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Reproducibility Summary

Scope of Reproducibility —We study the graph data mixup method G‐Mixup developed by
Han, Jiang, Liu, and Hu [1]. We investigate their claims that G‐Mixup theoretically pro‐
duces synthetic graphs that contain a mixture of key graph topologies of source graphs,
experimentally improves the performance of graph neural networks (GNNs), and exper‐
imentally performs better than another graph data augmentation methods.

Methodology — For the theoretic claims, we give more detailed proofs of the authors’ the‐
orems by using results from [2]. For the experimental claims, we utilize the authors’
publicly available code and our own implementation of the GCN neural network. We
run experiments on the datasets IMDB‐B, REDDIT‐B, and PROTEINS. For the IMDB‐B
and PROTEINS datasets, we use Google Colab, which provides a NVIDIA P100 and Tesla
T4 GPU and up to 32GB of RAM. Each experiments took approximately 10 GPUminutes.
For the REDDIT‐B dataset, we used the campus computing cluster, which gives a Tesla
V100 GPU with up to 90 GB RAM. It took about 20minutes each of these experiments.

Results —We verify their theoretical claims that G‐Mixup indeed leads to a mixture of
“key graph topologies.” We reproduce their experimental results on classification accu‐
racy for REDDIT‐B to within about 6% of the reported value, and for IMDB‐B to within
about 2% of the reported value. However, our experimental results do not provide sta‐
tistically significant evidence to support the paper’s experimental claims that G‐Mixup
improves the performance of GNNs or performs better than other graph data augmen‐
tation methods.

What was easy — The authors provided sufficient mathematical background and useful
citations to fill in the gaps in their proofs. The authors’ code was fairly easy to run with
the scripts provided, once we installed the correct packages. It was easy to run the code
on other datasets from PyTorch Geometric.

What was difficult — Setting up the code environment was difficult. We also initially faced
memory limits when generating the graphons for the REDDIT‐B dataset.

Communication with original authors —We have communicated with the corresponding au‐
thor over email about our memory usage and neural network architecture.

Copyright © 2023 D. Cordaro et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Shelby Cox (spcox@umich.edu)
The authors have declared that no competing interests exist.
Code is available at https://github.com/shelbycox/EECS-553-GMixup-Reproduction. – SWH
swh:1:dir:9c61eef8a6a063061f952ef48145dd9389d45281.
Open peer review is available at https://openreview.net/forum?id=T54wy0ahGLG&noteId=pvukxfvJGX.

ReScience C 9.2 (#34) – Cordaro et al. 2023 1

https://orcid.org/0009-0000-1528-7356
https://orcid.org/0000-0003-4378-5103
https://orcid.org/0009-0005-9824-3725
https://orcid.org/0000-0002-8943-5013
mailto:spcox@umich.edu
https://github.com/shelbycox/EECS-553-GMixup-Reproduction
https://archive.softwareheritage.org/swh:1:dir:9c61eef8a6a063061f952ef48145dd9389d45281/
https://openreview.net/forum?id=T54wy0ahGLG&noteId=pvukxfvJGX
https://rescience.github.io/


[¬Re] G-Mixup: Graph Data Augmentation for Graph Classification

1 Introduction

This paper [1] develops G‐Mixup, a data augmentation technique that involves mixing
up graph data using the theory of graphons. Past work on mixup and data augmenta‐
tion has mostly focused on Euclidean data [3] or within‐graph data augmentation [4, 5].
This new method proposed by the authors allows for the augmentation of graph data
across different classes of graphs. The authors of [1] claim to provide theoretical and
experimental evidence that the augmented data generated by G‐Mixup can improve the
generalization and robustness of graph neural networks (GNNs), compared to both the
classical setting (no data augmentation) and the setting in which other data augmenta‐
tion techniques are used.

2 Scope of reproducibility

In [1], the authors propose a new method for augmenting graph data, G‐Mixup, which
they claim theoretically generates synthetic graphs that are mixtures of original graphs
and improves the generalization and robustness of Graph Neural Networks (GNNs). In
this report, we investigate the following two claims from [1]:

• Claim 1 (Theoretical mixing): Theoretically, G‐Mixup produces synthetic graphs
that have a mixture of the key graph topologies of source graphs coming from
distinct classes.

