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ABSTRACT

Many differential equations describing physical phenomena are intrinsically geo-
metric in nature. It has been demonstrated how this geometric structure of data
can be captured effectively through networks sitting in Geometric Algebra (GA)
that work with multivectors, making them suitable candidates to solve differen-
tial equations. GA networks however, are still mostly uncharted territory. In this
paper we focus on non-linearities, since applying them to multivectors is not a
trivial task: they are generally applied in a point-wise fashion over each real-
valued component of a multivector. This approach discards interactions between
different elements of the multivector input and compromises the geometric na-
ture of GA networks. To bridge this gap, we propose GA-ReLU, a GA approach
to the rectified linear unit (ReLU), and show how it can improve the solution of
Navier-Stokes PDEs.

1 INTRODUCTION

Geometric (or Clifford) Algebra (GA) has been recently rediscovered as a suitable mathematical
space in which to build neural networks that are truly geometrical (Brandstetter et al., 2022; Ruhe
et al., 2023). While not new (Pearson & Bisset, 1994), GA networks have only recently been em-
ployed successfully in computational biology (Pepe et al., 2024a), physics (Ruhe et al., 2023), vision
(Pepe et al., 2024b) and partial differential equations (PDEs) (Brandstetter et al., 2022). Data in all
these fields presents an intrinsic geometric structure that can be captured by operating on multi-
vectors. In higher dimensional Clifford Algebras, however, it is not easy to define the concept of
differentiability and hence construct an expressive function theory. Ever since the early proposals of
Clifford neurons in Pearson & Bisset (1994); Buchholz & Sommer (2001); Arena et al. (1994) until
today, activations have always been applied onto multivectors element-wise. When doing so, we are
losing part of the geometric coupling of data that GA networks strive to achieve: is there a better
way to apply non-linearities to multivectors? We try to address this issue in this paper.

2 PROBLEM DEFINITION

We wish to define a non-linear function ψ(x) : Gn → Gn for networks operating in GA in order to
extend the geometric flavour of the approach also to the activation function. In particular, we refer to
the Navier-Stokes PDE problem as formulated in Brandstetter et al. (2022) and train two networks,
namely the Clifford ResNet and Clifford Fourier Neural Operator (FNO) with ReLU and GA-ReLU
activation functions, respectively.

The incompressible Navier-Stokes equations in 2D are given by:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f , ∇ · u = 0, (1)
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Figure 1: Vector and scalar part of the (a) coefficient-wise ReLU ϕ(x) (b) phase-dependent ReLU
f(x) and (c) GA-ReLU ψ(x)

in which ∂u
∂t is the time derivative of the fluid velocity vector u = (ux, uy), (u·∇)u is the convective

term, − 1
ρ∇p is the pressure gradient, ν∇2u is the viscous diffusion and f is the external force term.

The incompressibility of the fluid is ensured by ∇ · u = 0.

Since there exists a coupling between vector quantities (the velocity u) and scalar ones (the pressure
field p, or the smoke s advected by u), it makes sense to express this coupling by “wrapping”
together the vector and scalar information as a single multivector of the type:

x = s · 1 + ue1e1 + ue2e2, (2)

where ue1 and ue2 are the components of u along the e1 and e2 direction, respectively. Given two
multivectors {xti ,xti+1} at two different time instants ti, ti+1, we want to use a machine learning
pipeline that estimates xti+2 . This multivector approach has been demonstrated to be more success-
ful than estimating (s, ux, uy)t+2 independently through a network not in GA, since the coupling
between different geometric quantities has to be inferred by the network rather being explicitly ex-
pressed through a multivector structure. We wish to keep the same coupling also when applying
non-linearities.

3 GA-RELU: A RELU IN GEOMETRIC ALGEBRA

We want to design ψ(x) in such a way that (i) it preserves the behaviour of the equivalent activation
function defined over R, and (ii) it is able to differentiate between grades and model interactions
between components of the same grade.
An activation function ϕ (that we will assume from now on to be the ReLU function) has commonly
been applied to a multivector x element-wise, i.e.:

ϕ(x) =

2n∑
i=0

ϕ(xi), (3)

where xi is the i-th blade component of x and n is the space dimensionality. This approach satisfies
(i), but not (ii) (see Fig.1a). To fill in this gap, we introduce GA-ReLU. GA-ReLU is the composition
of (1) a coefficient-wise ReLU, that depends on the magnitude of each multivector coefficient, and
(2) a phase-dependent ReLU, that grasps the interaction between vector coefficients and depends on
their phase difference. We will derive GA-ReLU below.

