.96 0.88 0.91 0.43 0.60 0.15 0.18
40 0.89 0.94 0.72 0.80 0.59 0.58 0.00 0.15
50 0.81 0.84 0.59 0.75 0.39 0.38 0.00 0.04
Avg 0.91 0.93 0.80 0.86 0.56 0.59 0.12 0.20

Claude-sonnet from 8.50% to 10.67%, LLaMa4 from 6.33% to 19.10%, and Qwen2.5-VL surges
from 5.83% to 40.83%; in 3D scenes, GPT-40 climbs from 15.00% to 31.00%, Claude-sonnet from
17.33% to 22.00%, LLaMa4 from 14.00% to 36.39%, and Qwen2.5-VL from 8.51% to 26.67%.
On natural images, improvements are more modestGPT-4o0 from 29.82% to 35.65%, Claude-sonnet
from 2.09% to 6.42%, LLaMa4 from 29.22% to 31.65%and Qwen2.5-VL sees a slight drop (18.91%
to 17.29%). Together, these results underscore the effectiveness of taskaware prompting in con-
trolled settings while highlighting the remaining challenge of generalizing to realworld imagery.

4.3 Visual Search

Visual search task challenges models to locate a target object among distractors, with task difficulty
adjusted by the similarity between target and distractor features. In conjunctive search, where the
target is defined by a unique combination of features (e.g., a green L-shape) and distractors par-
tially share these features (e.g., red L-shapes, green T-shapes), successful identification depends on
accurate feature binding. Models that struggle with binding may exhibit degraded performance as
the number of distractors increases or when features are highly confusable, mirroring human perfor-
mance limitations when serial attentional scanning is prevented [10].

An instance of the visual search problem is presented in Figure 2-(a); we evaluate the proposed
method using the synthetic dataset described earlier to generate 2D and 3D scenes containing be-
tween 20 and 50 objects of varying complexities. We assessed performance by measuring accuracy
in correctly identifying the targets presence or absence, distinguishing between visible searches (the
object is explicitly in the scene) and invisible searches (the object is absent). This distinction is
important because simpler LVLMs often default to predicting false, inflating their invisibleobject ac-
curacy while failing to detect visible targets. After computing the accuracy for visible and invisible
subtasks, we combined them via the harmonic mean to produce a final score.

2 - Visible - Invisibl
Harmonic Mean = — .ISI ¢ m.”.Sl ¢ (H
Visible + Invisible

Table 2 compares our approach against baselines, showing VISER delivers consistent and substantial
gains over the baseline across 2D and 3D scenes and for all evaluated LVLMs. In 2D settings, the
average harmonic mean for GPT-40 climbs from 0.48 to 0.73, for Claude3.5-sonnet from 0.34 to
0.66, for LLaMa4 from 0.00 to 0.02, and for Qwen2.5-VL from 0.30 to 0.40, with the largest relative
improvements occurring as scene complexity increases (e.g., at 40 objects GPT-4o rises from 0.25 to
0.64, and Claude3.5-sonnet rises from 0.18 to 0.59). In 3D scenes, VISER still yields gains to 0.93,
and weaker models benefit notably (Claude3.5-sonnet: 0.80 0.86; LLaMa4: 0.56 0.59; Qwen2.5-
VL: 0.12 0.20). These results confirm that our strategy not only corrects the always-false bias of
simpler LVLMs in invisible-object tasks but also markedly enhances their ability to detect visible
targets, achieving robust performance regardless of object count, visibility, or scene dimensionality.



Table 3: Comparison of scene description performance (lower is better; measured as average dis-
tance) for VISER versus baseline across GPT-40 and Claude3.5-sonnet on 2D and 3D datasets with
varying numbers of objects.

GPT-40 Claude-sonnet LLaMa4 Qwen2.5-VL
Dataset Objects Baseline VISER Baseline VISER Baseline VISER Baseline VISER
2D 10 0.70 0.67 4.68 3.12 2.03 2.29 4.38 4.24
15 1.79 1.48 2.89 2.24 3.19 3.99 7.71 7.35
20 3.32 2.73 1.45 1.24 5.74 6.89 12.29 10.59
Avg 1.94 1.62 3.01 2.20 3.65 4.39 8.12 7.39
3D 10 4.06 4.25 5.40 5.18 5.04 5.55 7.88 6.61
15 7.29 7.48 8.56 7.95 9.39 10.60 11.56 10.69
20 12.38 12.21 14.37 12.03 14.90 16.45 15.84 15.24
Avg 791 7.98 9.45 8.39 9.78 10.84 11.76 10.84

Table 4: Accuracy (%) comparison of spatial relationship predictions among GPT-40, Claude 3.5-
Sonnet, LLaMA 4, and Qwen2.5-VL on 2D, 3D, and natural image datasets, using both baseline
methods and VISER.

GPT-40 Claude-sonnet LLaMa4 Qwen2.5-VLL
Baseline VISER Baseline VISER Baseline VISER Baseline VISER
2D 43.00 52.50 34.18 36.26 29.50 27.50 48.50 50.00
3D 64.00 68.50 72.50 76.50 55.00 58.50 78.00 82.50

Natural 69.39 77.43 37.43 46.15 58.67 66.84 80.10 77.04

4.4 Scene Description

The scene description task requires models to generate accurate textual narratives that describe the
objects, their attributes, and their relationships within an image. This task challenges a LVLM’s
ability to solve the binding problem. The model must not only detect features (e.g., red, cube, blue,
sphere) but also correctly associate them with the corresponding objects in its textual output (e.g.,
a red cube and a blue sphere, not a blue cube and a red sphere). Errors, such as attribute swapping
or incorrectly pairing features with objects, often arise in complex scenes. This typically occurs
when multiple objects share some features but differ in others, which inherently challenges precise
feature-object binding.

Figure 2-(b) shows an instance of the scene description task; we evaluate a synthetically generated
dataset of 2D and 3D scenes, each containing between 10 and 20 objects to vary scene complexity.
Model performance is quantified by the edit distance between the generated descriptions and the
ground-truth annotations; we show more detail about this in Appendix B. This yields three outcome
categories: (1) an exact match, (2) a single-attribute mismatch (either shape or color), and (3) a
double-attribute mismatch (both shape and color). The full results are presented in Table 3. The
greatest average gains (-0.81 in 2D and -1.06 in 3D) are driven precisely where the task’s difficulty
peaks, showing that the technique not only endures extra clutter but thrives on it. This confirms that
VISER is the most reliable option for reasoning with a high object count.

4.5 Spatial Relationship

In this task, the model is expected to identify and verify the relative positions of objects in a scene
(e.g., Is the red cube to the left of the blue sphere?). This involves not only correctly binding
intrinsic features (e.g., color, shape) to objects but also accurately associating each object with its
spatial location, followed by a relational comparison. Failure to bind features properly can lead to
misidentification of the objects being queried. Furthermore, if the LVLM cannot accurately associate
each identified object with its precise location, its capacity to reason about their relative positions
will be compromised. LVLMs often struggle with spatial reasoning due to their inability to maintain
distinct, spatially grounded representations of multiple objects simultaneously [8].

