
Heavy-Tailed Class Imbalance and Why Adam
Outperforms Gradient Descent on Language Models

Frederik Kunstner1
kunstner@cs.ubc.ca

Robin Yadav1
robiny12@student.ubc.ca

Alan Milligan1

alanmil@cs.ubc.ca

Mark Schmidt1,2
schmidtm@cs.ubc.ca

Alberto Bietti3
abietti@flatironinstitute.org

1 University of British Columbia 2 Canada CIFAR AI Chair 3 Flatiron Institute

Abstract
Adam has been shown to outperform gradient descent on large language models by
a larger margin than on other tasks, but it is unclear why. We show that a key factor
in this performance gap is the heavy-tailed class imbalance found in language tasks.
When trained with gradient descent, the loss of infrequent words decreases more
slowly than the loss of frequent ones. This leads to a slow decrease on the average
loss as most samples come from infrequent words. On the other hand, Adam and
sign-based methods are less sensitive to this problem. To establish that this behavior
is caused by class imbalance, we show empirically that it can be reproduced across
architectures and data types, on language transformers, vision CNNs, and linear
models. On a linear model with cross-entropy loss, we show that class imbalance
leads to imbalanced, correlated gradients and Hessians that have been hypothesized
to benefit Adam. We also prove that, in continuous time, gradient descent converges
slowly on low-frequency classes while sign descent does not.

1 Introduction
The recent success of large language models such as GPT-3 (Brown et al., 2020) and its successors
has relied on costly training procedures at unprecedented scale. A key ingredient in their training is
the Adam optimizer (Kingma and Ba, 2015), which outperforms stochastic gradient descent (SGD)
on language problems by a large margin. Despite this large performance gap, we have a poor
understanding of why Adam works better and it has been difficult to find new optimizers that
consistently improve over Adam (Schmidt et al., 2021). Not only is it computationally difficult to
validate new optimizers on large models, but we also lack theoretical guidance; we do not know what
“problem” Adam solves to outperform SGD.

The success of Adam on language transformers has been well documented. Multiple works have
found metrics or statistics that correlate with the improved performance of Adam, showing that it
yields uniform updates across parameters despite imbalanced gradients (Liu et al., 2020), gives a
better descent direction than the gradient (Pan and Li, 2023), and takes a path over which a robust
variant of the condition number is smaller (Jiang et al., 2022). But these observations do not provide
a mechanism explaining what property of the problem leads to the improved performance of Adam.

Plausible mechanisms have been put forward, but they do not provide a complete explanation. Zhang
et al. (2020b) show that Adam-like methods are more resilient to heavy-tailed noise, which seems
more prominent in language than in vision tasks. But noise is not the primary cause of the gap, as it
already appears in deterministic training (Kunstner et al., 2023). An alternative hypothesis is that the
magnitude of the gradient and Hessian are correlated, which justifies clipping (Zhang et al., 2020a).
But to justify methods that normalize element-wise, like Adam and sign-like methods, we additionally
need the gradient and Hessian to be correlated across parameters (Crawshaw et al., 2022). While
there is empirical evidence for this behavior in neural networks, we do not have a good understanding
of why this occurs, nor why this would be more pronounced on language rather than vision tasks.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

100 102 104

Class index (sorted)

100

103

106

sa

m
pl

es

 Samples/classa)

0 5k 10k 15k
Step

0

5

10

Tr
ai

n
lo

ss

Overall lossb)

0 5k 10k 15k
Step

0

5

10

SGDc)

0 5k 10k 15k
Step

0

5

10

Adamd)

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

Figure 1: Gradient descent does not make progress on low-frequency classes, while Adam does.
Training GPT2-Small on WikiText-103. (a) Distribution of the classes sorted by class frequency, split
into groups corresponding to ≈10% of the data. (b) Overall training loss. (c, d) Training loss for each
group using SGD and Adam. SGD makes little to no progress on low-frequency classes while Adam
makes progress on all groups. (b) is the average of (c, d) for the respective optimizer.

1.1 Contributions
Our goal is to answer the following question: what is the “problem” that makes SGD slow on
language tasks, that Adam “fixes” to perform better?

We argue the problem is what we call heavy-tailed class imbalance, where rare classes account for
a large fraction of the data. Language data is imbalanced as some words are much more frequent than
others, typically following a power-law. A common modeling assumption is Zipf’s law, where the kth
most frequent word has frequency ∝ 1/k (Piantadosi, 2014). For language tasks framed as next-token
prediction, this property is reflected in the tokens and leads to heavy-tailed class imbalance. This
contrasts with typical vision datasets such as MNIST, CIFAR, and ImageNet, which are curated
to have uniform classes, but also with imbalanced problems with a small number of classes. For
example, in binary classification, extreme imbalance implies the minority class has a limited impact
on the loss; with an imbalance of 99:1, only 1% of the data comes from the minority class.

The performance gap arises because SGD makes slow progress on rare classes, see Figure 1. On
a binary problem, slow performance on 1% of the data need not have a large impact on the average
loss if we make fast progress on the remaining 99% of the samples. In contrast, the heavy-tailed class
imbalance found in language tasks makes it possible for low-frequency classes to account for most of
the data and significantly contribute to the loss, leading to slow performance overall.

We show that heavy-tailed class imbalance makes SGD slow across tasks in Section 2. We show
that modifying vision datasets to exhibit heavy-tailed imbalance leads to slow progress with SGD on
architectures where the performance gap with Adam is typically smaller. The impact of heavy-tailed
imbalance can even be seen on linear models. Additionally, the performance of SGD improves with
techniques that address imbalance such as upweighting rare classes.

Our findings provide a simple model where Adam outperforms SGD, a softmax linear model
under heavy-tailed class imbalance, which we analyze in Section 3. We show empirically that a
correlation between the magnitude of the gradient and Hessian across coordinates, used to justify
the benefits of Adam, appears naturally even on a linear model with class imbalance. We provide
intuition as to how this pattern emerges through an assignment mechanism that leads to a correlation
between class frequencies and the magnitude of the gradient and Hessian across parameters. We
additionally prove that, on a simple dataset and in continuous time, GD is slow on low-frequency
classes while sign descent is insensitive to the class frequencies.

We do not claim that class imbalance is the only reason Adam outperforms SGD, as other properties
of the data or architectures likely also contribute to this gap. Instead, we show that Adam consistently
outperforms SGD under heavy-tailed class imbalance. The difficulty of minimizing the loss of
minority classes has been explored for binary problems or problems few classes (Anand et al., 1993;
Francazi et al., 2023), but the recent scaling of large language models to predictions over more
than 100 000 classes puts the problem on a new scale. Our findings indicate that heavy-tailed class
imbalance has a significant impact on training performance and should be a consideration for future
optimizers to perform well on language and other tasks exhibiting heavy-tailed class imbalance.

2

0 100 200
Epoch

0

2

4

Tr
ai

n
Lo

ss

MNISTa)

0 100 200
Epoch

0

5

10

15
Imbalanced

 MNIST
b)

0 100 200
Epoch

0

5

10

15
GDc)

0 100 200
Epoch

0

5

10

15
Adamd)

GD (with momentum)
Adam (with momentum)

50% samples, least freq. classes
50% samples, most freq. classes

GD (with momentum)
Adam (with momentum)

50% samples, least freq. classes
50% samples, most freq. classes

Figure 2: Adam outperforms GD for training a CNN under heavy-tailed class labels. (a) Perfor-
mance on the MNIST dataset. (b) Performance on a modified MNIST with two groups of classes.
The first group consists of the 10 original classes with ≈ 5k samples each, while the second consists
of ≈10k added classes with 5 examples each. (c, d) Performance of GD and Adam on the two groups.
The initial loss is higher for imbalanced MNIST as there are ≈104 classes instead of 10, leading to a
loss of − log(1/104) ≈ 9.2 for a uniform prediction instead of − log(1/10) ≈ 2.3.

2 Experimental results and ablation studies

Figure 1 suggests a correlation between class frequencies and optimization performance that impacts
SGD more than Adam. The goal of this section is to verify that (i) class imbalance is a root cause
for the performance gap between SGD and Adam, and (ii) whether this gap can be reproduced with
simpler algorithms, such as deterministic optimizers, or using sign descent as a proxy for Adam.

To test these hypotheses, we perform experiments focusing on the training loss as our objective is to
understand what makes optimization difficult. We use a simple training procedure, with a constant
step-size tuned by grid search. For visualization, we split the data into groups of classes with similar
frequencies, as in Figure 1. For instance, for 10 groups, the first group corresponds to ≈10% of the
samples from the most frequent classes. This grouping is only used for visualization and does not
affect training. The models, datasets and training procedures are described in Appendix A.

In Appendix B, we give additional information and additional ablation experiments on language
models. We show that the heavy-tailed class distribution appears across datasets and tokenizers, and
that the separation across class frequencies observed on the training loss in Figure 1 also affects the
validation loss. We show that similar dynamics appear on smaller language models, including when
training only the last layer while keeping the embedding and attention modules frozen at initialization.
Finally, we show that stochasticity is not necessary to reproduce the impact of heavy-tailed class
imbalance, and that it also appears when using deterministic updates (i.e., GD instead of SGD). As a
result, we use deterministic updates whenever possible, denoted by GD in the figures.

2.1 Reproducing the frequency gap with vision models

Language transformers are often contrasted with vision CNNs, where we do not see a large perfor-
mance gap between SGD and Adam. Our hypothesis is that a key differentiation between the two
settings is the heavy-tailed class imbalance present in language data. In this section, we show that
making heavy-tailed vision datasets leads to slower performance with SGD and a larger performance
gap with Adam. These experiments show that heavy-tailed imbalance has a significant impact on
performance and can make an otherwise “easy” problem into a “hard” one for SGD.

CNN. We first use a CNN on a variant of MNIST with heavy-tailed class imbalance. We augment the
dataset to have two equally-sized groups of classes with a relative frequency difference of 1000. The
first group consists of the original 10 classes with ≈5k samples/class. For the second, we create ≈10k
new classes with 5 samples/class. We create new classes by copying existing images and adding a
“barcode” in a corner of the image, see Appendix A. The performance of GD and Adam is shown in
Figure 2. On the original MNIST dataset, both optimizers drive the loss to 0, and Adam still makes
progress on both groups in the imbalanced case. But on the imbalanced variant, GD makes almost no
progress on half of the data corresponding to the low-frequency classes and progress stalls. However,
it eventually converge if run for much longer (see Appendix D.2), indicating that the problem is one
of slow optimization rather than getting stuck in a local minima.

3

0 500 1000 1500
Step

0

5

10

Tr
ai

n
lo

ss

Small
 ImageNet

a)

0 500 1000 1500
Step

0

5

10
 Imbalanced

 ImageNet
b)

0 500 1000 1500
Step

0

5

10
SGDc)

0 500 1000 1500
Step

0

5

10
Adamd)

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

Figure 3: Adam outperforms SGD for training a ResNet under heavy-tailed class labels. (a) Per-
formance on a subset of ImageNet and (b) an imbalanced subset of ImageNet with class frequencies
πk ∝ 1/k. (c, d) Performance of GD and Adam on groups corresponding to ≈10% of the data.