We look at the complex domain and express our 2D multivector in terms of complex numbers.
The phase-dependent ReLU has been inspired from the complex cardioid activation function firstly
introduced in Virtue et al. (2017), defined as

f(z) =
1

2
(1 + cos(arg(z))) z = K(arg(z))z, (4)

in which z = a+ bi ∈ C, i2 = −1 and K an attenuation function dependent on the argument of z.
The complex cardioid is an extension of the ReLU function over C and it is dependent only on the
phase of the input rather than on its magnitude.
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Figure 2: Errors versus number of training data for Clifford ResNet with ReLU and GA-ReLU
activation functions.
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Figure 3: Errors versus number of training data for Clifford FNO with ReLU and GA-ReLU activa-
tion functions.

It is known that the 2D Geometric Algebra G2,0 is isomorphic to C by simply taking I ≜ e12 as
our imaginary unit, since e212 = (e1e2)

2 = e1e2e1e2 = −e1e1e2e2 = −1 = i2. By keeping this
in mind, it is easy to see that a generic multivector x = x0 + x1e1 + x2e2 + x12e12 ∈ G2,0 can be
decomposed into “a sum of two complex numbers” as follows:

x = (x0 + Ix12) + e1(x1 + Ix2) = zS + e1zV . (5)

Following Brandstetter et al. (2022), we will refer to zS as the spinor part and to zV as the vector
part. We can then evaluate Eq.4 on x as follows:

f(x) = f(zS) + e1f(zV ). (6)

In 2D Navier-Stokes there is no bivector component, so Eq. 6 reduces to:

f(x) = K(arg(zS))zS + e1K(arg(zV ))zV = ϕ(x0) + e1K(arg(zV ))zV (7)

since K(arg(zS)) = K(arg(0)) = 1 for x0 > 0 and K(arg(0)) = 0 for x0 ≤ 0. On the other hand,
the second term can be computed to be:

e1K(arg(zV ))zV = K(tan−1(x2

x1
))x1e1 +K(tan−1(x2

x1
))x2e2. (8)

Eventually, we obtain that

f(x) = ϕ(x0) +K(arg(zV ))x1e1 +K(arg(zV ))x2e2, (9)

meaning that the complex ReLU acts like a real ReLU over the scalar part x0 and attenuates the
vector components x1, x2 by an amount proportional to the phase between them. Eq.9, however,
is unbounded for negative vector components (see Fig.1b), which could cause numerical instability
and negatively impact convergence. Hence, we would still want to keep the element-wise ReLU on
the vector components to guarantee also a dependence on their magnitude. The final expression of
GA-ReLU will then be:

ψ(x) = (ϕ ◦ f)(x) = ϕ(x0) + ϕ(K(tan−1(x2

x1
))x1)e1 + ϕ(K(tan−1(x2

x1
))x2)e2. (10)

In Eq.10 we have the advantage of having a magnitude scaling similar to a ReLU (i.e. 0 output for
negative input), but also a phase dependency deriving from the complex ReLU (see Fig.1c).
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4 EXPERIMENTS

We generated our own dataset of fluid in motion over a regular grid through PhiFlow (Holl et al.,
2020) following the specifications of Brandstetter et al. (2022) (see Appendix A.1). It is composed
of 15600, 4680 and 3120 training, validation and testing sequences, respectively. We call “se-
quence” a pair of inputs and targets (xti ,xti+1

;xti+2
). We trained a Clifford ResNet and a Clifford

FNO with standard ReLU and GA-ReLU activation functions (see Appendix A.2). We report the
summed mean squared error over the three multivector coefficients (One Step Loss) and over the
scalar (Scalar Loss) and vector (Vector Loss) coefficients.

Figure 4: Difference between ground truth and predicted scalar fields sti+2
− ŝti+2

for 5 different
time instants. Top row: GA-ReLU, bottom row: ReLU. Higher intensity is worse.

Figure 5: Difference between ground truth and predicted vector fields uti+2 − ûti+2 for 5 different
time instants. Top row: GA-ReLU, bottom row: ReLU. Higher intensity is worse.