An example of the spatial relationship task is presented in Figure 2-(d); To evaluate VISER, we
generated 2D and 3D scenes using the synthetic dataset described earlier and posed four-option
multiple-choice questions for each scene, asking models to select the answer that best describes the
spatial relation between the target objects. The evaluation results are shown in Table 4. As you can
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Figure 3: Comparison of VISER with Chain-of-Thought (CoT) prompting on the GPT-40 model
across four tasks. Each subplot shows the performance of three methods (Baseline, CoT, and VISER)
evaluated using a task-specific metric indicated on the x-axis. Bars are grouped into 2D and 3D
datasets.

see, the new results show that VISER yields consistent gains for most models: GPT-4o rises from
43.00% to 52.50% (+9.50%) on 2D, 64.00% to 68.50% (+4.50%) on 3D, and 69.39% to 77.43%
(+8.04%) on natural scenes; Claude-sonnet jumps from 34.18% to 36.26% (+2.08%) on 2D, 72.50%
to 76.50% (+4.00%) on 3D, and 37.43% to 46.15% (+8.72%) on natural images; LLaMa4 dips
2.00% on 2D but improves 3.50% on 3D and 8.17% on natural; and Qwen2.5-VL gains 1.50% on
2D and 4.5% on 3D yet sees a 3.06% drop on natural scenes.

4.6 Chain of Thought

To examine whether purely textual reasoning cues can bridge the binding gap, we pit our visually
structured prompt against a CoT baseline. The baseline employs GPT-40 with the canonical cue
Lets think step by step [13] appended to each instruction, leaving the image untouched, mirroring
standard practice for eliciting step-wise reasoning in language models. Across all four tasks, VISER
consistently surpasses both the Baseline model (no reasoning prompt) and the CoT variant in 2D
and 3D scenarios (Figure 3). Crucially, the gap is far more pronounced on the 2D datasets. Flat-
tened scenes crowd objects into a single plane, intensifying cross-object interference and making
accurate binding harder. In these cluttered 2D settings, the lightweight spatial scaffold provides the
model with an external, row-by-row traversal plan, producing markedly larger gains than CoT; in
3D scenes, the relative advantage narrows but persists. These results underline that verbal reasoning
alone is not enough. A CoT prompt can encourage the model to explain its answer, but it cannot
repair a noisy, globally pooled image embedding. Once early tokens are conditioned on entangled
visual features, every subsequent step inherits the same misbindings. The scaffold, by contrast, pre-
structures the visual input so that each attended region contains fewer competing objects, allowing
the language model to reason over cleaner, localized representations. Thus, reliable multimodal rea-
soning emerges only when textual chains of thought are paired with a minimal but crucial spatial
guide.

4.7 Comparison with Fine-Tuned Models for Visual Reasoning

To evaluate whether our lightweight method can match the benefits of model-level adapta-
tion, we compare it to Mulberry[24]a Qwen2.5-VL variant fine-tuned for visual reasoningand
OpenVLThinker[43], which enhances reasoning in a Qwen backbone via reinforcement learning
using a GRPO implementation. As illustrated in Figure 4, we evaluate the base Qwen2.5-VL model,
VISER, the fine-tuned Mulberry, and OpenVLThinker. VISER consistently improves upon the base
model and often matches or outperforms fine-tuned models, despite requiring neither fine-tuning nor
access to model internals.

For example, on the 2D-Counting task, VISER achieves a significant boost in performance41%
accuracy, compared to 15% by Mulberry and the same result from OpenVLThinker. The only tasks
where OpenVLThinker shows an advantage are 2D-Spatial reasoning and 3D-Counting, likely due
to its reinforcement learning-based optimization for multimodal reasoning. This suggests that while
training-intensive methods can excel in specific domains, they incur substantial computational costs.

In contrast, our training-free paradigm demonstrates broader effectiveness across diverse multimodal
reasoning tasks, offering superior scalability and efficiency. These results show that addressing
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Figure 4: Comparison of VISER with visual reasoningfinetuned model on the Qwen2.5-VL base
model across four tasks. Each subplot shows the performance of four methods: Qwen-Baseline
(Qwen2.5-VL), Qwen-VISER (VISER applied to Qwen2.5-VL), Mulberry (Qwen2.5-VL finetuned
for visual reasoning), and OpenVLThinker (RL-finetuned Qwen2.5-VL), evaluated using task-
specific metrics, and results are grouped into 2D and 3D datasets.

Table 5: Performance comparison (Accuracy %) of VISER vs. baseline on the MMBench bench-
mark. Results are reported across three key reasoning categories: Attribute, Logical, and Relation.

Model Method Attribute Reasoning Logical Reasoning Relation Reasoning

Baseline 88.67 78.25 75.17

GPT-4o  ygpR 88.00 82.75 81.12
Baseline 80.67 80.00 82.99

Qwen25-VL  ygpR 82.33 80.00 83.33

Table 6: Comparison of VISER and the baseline on the PhysBench benchmark, covering physical
reasoning tasks across four categories: Dynamics, Scene Understanding, Object Relationships, and
Object Property. Overall accuracy is also reported. All values are reported as Accuracy (%).

Model Method Dynamics Scene Understanding Object Relationships Object Property Overall

GPT-40 Baseline 35.00 33.33 75.00 55.00 55.68
VISER 40.00 41.67 75.00 70.00 61.37

Qwen2.5-VL Baseline 40.00 50.00 61.11 60.00 54.55
) VISER 40.00 50.00 72.22 70.00 61.36

the binding problem through simple visual scaffolding and spatial prompting (without additional
supervision or computational expense) can rival and even surpass state-of-the-art training-based
techniques for multimodal reasoning.

4.8 Broader Evaluation Across Reasoning Benchmarks

To further validate the robustness and generality of our method, we evaluate it on additional
reasoning-focused benchmarks, even in domains where visual structural cues might seem less rel-
evant. These benchmarks include MMBench [44], PhysBench [45], RAVEN [46], and a Visual
Analogy task [9]. These evaluations span a broad range of visual reasoning challenges, covering
attribute, logical, relational, physical, and analogical reasoning. Results consistently show that our
method improves performance across diverse tasks and modalities, demonstrating strong generaliza-
tion in both abstract and grounded visual reasoning scenarios.

MMBench MMbench is a reasoning-focused benchmark composed of tasks in Attribute, Logical,
and Relation Reasoning. We include all reasoning tasks in our evaluation. As shown in Table 5, our
method surpasses the baseline across most categories using both GPT-40 and Qwen2.5-VL models.

PhysBench We also evaluate on PhysBench, a benchmark focused on physical commonsense rea-
soning with categories including Dynamics, Scene Understanding, Object Relationships, and Object
Properties. Table 6 presents results on the validation split. Our approach consistently improves per-
formance across most categories, showcasing its utility in physical reasoning tasks.



RAVEN We evaluate our method on the RAVEN benchmark, which already includes grid lines.
Instead of altering the images, we added the prompt: Scan the image sequentially based on the grid
lines present in the image to encourage the model to leverage existing structure. Using GPT-40, our
method correctly answered 26 out of 140 questions, compared to 19 for the baselinehighlighting that
prompting alone, without image alteration, can yield tangible gains when leveraging structural cues.

Visual Analogy Task We evaluate the Visual Analogy task under a unified single-image setup.
Using GPT-40, both the baseline and our method achieve perfect accuracy (100%). For Qwen2.5-
VL, our method improves performance from 72.0% to 77.0%, showing benefits in abstract analogical
reasoning.