ResNet. We replicate this effect with a ResNet18 on an imbalanced variant of ImageNet. We
subsample classes with frequencies πk ∝ 1/k and compare against a uniform subset with a similar
number of samples. In Figure 3, we see that SGD and Adam perform similarly on uniform data but
a performance gap appears across class frequencies on the heavy-tailed imbalanced dataset. As in
Figures 1 and 2, SGD is slower on imbalanced data, especially on low-frequency classes.

Vision Transformers. This performance gap also appears with vision transformers (ViTs). In Ap-
pendix C, we see that SGD and Adam both perform well on ImageNet, but exhibit a similar perfor-
mance gap as in Figure 1 on the imbalanced variant. While ViTs may require more raw data, data
augmentations, or regularization to generalize as well as ResNets (Steiner et al., 2022), there does not
seem to be a large gap between SGD and Adam without class imbalance.

2.2 Reproducing the frequency gap with a linear model on uniform data
To highlight that heavy-tailed imbalance alone can lead to the observed difficulties, we reproduce
this behavior in a simple setting: a softmax linear model with cross-entropy loss. We create a dataset
where the class frequencies approximate πk ∝ 1/k and draw n samples uniformly from [0, 1] in
d dimensions, independently of the label. While there is no relationship to learn, the optimization
problem is still well posed and a linear model can separate the data if n ≪ d. As on the transformer
of Figure 1, GD makes less progress on low-frequency classes than Adam, as shown in Figure 4.

This example illustrates that a problem that might look innocuous at first is hard to optimize with
GD due to heavy-tailed imbalance, while the performance of Adam is less negatively impacted.
Nonetheless, imbalance alone is not sufficient to make GD slow. It is possible to generate pathological
datasets with heavy-tailed imbalance where GD fits all classes fast, by making all the samples (close
to) orthogonal. In this case, each sample is learned independently of the others, and there is no
difference across classes. However, perfectly orthogonal data is unlikely, especially as we expect
samples from similar classes to be assigned a similar (correlated) representation. We discuss this
issue and give additional examples on the linear model in Appendix D.

2.3 Interactions between optimizer and imbalance
We have shown that heavy-tailed class imbalance can lead to different performance across class
frequencies, but it is not clear which component of the training process has the highest impact on
this behavior. We next experiment with simple algorithms to answer the following questions. (i) Is
the impact of class imbalance due to stochasticity, or does it happen with deterministic training? (ii)
Which component of Adam leads to an improved performance? and (iii) If imbalance is the problem,
can we improve the performance of SGD by reweighting the losses?

Class imbalance already impacts deterministic optimization. A natural hypothesis to explain the
impact of class imbalance is that it may be due to small batch sizes in SGD; rare classes could be
sampled less often, and thus learned more slowly. On the other hand, stochasticity has been found to
have little impact on the gap between SGD and Adam (Kunstner et al., 2023). Our experiments in
Figures 2, 4 and 5 and further examples in Appendix B.3 reproduce the dynamics of Figure 1 with
full batch GD and Adam, indicating the problem already arises in the deterministic setting.

Adam and sign descent both perform well under imbalance. Following Kunstner et al. (2023), we
check whether the benefit of Adam is due to a change in the magnitude of the update or its direction.

4

100 102 104

Class index (sorted)

100

102

104

sa

m
pl

es

 Samples/classa)

0 50 100 150
Epoch

0

5

10

Tr
ai

n
lo

ss

Overall lossb)

0 50 100 150
Epoch

0

5

10
GDc)

0 50 100 150
Epoch

0

5

10
Adamd)

GD (with momentum)
Adam (with momentum)

9% samples, least freq. classes
9% samples, most freq. classes

GD (with momentum)
Adam (with momentum)

9% samples, least freq. classes
9% samples, most freq. classes

Figure 4: The impact of heavy-tailed class imbalance is reproducible with linear models. Softmax
regression on synthetic data. The inputs are drawn from a uniform distribution on [0, 1]d. The target
classes are heavy-tailed (a) and independent of the inputs, but the model can still fit the data as it is
overparameterized. (b, c, d) Overall training loss and performance of GD and Adam on each subset.

Changing the magnitude as in normalized GD is known to perform better on separable problems
(Nacson et al., 2019), while the benefits of Adam have been attributed to the change of direction close
to sign descent (Tieleman and Hinton, 2012; Balles and Hennig, 2018). We compare the performance
of GD, Adam, normalized GD and sign descent, with and without momentum, for training the last
layer of a small transformer in Figure 5 and on additional problems in Appendix E. Normalization
and momentum helps across problems, but they have less impact on the performance gap across class
frequencies than changing the update direction. Sign descent and Adam have a similar performance.

Upweighting low-frequency classes can help. Given our hypothesis that the performance gap
between (S)GD and Adam is due to class imbalance, we expect interventions directly targeting
imbalance to improve performance. In Appendix E.1, we show that upweighting the loss of low-
frequency classes can improve the performance of SGD. While reweighting is not complete solution
as it changes the objective function, this experiment supports the hypothesis that the optimization
problem is due to heavy-tailed class imbalance.

3 An investigation on linear models

Heavy-tailed imbalance already leads to slow performance on the linear softmax model of Figure 4,
but we do not have a good understanding of why GD becomes slow while Adam is less affected. In
this section, we explore the effect of heavy-tailed class imbalance on the special case of softmax linear
models, showing that it leads to correlated, imbalanced gradients and Hessians. In Section 3.1, we
give an example on a quadratic where imbalanced Hessians lead to a performance gap between GD
and Adam. In Section 3.2, we show that class imbalance leads to imbalanced gradients and Hessians
that are correlated with class frequencies through an assignment mechanism, showing that this pattern
emerges naturally. Finally, we prove that on a simple imbalanced problem and in continuous time,
GD is slow on low-frequency classes while sign descent is fast on all classes in Section 3.3.

3.1 Intuition on a weighted quadratic problem

Consider the following toy problem which is purposefully oversimplified to provide a high-level
intuition about the optimization dynamics. Suppose we have c functions f1, ..., fc, corresponding to
the losses for each class, that are on the same scale in the sense that gradient descent with step-size α
makes fast progress on any fi. For concreteness, take fi(w) =

1
2∥w∥2, where GD with a step-size

of 1 converges in one step. Instead of running GD on each function independently, suppose we run
GD on the weighted average f(w1, ..., wc) =

∑c
i=1 πifi(wi) with positive weights π1 ≥ ... ≥ πc,∑

i πi = 1, corresponding to the class frequencies. If these weights span multiple orders of magnitude,
we expect a similar behavior as in Figures 1 to 5, as illustrated in Figure 6. GD makes slow progress
on functions with low weights as the gradient w.r.t. wk is scaled by πk,

w
(t)
k = w

(t−1)
k − απkf

′
k(w

(t−1)
k) = (1− απk)

tw
(0)
k .

This slow convergence on functions with low weights cannot be fixed by increasing the step-size, as
increasing it beyond 1/π1 would cause instabilities on the highest-frequency “class” f1. The problem
is that we use the same step size for all functions, which have different scales. Adam and sign descent

5

0 500 1000
0

10

Tr
ai

n
Lo

ss

Overall loss

0 500 1000
0

10
GD (m)

0 500 1000
0

10
Adam (m)

0 500 1000
0

10
NormGD (m)

0 500 1000
0

10
Sign (m)

0 500 1000
Epoch

0

10

Tr
ai

n
Lo

ss

0 500 1000
Epoch

0

10
GD (+m)

0 500 1000
Epoch

0

10
Adam (+m)

0 500 1000
Epoch

0

10
NormGD (+m)

0 500 1000
Epoch

0

10
Sign (+m)

GD (m)
GD (+m)

Adam (m)
Adam (+m)

NormGD (m)
NormGD (+m)

Sign (m)
Sign (+m)

GD (m)
GD (+m)

Adam (m)
Adam (+m)

NormGD (m)
NormGD (+m)

Sign (m)
Sign (+m)

Figure 5: Sign descent, as a simplified form of Adam, performs well on low-frequency classes.
Training the last layer of a simplified one-layer transformer with GD, Adam, normalized GD, and
sign descent, with and without momentum (±m). Momentum and normalizing the magnitude help
but have smaller effects than using sign descent, which recovers similar dynamics to Adam.

are less sensitive to this problem as their updates are independent of πk,

w
(t)
k = w

(t−1)
k − α

πkf
′
k(w

(t−1)
k)∣∣πkf ′

k(w
(t−1)
k)

∣∣ = w
(t−1)
k − α sign(f ′

k(w
(t−1)
k)).

While sign descent or Adam with a fixed step-size need not converge and can oscillate around the
minimum, they perform much better in early iterations, independently of πk.

Another perspective is that the imbalance in the weights π1, ..., πc makes the problem ill-conditioned.
The weights not only affect the gradient of f but also its Hessian, which is Diag([π1, ..., πc]). A
common intuition for Adam is that using the magnitude of the coordinates of the gradient as a
preconditioner is a good proxy for the Hessian diagonal (Duchi et al., 2011; Kingma and Ba, 2015),
which would also lead to larger step-sizes for coordinates with small πk. While this does not hold in
general (Kunstner et al., 2019), the gradient can be a reasonable approximation to the Hessian on this
problem. The gradient is [π1w1, ..., πcwc]. If the weights π1, ..., πc vary by orders of magnitude more
than the parameters |w1|, ..., |wc|, the gradient and Hessian will be correlated, and preconditioning
by the gradient magnitude or Hessian diagonal will yield similar directions.

3.2 Correlations between the magnitude of the gradient and Hessian across coordinates
What is lacking to explain Adam’s improved performance is an understanding of how a correlation
between the gradient and Hessian arises in realistic problems. This feature has been observed on neural
networks, but we do not yet know why it appears, even on the softmax linear problem. The caricature
of the diagonal quadratic problem of the previous section provides some intuition, but does not directly
apply to the softmax linear model of Figure 4 as that problem is neither quadratic nor separable.
Nonetheless, a similar pattern emerges in the rows w1, ...,wc of its parameter matrix W ∈ Rc×d; the
magnitude of the gradient and Hessian across rows and the class frequencies can become correlated
during training due to class imbalance. In this section, we establish this observation empirically and
provide a mechanism for how it emerges.

In Figure 7, we show the gradient norm against the Hessian trace with respect to each row wk

throughout the trajectory of Adam on the softmax linear model of Figure 4. While there is no
correlation at initialization, the gradient and Hessian blocks become correlated with class frequencies
during training and become imbalanced. This imbalance in the diagonal blocks is the main feature of
the Hessian as the than off-diagonal blocks are orders of magnitude smaller, as shown in Figure 9.
Similar dynamics occur with GD, although only on high-frequency classes as GD makes little progress
on low-frequency classes, see Appendix F. This correlation also appears in the last layer of large
models such as GPT2-Small used in Figure 1, as shown in Figure 8.