• Claim2 (Improved experimental performance ofGNNs): Augmenting graphdata using
G‐Mixup increases the test accuracy and decreases the test cross‐entropy loss of a
GNNs when compared to (a) a GNN without augmentation, and (b) a GNN with a
different graph augmentation algorithm.

In the original paper, Claim 1 is supported by [1, Theorem 4.2], [1, Theorem 4.3], and
proofs in [1, Appendix A]. In Sections 4.1.1 and A.2, we provide a more detailed proof of
one of the authors’ key lemmas, as well as a corrected statement of the second theorem.

Claim 2 is supported by the experiments in [1, Section 5.3], whose results are described
in [1, Table 2], and [1, Figure 4]. We reproduce some of these experiments for two of the
authors original datasets, IMDB‐B and REDDIT‐B, and a new dataset which is not used
by the authors, PROTEINS, in Section 4.1.2. We also compare G‐Mixup with another
graph augmentation algorithm (graphon‐based edge perturbation) for IMDB‐B, REDDIT‐
B, PROTEINS.

3 Methodology

The authors provide their code publicly on Github.1 We reused the author’s code from
Github in a Google Colab notebook with a GPU. We implemented the GCN architecture,
added a hyperparameter tomodify graphon resolution, and added code to log the neural
network statistics by epoch. Otherwise, we left the source code unchanged.

3.1 Model descriptions
The authors propose a new data augmentationmethod, G‐Mixup, for irregular, not‐well‐
aligned graph data with divergent topology between graph classes, to which existing
mixupmethods are not directly applicable. TheG‐Mixup theory is based on the graphon,
which is a continuous, bounded, and symmetric function from [0, 1]2 to [0, 1] and can

1The code from their Github is linked here: https://github.com/ahxt/g‐mixup.
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be thought of as the weight matrix of a graph with infinite number of vertices.

Broadly, the G‐Mixup model proposed in the paper has the following key steps: i) esti‐
mate a graphon, WG, for each class of graphs G; ii) mix up the graphons of different
graph classes G and H, as in (1); and iii) generate synthetic graphs based on the mixed
graphons and mix up the labels. In (1), λ is called the mixup ratio/parameter. When
λ = 0, G‐Mixup becomes the graph data augmentation method graphon‐based edge
perturbation [6].

WI = λWG + (1− λ)WH (1)

To implement the graphon estimation step, the paper uses step functions to approxi‐
mate graphon vertex features. The step function estimation methods are well‐studied;
they first align the vertices in a set of graphs based on degree and then estimate the step
function from all the aligned adjacency matrices. The paper uses universal singular
value thresholding (USVT) [7] as the estimation method in their code, and we also use
this estimator in our experiments.

The authors thenmix up the estimated graphons as follows. Fornaug cycles (this number
is called the augmentation number), two graphons from the set of estimated graphons
are randomly chosen. Then, synthetic graphs are generated from themixed‐up graphon.
The number of synthetic graphs is controlled by the augmentation ratio α, and the num‐
ber of nodes for the synthetic graphs is controlled partially by the graphon resolution.
More details on these parameters are described in Section A.1.

After obtaining the synthetic graph data, the paper uses the Graph Convolutional Net‐
work (GCN) [8] and Graph Isomorphism Network (GIN) [9] neural networks for their
experiments. See [1, AF.2] for the specific architectures of the GNNs used. For all of our
experiments, we use the GCN model, as the paper’s results using the GIN model do not
provide statistically significant evidence to support their claims.

3.2 Datasets
We tested the authors’ experimental claims on the datasets IMDB‐B, REDDIT‐B, and PRO‐
TEINS, which are part of the TUDataset collection2 [10]. The IMDB‐B and REDDIT‐B
datasets are used in the paper while the PROTEINS dataset is not used in the paper. The
relevant statistics for the datasets are shown in Table 1. The edges of the graphs are
unlabeled, and labels on vertices are ignored in our code.