5 Discussion

This research investigated the binding problem in LVLMs, a key factor limiting their performance
on structured visual reasoning tasks. We introduced VISER, a method that combines simple vi-
sual scaffolding, using horizontal lines, with a targeted textual prompt to encourage sequential and
spatially aware processing. Our experiments demonstrate that this external intervention leads to sub-
stantial and consistent performance improvements across visual search, counting, scene description,
and spatial relationship understanding. Notably, VISER operates in a fully input-agnostic manner,
applying the same structure across visual inputs from diverse tasks without additional image process-
ing. These results support the hypothesis that explicit low-level general visual structure improves
feature-object binding.

A central finding is the critical role of visual structures. While textual prompts alone proved insuffi-
cient and sometimes harmful, the addition of visual lines significantly improved reasoning accuracy.
These findings suggest that current LVLMs, despite their advanced linguistic capabilities, can bene-
fit greatly from external visual cues that facilitate a more systematic parsing of complex scenes. The
visual structure appears to help models approximate a serial attentional process, mitigating the in-
terference and illusory conjunctions when processing multiple objects and their features in parallel.
This localized, sequential processing may also reduce representational interference by effectively
managing feature entropy within sub-regions of the image, a factor highlighted in [9] as critical for
robust visual reasoning. This supports the idea that addressing the binding problem may require in-
terventions at the level of visual input processing, rather than relying solely on linguistic instruction.

VISER offers a practical and efficient intervention, readily applicable due to its simplicity, negligi-
ble computational overhead, and single-query operation, without reliance on external tools, model
fine-tuning, or architectural changes (see Appendix G).. This highlights visual input structuring as a
key strategy for enhancing LVLM reasoning, beyond linguistic instruction. While effective, the cur-
rent static nature of the visual scaffolding represents a potential area for refinement (see Appendix E
for failure cases). For instance, a fixed scaffolding structure might show reduced gains when the
interference between lines and objects is too high, or when object clustering limits the spatial sepa-
ration benefits of the scaffolds. Future research could investigate adaptive visual scaffolding, where
cues are dynamically determined by image content or query specifics. Relatedly, ensemble-based
approaches that combine diverse scaffolds (e.g., varying line positions, density, or color) could en-
hance robustness and reduce sensitivity to edge cases. Moreover, developing LVLM architectures
that inherently support serial, spatially grounded attention, perhaps inspired by these findings, could
offer more integrated and robust solutions to the binding problem. Extending VISER to other visual
tasks, such as hallucination detection and mitigation, also represents a promising direction.

Last but not least, we emphasize that improved visual reasoning in Al systems can benefit a wide
range of applications, from assistive technologies and robotics to education and healthcare. However,
as LVLMs become more capable, their potential misuse (for instance, in surveillance, automated
decision-making, or misinformation) also grows. Our approach does not require model retraining,
making it widely accessible, but this also implies that such modifications could be adversarially
deployed in black-box systems without transparency or oversight. To mitigate risks, we advocate
for responsible use of these techniques in alignment with accountability and transparency guidelines.
Future research should profoundly study the unintended biases that scaffolding might introduce in
tasks other than spatial reasoning, especially when used in safety-critical applications.
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A Ablation study

A.1 Visual Structures

In our ablation study, we assess multiple visual-structuring strategies and their impact on task per-
formance using the GPT-40 [39] model. All experiments are conducted on a consistent subset of
our 2D synthetic dataset [9], with varying object counts per scene. The results in Table 7 show the
average performance across these scenes.

Table 7: Comparison of VISER and other ablation methods on GPT-40 in 2D scenes across multiple
tasks.

Method Scene Desc. (Edit Dist.) Counting (Accuracy) Visual Search (Accuracy) Spatial Rel. (Accuracy)
Baseline 1.81 16.85 0.48 39.00
Row 1.61 31.55 0.73 44.50
Column 2.00 16.68 0.76 43.50
Grid 243 17.40 0.72 51.50
RowNoRowNum 1.71 19.14 0.70 41.00

The baseline configuration prompts the model to describe the image without any additional structur-
ing cues. As shown, this baseline yields the lowest or near the lowest accuracy in counting and visual
search, indicating that unstructured prompts are insufficient for supporting systematic reasoning.

Among the structured variants, the Grid-based layout consistently performs the worst, particularly in
the scene description task, likely due to excessive spatial fragmentation hindering its interpretation
of coherent groupings. The Column-based layout also underperforms in both scene description and
counting tasks compared to horizontal-based layouts, suggesting that vertical splitting is suboptimal
for global scene comprehension. Interestingly, it achieves a small gain in visual search, where
object-level localization is more critical than spatial integration.

In contrast, our row-based horizontal structuring, which explicitly divides the image into horizontal
bands, leads to improved performance across most tasks. This design encourages the model to scan
the scene in a consistent, line-by-line fashion. Furthermore, removing numerical indices from rows
(VISERNoRowNum) results in a substantial drop in accuracy, highlighting the value of explicit
ordering cues in guiding sequential attention.

For the spatial relation task, we chose a grid because the answer space is symmetric across four
directions (left, right, above, below), making the grid a more natural fit. However, as shown in
Table 7, horizontal lines also perform well in this task. Specifically, for the synthetic spatial relation
task with GPT-40, accuracy improves from 39.00% (baseline) to 44.50% (row method) and 51.50%
(grid method). Similarly, in the natural spatial relation task, accuracy increases from 69.39% to
76.92% and 77.43%, respectively. This demonstrates that our simple row-based method is also
effective for spatial relations, but the grid method yields the best results.

These results collectively underscore the importance of structured, order-aware visual annotations
in enabling LVLMs to reason more effectively over complex spatial arrangements.

A.2 Hyperparameters

In this section, we examined the effect of key scaffold parameters, focusing on the number and
thickness of horizontal lines used to segment the scene. The initial configuration applied three
horizontal lines of 1 px thickness for all tasks, following the heuristic that too few lines (e.g., 12)
yield overly coarse partitions with limited benefit, whereas too many lines introduce visual clutter
and potential interference artifacts. To systematically assess this, we varied the number of lines
(112; Figure 5) and the line thickness (15 px; Figure 6) across three tasksCounting, Visual Search,
and Scene Descriptionusing two representative models: GPT-4o (closed-source) and Qwen2.5-VL
(open-source). Each configuration was evaluated on 300 samples per task.

Across both models, performance dropped at the extremes but remained stable in the 26 line range.
A similar pattern was observed for line thickness, with consistently strong results up to 5 px. Task-
specific effects also emerged: in Scene Description, increasing the number of lines often raised the
edit distance (lower is better), indicating that excessive segmentation can hinder coherent free-form
output. Overall, these results validate our original heuristic and show that the method is robust to
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moderate changes in scaffold parameters. While the optimal configuration can vary slightly by task
or model, substantial gains are achievable without extensive hyperparameter tuning.
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Figure 5: Performance of GPT-40 and Qwen2.5-VL across different tasks (Counting, Visual Search,
and Scene Description) with varying numbers of horizontal lines in the input. Accuracy is reported
for Counting and Visual Search, while edit distance is used for Scene Description. Baseline repre-
sents performance with no horizontal lines.
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lower edit distance indicates better performance for the Scene Description task. The Baseline corre-
sponds to performance without added lines (i.e., line thickness of zero).