To explain this behavior, we show that the impact of samples on the Hessian follows an assignment
mechanism: if the model assigns samples to their correct class, the Hessian with respect to wk is

6

0 50Iteration
0

1

Lo
ss

Overall loss
GD
Sign
Adam

0 50Iteration
0

1
Gradient descent

0 50Iteration
0

1
Adam

0 50Iteration
0

1
Sign descent

10% of the weights, smallest weights 10% of the weights, largest weights10% of the weights, smallest weights 10% of the weights, largest weights

Figure 6: Class-separation on the quadratic problem of Section 3.1 with weights πk ∝ 1/k. GD
fits functions with low weights more slowly, while Adam and sign descent have the same dynamics
across all functions and all the lines overlap as every parameter wi is initialized at wi = 1.

primarily influenced by samples from class k, leading to a correlation between the magnitude of the
gradient, Hessian, and class frequencies. To capture this effect, we introduce some notation and a
simplifying assumption. Suppose we have n samples with inputs xi ∈ Rd and labels yi∈ [c], where
class k has frequency πk = nk/n. The parameters of the linear model are W ∈ Rc×d. We write
p(x) = σ(Wx) for the predicted probabilities where σ is the softmax, and summarize the data as

x̄ = 1
n

∑n
i=1 xi, x̄k = 1

nk

∑
i:yi=k xi, H̄ = 1

n

∑n
i=1 xix

⊤
i , H̄k = 1

nk

∑
i:yi=k xix

⊤
i .

Assumption 1 (correct assignment). The model correctly assigns samples to class k if it predicts k
with non-negligible probability p on samples from that class (p(xi)k = p = ω(1/c) for xi from class
yi = k), and predicts k with near-random chance otherwise (p(xi)k = O(1/c) for xi where yi ̸= k).
Proposition 2. If initialized at W0 = 0, the gradient and Hessian of the loss L w.r.t. wk are

∇wk
L(W0) = πkx̄

k − 1
c x̄, ∇2

wk
L(W0) =

1
c

(
1− 1

c

)
H̄, (1)

During training, if the model correctly assigns samples to class k with probability p (Assumption 1),

∇wk
L = (1− p)πk x̄

k +O
(
1
c

)
,

∇2
wk

L = p(1− p)πk H̄
k +O

(
1
c

)
,

and ∥∇wk
L∥ ∼

(
1

p

∥∥x̄k
∥∥

Tr(H̄k)

)
Tr(∇2

wk
L) as c → ∞, (2)

for classes where the frequency does not vanish too quickly, πk = ω(1/c).

The assumption that c → ∞ is used to obtain a simple and interpretable equation in the correlation.
In practice, c > 103 appears sufficient to make the dependence on πk appear, as in Figures 7 and 8.

At initialization, Equation (1) shows that the Hessian blocks are uniform across classes while the
gradients depend on πk. If the data is uniform across classes (∥x̄k∥≈∥x̄k′∥) while the frequencies
differ by orders of magnitude, the the gradient blocks will mirror the class frequencies for high-
frequency classes where πk ≫ 1/c. This confirms the pattern observed at initialization in Figures 7
and 8. During training, Equation (2) indicates a correlation between gradient norm and Hessian
trace if classes have similar values of ∥x̄k∥, Tr(H̄k) and predicted probabilities p, confirming the
behavior observed during training in Figures 7 and 8 for the high frequency classes. As Adam fits
low-frequency classes faster in Figure 4, they have a value of p closer to 1 (shown in Appendix F)
and deviate slightly from the trend in Figure 7, as expected from Equation (2).

We now give the main intuition and defer the derivation of the asymptotics to Appendix G. We ignore
off-diagonal blocks here, as they are orders of magnitude smaller than diagonal blocks (Figure 9),
and show in Appendix G.1 that they are expected to be small.
Proof idea. Our loss is L(W) = 1

n

∑n
i=1 ℓ(W,xi,yi), where ℓ is a softmax linear model,

ℓ(W,x, y) = − log(σ(Wx)y), with σ(z)k = exp(zk)∑
j exp(zj)

. (3)

Writing p(x) = σ(Wx) for the vector predicted probabilities, the gradient and Hessian blocks are

∇wk
ℓ(W,x, y) = (1[y = k]− p(x)k)x, ∇2

wk
ℓ(W,x, y) = p(x)k(1− p(x)k)xx

⊤. (4)

The contribution of a sample (x, y) to the gradient w.r.t. wk primarily depends on whether the sample
belongs to class k through the 1[y = k] term, while the contribution to the Hessian block depends
on whether the model assigns that sample to class k through p(x)k. At initialization, p(x)k = 1/c

7

Grad.

10 5

10 3

10 1

H
es

si
an

Tr
(

)

Correlation at
 =

Grad.

=

Grad.

=

Grad.

=

least freq. classes (10% samples) most freq. classes (10% samples)least freq. classes (10% samples) most freq. classes (10% samples)

Figure 7: The gradient norm and Hessian trace across blocks become correlated during training,
over the path taken by Adam in training the linear model of Figure 4. The blocks correspond to the
rows w1, ...,wc of the parameter matrix W. The color indicates the class frequency, showing that
lower (higher) frequency classes have smaller (larger) gradient norm and Hessian trace.

for all samples, and averaging the terms in Equation (4) yields Equation (1). Highlighting this effect
during training is more challenging due to the dependency on the predictions. However, if W start
to assign samples to their correct classes (Assumption 1), we can obtain a similar decomposition as
Equation (1). For a given class k, the probabilities for correct labels are all p while the probabilities
for incorrect ones are bounded by O(1/c), which vanishes in the limit of c → ∞.

This assignment mechanism explains why the gradient, Hessian, and class probabilities can become
correlated on the linear model. While the gradient does not directly approximate the Hessian, the main
feature of the imbalance in the Hessian comes from the weighting by the class frequencies π1, ..., πc,
which is present in both the gradient and the Hessian, as shown in Figures 7 and 9. This correlation is
not a global property of the problem, as there are parameters for which the opposite pattern holds, see
Appendix F, but it appears during training if the optimization algorithm makes progress. While the
per-coordinate normalization of Adam or sign descent was not designed to specifically address class
imbalance, they appear to benefit from this property to make faster progress.

Our results complement prior work on optimization with class imbalance on problems with two or
few classes, which argued that the gradient is dominated by the majority class, and as a result is biased
towards making progress on the majority class at the expense of the minority class (Anand et al.,
1993; Ye et al., 2021; Francazi et al., 2023). While this explains why GD might not make fast progress
on rare classes, it was not clear why this would lead to slow performance on average, especially under
heavy-tailed imbalance where there is no “majority”. Our results show that, in addition to imbalance
in the gradients, class imbalance leads to optimization difficulties through imbalanced Hessians.

3.3 Improvement of sign-based approaches over gradient descent
While the above arguments provide a high-level intuition as to why the gradient might be a reasonable
proxy for the Hessian, it remains difficult to formally describe this effect and prove the benefits
of Adam over GD without strong assumptions. Doing so would require a fine-grained analysis of
the dynamics, as the correlation only appears during training. To obtain a provable a guarantee
highlighting the benefit of sign-based methods, we consider a stripped-down problem where the only
difficulty lies in the class imbalance:

Simple imbalanced setting. Consider c classes with frequencies π1, ..., πc where all samples from a
class are the same, xi = ek if yi = k, where ek is the kth standard basis vector in Rc.

This setting is trivial as a possible solution is W = αI with α → ∞, or taking one step of gradient
descent with an arbitrarily large step-size. However, we will see that the dynamics with small step-
sizes already exhibit the separation by class frequencies observed experimentally. In this simplified
setting, we show that the continuous time variant of gradient descent, gradient flow, and sign descent
as a proxy for Adam, obtain qualitatively different convergence rates (proof in Appendix H).

Theorem 3. On the simple imbalanced setting, gradient flow and continuous time sign descent
initialized at W = 0 minimize the loss of class k, ℓk(t) = − log(σ(W(t)ek)k), at the rate

Gradient flow: ℓk(t) = Θ(1/πkt), Continuous time sign descent: ℓk(t) = Θ
(
e−ct

)
.

8

least freq. classes (10% samples) most freq. classes (10% samples)least freq. classes (10% samples) most freq. classes (10% samples)

Figure 8: The gradient-Hessian blocks also become correlated in the last layer of large models.
Reproducing Figure 7 on the GPT2-Small/WikiText-103 problem of Figure 1. Evolution of the
gradient norm and Hessian trace for each row wc of the last layer throughout optimization, over the
path taken by Adam. The color indicates the class frequency, showing that lower (higher) frequency
classes have smaller (larger) gradient norm and Hessian trace.

The difference between the sublinear rate of gradient flow (1/t) and linear rate of sign descent (e−t)
is similar to existing results for separable logistic regression, where normalized updates converge
faster as they keep increasing the margin despite small gradients (Nacson et al., 2019). While the
setting studied here is separable, we still observe the separation across class frequencies on problems
that are not separable, either because the problem has examples with different output for the same
inputs, as in Figure 1, or when adding regularization, as in Appendix D.3. The novel element is that
the convergence of gradient flow strongly depends on the class frequencies π, while the convergence
of sign descent is independent of the class frequencies.

This setting is admittedly oversimplified and does not capture some of the features observed in our
experiments. For example, in Theorem 3, the loss is monotonically decreasing for all classes. This
no longer holds once we introduce a bias term and the loss from low-frequency classes will instead
first increase, as can be seen for example in Figure 4. This setting is also biased towards sign descent,
as the inputs are aligned with the basis vectors. Finally, the problem is inadequate to study large
step-sizes, as it can be solved in one large step. On data with non-orthogonal classes, large step-sizes
would lead to training instabilities and oscillations in the loss of frequent classes, as can be seen in
Figures 2 to 5. Nevertheless, this result formally establishes the benefit of sign-based updates and we
believe it captures the key difficulty encountered by GD under heavy-tailed class imbalance.

4 Discussion and limitations
Interaction with stochasticity. Our experiments include both stochastic and deterministic training
regimes and show that stochasticity is not the cause of the slow performance of SGD on low-frequency
classes, as it already appears between full batch GD and Adam. This observation is consistent with
prior work showing that the performance gap between SGD and Adam on language transformers
already appears with deterministic training (Kunstner et al., 2023). However, we do not attempt to
quantify the interaction between stochasticity and class imbalance and leave it for future work.

Training performance vs. generalization. Our main focus is on optimization performance. Our
observations need not generalize to the validation loss, especially in settings prone to overfitting, as
good training performance may lead to overfitting on classes with few samples (Sagawa et al., 2020).
However, some form of memorization might be needed in long-tailed settings (Feldman, 2020), and if
SGD cannot even fit the training data, generalization cannot be good. On the transformer of Figure 1,
we observe similar dynamics across frequencies on the validation loss, shown Appendix B.2. Training
dynamics on the empirical and population loss are also often similar, particularly early in training (see,
e.g., Nakkiran et al., 2021; Ghosh et al., 2022), and the one-pass training regime commonly used in
large language models might mitigate those issues by blurring the line between train and test loss.