Dataset PROTEINS REDD‐B IMDB‐B
# graphs 1113 2000 1000
# classes 2 2 2

class priors 0.596/ 0.404 0.5/0.5 0.5/0.5
# avg. vertices 39.058 429.627 19.77
# avg. edges 72.816 497.794 96.53
avg. density 0.0477 0.0027 0.2469

Table 1. Statistics for the PROTEINS, REDDIT‐B (REDD‐B), and IMDB‐B datasets.

We used a 7:1:2 train‐validation‐test split, which is the same split used by the authors.
The original authors’ code does all the preprocessing necessary for the datasets through
the PyTorch Geometric library.

2The datasets can be downloaded from the TUDataset repository, linked here:
https://chrsmrrs.github.io/datasets/docs/datasets/.
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3.3 Hyperparameters
In this subsection, we state the values used for hyperparameters related to G‐Mixup. We
describe these hyperparameters further in Section A.1. We set the augmentation ratio
to be α = 0.2, mixup ratio/interval to be λ ∈ [Λ1,Λ2] = [0.1, 0.2], augmentation number
to be naug = 10, and the graphon resolution to be the median number of nodes in the
training set. As an additional experiment, we also perform hyperparameter searches
for the mixup ratio and graphon resolutions. The results are described in Section 4.2.2.

We now also state the hyperparameters for the GCN model architecture used by the
original paper. We use the same values. There are 64 hidden features, the activation
function is ReLU, the batch size is 128, the initial learning rate is 0.01 and drops by half
every 100 epochs, and there are 4 layers.

3.4 Experimental setup and code
We used the authors’ code on Github, and used Google Colab to perform our experi‐
ments. The authors only had the GIN neural network implemented in their code, so we
implemented the GCN neural network per their specifications. For IMDB‐B we train for
100 epochs, for PROTEINS we train for 300 epochs, and for REDDIT‐B we train for 500
epochs.3 The best test epoch is selected on a validation set with the loss functionmixup
cross‐entropy loss defined below, and we report the test accuracy on 10 runs.

We use the above experimental setup to compare the baseline GCNmodel with the GCN
model using G‐Mixup for the IMDB‐B, REDDIT‐B, and PROTEINS datasets (Sections 4.1.2
and 4.2.1). In addition, we use this setup to do hyperparameter searches for the mixup
ratio and graphon resolution (Section 4.2.2); the search for the mixup ratio also gives a
comparison of G‐Mixup with another graph data augmentation method.

As the label of a graphon is a probability distribution, we define themixup cross‐entropy
loss function to be as in Equation 2, where p is our generated probability distribution
and q is our target probability distribution.

−
∑
i

qi log(pi) (2)

Note that this definition subsumes that of cross‐entropy loss.4 We also note that the
original paper does not explicitly state how they define cross‐entropy loss, but they use
this definition in the code.

3.5 Computational requirements
For the PROTEINS and IMDB‐B datasets, we use the free tier of Google Colab, which
gives a Tesla T4 GPU with an average of 12 GB RAM. It takes around 11 minutes to run
10 seeds of 500 epochs of G‐Mixup on the GCN model.

For the REDDIT‐B dataset, we used the campus computing cluster, which gives a Tesla
V100 GPU with up to 90 GB RAM. It takes around 20 minutes to run 10 seeds with 500
epochs with or without G‐Mixup.

In terms of software, we use PyTorch Geometric 2.1.0 and PyTorch 1.12.1 on Python 3.7.
As of date, these are the defaults of Google Colab.

3Wedetermined the number of epochs by looking at output graphs for 1000 epochs, and cutting off training
when the validation loss started to increase consistently.

4This definition was first defined here: https://github.com/moskomule/mixup.pytorch.
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4 Results

Our main results are summarized as follows.

• We provide a more detailed proof of a key lemma of the paper and correct a con‐
stant in one of their theorems; these results study if themixed‐up graphon and the
synthetic graphs sampled from the graphon preserve the “key graph topologies” of
the original graphs.