A.3 Imaginary Lines

To evaluate the impact of prompting the model to imagine auxiliary structures (e.g., horizontal lines)
without rendering them, we introduced an imaginary-baseline variant. This baseline was prompted
to scan the image row by row using imaginary linessimilar to the setup illustrated in Figure 27but
without explicitly drawing them. As shown in Table 8, VISER outperforms the imaginary-baseline
across all tasks: achieving an 8.5% gain in spatial relation accuracy, a 13.31% improvement in
counting, a 0.12 reduction in edit distance for scene description, and a 5.00% increase in harmonic
mean accuracy for visual search.

Table 8: Performance of the baseline when prompted to imagine horizontal lines (as in Figure 27),
evaluated across tasks using the GPT-40 model.

Method Visual Search (Acc.) Counting (Acc.) Scene Desc. (Edit Dist.) Spatial Rel. (Acc.)

Baseline 48.00 16.85 1.84 43.00
Imaginary-Baseline 68.00 18.24 1.75 44.00

VISER 73.00 31.55 1.63 52.50

A.4 Reasoning trace evaluation

To evaluate the impact of visual structure on step-by-step reasoning, we compare two prompting
strategies for the 2D scene description task. In the first setting, we provide GPT-40 with the original
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Figure 7: Comparison between VISER and GPT-40 in the 2D scene description task, where models
sequentially scan the image row by row to identify objects. Results are reported for scenes with 10,
15, and 20 objects using three evaluation metrics: F1 score, Jaccard similarity, and Edit distance.

image without any row markings and use a prompt that instructs: Divide the image into 4 equal
horizontal sections from top to bottom, and list the shape and color of each object in each row.
In the second setting, we explicitly modify the image to include four horizontal lines that visually
segment the scene into rows. As shown in Figure 7, this structural addition significantly improves
performance across all three evaluation metrics (F1 score, Jaccard similarity, and Edit distance)
on scenes with 10, 15, and 20 objects. These results suggest that textual instructions alone are
insufficient: incorporating structural cues directly into the visual input helps the model follow the
intended sequential scanning process more accurately. For consistency, all objects in the scenes were
rendered as colored squares, and in cases where a square overlapped multiple rows, it was assigned
to the row containing the majority of its area. This assignment policy was also reflected explicitly in
the prompt.

B Benchmark and score details

B.1 Benchmarks

In this study, we introduce a series of benchmarks designed to evaluate the performance of LVLMs
on various visual reasoning tasks, including visual search, counting, scene description, and spatial
reasoning. Each benchmark was specifically developed to provide rigorous and systematic assess-
ments of different VLM capabilities, utilizing both synthetic and real-world data. These benchmarks
are structured to facilitate controlled experiments while maintaining diversity in task difficulty, scene
configurations, and object arrangements. Below, we provide detailed descriptions of each bench-
mark used in our evaluation.

B.1.1 Visual Search Benchmark

Building on the same synthetic generation framework from [9], we adapted the pipeline with task-
specific configurations for visual search evaluation.

2D Scenes: We created scenes containing 20, 30, 40, and 50 objects. Each configuration comprised
100 images (50 with targets present and 50 absent), totaling 400 2D scenes.

3D Scenes: Using the same object count progression, we generated 50 images per count (25 with
targets present and 25 absent), resulting in 200 3D scenes. The reduced quantity accounts for the
higher rendering complexity.

Natural image datasets are not suitable for this evaluation, as they lack two critical properties: (1)
the ability to systematically adjust distractor characteristics (shape, color, and spatial arrangement)
and (2) precise control over target-distractor similarity levels. Our synthetic paradigm provides this
essential controllability, allowing a rigorous assessment of binding capabilities through progressive
difficulty scaling while maintaining a balanced presence/absence of the target (50% distribution).
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B.1.2 Counting Benchmark

To assess the counting ability of LVLMs, we developed a comprehensive benchmark based on the
generation methodology outlined in [9].

2D Scenes: We generated synthetic 2D scenes with object counts ranging from 10 to 20, incremented
in steps of 2 (10, 12, 14, 16, 18, 20). For each object count, we produced 100 distinct images,
resulting in a total of 600 2D images.

3D Scenes: Similarly, we created 3D scenes with object counts following the same progression (10
to 20, step size = 2). We generated 50 images per object count, yielding a total of 300 3D images.

To assess real-world generalizability, we incorporated the “Learning to Count Everything” bench-
mark [32]. We used approximately 300 images containing up to 20 objects to maintain reasonable
task difficulty.

This structured approach enables a rigorous assessment of counting performance in controlled syn-
thetic and real-world scenes.

B.1.3 Scene Description Benchmark

Following [9], we define a feature triplet as any set of three objects where one pair shares a feature
(e.g., color) and another pair shares a different feature (e.g., shape). For example: green X, green
triangle, yellow triangle forms a triplet through shared green and triangle features.

To evaluate scene description capabilities in LVLMs, we developed a comprehensive benchmark
using the feature triplet methodology from [9] with controlled object counts and systematically
varied triplet configurations.

2D Scenes: We generated synthetic 2D scenes with 10, 15, and 20 objects. For 10 objects, we
created configurations with 5 to 20 triplets in increments of 5 (5, 10, 15, 20 triplets). For 15 objects,
we extended the triplet counts up to 50 (in steps of 5), and for 20 objects up to 70 triplets (also in
steps of 5), with 50 images generated for each configuration.

3D Scenes: Following the same progression, we created 3D scenes with identical objects and triplet
counts, generating 30 images per triplet count to account for rendering complexity.

The increasing number of feature triplets introduces progressively greater interference among object
features, making the binding problem more challenging and testing the model’s reasoning capabili-
ties under increasingly difficult conditions.

This approach enables systematic assessment of scene description performance across: (1) con-
trolled object counts, (2) graduated levels of feature interference through triplet counts, and (3) both
2D and 3D representations. The detailed results for 10, 15, and 20 objects and triplet configurations
are presented in Figures 8, 9, and 10, respectively.

B.1.4 Spatial Relationship Benchmark

To evaluate spatial reasoning in LVLMs, we developed a comprehensive benchmark using the gen-
eration methodology from [9] complemented by natural images.

2D Scenes: We generated 200 synthetic 2D scenes with controlled object configurations. For each
scene, we created multiple-choice questions testing spatial relationships (top-left, top-right, bottom-
left, bottom-right).

3D Scenes: Similarly, we produced 200 synthetic 3D scenes with three-dimensional arrangements,
following the same question generation protocol as the 2D scenes.

For real-world evaluation, we used 200 natural images from the benchmark [38], which provides
diverse object arrangements in unconstrained environments.

This approach enables systematic assessment of spatial reasoning across: (1) fundamental 2D rela-
tionships, (2) complex 3D configurations, and (3) real-world scenarios.
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Figure 8: Results of the 10 objects Scene Description task across varying numbers of triplets for 2D
and 3D scenes, using different VLM models (GPT-40, Claude-Sonnet, Qwen2.5-VL, and LLaMa4).
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Figure 9: Results of the 15 objects Scene Description task across varying numbers of triplets for 2D
and 3D scenes, using different VLM models (GPT-40, Claude-Sonnet, Qwen2.5-VL, and LLaMa4).

B.2 Score Metrics

To evaluate the performance of different models across visual reasoning tasks, we employ five met-
rics: Edit Distance, Accuracy, F1 score, Jaccard Similarity, and Mean Squared Error (MSE). Each
metric is applied according to the nature of the task, and formal definitions are provided below.