Additional difficulties due to text data. We study the effect of the distribution of the classes, the next
token to be predicted, but other optimization difficulties might arise from the heavy-tailedness of text
data. For example, the sequence of tokens used as inputs to the embedding layer are also heavy-tailed.
This imbalance might lead to slow progress on embeddings for rare tokens with GD, giving another

9

Hessian at = = = =

8

6

4

2

0

2

Figure 9: The diagonal Hessian blocks are orders of magnitude larger than off-diagonal blocks.
Showing the magnitude of a subset of the Hessian blocks (log10(

∣∣Tr(∇2
ijL)

∣∣)) for a [160 × 160]
subset of the Hessian, sampling 40 classes log-uniformly and 40 input dimensions uniformly.

potential cause for a performance gap. Full sentences (Williams et al., 2015) and latent rules or
mechanisms required to understand a paragraph (Michaud et al., 2023) may also display heavy tails,
and Adam could be beneficial if those are captured by intermediate layers (e.g., Meng et al., 2022;
Wang et al., 2023; Bietti et al., 2023). The choice of tokenization has also been shown to impact
downstream performance, which has been attributed to the lack of samples on rare tokens (Gowda
and May, 2020) and the improved efficiency of more uniform tokenizers (Zouhar et al., 2023). Our
results indicate that tokenization also has a large impact on optimization performance.

Difficulties due to architectures. Beyond the class distribution, additional optimization difficulties
may arise from the architectures, due to depth, signal propagation (Noci et al., 2022; He et al., 2023),
vanishing gradients and higher order derivatives (Liu et al., 2020; Orvieto et al., 2022). The simplified
transformer of Ahn et al. (2023) also exhibits many of the difficulties observed in the literature on
regression instead of a classification problem. However, a phenomenon similar to the assignment
mechanism could still explain the benefit of Adam. The oscillations in the loss observed at the feature
level by Rosenfeld and Risteski (2023) suggests a link between subsets of the samples and subsets of
the parameters. For example, if a convolution filter detects a specific background color and captures a
specific feature of the data, the magnitude of the gradient and Hessian at intermediate layers could be
influenced by the relative frequency of the feature in the data, leading to another form of imbalance.

Recent ablations on the benefit of Adam for language transformer. Parallel to our work, recent
investigations have looked into the benefits of Adam on language transformers. Zhang et al. (2024a)
argue that the Hessian has a block-diagonal structure, with similar magnitude within blocks but very
different magnitudes across blocks, and that Adam may improve performance by using a different
step-size for different blocks. This hypothesis is supported by recent ablations studies. Zhang et al.
(2024b) show that the element-wise preconditioning in Adam is not necessary and can be replaced by
a single parameter across such blocks while maintaining performance, which they coin Adam-mini.
Similarly, Zhao et al. (2024) show that the performance of Adam can be recovered by training most
of the network with (S)GD, except for the last layer and LayerNorm parameters. Both approaches
still need to treat the last layer separately, either using a step-size for each row wc of the last layer
in the case of Zhang et al. (2024b) or by using Adam to train the last layer in the case of Zhao et al.
(2024). These observations complement our approach, which focuses on the impact of heavy-tailed
class imbalance on the last layer, and are consistent with our conclusion that one of the main benefit
of Adam is to counteract the slow progress on rare classes by preconditioning the last layer.

5 Conclusion
We have shown that heavy-tailed class imbalance leads to a performance gap between (S)GD and
Adam. This effect is reproducible across architectures and data types, but is most salient on language
tasks which naturally exhibit heavy-tailed imbalance. As vision tasks are typically more uniform,
imbalance is a key differentiating feature of the training difficulties in language tasks. The correlation
between entries of the gradient and Hessian that occurs due to class imbalance provides a simple
setting that justifies the intuition that Adam-like algorithms can “adapt to curvature”. We provide an
explanation for how this correlation arises during training through the assignment mechanism and
prove on a simplified problem that gradient descent performs poorly on low-frequency classes while
sign descent is unaffected by class frequencies.

10

Acknowledgements
We thank Greg d’Eon, Aaron Mishkin, Victor Sanches Portella, and Danica Sutherland for useful
discussions and comments on the manuscript. This research was supported by the Canada CIFAR AI
Chair Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) through
the Discovery Grants RGPIN-2022-03669, and was enabled by the support provided by the BC DRI
Group and the Digital Research Alliance of Canada (alliancecan.ca).

References

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra (2023).
“Linear attention is (maybe) all you need (to understand transformer optimization)”. In: arXiv
preprint arXiv:2310.01082.

Rangachari Anand, Kishan G. Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka (1993). “An
improved algorithm for neural network classification of imbalanced training sets”. In: IEEE
Transactions on Neural Networks 4.6, pp. 962–969.

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton (2016). “Layer Normalization”. In: Neural
Information Processing Systems (NeurIPS), Deep Learning Symposium.

Lukas Balles and Philipp Hennig (2018). “Dissecting Adam: The Sign, Magnitude and Variance
of Stochastic Gradients”. In: International Conference on Machine Learning (ICML). Vol. 80,
pp. 413–422.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov (2022). “Better plain ViT baselines for
ImageNet-1k”. In: CoRR abs/2205.01580.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou (2023). “Birth
of a Transformer: A Memory Viewpoint”. In: Neural Information Processing Systems (NeurIPS).

Tom B. Brown et al. (2020). “Language Models are Few-Shot Learners”. In: Neural Information
Processing Systems (NeurIPS).

Vivien Cabannes, Berfin Simsek, and Alberto Bietti (2024). “Learning associative memories with
gradient descent”. In: International Conference on Machine Learning (ICML).

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang (2022). “Ro-
bustness to Unbounded Smoothness of Generalized SignSGD”. In: Neural Information Processing
Systems (NeurIPS).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009). “ImageNet: A large-
scale hierarchical image database”. In: Conference on Computer Vision and Pattern Recognition
(CVPR).

John C. Duchi, Elad Hazan, and Yoram Singer (2011). “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. In: Journal of Machine Learning Research (JMLR) 12,
pp. 2121–2159.

Vitaly Feldman (2020). “Does learning require memorization? a short tale about a long tail”. In:
Symposium on Theory of Computing (STOC), pp. 954–959.

Emanuele Francazi, Marco Baity-Jesi, and Aurélien Lucchi (2023). “A Theoretical Analysis of the
Learning Dynamics under Class Imbalance”. In: International Conference on Machine Learning
(ICML). Vol. 202, pp. 10285–10322.

Philip Gage (1994). “A new algorithm for data compression”. In: C Users Journal 12.2, pp. 23–38.

Nikhil Ghosh, Song Mei, and Bin Yu (2022). “The Three Stages of Learning Dynamics in High-
dimensional Kernel Methods”. In: International Conference on Learning Representations (ICLR).

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M. Cohen (2020). Stochastic Gra-
dient Methods with Layer-wise Adaptive Moments for Training of Deep Networks. Preprint.
arXiv/1905.11286.

Thamme Gowda and Jonathan May (2020). “Finding the Optimal Vocabulary Size for Neural Machine
Translation”. In: Findings of the Association for Computational Linguistics (EMNLP), pp. 3955–
3964.

11

https://alliancecan.ca

Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L. Smith,
and Yee Whye Teh (2023). “Deep Transformers without Shortcuts: Modifying Self-attention for
Faithful Signal Propagation”. In: International Conference on Learning Representations (ICLR).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep Residual Learning for Image
Recognition”. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

Abdolhossein Hoorfar and Mehdi Hassani (2008). “Inequalities on the Lambert function and hyper-
power function”. In: Journal of Inequalities in Pure and Applied Mathematics 9.2.

Sergey Ioffe and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: International Conference on Machine Learning
(ICML). Vol. 37, pp. 448–456.

Kaiqi Jiang, Dhruv Malik, and Yuanzhi Li (2022). “How Does Adaptive Optimization Impact Local
Neural Network Geometry?” In: arXiv preprint arXiv:2211.02254.

Diederik P. Kingma and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations (ICLR).

Taku Kudo (2018). “Subword Regularization: Improving Neural Network Translation Models with
Multiple Subword Candidates”. In: Annual Meeting of the Association for Computational Linguis-
tics (ACL), pp. 66–75.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt (2023). “Noise
is not the main factor behind the gap between SGD and Adam on transformers, but sign descent
might be”. In: International Conference on Learning Representations (ICLR).

Frederik Kunstner, Philipp Hennig, and Lukas Balles (2019). “Limitations of the empirical Fisher
approximation for natural gradient descent”. In: Neural Information Processing Systems (NeurIPS),
pp. 4158–4169.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner (1998). “Gradient-Based Learning
Applied to Document Recognition”. In: Proceedings of the IEEE. Vol. 86. 11, pp. 2278–2324.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han (2020). “Understanding the
Difficulty of Training Transformers”. In: Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 5747–5763.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz (1993). “Building a Large
Annotated Corpus of English: The Penn Treebank”. In: Computational Linguistics 19.2, pp. 313–
330.

James Martens and Roger B. Grosse (2015). “Optimizing Neural Networks with Kronecker-factored
Approximate Curvature”. In: International Conference on Machine Learning (ICML). Vol. 37,
pp. 2408–2417.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov (2022). “Locating and editing factual
associations in GPT”. In: Neural Information Processing Systems (NeurIPS).

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher (2017). “Pointer Sentinel
Mixture Models”. In: International Conference on Learning Representations (ICLR).

Eric J. Michaud, Ziming Liu, Uzay Girit, and Max Tegmark (2023). “The quantization model of
neural scaling”. In: Neural Information Processing Systems (NeurIPS).

Mor Shpigel Nacson, Jason D. Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan
Srebro, and Daniel Soudry (2019). “Convergence of Gradient Descent on Separable Data”. In:
International Conference on Artificial Intelligence and Statistics (AISTATS). Vol. 89, pp. 3420–
3428.

Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi (2021). “The deep bootstrap framework:
Good online learners are good offline generalizers”. In: International Conference on Learning
Representations (ICLR).

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurélien
Lucchi (2022). “Signal Propagation in Transformers: Theoretical Perspectives and the Role of
Rank Collapse”. In: Neural Information Processing Systems (NeurIPS).

12

Antonio Orvieto, Jonas Kohler, Dario Pavllo, Thomas Hofmann, and Aurélien Lucchi (2022). “Van-
ishing Curvature in Randomly Initialized Deep ReLU Networks”. In: International Conference on
Artificial Intelligence and Statistics (AISTATS). Vol. 151, pp. 7942–7975.

Yan Pan and Yuanzhi Li (2023). Toward Understanding Why Adam Converges Faster Than SGD for
Transformers. NeurIPS 2022 Workshop on Optimization for Machine Learning. arXiv/2306.00204.