• We find that G‐Mixup gives higher classification accuracy and lower test loss than
the baseline GCNmodel for the REDDIT‐B and PROTEINS datasets. For the IMDB‐
B dataset, we find that G‐Mixup gives lower test loss but not higher classification
accuracy than the baseline GCN model. However, our results are not statistically
significant. Our values for classification accuracy for the REDDIT‐B and IMDB‐B
datasets are within about 6% and 2% respectively of the original paper’s values.

• We find that varying the mixup ratio and graphon resolution hyperparameters
does not greatly affect classification accuracy of G‐Mixup for the three datasets.
Finally, we find that G‐Mixup does not outperform another graph data augmen‐
tation method (graphon‐based edge perturbation) as measured by classification
accuracy for the datasets.

4.1 Results reproducing original paper

Result 1 —We discuss the paper’s theorems supporting Claim 1 of Section 2, which is that
the synthetic graph generated by G‐Mixup is a mixture of original graphs. In particular,
we give a more detailed proof of [1, Lemma A.2] and correct their statement of [1, The‐
orem 4.3]. The original paper uses the notion of discriminative motifs to capture key
graph topologies. The relevant definitions are provided in Section A.2.

In Section A.2, we give a detailed proof of the following result, which is the key lemma
used to prove Theorem 4.2. We note that the paper’s original proof of this result is less
than ten lines long.

Lemma 4.1 ([1] Lemma A.2). Let F be a simple graph and let W,W ′ be two graphons.
Let e(F ) denote the number of edges of F . Then,

|t(F,W )− t(F,W ′)| ≤ e(F )∥W −W ′∥□.

In the paper, Lemma 4.1 is applied to prove the following main result. This result says
that the difference in homomorphismdensities of a given discriminativemotif for graph
class with respect to the graphon estimating that class and with respect to the mixed up
graphon is upper‐bounded by the cut norm between the graphons estimating the two
distinct graph classes. This suggests that the mixed‐up graphon indeed contains graph
topologies of both classes of graphs that it is mixing up.

Theorem 4.2 ([1], Theorem 4.2). Let G,H be two sets of graphs with corresponding
graphonsWG ,WH and corresponding discriminivative motif sets FG ,FH. Let λ ∈ (0, 1),
and letWI = λWG + (1− λ)WH be the mixed graphon. Then,

|t(FG ,WI)− t(FG ,WG)| ≤ (1− λ)e(FG)∥WH −WG∥□,
|t(FH,WI)− t(FH,WH)| ≤ λe(FH)∥WH −WG∥□.

The authors then state [1, Theorem 4.3]. The purpose of this result is to show that
the probability that the graph topology of a random graph sampled from a mixed‐up
graphon is very different from the graph topology of themixed‐up graphon can bemade
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arbitrarily small, as long as the number of vertices of the random graph is sufficiently
large. However, the proof of this result given is incorrect, as it incorrectly cites the fol‐
lowing result of [2].

Lemma 4.3 ([2], Theorem 2.5). Let W be a graphon, let n ≥ 1, and let 0 < ε < 1. Let F
be a simple graph. Then, theW ‐random graph G = G(n,W ) satisfies

Pr(|t(F,G)− t(F,W )| > ε) ≤ 2 exp
(
− ε2n

18v(F )2

)
.

The authors of [1] have an 8 instead of an 18 in the denominator of the fraction on the
right hand side of the inequality. Therefore, the correct statement of [1, Theorem 4.3] is
the following.

Theorem 4.4 ([1], corrected Theorem 4.3). LetWI be the mixed graphon, let n ≥ 1, and
let 0 < ε < 1. Let FI be the mixed discrminative motif. Then the WI ‐random graph
G = G(n,WI) satisfies

Pr(|t(FI ,G)− t(FI ,WI)| > ε) ≤ 2 exp
(
− ε2n

18v(FI)2

)
.

Proof. We apply Lemma 4.3, with F = FI , W = WI . The corrected theorem statement
then follows.

Result 2 —We now provide our experimental results comparing G‐Mixup’s performance
on the GCN architecture with a vanilla GCN network on the IMDB‐B and REDDIT‐B
datasets. This experiment is related to Claim 2(a) of Section 2, which is that augmenting
graph data using G‐Mixup increases classification accuracy and decreases test loss of
GNNs.