5 RESULTS

The 3 metrics measured for datasets of different sizes are reported in Fig.2 and in Fig. 3 for the
Clifford ResNet and Clifford FNO, respectively. Note how, albeit small, the improvement from
GA-ReLU is consistent for different dataset sizes. We plot the difference between ground truth
and predicted scalar fields s, ŝ for 5 different sequences in the test set in Fig. 4 and the difference
between ground truth and predicted vector fields u, û in Fig.5. Note how, despite having minimally
modified the activation function, it is possible to identify for each frame regions that deviate more
from ground truth (i.e. areas in which the PDE solution is less exact) when employing an activation
function that treats multivector components independently.

6 CONCLUSIONS

We introduced GA-ReLU, a modified version of ReLU for multivector-valued networks that at-
tempts to take into account the coupling between multivector coefficients, and showed how it can
improve over the baseline error for a 2D Navier-Stokes PDEs problem. GA-ReLU has the limitations
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of being designed as an adaptation real-valued activation (ReLU) and for a specific mathematical
space (G2,0). Nevertheless, we hope that GA-ReLU can highlight the importance of non-linearities
that take into account the structure of multivectors.

REFERENCES

Paolo Arena, Luigi Fortuna, Luigi Occhipinti, and Maria Gabriella Xibilia. Neural networks for
quaternion-valued function approximation. In Proceedings of IEEE international symposium on
circuits and systems-ISCAS’94, volume 6, pp. 307–310. IEEE, 1994.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for PDE modeling. arXiv preprint arXiv:2209.04934, 2022.

Sven Buchholz and Gerald Sommer. Clifford algebra multilayer perceptrons. In Geometric Com-
puting with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and
Robotics, pp. 315–334. Springer, 2001.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde solving
framework for deep learning via physical simulations. In NeurIPS workshop, volume 2, 2020.

JK Pearson and DL Bisset. Neural networks in the clifford domain. In Proceedings of 1994 IEEE
International Conference on Neural Networks (ICNN’94), volume 3, pp. 1465–1469. IEEE, 1994.

Alberto Pepe, Sven Buchholz, and Joan Lasenby. Clifford group equivariant neural network layers
for protein structure prediction. In Northern Lights Deep Learning Conference, 2024a.

Alberto Pepe, Joan Lasenby, and Sven Buchholz. CGAPoseNet+ GCAN: A geometric clifford
algebra network for geometry-aware camera pose regression. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 6593–6603, 2024b.

David Ruhe, Jayesh K Gupta, Steven De Keninck, Max Welling, and Johannes Brandstetter. Geo-
metric clifford algebra networks. arXiv preprint arXiv:2302.06594, 2023.

Patrick Virtue, X Yu Stella, and Michael Lustig. Better than real: Complex-valued neural nets
for MRI fingerprinting. In 2017 IEEE international conference on image processing (ICIP), pp.
3953–3957. IEEE, 2017.

A APPENDIX

A.1 DATA GENERATION

We evaluate Navier-Stokes PDEs over a regular square grid of size 128× 128 with resolution ∆x =
∆y = 0.25. The fluid has a viscosity of ν = 0.01 and a buoyancy factor of 0.05. The scalar field
s at t = 0 is intialised with Gaussian noise over a centered grid, while the vector field u at t = 0
is initialised to be 0 throughout over a staggered grid. We run the fluid dynamics simulations via
PhiFlow for 21s and sample every ∆t = 1.5s. We start collecting data after τ0 = 4s to move away
from initial conditions.

A.2 TRAINING DETAILS

The Clifford ResNet in G2,0 has 4 residual blocks with 2 Clifford convolutional layers each, kernel
size 3× 3 and 64 hidden channels for a total of 2.4M trainable parameters.
The Clifford FNO in G2,0 has 4 FNO blocks, 6 Fourier modes for the x, y components and 48 hidden
channels, for a total of 38M trainable parameters. We trained the Clifford ResNet on data with batch
size of B = 16 and the Clifford FNO on data with batch size of B = 32. Both networks have
been trained for at most 200 epochs, implementing early stopping monitoring validation loss with
patience P = 15 for the Clifford ResNet and P = 10 for the Clifford FNO. We minimized the One
Step loss between ground truth xt+2 and predicted x̂t+2 using Adam optimizer and fixed learning
rate of η = 10−4. Results produced have been averaged over 3 random seeds. Training has been
performed on a single GPU NVIDIA GeForce RTX 4090, taking 64s per batch to train the Clifford
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FNO and 48s per batch to train the Clifford ResNet. As expected, the activation function does not
impact training time. Code can be found here.
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