Vardan Papyan, XY Han, and David L Donoho (2020). “Prevalence of neural collapse during the
terminal phase of deep learning training”. In: Proceedings of the National Academy of Sciences
(PNAS) 117.40, pp. 24652–24663.

Adam Paszke et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Neural Information Processing Systems (NeurIPS), pp. 8024–8035.

Steven T. Piantadosi (2014). “Zipf’s word frequency law in natural language: A critical review and
future directions”. In: Psychonomic bulletin & review 21, pp. 1112–1130.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever (2019).
Language Models are Unsupervised Multitask Learners. Tech. Report.

Elan Rosenfeld and Andrej Risteski (2023). “Outliers with Opposing Signals Have an Outsized Effect
on Neural Network Optimization”. In: arXiv preprint arXiv/2311.04163.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang (2020). “An investigation of why
overparameterization exacerbates spurious correlations”. In: International Conference on Machine
Learning (ICML).

Robin M. Schmidt, Frank Schneider, and Philipp Hennig (2021). “Descending through a Crowded
Valley - Benchmarking Deep Learning Optimizers”. In: International Conference on Machine
Learning (ICML). Vol. 139, pp. 9367–9376.

Rico Sennrich, Barry Haddow, and Alexandra Birch (2016). “Neural Machine Translation of Rare
Words with Subword Units”. In: Annual Meeting of the Association for Computational Linguistics
(ACL).

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov
(2014). “Dropout: a simple way to prevent neural networks from overfitting”. In: Journal of
Machine Learning Research (JMLR) 15.1, pp. 1929–1958.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and
Lucas Beyer (2022). “How to train your ViT? Data, Augmentation, and Regularization in Vision
Transformers”. In: Transactions of Machine Learning Research (TMLR) 2022.

Christos Thrampoulidis, Ganesh Ramachandra Kini, Vala Vakilian, and Tina Behnia (2022). “Imbal-
ance Trouble: Revisiting Neural-Collapse Geometry”. In: Neural Information Processing Systems
(NeurIPS).

Tijmen Tieleman and Geoffrey Hinton (2012). RMSPROP: Divide the gradient by a running average
of its recent magnitude. Lecture notes
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou (2021). “Training data-efficient image transformers & distillation through attention”. In:
International Conference on Machine Learning (ICML). Vol. 139, pp. 10347–10357.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin (2017). “Attention is All you Need”. In: Neural Information
Processing Systems (NeurIPS), pp. 5998–6008.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt (2023).
“Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 Small”. In:
International Conference on Learning Representations (ICLR).

Jake Ryland Williams, Paul R. Lessard, Suma Desu, Eric M. Clark, James P. Bagrow, Christopher M.
Danforth, and Peter Sheridan Dodds (2015). “Zipf’s law holds for phrases, not words”. In: Scientific
reports 5.1, p. 12209.

13

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Han-Jia Ye, De-Chuan Zhan, and Wei-Lun Chao (2021). “Procrustean Training for Imbalanced Deep
Learning”. In: International Conference on Computer Vision (ICCV), pp. 92–102.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie (2020a). “Why Gradient Clipping
Accelerates Training: A Theoretical Justification for Adaptivity”. In: International Conference on
Learning Representations (ICLR).

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J. Reddi, Sanjiv
Kumar, and Suvrit Sra (2020b). “Why are Adaptive Methods Good for Attention Models?” In:
Neural Information Processing Systems (NeurIPS), pp. 15383–15393.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo (2024a). Why
Transformers Need Adam: A Hessian Perspective.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo,
and Ruoyu Sun (2024b). Adam-mini: Use Fewer Learning Rates To Gain More. Preprint.
arXiv/2406.16793.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham M. Kakade (2024).
Deconstructing What Makes a Good Optimizer for Language Models.

Shuai Zheng and James T. Kwok (2019). Blockwise Adaptivity: Faster Training and Better General-
ization in Deep Learning. Preprint. arXiv/1905.09899.

Vilém Zouhar, Clara Meister, Juan Luis Gastaldi, Li Du, Mrinmaya Sachan, and Ryan Cotterell
(2023). “Tokenization and the Noiseless Channel”. In: Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 5184–5207.

14

Supplementary Material

Part I

Appendix

Table of Contents
A Experimental details 15

B Language problems 18

C Vision problems 20

D Linear models 22

E Alternative optimizers 25

F Dynamics of the gradient and Hessian 27

G Correlation between the gradient and Hessian across blocks 31

H Continuous time GD and sign descent on a simple imbalanced problem 33

A Experimental details
This section documents the datasets, models, software, and experimental setup. The code is available
at https://github.com/fkunstner/class-imbalance-sgd-adam.

A.1 Datasets
• WikiText-103 (Merity et al., 2017), using sequences of 1 024 tokens and the BPE tokenizer

(Sennrich et al., 2016), with a vocabulary of size 50 608.

• WikiText-2 (Merity et al., 2017) is used in Appendix B.1 to illustrate that other combinations of
datasets and tokenizers lead to heavy-tailed distributions.

• PTB (Marcus et al., 1993), using sequences of 35 tokens built from a word-based tokenizer
(basic english provided by torchtext), for a vocabulary of size 9 920. For deterministic
runs, we use the validation set as a reduced training set, labeled TinyPTB.

• MNIST (LeCun et al., 1998).

• ImageNet (Deng et al., 2009).

A.2 Custom datasets

• The Random Heavy-Tailed Labels dataset is a synthetic dataset exhibiting heavy-tailed class
imbalance. The number of samples per class and the number of classes are picked to approximate
a power-law distribution. We create m “groups” of classes, where each class within a group has
the same relative frequency;

1 class with 2m samples,︸ ︷︷ ︸
group 1

2 classes with 2m−1 samples,︸ ︷︷ ︸
group 2

. . . , 2m−1 classes with 2 samples.︸ ︷︷ ︸
group m

The inputs are drawn from a uniform distribution on [0, 1], independently of the class label.
The inputs are in d = (m + 1) 2m dimensions, the number of samples is n = m 2m and the
number of classes is c = 2m+1 − 1. We use two variants of the datasets; a large one in Figure 4,
Appendix E (m = 11, n = 22 528, d = 24 576, c = 4095) and a small one in Appendix D
(m = 8, n = 2048, d = 2304, c = 511).

• The Barcoded MNIST dataset is a modified variant of MNIST. We start with 50k examples
from the original MNIST dataset across 10 classes, and create 51 150 (5× (10× 210 − 1)) new

15

https://github.com/fkunstner/class-imbalance-sgd-adam

images. The new examples are copies of existing image with an added “barcode”, a 10-bit number
encoded in a corner of the image, as in the examples below. The class label is a combination of
the original class and this barcode.

The Barcoded-only dataset contains 10 × 210 classes with 5 samples each. To obtain an im-
balanced dataset, we combine the barcoded images with the original samples from the MNIST
dataset to get 101 200 examples spread across 10 250 (10×210+10) classes classes; 10 240 with
5 examples per class and 10 classes with ≈ 5k examples per class, labeled MNIST+Barcoded

• The Heavy Tailed ImageNet dataset is a subset of ImageNet (Deng et al., 2009), subsampled to
exhibit heavy-tailed class imbalance. We sort the original 1000 classes by frequency and sample
⌈1300/k⌉ images from the kth class, leading to n = 10 217 samples.

• The Small ImageNet dataset is a uniform subset of ImageNet to contrast the with the heavy
tailed variant. We sample 10 images per class to get n = 10 000 samples.

A.3 Models
• The 2-layer transformer used in Appendix B.3 is a transformer Vaswani et al. (2017), based on

the PyTorch implementation of TransformerEncoderLayer (Paszke et al., 2019).

Embedding → 2× [Attention → Linear → ReLU → Linear] → Classifier.

The model includes LayerNorm, dropout, and skip connections (He et al., 2016; Ba et al., 2016;
Srivastava et al., 2014). The embedding dimension and width of the linear layers is 1000 and the
attention modules use 4 heads.

• The simplified transformer used in Figure 5 and Appendix B.3 does not use encoder blocks,
and only uses attention:

Embedding → Attention → Classifier.

We remove LayerNorm, dropout, and the block [Linear → ReLU → Linear] containing the
non-linearity. In Figure 5, we freeze the embedding and attention layers at initialization, and
only the last classification layer is trained. The model is then a linear model on a fixed feature
transformation.

• The GPT2-Small model (Radford et al., 2019) is used in Figure 1. The blocks includes Layer-
Norm, residual connections, and dropout on the embedding and dense layers. We use sinusoid
positional encodings as in the transformer architecture (Vaswani et al., 2017). The embedding
dimension is 768, the width of the intermediate layers is 3072, and we use 12 encoder blocks with
12 self attention heads.

• The convolutional network used in Figure 2 and Appendix C is a 2-layer convolution

Conv → Relu → MaxPool → Conv → Relu → MaxPool → Linear

• The linear model used in Figures 4 and 7 and Appendix E uses a bias vector.

• The ResNet18 model (He et al., 2016) is used in Figure 3. Additionally, a variant replacing the
BatchNorm layers with LayerNorm is used in Appendix C.

• The SimpleViT model (Beyer et al., 2022) used in Appendix C follows the architecture of a ViT-
S/16 (Touvron et al., 2021), based on the vit-pytorch implementation (https://github.com/
lucidrains/vit-pytorch v1.6.5).

A.4 Training procedures
Our primary focus is on the performance of the optimizers on the training error, using the simplest
training procedure possible. We use a constant step-size throughout training, set by grid search. We
start with a sparse grid of powers of 10 [10−6, 10−2, ..., 101] and increase the density to half-powers
around the best step-size. The step-size is selected to minimize the maximum over 3 seeds of the
training loss at the end of training. For some settings, this selection still produces runs that are
unstable; the training loss is the smallest at the end but oscillates a lot during training, reaching

16

https://github.com/lucidrains/vit-pytorch
https://github.com/lucidrains/vit-pytorch

loss values that are orders of magnitude worse than at initialization. For those runs, we use the next
smaller step-size, which has similar performance at the end but is more stable. We use the following
batch sizes with gradient accumulation (computing the gradient through multiple passes)

- The large transformer experiment in Figure 1 uses mini-batches of 512 sequences of 1024 tokens.
- The stochastic experiments with a smaller transformer in Appendix B.3 uses mini-batches of 512

sequences of 35 tokens.
- Both ResNet18 variants and the Simple Vision Transformer were trained using mini-batches of
1024. The training images were normalized and randomly cropped to 224 × 224 pixels as is
standard for ImageNet training.

- Other experiments use the entire dataset to compute updates

Our experiments ran on a cluster using a mix of A100, P100, V100, and H100 GPUs. The large scale
experiment in Figure 1 took 3 days on a H100, while all other experiments ran in 2–8 hours. The total
amount of compute used for this project is ≈3 GPU-years, including preliminary experiments.