Table 2 shows the classification accuracy results for our experiments. The authors’ orig‐
inal results for this experiment utilizing the entire REDDIT‐B dataset is shown in Table 3.
Our results for the REDDIT‐B dataset are within about 6% of the authors’ reported val‐
ues, and our results for the IMDB‐B dataset are within about 2%of the authors’ reported
values.

Method PROTEINS REDDIT‐B IMDB‐B
vanilla 58.52± 3.11 81.4± 5.49 73.15± 2.5

w/ G‐Mixup 64.66± 5.06 84.8± 4.75 71.3± 3.3

Table 2. Our performance comparisons of G‐Mixup using the GCN architecture. The metric is
classification accuracy.

Method REDDIT‐B IMDB‐B
vanilla 78.82± 1.33 72.18± 1.55

w/ G‐mixup 89.81± 1.70 72.87± 3.85

Table 3. Original performance comparisons of G‐Mixup using the GCN architecture. The metric is
classification accuracy. This table is part of [1, Table 2].

Figure 2 in Section A.3 compares the loss for our experiment on the REDDIT‐B dataset,
and Figure 3 compares the loss curves for the IMDB‐B dataset. The line depicts the
mean loss over our ten runs, and the shading shows standard deviation. It appears that
G‐Mixup performs better in terms of test loss for both datasets. However, the standard
deviations overlap. The authors’ original results for the REDDIT‐B and IMDB‐B dataset
are shown in Figure 1. We note that the authors do not explicitly state what the lines or
shadings of their figures represent.
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4.2 Results beyond original paper

Additional Result 1 —Using the hyperparameters specified in Section 3.3 on the PROTEINS
dataset, we tested the performance of the GCN model with and without G‐Mixup. This
experiment is related to Claim 2(a) of Section 2. We chose this dataset because we
wanted to analyze the performance of G‐Mixup on an additional full dataset, and this
dataset was small enough in terms of memory for us to implement our experiment.

Table 2 shows the classification accuracy results for our experiment in the first column.
As in our experiment on the REDDIT‐B dataset, the performance of the GCNmodel with
the G‐Mixup procedure leads to higher classification accuracy than the baseline GCN
model.

Figure 4 in Section A.3 compares the loss for our experiments on the training, validation,
and test splits of the PROTEINS dataset. It appears that G‐Mixup with the GCN architec‐
ture perform better in terms of loss. In fact, the vanilla GCN network does not seem
to converge at all, as the classification accuracy for the training set does not appear to
improve.

Additional Result 2 —We did hyperparameter searches for the mixup ratio and graphon
resolution on the three datasets. We chose to study these hyperparameters because ac‐
cording to Theorem 4.2 and Theorem 4.4, the mixup ratio λ and graphon resolution
(which upper bounds the number of nodes for a synthetic graph) affect the probability
that a synthetic graph generated from the mixed‐up graphon contains a mixed‐up ver‐
sion of original graph data’s discriminative motifs.

This claim is also related to claim 2(b): by setting the mixup ratio λ = 0, G‐Mixup degen‐
erates into another graph data augmentationmethod, graphon‐based edge perturbation
[6]. Thus, the hyperparameter search for the mixup ratio also allows us to compare the
performance of G‐Mixup with a “simpler” graph data augmentation method.

Our results for the mixup ratio and graphon resolution are shown in Tables 4 and 5
respectively. Overall, it does not appear that varying either hyperparameter leads to
significant changes in the classification accuracy of G‐Mixup.

λ 0 0.001 0.01 0.1 0.5 No mixup
PROTEINS 62.69± 4.1 62.69± 4.8 62.91± 4.99 61.84± 3.53 63.36± 4.98 58.52± 3.11
IMDB‐B 72.0± 3.61 73.55± 2.24 72.64± 2.75 73.8± 3.14 72.39± 2.61 73.15± 2.5
REDDIT‐B 89.78± 1.16 89.20± 1.48 88.75± 3.29 87.82± 3.87 74.78± 2.72 81.4± 5.49

Table 4. Average accuracy ± standard deviation over 10 seeds for varying mix‐up ratios λ. The last
column is using the baseline GCN model with no G‐Mixup.