1. Edit Distance (Scene Description)

For the scene description task (both 2D and 3D), we define a custom edit distance that penalizes
discrepancies between the predicted and ground truth object lists. The metric is computed in the

following steps:

1. Exact Matches: All objects with matching shape and color are removed from both sets.

2. Partial Matches:

* Objects with the same shape but different colors incur a penalty of 1.
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Figure 10: Results of the 20 objects Scene Description task across varying numbers of triplets for 2D
and 3D scenes, using different VLM models (GPT-40, Claude-Sonnet, Qwen2.5-VL, and LLaMa4).

* Objects with the same color but different shapes incur a penalty of 1.

3. Missed Ground Truth Objects: Any remaining unmatched ground truth objects are pe-
nalized with 2 points.

The total edit distance is calculated as:
EditDistance = 1 X Npartial + 2 X Npigsed 2)

where Nparial is the number of shape-only or color-only matches, and Npjigseq is the count of com-
pletely missed objects. This asymmetric formulation reflects the observation that models more often
miss objects than hallucinate them.

2. Accuracy (Visual Search, Counting, Spatial Relationship)

Accuracy is used for classification-based tasks and is defined as the ratio of correct predictions to
total predictions:

Ncorrect
Accuracy = ——

3
. . . . . . . tOtal . . .
This metric is used in visual search, counting and spatial relationship evaluations.

3. F1 Score (Reasoning Trace Evaluation)

F1 score measures the harmonic mean between precision and recall and is particularly useful for
object-level evaluation:
Precision - Recall

Fl1 =2 — )
Precision + Recall
with: TP TP
Precision = m, Recall = m (5)

where TP (true positives) are objects correctly predicted with matching shape and color, FP (false
positives) are incorrect predictions, and FN (false negatives) are missed objects.

4. Jaccard Similarity (Reasoning Trace Evaluation)

Jaccard similarity measures the set-level overlap between prediction and ground truth:
|P NG|

— 6
|PUG| ©
where P and G are the sets of predicted and ground truth objects respectively, and equality requires
both shape and color to match.

Jaccard =
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Table 9: Mean squared error (MSE) of counting task across GPT-40, Claude3.5-sonnet, LL.aMa4,
and Qwen2.5-VL on 2D, 3D and natural image datasets using base models and VISER.

GPT-40 Claude-sonnet LLaMa4 Qwen2.5-VLL
Baseline VISER Baseline VISER Baseline VISER Baseline VISER
2D 7.50 1.33 5.32 5.25 5.515 5.575 15.03 3.89
3D 6.13 2.44 2.28 3.01 2.74 1.53 22.04 6.21
Natural 37.33 6.33 1048.63 42.20 6.30 5.89 35.10 24.32

5. Mean Squared Error (Counting)

For the counting task, we compute the mean squared error (MSE) between the predicted and true
object counts:

1 N
MSE = — ;(y —y;)? (7

where g; is the predicted count and y; is the ground truth count for scene 7, and N is the total number
of scenes. MSE penalizes large deviations in count predictions more heavily.

MSE Results: Table 9 presents the Mean Squared Error (MSE) for object counting across the
evaluated models. While our primary analysis focused on accuracy metrics, the MSE results provide
complementary insights, particularly regarding the magnitude of counting errors.

VISER demonstrates consistent error reduction compared to baseline performance. The most no-
table improvements occur in natural image scenarios, where exact count prediction remains challeng-
ing but our approach achieves substantial MSE reduction (Claude3.5-sonnet: 42.20 versus 1048.63).
Similar improvements are evident in synthetic environments, with GPT-40 (1.33 versus 7.50 in 2D)
and Qwen2.5-VL (3.89 versus 15.03 in 2D; 6.21 versus 22.04 in 3D) showing significant decreases
in squared error.

These MSE results complement our accuracy findings by demonstrating that VISER not only in-
creases correct predictions but also reduces the severity of counting errors when they occur. The
notable MSE improvement on natural images, despite the inherent difficulty of exact counting in
real-world scenes, highlights VISER’s ability to prevent large counting deviations.

B.3 Performance Variance and Statistical Significance

Each reported score in our experiments is averaged over a substantial number of samples (typi-
cally 50100 per configuration), which provides a stable estimate of performance. To minimize
non-determinism, all evaluations use greedy decoding (temperature = 0), ensuring deterministic
outputs for each input. This reduces variance introduced by stochastic generation and makes the
results reproducible. While we do not repeat each setup multiple times, we emphasize robustness
by evaluating across a broad set of conditions, including four tasks, both 2D and 3D synthetic data,
real-world datasets, and multiple open- and closed-source models.

Across 120 pairwise comparisons between VISER and the baseline (excluding supplementary ma-
terial), VISER outperforms in 103 cases, shows decreases in 17 cases, and yields ties in 7 cases.
Most drops occur with LLaMA4, a model that generally performs poorly on these tasks. Consider-
ing only non-tied cases (96 wins vs. 17 losses), a one-sided binomial sign test yields a p-value of
7.4 x 10712, strongly rejecting the null hypothesis that VISER is no better than the baseline. The
tied cases typically correspond to trivial scenarios with zero or saturated performance.

C Implementation Details

In this section, we describe the prompts used across our four evaluation tasks. While we maintain
a consistent prompt template for all models, each task requires a tailored instantiation to address
its specific objectives. In Figures 11, 12, 13, and 14, we detail the exact prompt formulations
employed for each task, which produce the results reported in the Experiments section. Additionally,
to assess the models Chain-of-Thought (CoT) reasoning ability, we prepend Lets think step by step
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to each prompt, encouraging the model to articulate intermediate reasoning before arriving at its

final prediction.

Baseline

/ Task: \
You are presented with an image contaihing
a set of letters, specifically the letters ‘L'
and 'T'. These letters will appear in either
red or green. Your task is to determine if
there are any green ‘L's in the image. Follow
these steps carefully:
1. Describe each shape in the image, noting
their color.

2. Conclude your response by stating [True]
if the letter ‘L' appears in green, or [False]
if there are no green 'L's.

Enclose your final answer in square
brackets (Final Answer: []), as shown.

<

VISER
Task:

You are presented with an image containing
a set of letters, specifically the letters ‘L'
and 'T'. These letters will appear in either
red or green. Your task is to determine if
there are any green 'L's in the image. Follow
these steps carefully:
1. Describe each shape in the image, noting
their color.
2. Conclude your response by stating [True]
if the letter ‘L' appears in green, or [False]
if there are no green 'L's.

Enclose your final answer in square
brackets (Final Answer: []), as shown.
Scan sequentially based on horizontal

lines exist in the image.

Figure 11: Displaying the prompt used for the 2D scenes in the visual search task. The only differ-
ence between the two prompts is the additional instruction: Scan sequentially based on horizontal

lines exist in the image.

Baseline

Task:

g N

How many Circles are there in this image?
Always respond with just the final numeric

answer.

& /

VISER
Task:

How many Circles are there in this image?

Scan the image sequentially based on

horizontal lines exists in the image.

Always respond with just the final numeric

answer.

Figure 12: Displaying the prompt used for the 2D scenes in the counting task. The phrase Scan
sequentially based on horizontal lines exist in the image is added to our prompts, in contrast to the

baseline input.