A.5 Optimization algorithms
Given momentum buffers mt initialized at m0 = 0 and a (possibly) stochastic gradient g̃t, we
implement the update of GD, normalized GD and sign descent with heavy-ball momentum as

mt = βmt−1 + dt,

xt+1 = xt − αmt,
with dt =

g̃t for gradient descent,

g̃t/∥g̃t∥2 for normalized GD,
sign(g̃t) for sign descent.

For GD and Adam, we use the standard implementation in PyTorch (Paszke et al., 2019). For all
algorithms, we use either momentum with β = 0.9 (β1 = 0.9 for Adam) or no momentum (β = 0,
β1 = 0), indicated by solid lines and the legend (+m) for runs with momentum, and dashed lines and
the legend (-m) for runs without momentum.

A.6 Summary of settings used

Table 1: Summary of models, datasets and batch-size used
Model Dataset Batch size Used in
GPT2-Small WT103 512 Figure 1 and Figure 11
2-layer transformer PTB 512 Figures 12, 25 and 31
1-layer transformer TinyPTB Full Figures 13 and 23
1-layer transformer TinyPTB Full Figure 5 (last layer only)
CNN Barcoded MNIST Full Figure 18
CNN MNIST Full Figures 2 and 18
CNN MNIST+Barcoded Full Figures 2, 18, 24, 25 and 29
Linear Random HT labels, m=11 Full Figures 4, 7, 22, 25, 26, 32 and 33
Linear Random HT labels, m=7 Full Figures 19 and 20
Simple ViT ImageNet 1024 Figure 16
ResNet18 Small and HT ImageNet 1024 Figures 3, 25 and 30
ResNet18+LN Small and HT ImageNet 1024 Figure 15
Simple ViT Small and HT ImageNet 1024 Figure 17

17

B Language problems

This section provides additional ablations on language models, showing that the impact of class
imbalance holds across models of different sizes and using deterministic updates.

B.1 shows that the heavy-tailed distribution in text data occurs across datasets and tokenizers.

B.2 shows that the imbalanced training speed across frequencies translates to the validation loss.

B.3 shows that the imbalance training speed across frequencies and the gap between SGD and Adam
can be reproduced with smaller transformers. This effect also appears when training only the
last layer, and in the deterministic setting, comparing GD and Adam.

B.1 Class distribution for common datasets and tokenizers
Figure 10 provides additional examples of the heavy-tailed distribution of tokens using the basic
english tokenizer in torchtext (Paszke et al., 2019), Byte-Pair Encoding (BPE, Sennrich et al.,
2016; Gage, 1994) and Unigram (Kudo, 2018) on the PTB and WikiText-2 datasets. The relationship
between the relative frequency rank k and and the relative frequency πk is roughly πk ∝ 1/k.

100

103

PT
B

#s
am

pl
es

Word Unigram BPE

100 101 102 103 104

Token rank

100

103

W
ik

iT
ex

t2
#s

am
pl

es

100 101 102 103 104

Token rank
100 101 102 103 104

Token rank

Figure 10: Different tokenizers and datasets lead to heavy-tailed token distributions. Comparison
of word and subword tokenization (BPE, Unigram) on the PTB and WikiText2 datasets.

B.2 Effect of class imbalance on validation loss
In Figure 11, we show the validation error on the same problem as Figure 1, training GPT2-Small
on WikiText-103. The validation loss exhibits the same separation across class frequencies, and the
faster progress of Adam on low-frequency classes is also visible. While this trend does not hold for
all the settings we investigate, as some settings use smaller datasets and deterministic training to
isolate the source of the training difficulties, the benefit of Adam on low-frequency classes does not
immediately lead to overfitting.

0 5k 10k 15k
Step

0

5

10

Va
lid

at
io

n
lo

ss

Overall lossa)

0 5k 10k 15k
Step

0

5

10

SGDb)

0 5k 10k 15k
Step

0

5

10

Adamc)

Figure 11: The class-separation behavior of Figure 1 holds on the validation loss. Same experiment
as Figure 1, training GPT2-Small on WikiText-103, but showing the validation loss. (a) Distribution
of the classes sorted by class frequency, split into groups corresponding to ≈10% of the data. (b)
Overall validation loss. (c, d) Validation loss for each group using SGD and Adam. SGD makes little
to no progress on low-frequency classes while Adam makes progress on all groups. (b) is the average
of (c, d) for the respective optimizer.

18

B.3 Smaller transformers and deterministic training
In Section 2.3, we argued that the qualitatively different behavior on low-frequency classes between
SGD and Adam in Figure 1 is not due to stochasticity. In this section, we provide additional results
showing that this behavior appears across multiple batch sizes on language transformers of different
sizes and that it can be reproduced in the deterministic setting.

In Figure 12, we show that a similar qualitative behavior appears when training a smaller model
(2-layer transformer) on a smaller dataset (PTB). In Figure 13, we repeat the experiment with a 1-layer
transformer, trained in full batch on TinyPTB (the validation set of PTB). The separation between
GD and Adam on low-frequency classes in the deterministic settings is also visible in Figures 2, 4, 5
and 7 in the main paper. These results indicate that stochasticity it is not necessary to reproduce the
behavior observed in Figure 1. Finally, we repeat the experiment but freeze all the layers except the
last, and still observe this behavior in Figure 14.

100 102 104

Class index (sorted)

100

102

104

sa

m
pl

es

samples/class

0 20 40
Epoch

0

5

10

Tr
ai

n
Lo

ss
Overall loss

0 20 40
Epoch

0

5

10
SGD (+m)

0 20 40
Epoch

0

5

10
Adam (+m)

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

Figure 12: Similar behavior as Figure 1 on a smaller problem. Training a 2-layer transformer on
PTB with Adam and SGD using larger batch-sizes. As in Figure 1, SGD makes little to no progress
on low-frequency classes while Adam makes progress on all subsets. Subplots: (1) Distribution of
the classes and subsets of the data sorted by class frequency, each corresponding to ≈10% of the
samples. (2) Overall training loss. (3, 4) Training loss for each subset for SGD and Adam.

100 102 104

Class index (sorted)

100

102

104

sa

m
pl

es

samples/class

0 100 200
Epoch

0

5

10

Tr
ai

n
Lo

ss

Overall loss

0 100 200
Epoch

0

5

10
GD (+m)

0 100 200
Epoch

0

5

10
Adam (+m)

GD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

GD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

Figure 13: Similar behavior as Figure 1 on a one-layer transformer with deterministic updates.
Trained on TinyPTB. Subplots: (1) Distribution of the classes and subsets of the data sorted by class
frequency. (2) Overall training loss. (3, 4) Training loss for each subset for GD and Adam.

100 102 104

Class index (sorted)

100

102

104

sa

m
pl

es

samples/class

0 50 100 150
Epoch

0

5

10

Tr
ai

n
lo

ss

Overall lossa)

0 50 100 150
Epoch

0

5

10

GDb)

0 50 100 150
Epoch

0

5

10

Adamc)

GD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

GD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

Figure 14: Similar behavior as Figure 1 when training only the last layer. Training the last
layer of a 1-layer transformer on PTB with Adam and GD with deterministic updates. Subplots: (1)
Distribution of the classes and subsets of the data sorted by class frequency. (2) Overall training loss.
(3, 4) Training loss for each subset for GD and Adam.

19

C Vision problems
This section gives additional results on vision tasks to complement Section 2.1.

- Figure 15 shows a similar behavior on a ResNet18 with LayerNorm instead of BatchNorm.
- Figure 16 shows a similar behavior with a vision transformer.
- Figure 18 confirms that GD can solve the Barcoded MNIST variant without imbalance.

C.1 ResNet18 with LayerNorm
In Figure 15, we use the same settings Figure 3. training a ResNet18 on a uniform and unbalanced
subset of ImageNet, but replace the normalization layers with LayerNorm (Ba et al., 2016) instead of
BatchNorm (Ioffe and Szegedy, 2015). We observe a similar pattern as in Figure 3. Although Adam
slightly outperforms SGD on the uniform dataset, the performance gap grows on the imbalanced one.

0 2000 4000
Step

0

5

10

Tr
ai

n
lo

ss

Small
 ImageNet

a)

0 2000 4000
Step

0

5

10
 Imbalanced

 ImageNet
b)

0 2000 4000
Step

0

5

10
SGDc)

0 2000 4000
Step

0

5

10
Adamd)

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

Figure 15: Adam outperforms SGD on ResNet with LayerNorm under heavy-tailed imbalance.
(a) Performance on a uniform subset of ImageNet (b) and on an imbalanced subset with class
frequencies πk ∝ 1/k. (c, d) Performance of GD and Adam across frequencies.

C.2 Vision Transformers
In Figure 16, we train a vision transformer on the ImageNet dataset, without subsampling, to
confirm that the training behavior is similar. While vision transformers might require more data or
regularization than their ResNet counterparts to achieve comparable generalization performance, the
optimization problem does not appear to be more difficult for SGD than for Adam.

0 50000 100000
Steps

0

5

Tr
ai

n
Lo

ss

ImageNet1K Figure 16: Adam and SGD perform similarly training a
Vision Transformer with balanced Classes. Training loss
on the full ImageNet dataset (without subsampling). There is
little performance in training performance.

In Figure 17, we train the same vision transformer on the uniform and imbalanced subsets of ImageNet.
As in prior experiments with vision data, the performance of Adam appears unaffected by the change
in class frequencies while the performance of SGD degrades.

0 500 1000 1500
Step

0

5

Tr
ai

n
lo

ss

Small
 ImageNet

a)

0 500 1000 1500
Step

0

5

 Imbalanced
 ImageNet

b)

0 500 1000 1500
Step

0

5

SGDc)

0 500 1000 1500
Step

0

5

Adamd)

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

SGD (with momentum)
Adam (with momentum)

10% samples, least freq. classes
10% samples, most freq. classes

Figure 17: Adam outperforms SGD on vision transformer under heavy-tailed imbalance. (a) Per-
formance on a uniform subset of ImageNet (b) and on an imbalanced subset with class frequencies
πk ∝ 1/k. (c, d) Performance of GD and Adam across frequencies.

20

C.3 Sanity check on Barcoded MNIST
Figure 2 in Section 2.1 showed that the performance gap between GD and Adam on the imbalanced
variant of MNIST with barcoded images is larger than on plain MNIST. In this section, we verify that
the training difficulties encountered on the CNN on the imbalanced MNIST dataset of Figure 2 are
indeed due to class imbalance. As we create new images and new classes by adding a barcode in the
corner of existing images, it could be that the dataset becomes harder to fit.

In Figure 18, we run Adam and GD to train the same network on the MNIST dataset only, the
barcoded-only subset of the imbalanced MNIST and the combination of the two, leading to an
imbalanced dataset. While Adam is faster GD on the barcoded-only dataset, both algorithms reach
negligible error within 200 steps. In contrast, on the combined imbalanced dataset MNIST+Barcoded,
GD fails to make progress on the low-frequency classes and stalls.