r −15 −10 −5 0 5 10 15 No mixup
PROTEINS 61.84± 3.55 63.86± 4.12 63.41± 3.21 62.47± 5.09 62.69± 3.72 62.96± 2.98 63.81± 3.32 58.52± 3.11
IMDB‐B 73.34± 2.26 74.05± 1.98 73.14± 2.49 73.5± 2.99 73.5± 3.59 73.8± 2.47 73.75± 2.74 73.15± 2.5
REDDIT‐B 83.15± 5.32 84.73± 4.78 82.78± 6.51 84.8± 4.75 84.9± 5.14 81.58± 5.31 85.03± 5.41 81.4± 5.49

Table 5. Average accuracy ± standard deviation over 10 seeds for varying graphon resolutions given by
(median number of nodes in training graphs) + r. The last column is using the baseline GCN model with no G‐Mixup.
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5 Discussion

Verification of Claims —We summarize whether or not our results support the original pa‐
per’s claims.

• Result 1 supports the authors’ Claim 1, which is their theoretic claim that G‐Mixup
produces synthetic graphs that contain amixture of key graph topologies of source
graphs.

• In Result 2, we are able to closely replicate the original paper’s values for classifi‐
cation accuracy for the REDDIT‐B and IMDB‐B datasets. In addition, our results
for the REDDIT‐B and PROTEINS datasets from Result 2 and Additional Result 1
support Claim 2(a), which is the authors’ claim that G‐Mixup leads to better per‐
formance over a vanilla GCN model. However, our results are not statistically sig‐
nificant, andwe are unsure how the original paper’s standard deviations aremuch
lower than ours with the same experimental setup of 10 random seeds. In addi‐
tion, our classification results for the IMDB‐B dataset do not support this claim, as
we found that the vanilla GCN model gives better classification accuracy results
than does the GCN model with G‐Mixup.

• In Additional Result 2, we found that varying the mixup ratio or the graphon reso‐
lution of the G‐Mixup method does not affect the classification accuracy. Further‐
more, our results for themixup ratio experiment do not support Claim 2(b), which
is the authors’ claim that G‐Mixup leads to better performance over other graph
data augmentation methods.

Overall Conclusion — Although some of our results seem to indicate that G‐Mixup is a use‐
ful graph data augmentation method, we cannot provide statistically significant evi‐
dence of the original paper’s experimental claims. Our verification of the authors’ the‐
oretical results support their theoretical claim. However, we feel that some of the as‐
sumptions used for the theoretical claim are too strong to apply G‐Mixup in practice. For
example, it is assumed that every class in a graph dataset can be effectively estimated by
a graphon, and that discriminative motifs exist and are an effective way to measure key
graph topologies. In addition, our results from the hyperparameter searches suggest
that it may not be the mixup of graph class topologies that actually leads to any better
performance results, but rather that G‐Mixup injects noise to the data, which has also
been shown to lead to better performance [11].

Strengths: Our proofs for the paper’s theoretical results are much more extensive. We
were able to essentially reproduce the results of the authors experiments.
Weaknesses: The main weaknesses of our experimental results relate to relatively high
standard deviations for all of our results, which affected our analysis. Given more time,
it would be ideal to run our experiments using more seeds.

5.1 What was easy
Although the authors’ proofs of theoretical claimswere sparse, they providedmany help‐
ful citations that helped us to fill in gaps easily. We also found these citations helpful
overall for understanding the theory of graphons. The authors’ code makes it possible
to easily run the experiments on other datasets in the PyTorch‐Geometric library.

5.2 What was difficult
We initially had issues running the G‐Mixup model for the full REDDIT‐B dataset on
Google Colab because we ran out of memory. We believe that the authors’ code is not
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well‐optimized in this regard. Since most of the computation RAM is in generating the
graphons, and the graphon construction algorithm is deterministic, it would have been
easier to verify the authors’ results if they provided pre‐made graphons on some (pre‐
determined) training data. It was also difficult to install the correct Python packages in
our campus computing cluster.