D Input and Output examples

In this section, we provide a series of examples to demonstrate the outputs of our row-wise structure
across different tasks, including visual search, counting, scene description, and spatial relationship
analysis. Each task is illustrated with both synthetic (2D and 3D) and, where applicable, real-world
scenes. For each task, we compare the outputs of applying VISER with those of a baseline model,

highlighting the impact of our approach on a VLM.
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Baseline VISER

=

You are presented with an image contains
multiple colored objects, each defined by a
shape and a color.

Your task is to identify all objects in the
image and return a list of dictionaries.
Each dictionary must contain exactly two
keys: ‘shape’ and ‘color'.

Only use shapes from this list:
airplane, triangle, cloud, cross, umbrella,
scissors, heart, star, circle, square, infinity,
up-arrow, pentagon, left-arrow, flag.
Only use colors from this list:
red, magenta, salmon, green, lime, olive, blue,
teal, yellow, purple, brown, gray, black, cyan,
orange.

Always respond only with a JSON list of the
detected objects.

g J

Figure 13: Showing the prompt used in our 2D scene description task. The phrase Scan sequentially
based on horizontal lines exist in the image is the only addition to our prompt.

Task:

You are presented with an image contains
multiple colored objects, each defined by a
shape and a color.

Your task is to identify all objects in the
image and return a list of dictionaries.
Each dictionary must contain exactly two
keys: ‘shape’ and ‘color’.

Only use shapes from this list:
airplane, triangle, cloud, cross, umbrella,
scissors, heart, star, circle, square, infinity,
up-arrow, pentagon, left-arrow, flag.
Only use colors from this list:
red, magenta, salmon, green, lime, olive, blue,
teal, yellow, purple, brown, gray, black, cyan,
orange.

Always respond only with a JSON list of the
detected objects.

Scan sequentially based on horizontal
lines exist in the image.

Baseline VISER

/ Task: \

You are a helpful assistant. Just provide the

Task:

You are a helpful assistant. Just provide the
complete text of appropriate choice without complete text of appropriate choice without
any additional text. any additional text.

The grid lines are added

to help you compare the objects better.

A /

Figure 14: Showing the prompt that we use in the 2D scenes for the spatial relationship task. The
only difference from the baseline is the added instruction: The grid lines are added to help you
compare the objects better.

D.1 Visual Search

For the visual search task, we present input and output examples from both 2D and 3D datasets
(shown in Figures 15 and 16, respectively). In the first example (Figure 15), the objective was to
locate the green 'L’ among a set of 'L’ and "T” letters within the scene. The baseline model failed
to detect the target, returning a [False] output. In contrast, applying row-wise structure successfully
identified the green 'L’ and returned a [True] output, demonstrating its effectiveness. This pattern
was similarly observed in the 3D scene, where the baseline model again failed to locate the target
object, while applying VISER accurately detected the presence of the described object within the
scene.
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D.2 Counting

For the counting task, in addition to the 2D and 3D scene examples, we incorporate a sample from
the natural-image dataset utilized in the evaluation of Learning to Count Everything [32]. The
corresponding examples are presented in Figures 17, 18, and 19, respectively. In all three cases, the
VLM model misses some objects or hallucinates extra objects and inaccurately counts the number
of objects. In contrast, when our proposed method is applied, the VLM model provides the correct
object count.

D.3 Scene Description

In Figures 20 and 21, we present two synthetic examples (one from a 2D scene and the other from a
3D scene) both relevant to the scene description task. The VLM initially fails to accurately identify
all objects and their respective attributes within the scenes. However, by applying our proposed
method, we improve the model’s performance, enabling it to more accurately and precisely describe
the objects in the scenes.

D.4 Spatial Relationship

For the spatial relationship task, we present three examples: one from a 2D synthetic scene (Fig-
ure 22), one from a 3D synthetic scene (Figure 23), and one from the natural Spatial Reasoning
dataset [38] (Figure 24). In all of these examples, the VLM initially selects the wrong choice. How-
ever, adding grid lines helps the model better compare the spatial relationships between the objects,
leading to more accurate answers.

L
T
L T Standard prompt The image contains the following shapes:
T - Red 'L's scattered throughout the image.

g T L T T - Green 'T's scattered throughout the image.
§ " T T @ \ - No green 'L's are present in the image.
3 T 5 Final Answer: [False]

L T L PYe

1
T L L Step 1: Describe each shape in the image, noting their color.
LI
2 T Line 1:Red ‘L' - Green 'T' - Green'T' -Red 'L' -Red 'L
Line 2: Red ‘L' - Green'T' -Green'T' -Green'T
& ﬁ—LT—'L Line 3: Green'T' - Green 'T' -Green 'T' -Red 'L’ - Green'L' -Green'T'
a 3 L T T —)@——) Line 4: - Green 'T' -Red'L' -Red'L' - Green'T' -Red 'L’
> 4TL— T Step 2: Determine if there are any green 'L's in the image.
4L T L. Yes, there is one green ‘L' in Line 3.
Standard prompt +
"scan sequentially

\&/ based on rows"

Figure 15: An example of a 2D visual search task illustrating the impact of our proposed method on
the output of the VLM model. The baseline fails to detect the green 'L, returning [False], while our
row-wise structure successfully identifies it.

E Failure case

VISER adds lines in a fixed configuration, independent of image content. While this design ensures
consistency and simplicity, it can introduce limitations. For instance, added lines may intersect with
important objects, potentially introducing ambiguity about those objects. Alternatively, objects may
lie in regions where the added lines provide little to no benefit in decomposing the task. To address
this, we conduct two additional controlled experiments on the 2D counting task, targeting conditions
where our intervention may help or hurt.
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Standard prompt

1. The image contains the following objects:
- Red cubes.
- Green spheres.
2. There are no red spheres visible in the image.

Baseline

Final Answer: [False]

X

Raw Image

Step 1: Describe each object in the image, noting their color. \
- Line 1: No objects are present.
- Line 2: Contains red cubes and green spheres. No red spheres are visible.
- Line 3: Contains red cubes, green spheres, and one red sphere.
- Line 4: Contains green spheres. No red spheres are visible.

VISER

Step 2: Conclusion
A red sphere is present in Line 3.
Final Answer: [True]

\§ %

Standard prompt +
"scan sequentially
based on rows"

Our method

Figure 16: An example of a 3D visual search task illustrating the impact of our row-wise structure
on the VLM model’s output. The baseline fails to detect the red sphere, returning [False], while
applying VISER successfully detects it and returns [True].

o
[ ] Standard prompt To count the circles in the image:
g L] ® 1 Gr‘ﬁen ci_rclles:' 6
v ® > 2. Yellow circles: 6
c H .
o @ Total Number of Circles: 12
¢ X

et To count the circles in the image:
® '
2 - Row 1: 2 circles
&’ e & - Row 2: 3 circles
- Row 3: 3 circles
,‘2 3 @ > @B > - Row 4: 2 circles
>
® Total Number of Circles: 10
‘e
Standard prompt +

"scan sequentially

Our method based on rows"

Figure 17: An example of a 2D counting task and the impact of our proposed method on the output
of the VLM model. The baseline approach incorrectly counts the number of circles in the 2D scene,
whereas our row-wise structure method enables the VLM to accurately count the number of circles.