0 100 200 300
Epochs

0

5

10

Tr
ai

n
Lo

ss

MNIST

0 100 200 300
Epochs

0

5

10

Tr
ai

n
Lo

ss

BarcodedMNIST

0 100 200 300
Epochs

0

5

10

Tr
ai

n
Lo

ss

MNIST + Barcoded

GD (with momentum)
Adam (with momentum)

50% samples, least freq. classes
50% samples, most freq. classes

GD (with momentum)
Adam (with momentum)

50% samples, least freq. classes
50% samples, most freq. classes

Figure 18: GD optimizes on balanced barcoded data. Training a CNN on only the barcoded
portion of the data, which has balanced classes. While Adam is slightly faster, both optimizers reach
negligible error within 200 steps. As the level of imbalance is increased, GD performs increasingly
worse than Adam.

21

D Linear models
Section 2.2 showed that GD is already slow on linear models. We give additional details here.

D.1 discusses the impact of the distribution of the inputs, as it is possible to construct problems
exhibiting class imbalance without negatively impacting training.

D.2 shows that while (S)GD appears stuck in some experiments, it is not due to being stuck in a
local minima. It eventually converges, although very slowly, if run long enough.

D.3 shows that while some of our datasets are separable, leading to weights going to ∞, class imbal-
ance also impacts optimization when the weights remain small, e.g. when using l2 regularization.

D.1 Impact of input distribution
Imbalance alone is not sufficient to induce slow performance of GD on low-frequency classes. It is
possible to generate a dataset with heavy-tailed class imbalance where GD fits all classes fast, by
making all inputs xi (close to) orthogonal, ⟨xi,xj⟩ ≈ 0 for i ̸= j. If all samples are orthogonal,
⟨xi,xj⟩ = 0 ∀i ̸= j, a decomposition similar to that used in the proof of Theorem 3 shows that each
sample is learned independently of the other, and class frequency has no impact. However, completely
orthogonal data is rare. In the last layer of neural networks, we expect samples from the same class to
be mapped to similar representation (Papyan et al., 2020), a phenomenon also observed under class
imbalance (Thrampoulidis et al., 2022). Using a bias term also increases alignment between samples,
as it is equivalent to adding a dimension where each sample has the same value.

In the setting of Theorem 3, class imbalance has an impact because samples from the same class are
collinear, even though samples from separate classes are orthogonal. A more realistic mixture model
where samples from the same class are aligned (|⟨xi,xj⟩| > δ if yi = yj) but independent otherwise
(|⟨xi,xj⟩| ≤ ϵ if yi ̸= yj), as the setting of Feldman (2020) would also exhibit class separation.
The class imbalance appears in Figure 4 because we draw the inputs from a high-dimensional
uniform distribution on [0, 1]d, ensuring that for any two samples xi,xj , ⟨xi,xj⟩ > 0. If the data was
sampled from N (0, 1)d in sufficiently high dimension, the samples would be independent enough to
avoid the slowdown due to class imbalance. We illustrate this in Figure 19, where we use a smaller
synthetic data with inputs drawn from N (1, 1) and N (0, 1). The zero-mean data is be approximately
orthogonal as d > n and does not exhibit a slow progress on low-frequency classes.

(a) Aligned data – sampled from N (1, 1)d

0 10 20
Epoch

0.0

2.5

5.0

Tr
ai

n
Lo

ss

Overall loss

0 10 20
Epoch

0.0

2.5

5.0

GD (m)

0 10 20
Epoch

0.0

2.5

5.0

Adam (m)

(b) Independent data – sampled from N (0, 1)d

0 10 20
Epoch

0.0

2.5

5.0

Tr
ai

n
Lo

ss

Overall loss

0 10 20
Epoch

0.0

2.5

5.0

GD (m)

0 10 20
Epoch

0.0

2.5

5.0

Adam (m)

Figure 19: The distribution of the inputs can have a large impact on optimization. Linear model
on the Random Heavy-Tailed Labels dataset, with Inputs sampled from N (1, 1) (a) and N (0, 1) (b).

22

The behavior of GD on aligned data appears to be a better representation of the behavior of GD on
language transformers, as we observe a performance separation per class frequency on GD, even when
tuning only the last layer of a language transformer in Figure 5. Although the embedding weights
are initialized to be zero-mean Gaussian noise, the representation of the tokens in a transformer are
aligned, and this alignment increases with depth (Noci et al., 2022, e.g.).

D.2 An early iteration problem
As GD is slower than Adam at fitting the low-frequency classes, it might seem that GD does not fit
the low-frequency classes at all. But when run for longer, GD converges and fits all classes. We show
this behavior on the linear model and the CNN on imbalanced MNIST in Figure 20. This highlight
that the difference between the algorithms is primarily a difference at the start of training. However,
this “start” can be quite long. In the transformer of Figure 1, the average loss on 10% of the data
corresponding to the least frequent classes is still higher than at initialization after 15k steps.

(a) Linear model on synthetic data

0 25 50 75 100
Epoch

0

2

4

6

Tr
ai

n
Lo

ss

Short (100 steps)

0 250 500 750 1000
Epoch

0

2

4

6

Tr
ai

n
Lo

ss
Medium (1k steps)

0 2500 5000 7500 10000
Epoch

0

2

4

6

Tr
ai

n
Lo

ss

Long (10k steps)

(b) CNN on MNIST

0 100 200 300
Epochs

0

5

10

15

Tr
ai

n
Lo

ss

CNN on MNIST+Barcoded
 300 steps

0 5000 10000
Epochs

0

5

10

15

CNN on MNIST+Barcoded
 10k steps

Figure 20: Training with GD eventually drives the loss down for all classes. Using the same
step-size for different horizons (100, 1k, 10k). GD eventually drives the loss down for all classes, but
the loss for the least-frequent classes only decreases below its value at initialization after 1k steps. (a)
Linear model on synthetic data, (b) CNN on MNIST.

23

D.3 Impact of regularization
The data used with the linear model of Figure 4 is separable, meaning the predicted probabilities
for the correct class will converge to 1 while the magnitude of weights go to ∞. This might lead to
concerns that the observed behavior is tied to the weights growing without bounds. In Figure 21, we
show that the gap between GD and Adam still appears with regularization limiting the magnitude
of the weights. However, as regularization is increased, the L2 penalty makes it difficult to fit low-
frequency classes, the problem looks more like λ 1

2∥·∥
2, and the gap between the methods disappears.

Figure 21: The separation between GD and Adam still appears when using L2 regularization.
Using varying levels of regularization λ on the linear model of Figure 4. The plots show the negative
log-likelihood and do not include the L2 penalty.

24

E Alternative optimizers

Figure 5 in Section 2.3 we compared GD and Adam to normalized GD and sign descent on the
last layer of a one-module transformer on TinyPTB, showing that Adam and sign descent perform
similarly. We repeat this experiment on other settings here to confirm that sign descent leads to similar
benefits as Adam on low-frequency classes, and that changing the direction, as in sign descent, has
more impact than just changing the magnitude, as in normalized GD.

We also observe this behavior on the following problems:

- Figure 22: A linear model on Random Heavy-Tailed Labels, as in Figure 4.
- Figure 23: A one-module transformer on TinyPTB, as in Figure 13, training all layers.
- Figure 24: A CNN on MNIST+Barcoded, as in Figure 2.

0 100 200
0

10

Tr
ai

n
Lo

ss

Overall loss

0 100 200
0

10
GD (m)

0 100 200
0

10
Adam (m)

0 100 200
0

10
NormGD (m)

0 100 200
0

10
Sign (m)

0 100 200
Epoch

0

10

Tr
ai

n
Lo

ss

0 100 200
Epoch

0

10
GD (+m)

0 100 200
Epoch

0

10
Adam (+m)

0 100 200
Epoch

0

10
NormGD (+m)

0 100 200
Epoch

0

10
Sign (+m)

Figure 22: All optimizers on the linear model of Figure 4.

0 100 200
0

10

Tr
ai

n
Lo

ss

Overall loss

0 100 200
0

10
GD (m)

0 100 200
0

10
Adam (m)

0 100 200
0

10
NormGD (m)

0 100 200
0

10
Sign (m)

0 100 200
Epoch

0

10

Tr
ai

n
Lo

ss

0 100 200
Epoch

0

10
GD (+m)

0 100 200
Epoch

0

10
Adam (+m)

0 100 200
Epoch

0

10
NormGD (+m)

0 100 200
Epoch

0

10
Sign (+m)

Figure 23: All optimizers on the transformer of Figure 13.

0 200 400
0

10

Tr
ai

n
Lo

ss

Overall loss

0 200 400
0

10
GD (m)

0 200 400
0

10
Adam (m)

0 200 400
0

10
Sign (m)

0 200 400
0

10
NormGD (m)

0 200 400
Epoch

0

10

Tr
ai

n
Lo

ss

0 200 400
Epoch

0

10
GD (+m)

0 200 400
Epoch

0

10
Adam (+m)

0 200 400
Epoch

0

10
Sign (+m)

0 200 400
Epoch

0

10
NormGD (+m)

GD (m)
GD (+m)

Adam (m)
Adam (+m)

NormGD (m)
NormGD (+m)

Sign (m)
Sign (+m)

GD (m)
GD (+m)

Adam (m)
Adam (+m)

NormGD (m)
NormGD (+m)

Sign (m)
Sign (+m)

Figure 24: All optimizers on the CNN of Figure 2. First column: Overall training loss. Remaining:
Loss by frequency groups for each optimizer, with and without momentum (+m, bottom/−m, top).

25

E.1 Up-weighting low-frequency classes can improve the performance of SGD
To support Section 2.3, we show show that upweighting low-frequency classes helps reduce the
performance gap between SGD and Adam on problems with heavy-tailed class imbalance, providing
evidence that the optimization difficulties are associated with class imbalance.

While reweighting the loss of samples from class k by 1/πk to address the class imbalance seems
intuitive, optimizing the reweighted loss is no longer guaranteed to lead to progress on the original
loss, especially if the weights are large. Indeed, we find that on some problems this reweighting does
not improve performance (although SGD and Adam perform similarly on the reweighted loss, not
shown). However, the less extreme reweighting of 1/√πk appears to consistently outperform SGD.

In Figure 25, we run SGD on the reweighted loss with the two weighting schemes, 1/πk and 1/
√
πk

and plot its performance on the original, unweighted loss. We compare the performance of the two
reweighting schemes with SGD and Adam, all with momentum, on the following 4 problems.

- The small transformer on PTB in Figure 12 (stochastic training)
- The Linear model on synthetic data in Figure 4 (deterministic training)
- The CNN on MNIST+Barcoded dataset in Figure 2 (deterministic training)
- The ResNet18 on the Heavy-Tailed ImageNet dataset in Figure 3 (stochastic training)

We found that the combination of both Adam and reweighting did not improve over running Adam
on the original loss and do no include it in Figure 25.