5.3 Communication with original authors
We have exchanged emails with the corresponding author, who offered suggestions on
how to address our memory issues with the REDDIT‐B dataset. However, their sugges‐
tions were not able to be implemented or they did not resolve our issues by the time of
the writing of this report.
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A Supplementary Materials

A.1 Description of G-Mixup hyperparameters
We describe the hyperparameters relevant to the G‐Mixup method. We also state the
values for these hyperparameters used in the in the original paper, as stated in the paper;
we note that some of these values in the original author’s code were different, and so we
therefore changed it in our code.

• Augmentation ratio α: Multiplying the number of training graphs by this ratio
gives thenumber of synthetic graphs generatedby applyingG‐Mixup to the graphons
estimated from the training data. The authors use α = 0.2 in their experiments.

• Mixup ratio λ andmixup interval [Λ1,Λ2]: Given graphonsW1,W2 andmixup ratio
λ ∈ [0, 1], the authors’ algorithm produces a new mixed‐up graphon

λW1 + (1− λ)W2. (3)

Themixup ratio λ is randomly sampled from the interval [Λ1,Λ2]. The authors use
the mixup interval [0.1, 0.2] in their experiments.

• Augmentation number naug: In the G‐Mixup algorithm, we generate naug mixed‐up
graphons from any two distinct classes among all of the classes; the mixup ratios
of these mixed‐up graphons are given by λi for i = 1, 2, . . . , naug. We generate
⌊αn/naug⌋ synthetic graphs from each mixed‐up graphon, where n is the size of
the original training set. For binary classification with Λ1 = Λ2, this parameter is
made irrelevant. The authors use naug = 10 in their experiments.

• Graphon resolution: If n is the graphon resolution, then in the graphon estima‐
tion step, an n × n matrix is used to represent the graphon. To sample from the
graphon, an n × n adjacency matrix is then generated. Isolated nodes are then
removed to provide a synthetic graph. Thus, the resolution influences the size of
synthetic graphs, but does not determine it. In particular, it is an upper bound on
the number of nodes in the synthetically generated graphs. The authors use the
median number of nodes in the training set as the resolution.

A.2 Theoretical result details
We first provide some of the relevant definitions and background for Section 4.1.1 (Re‐
sult 1).

DefinitionA.1. A discriminativemotif FG of a graphG is the subgraphwith theminimal
number of nodes and edges that can decide the class of the graphG. Let FG denote the
set of discrminative motifs for a set G of graphs.

The authors use this notion of discriminative motifs as their measure for “key topolo‐
gies” among graphs of a certain class or label.

Given an arbitrary graph or graphon, we want to measure “how often” such a motif ap‐
pears in the graph or graphon. The following definition will be used as this measure.

Definition A.2. Let F be an arbitrary graph.

• LetG be a graph. Then the homomorphism density of F with respect to the graph
G is

t(F,G) =
hom(F,G)

|V (G)||V (F )| ,

where hom(F,G) denotes the total number of graph homomorphisms from F to
G, and |V (F )|, |V (G)| denote the number of nodes of the graphs F,G respectively.
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• Let W be a graphon. Then the homomorphism density of F with respect to the
graphonW is

t(F,W ) =

∫
[0,1]|V (F )|

∏
(i,j)∈E(F )

W (xi, xj)
∏

i∈V (F )

dxi,

where E(F ), V (F ) denote the edge and vertex sets of F respectively.

Finally, the following norm on graphons provides a way to measure the “similarity” of
graphons.

Definition A.3. LetW : [0, 1]2 → R be a measurable function. Then the cut norm ofW
is defined as

∥W∥□ = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

W (x, y) dx dy

∣∣∣∣ ,
where the supremum is taken over all measurable subsets S, T ⊂ [0, 1].

We note that the use of the box (□) in the cut norm notation is the standard notation,
and is used to distinguish cut norm from other norms.

RemarkA.4. The cut norm is indeed a norm. In particular, it is homogeneous, so forα ∈
R is a scalar and W : [0, 1]2 → R a measurable function, then αW is also a measurable
function on [0, 1]2, and

∥αW∥□ = |α|∥W∥□.

In particular, note that
∥W∥□ = ∥−W∥□.

We now provide our detailed proof of Lemma 4.1.