E.1 Object-Line Interaction Analysis

We synthetically vary the level of object-line interference in scenes with circular objects and group
data into bins (0.00.2: low interference; 0.81.0: high interference). As illustrated in Table 10, Our
method improves performance significantly in low-interference cases. However, in high-interference
scenarios (e.g., dense line-object overlaps), the benefit diminishes. This highlights a key failure
mode: when scaffolding introduce ambiguity in object detection. For example, overlapping lines
can cause objects to be either double-counted (across both lines) or missed entirely (not clearly
belonging to either region), leading to reduced model accuracy. Interestingly, GPT-40s baseline
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Baseline

X

Raw Image

Standard prompt To count the spheres in the
image:
There are 12 spheres visible
—> in the image.
Total Number of Spheres: 12

Let's count the spheres row
by row:

Row 1: No spheres are
visible in this row. Count: O
Row 2: There are 9 spheres
visible in this row. Count: 9

Row 3: There is 1 sphere
visible in this row. Count: 1

Row 4: No spheres are
visible in this row. Count: O
Standard prompt + Total Number of Spheres: 10
"scan sequentially

based on rows"

VISER
1

Our method

Figure 18: An example of a 3D counting task and the impact of our proposed method on the VLM
model’s output. The baseline method inaccurately counts the number of spheres in the 3D scene,
whereas applying VISER enables the VLM to accurately count the number of spheres.

Standard prompt
Q There are 10
% @ strawberries in the image.
>
g
@ X

Raw Image

Let's count the strawberries
row by row based on the
horizontal lines provided:

- Row 1: 2 strawberries.

o
w - Row 2: 4 strawberries.
:2 @—> - Row 3: 3 strawberries.
S - Row 4: 2 strawberries.
T Adding these together, there
are 11 strawberries in total.
Standard prompt +

"scan sequentially
based on rows"

Our method

Figure 19: An example of a natural dataset for the counting task and the impact of our proposed
method on the output of the VLM model. The baseline method fails to accurately count the number
of strawberries in the dataset, whereas row-wise structure enhances the VLM’s ability to determine
the strawberry count correctly.

accuracy drops with increased density, while Qwen2.5-VL shows the opposite trend. An example
of this synthetic dataset is illustrated in Figure 25a.
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Raw Image
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o
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Our method

Standard prompt

Standard prompt +
"scan sequentially
based on rows"

{"shape' ", "color": "orange"},
{"shape’ lue"},
{"shape' "gray"},
{"shapi "},
{"shaps .
{"shape' . ‘teal"},

"gray"},
: "scissors", "lime"},
e": "heart", "color": "green"},

{"shape": "star", “color": "blue"},

x

{"shape": "umbrella", "color

" ol

a
{"shape": "star'

oo

Row 2: [{"shape": "heart", "color": "green"},
{"shape": "left-arrow", "color": "blue"}]

Row 3: [{"shape": "left-arrow", “color": "teal'},
{"shape": "left-arrow", “color": "gray"},

{"shape": "up-arrow", "color": "orange"}]

Row 4: [{"shape": "umbrella", "color": "gray"},
{"shape": "scissors", "color": "lime"}]

J

Figure 20: An example of a 2D scene description task and the impact of VISER on the VLM’s
output. The VLM fails to describe the purple star shape in the scene, whereas VISER correctly

describes all the objects.

Baseline

Raw Image

VISER

Standard prompt

Standard prompt +
"scan sequentially
based on rows"

Q

{"shape": "torus", "color": "blue"},

{"shape": "cube", "color": "green"},

: "torus", "color": "green"},
{"shape": "torus", "color": "green"},
{"shape": "torus", "color": "green"},
{"shape": "cone", "color": "orange"},
{"shape": "torus", "color": "orange"},
": "cube", “color":
cylinder", "color":

: "sphere", "color":

{"shape": "cylinder", "color": "brown"}

X

Row 1: [], \

Row 2: [{"shape": "cube", "color": "green"},
{"shape": "cylinder", "color": "brown"},

{"shape": "cube", "color": "orange"},
{"shape": "cone", "color": "orange"},
{"shape": "cylinder", "color": "cyan"},
{"shape": "torus", "color": "orange"}],

Row 3: [{"shape": "forus", "color": "blue"},
{"shape": "torus", "color": "green"},

{"shape": "sphere", "color": "brown"}],

Row 4: [{"shape": "torus", "color": "green"}]

)

Figure 21: An example of a 3D scene description task and the improvement gained by applying
VISER. The VLM incorrectly adds an extra object, counting three green toruses instead of two,
which aren’t part of the scene. In contrast, our proposed method accurately describes only the

objects present.

E.2 Object Distribution (Entropy) Analysis

To probe another failure case, we conducted a controlled analysis targeting such potential failure
modes. Specifically, we evaluated performance with respect to object distributions, which quanti-
fies how widely objects are spread across rows. Low entropy indicates objects are concentrated in
one row, while high entropy corresponds to a uniform spread. As illustrated in Table 11, VISER is
more effective when objects are distributed across the image (high entropy), where scaffolding pro-



O Standard prompt
o . c. right-above
O ) X

Baseline
o

\ Raw Image /

- J + .\
1 2 ‘
o b @

5 6 7 8
&l L L a. left-above
'q_.’ , 10 11 12 —)@—)
N o e T

B 14 ‘) 16

Standard prompt +

"scan sequentially

\ Our method J based on rows"

Figure 22: An example of a 2D spatial relationship task and the effect of applying our propsed
method on the VLMs output. As shown in the figure, adding grid lines assists the VLM in selecting
the correct choice.

Standard prompt

é a. right
X

Baseline

Raw Image J

N/

b. left
—6

T

VISER

Standard prompt +
"scan sequentially
\ Our method / based on rows"

Figure 23: An example of a 3D spatial relationship task and the impact of applying VISER on the
VLMs output. As shown in the figure, adding grid lines improves the VLMs ability to select the
correct choice.

vides meaningful visual separation. However, when most objects are located in a single region (low
entropy), scaffolds are less helpful, sometimes even harmful. This exposes a second failure case:
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Standard prompt

Q
§ A. front
2 &—
g X
(-1

Raw Image
& B. left
a &—
N T

Standard prompt +
"scan sequentially
based on rows"

Our method

Figure 24: An example from a natural dataset for the spatial relationship task and the impact of
applying VISER on the VLMs output. The question asks about the spatial relationship between the
jar and glasses from the cameras perspective. As shown in the figure, applying VISER helps the
VLM answer the question correctly.

Table 10: Accuracy of GPT-40 and Qwen2.5-VL on the counting task across different levels of
average line-object intersection (ranging from 0.00.2 to 0.81.0).

Model Method 0.0-0.2 0.2-04 0.4-0.6 0.6-0.8 0.8-1.0
GPT-40 Baseline ~ 9.50 12.00 7.00 3.50 3.50
VISER  26.00 26.00 22.00 14.00  13.00
Baseline  3.00 4.00 10.50 13.50  18.00
VISER  37.00  34.50 17.50 5.00 9.00

Qwen2.5-VL

ineffective intervention when object positioning limits scaffold utility. An example of this synthetic
dataset is illustrated in Figure 25b.

Table 11: Accuracy of GPT-40 and Qwen2.5-VL on the counting task across different levels of
object spatial entropy (ranging from 0.000.50 to 1.752.00).

Model Method 0.00-0.50 0.50-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00

GPT-40 Baseline 29.00 30.00 27.00 33.00 38.00 37.00
VISER 48.00 54.00 62.00 62.00 69.00 68.00

Qwen2.5-VL Baseline 14.00 16.00 17.00 16.00 7.00 5.00
) VISER 1.00 15.00 16.00 26.00 33.00 36.00

Our primary experiments are conducted on randomly generated datasets with naturally high entropy
( 1.9) and low average interference ( 0.174), where our method is most effective.