Proof of Lemma 4.1. We expand upon the proof of this result in [2, Lemma 4.1].
First, notice that an equivalent definition for the cut norm of a graphon U is

∥U∥□ = sup
f,g

∣∣∣∣∣
∫
[0,1]2

U(x, y)f(x)g(y) dx dy

∣∣∣∣∣ , (4)

where the supremum is taken over all measurable functions f, g : [0, 1] → [0, 1].
Let V (F ) = {1, . . . , n} and E(F ) = {e1, . . . , em}, where et = (it, jt). Then

t(F,W )− t(F,W ′) =

∫
[0,1]n

 ∏
et∈E(F )

W (xit , xjt)−
∏

et∈E(F )

W ′(xit , xjt)

 ∏
i∈V (F )

dxi.

For t = 1, . . . ,m, define

Xt(x1, . . . , xn) =

(
t−1∏
k=1

W (xik , xjk)

)
(W (xit , xjt)−W ′(xit , xjt))

(
m∏

k=t+1

W ′(xik , xjk)

)
= W (xi1 , xj1) · · ·W (xit , xjt)W

′(xit+1 , xjt+1) · · ·W ′(xim , xjm)

−W (xi1 , xj1) · · ·W (xit−1 , xjt−1)W
′(xit , xjt) · · ·W ′(xim , xjm).

Notice that for t = 1, . . . ,m − 1, the second term of Xt(x1, . . . , xn) cancels out with the
first term ofXt+1(x1, . . . , xn). Thus,

∏
et∈E(F )

W (xit , xjt)−
∏

et∈E(F )

W ′(xit , xjt) =

m∑
t=1

Xt(x1, . . . , xn).
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Fix all variables xj ∈ [0, 1] , where k ̸= it, jt; we then have that

f(xit) =

t−1∏
k=1

W (xik , xjk), g(xjt) =

m∏
k=t+1

W ′(xik , xjk)

are both measurable functions [0, 1] → [0, 1] in xit and xjt respectively. Then by Equa‐
tion 4, ∣∣∣∣∣

∫
[0,1]2

Xt(x1, . . . , xn) dxit dxjt

∣∣∣∣∣ ≤ ∥W −W ′∥□,

and so∣∣∣∣∣
∫
[0,1]n

Xt(x1, . . . , xn)

n∏
i=1

dxi

∣∣∣∣∣ ≤
∫
[0,1]n−2

∣∣∣∣∣
∫
[0,1]2

Xt(x1, . . . , xn) dxit dxjt

∣∣∣∣∣ ∏
i ̸=it,jt

dxi

≤ ∥W −W ′∥□.

Thus, we see that

|t(F,W )− t(F,W ′)| =

∣∣∣∣∣
∫
[0,1]n

m∑
t=1

Xt(x1, . . . , xn)

n∏
i=1

dxi

∣∣∣∣∣
≤

m∑
t=1

∣∣∣∣∣
∫
[0,1]n

Xt(x1, . . . , xn)

n∏
i=1

dxi

∣∣∣∣∣
≤ m∥W −W ′∥□.

Recall thatm = e(F ), and so we have the desired inequality.

A.3 Figures for experimental results
The following figures show the loss curves for experiments from Sections 4.1.2 and 4.2.1,
as well as the original paper’s loss curves.

Figure 1. The training/validation/test loss curves on IMDB‐B and REDDIT‐B with GCN as backbone.
The curves are depicted on ten runs. This is part of Figure 4 in the original paper [1].
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Figure 2. The training/validation/test curves on REDDIT‐B with GCN as a backbone. The curves are
depicted on ten runs. The line is the mean of the corresponding loss, while the shaded area is ±
the standard deviation of the losses.
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Figure 3. The training/validation/test curves on IMDB‐BINARYwithGCNas a backbone. The curves
are depicted on ten runs. The line is the mean of the corresponding loss, while the shaded area is
± the standard deviation of the losses.

Figure 4. The training/validation/test curves on PROTEINS with GCN as a backbone. The curves
are depicted on ten runs. The line is the mean of the corresponding loss, while the shaded area is
± the standard deviation of the losses.
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