F Attention visualization

In this section, we analyze and visualize the attention maps corresponding to the generated outputs
from both the baseline and our proposed method using the Qwen2.5-VL-7B-Instruct [41] model.

Figure 26 shows the results of VISER, where we instruct the model to "Scan sequentially based
on horizontal lines exist in the image," encouraging it to analyze each row independently. The
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Figure 25: Visualization of failure cases in the 2D counting task. Subfigure (a) shows examples
with varying levels of object-line interference, while Subfigure (b) illustrates different object spatial
distributions.

extracted attention maps for each predicted numerical value confirm this approach, demonstrating
that the model attends more strongly to the corresponding spatial regions. For comparison, Figure 27
presents the results from the baseline model, which was given the same instruction. In this case, the
attention is less focused, and the predicted numbers do not align clearly with their respective regions.
This shows that adding the horizontal line guidance enhanced the model’s ability to focus on each
region independently, resulting in improved performance and greater precision.

By applying VISER, the model is guided to focus sequentially on smaller, more localized regions
within the image. This enables it to more accurately identify and attend to objects in specific areas.
The localized approach allows for a more detailed and focused analysis, leading to better alignment
between the predicted numerical values and the corresponding spatial regions. In contrast, the base-
line method attempts to attend to the entire image in a single step, without such localized guidance.
This broader attention scope reduces the model’s ability to focus on specific regions, causing diffi-
culty with precise object identification and reducing accuracy. The model fails to effectively resolve
finer details and spatial relationships within the image. To further illustrate this, Figure 28 shows the
baselines predicted numbers, which attempt to attend to all circles simultaneously. Due to the high
number of circles, the model fails to answer the question correctly. Conversely, Figure 26 demon-
strates that by incorporating explicit sequential reasoning, VISER allows the model to count objects
in each region more accurately and aggregate the results more effectively.

[ Response: Attention Maps

To count the number of circles in the image,

. we will scan sequentially based on the horizontal lines. +H
1 e é =
| Fist Horizontal Line: There are S circles. ) - I
2 . ° Lo |
8
Image G} Qwen2.5.VL Output 2. Second Horizontal Line: There are 3 circles. .-'tfl
3 . 3. Third Horizontal Line: There are 2 circles.

|
—_—
u
. ® ® 4. Fourth Horizontal Line: There are 4 circles. . |
. I .
L4
- Count the number of Circles in the image. Now, let's sum up the total number of circles: .
Scan sequentially based on horizontal lines exist in the image. L Total Number of Circles:3+3 +2 + 4 =12 —

Prompt

Figure 26: Visualization of 2D attention maps generated by our proposed method using the Qwen?2.5-
VL-7B-Instruct model on a counting task. The attention patterns demonstrate that the predicted
numerical values for each row attend more strongly to their corresponding spatial regions, indicating
improved alignment between predictions and visual content.
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[ Response: Attention Maps
. To determine the number of circles in the image,

. e let's split the scene into four imaginary horizontal rows. :#l
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Figure 27: Visualization of 2D attention maps generated by the baseline method using the Qwen2.5-
VL-7B-Instruct model on the same counting task. Although provided with the same instruction
to scan the image row by row, the attention maps exhibit less focus, and the predicted numerical
values show weaker alignment with their corresponding spatial regions. Additionally, the numerical
predictions lack proper row-region binding, and the predictions for the third and fourth rows are
incorrect.

Attention Maps
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Tmage - Output Response:
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Count the number of Circles in the image.

Prompt

Figure 28: Visualization of the 2D attention maps generated by the baseline method using the
Qwen2.5-VL-7B-Instruct model on a counting task. The attention maps reveal a broader, less fo-
cused attention pattern, with the model attempting to attend to all regions simultaneously. This lack
of localized attention results in incorrect predictions, as evidenced by the model’s failure to properly
align with the specific spatial regions in the image, leading to errors in counting.

[ Response: Attention Maps
To count the number of spheres in the image,
Twill scan sequentially based on the horizontal lines.

1 First row (line 1): There is | sphere.
| csr— ]

o P
e R o — " 5 & auenzsvi Oucput | 2. Second line (line 2): There are & spheres.
. od% S

3 Third line (ine3): There are 6 spheres.  ————— u'

4. Fourth line (line 4): There are O sphere. I

Count the number of Spheres in the image. Now, let's add the total number of spheres:
Scan sequentially based on horizontal lines exist in the image. L Total Number of Spheres: 1+5 + 6+ 0 =12
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Figure 29: Visualization of 3D attention maps generated by our proposed method using the Qwen2.5-
VL-7B-Instruct model on a counting task. The attention patterns demonstrate that the predicted
numerical values for each row attend more strongly to their corresponding spatial regions, indicating
improved alignment between predictions and visual content.

G Computational cost

To ensure a fair comparison of computational cost, we measured the average number of output tokens
generated across different tasks. Specifically, we compared three methods using the GPT-40 model:
the Baseline, our proposed method (VISER), and a Chain-of-Thought (CoT) prompting strategy.
Table 12 reports the average token count for each method across four task types, each evaluated on
100 samples.
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Table 12: Comparison of average generated tokens for VISER, CoT, and the Baseline across differ-
ent tasks using the GPT-40 model.

Method Visual Search Counting Scene Desc. Spatial Rel.

Baseline 83.88 11.83 61.77 8.43
CoT 90.48 103.12 62.13 12.52
VISER 153.39 40.94 62.67 10.50
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer "

" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering " "or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The scope of the effectiveness and main claims are demonstrated in the ab-
stract and introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes, we discuss that in section 5 (Discussion).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We talk about all models and datasets in section 4, our method in section 3,
and also our prompt we use in Appendix C.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Codes and information of datasets that are constructed or reused in the paper
are anonymized and included in the main paper and supplementary material.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper clearly describes the datasets, models evaluated, and evaluation
metrics in Section 4.1, and all the data we used is for the test data we want.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: All experimental results are presented solely as point estimates (e.g., accuracy,
harmonic mean, edit distance) in tables and bar plots without any accompanying error bars,
confidence intervals, or tests of significance. There is no discussion of variability factors
(such as random initialization or dataset splits) nor explanation of how any error bars would
have been computed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
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9.

10.

Justification: Experiments were conducted via external model APIs, so hardware, runtime,
call counts, and token totals are unavailable, leaving compute requirements unspecified.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All the codes and rules have been thoroughly reviewed and checked, with
no instances of non-compliance found. A detailed discussion of the ethical considerations
relevant to our work is provided in Section 5 (Discussion).

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our work does not have any social impact and only improves the performance
of the models without any bad effects or fine-tuning the models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper has no such risks. We discuss this topic in Section 5.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Every asset that we utilized for our implementations has been appropriately
referenced, both within the paper itself and in the code (if needed). Although we did not

specify the names of their respective licenses, you can find these details on the webpages
weve cited.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper explicitly details the use of LLM prompting as part of its method-
ology: In all subsections of Section 4 we introduce the VLM models that we used in our
experiment and evaluate our models on them, and in Section 3 (with full prompt exam-
ples in Appendix D) describes the custom targeted textual prompts that guide the VLMs
sequential processing alongside the visual scaffolding.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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