0 50 100
Epochs

0

5

10

Tr
ai

n
Lo

ss

PTB
SGD
Adam

0 500 1000
Epochs

0

5

10
Linear

rSGD /

rSGD

0 200
Epochs

0

5

10
HT MNIST

0 500 1000 1500
Steps

0

5

10
HT ImageNet

Figure 25: Reweighting the loss improves the performance of (S)GD on low-frequency classes.
The plots show the unweighted loss, while (S)GD and Adam optimize a reweighted loss. Reweighted
(S)GD (r(S)GD) with weights 1/√πk consistently outperforms plain SGD, although it can lead to
spikes, as on the CNN on the MNIST dataset. Reweighting with weights 1/πk is sometimes better
(Linear, MNIST) but can be worse (PTB, ImageNet) as it optimizes a different objective. We use
deterministic updates for the first 3 problems, labeled Epoch, and stochastic updates for the ResNet18
on heavy-tailed ImageNet.

26

F Dynamics of the gradient and Hessian
This section provides additional details on the dynamics of (S)GD and Adam discussed in Section 3.2.

- Figure 26 shows the dynamics of GD and Adam on the linear model on synthetic data in Figure 4
(deterministic training). This figure complements Figure 7 which shows the dynamics over the
path taken by Adam.

- Figure 27 and additionally shows the average predicted probabilities p for each frequency group,
showing that the deviation from the linear relationship for rare classes coincides with the predicted
probabilities p for those classes going to 1.

- The following figures show the correlation on additional problems, on
- Figure 28 The GPT2-Small model on WikiText-103 in Figure 1 (stochastic training). This figure

complements Figure 8 which shows the dynamics over the path taken by Adam.
- Figure 29 The CNN on the MNIST+Barcoded dataset in Figure 2 (deterministic training)
- Figure 31 The small transformer on PTB in Figure 12 (stochastic training)
- Figure 30 The ResNet18 on the Heavy-Tailed ImageNet dataset in Figure 3 (stochastic training)

- Figure 32 illustrates that this correlation does not hold globally and only emerges throughout
training by showing that a negative correlation can instead be found by looking at the oppositve
path of the path taken by Adam, −Wt (when Wt are the iterates generated by Adam).

F.1 Linear model on synthetic data

(a) Dynamics over the path of GD

Grad.

10 5

10 3

10 1

H
es

si
an

Tr
(

)

Correlation at
 =

Grad.

=

Grad.

=

Grad.

=

(b) Dynamics over the path of Adam

Grad.

10 5

10 3

10 1

H
es

si
an

Tr
(

)

Correlation at
 =

Grad.

=

Grad.

=

Grad.

=

Figure 26: Evolution of the gradient norm and Hessian trace through optimization. Taken over
the path of GD (a) and Adam (b) on the linear problem of Figure 4. The blocks correspond to the rows
w1, ...,wc of the parameter matrix W. The color indicates the class frequency, showing that lower
(higher) frequency classes have smaller (larger) gradient norm and Hessian trace. Figure 26b is a
replication of Figure 7, given here for convenience. The deviation from the correlation is explainable
by the fact that difference classes are learned at difference speed, leading to a different value of p in
Proposition 2, shown in Figure 27. For GD, frequent classes are learned faster than infrequent ones,
while for Adam, p is similar among the most frequent groups of classes while p → 1 for the least
frequent classes.

27

100 101 102

Epoch

10 6

10 4

10 2

100
Pr

ob
ab

ilit
y

(s
pl

it
by

 g
ro

up
)

Adam

100 101 102

Epoch

10 6

10 4

10 2

100 GD

Predicted probability for correct class

Figure 27: Evolution of the predicted probabilities for the correct class. Complement to Figure 26,
taken over the path of GD and Adam on the linear problem of Figure 4. For GD, frequent classes
are learned faster than infrequent ones, Adam has a similar behavior on the most frequent groups
of classes but also increases the predicted probability for the correct class on infrequent groups.
The color indicates the class frequency, showing that lower (higher) frequency classes have smaller
(larger) gradient norm and Hessian trace.

F.2 GPT2-Small on WikiText-103

(a) Dynamics over the path of SGD

(b) Dynamics over the path of Adam

Figure 28: The gradient-Hessian blocks also become correlated in the last layer of large models.
Reproducing Figure 7 on the GPT2-Small/WikiText-103 problem of Figure 1. Evolution of the
gradient norm and Hessian trace for each row wc of the last layer throughout optimization, over the
path taken by SGD (a) and Adam (b). The color indicates the class frequency, showing that lower
(higher) frequency classes have smaller (larger) gradient norm and Hessian trace.

28

F.3 CNN on Barcoded+MNIST

(a) Dynamics over the path of GD

Grad.

10 5

10 3

10 1

H
es

si
an

Tr
(

)
Correlation at

 =

Grad.

=

Grad.

=

Grad.

=

(b) Dynamics over the path of Adam

Grad.

10 5

10 3

10 1

H
es

si
an

Tr
(

)

Correlation at
 =

Grad.

=

Grad.

=

Grad.

=

Figure 29: Evolution of the gradient norm and Hessian trace through optimization. Taken over
the path of GD and Adam on the CNN on imbalanced MNIST in Figure 2. Note that this problem
only has two groups of classes with different frequencies; 10 classes have ≈5k samples while 10k
classes have 5 samples.

F.4 ResNet18 on Heavy-Tailed ImageNet

(a) Dynamics over the path of SGD

Grad.

10 6

10 4

10 2

H
es

si
an

Tr
(

)

Correlation at
 =

Grad.

=

Grad.

=

Grad.

=

(b) Dynamics over the path of Adam

Grad.

10 6

10 4

10 2

H
es

si
an

Tr
(

)

Correlation at
 =

Grad.

=

Grad.

=

Grad.

=

Figure 30: Evolution of the gradient norm and Hessian trace through optimization. Taken over
the path of SGD and Adam on the ResNet18 on Heavy-Tailed ImageNet in Figure 3.

29

F.5 Small Transformer on PTB

(a) Dynamics over the path of SGD

Grad.

10 4

10 2

100

H
es

si
an

Tr
(

)

Correlation at
 =

Grad.

=

Grad.

=

Grad.

=

(b) Dynamics over the path of Adam

Grad.

10 4

10 2

100

H
es

si
an

Tr
(

)

Correlation at
 =

Grad.

=

Grad.

=

Grad.

=

Figure 31: Evolution of the gradient norm and Hessian trace through optimization. Taken over
the path of SGD and Adam on the small Transformer on PTB in Figure 12.

F.6 The correlation depends on the path
Proposition 2 requires that the optimizer make progress and assign samples to their correct classes.
Indeed, the positive correlation observed in the previous figures is not a global property of the loss
function. Not only does it not hold at initialization, where the Hessian is uniform, the correlation can
even be reversed in some areas of the parameter space, as shown in Figure 32.

Figure 32: The correlation only holds while training. Correlation between the gradient and Hessian
blocks through the path {−Wt}, where Wt are the iterates of Adam on the linear model of Figure 4.

30

G Correlation between the gradient and Hessian across blocks
This section gives the proof of Proposition 2 in Section 3.2

Proposition 2. If initialized at W0 = 0, the gradient and Hessian of the loss L w.r.t. wk are

∇wk
L(W0) = πkx̄

k − 1
c x̄, ∇2

wk
L(W0) =

1
c

(
1− 1

c

)
H̄, (1)

During training, if the model correctly assigns samples to class k with probability p (Assumption 1),

∇wk
L = (1− p)πk x̄

k +O
(
1
c

)
,

∇2
wk

L = p(1− p)πk H̄
k +O

(
1
c

)
,

and ∥∇wk
L∥ ∼

(
1

p

∥∥x̄k
∥∥

Tr(H̄k)

)
Tr(∇2

wk
L) as c → ∞, (2)

for classes where the frequency does not vanish too quickly, πk = ω(1/c).

The requirement that the class frequencies do not vanish, πk = ω(1/c), is necessary to make it
possible to discuss class frequencies as c → ∞, unless the class frequencies do not depend on c.
While the frequencies πk and the number of classes c can be independent, for example if πk follows
an exponential decay, πk ∝ 2−k, it does not hold for all distributions. While it may seem that this
result only holds for relatively frequent classes, as it requires πkc → ∞, we can see that nearly
all the data comes from classes where this correlation holds when the classes are distributed as
πk ∝ 1/k. Denote by H(c) =

∑c
k=1 1/k = Θ(log c). After normalization, we have πk = 1/kH(c).

The correlation result holds as long as πkc → ∞, and so it at least holds for the first k ≤ c/log(c)2

classes as πkc ≥ log(c) → ∞. While this only cover a 1/ log(c)2 fraction of the classes, those
classes account for nearly all the data as

⌈ c
log(c)⌉∑
k=1

πk =
H
(⌈
c/ log(c)2

⌉)
H(c)

= Θ

(
log(c)− 2 log log(c)

log(c)

)
→ 1.

Proof of Proposition 2. We first recall the gradient and Hessian for each block w1, ...,wc;

∇wk
ℓ(W,x,y) = (1[y = k]− p(x)k)x, ∇2

wk
ℓ(W,x,y) = p(x)k(1− p(x)k)xx

⊤,

and the definitions of the moments of the data, per class and overall.

x̄k = 1
nk

∑n
i=1:yi=k xi, x̄ = 1

n

∑n
i=1 xi, H̄k = 1

nk

∑n
i=1:yi=k xix

⊤
i , H̄ = 1

n

∑n
i=1 xix

⊤
i .

Our first step is to rewrite the sums for the gradient and Hessian to separate the influence of the
samples of the correct class k and the other samples.

∇wk
L(W) =

1

n

n∑
i=1

(1[yi = k]− p(xi)k)xi,

=
1

n

c∑
j=1

∑
i:yi=j

(1[yi = k]− p(xi)k)xi, (Split by class)

=

c∑
j=1

πj

nj

∑
i:yi=j

(1[yi = k]− p(xi)k)xi, (Use class frequencies πj = nj/n)

= πk
1

nk

n∑
i=1:yi=k

(1− p(xi)k)xi +

c∑
j=1,j ̸=k

πj

nj

∑
i:yi=j

(−p(xi)k)xi.

∇2
wk

L(W) =
1

n

n∑
i=1

p(xi)k(1− p(xi)k)xix
⊤
i ,

=
πk

nk

∑
i:yi=k

p(xi)k(1− p(xi)k)xix
⊤
i +

c∑
j=1,j ̸=k

πj

nj

∑
i:yi=j

p(xi)k(1− p(xi)k)xix
⊤
i .

We can simplify the first terms using the assumption that p(xi)k = p for samples of the correct class,

πk

nk

n∑
i=1:yi=k

(1− p(xi)k)xi = (1− p)πkx̄
k,

πk

nk

∑
i:yi=k

p(xi)k(1− p(xi)k)xix
⊤
i = p(1− p)πkH̄

k.

31

We introduce the following shorthands for the second terms,

dk = c

c∑
j=1,j ̸=k

πj

nj

∑
i:yi=j

(−p(xi)k)xi, Dk = c
∑
j ̸=k

πj

nj

∑
i:yi=j

p(xi)k(1− p(xi)k)xix
⊤
i .

Using those simplifications, we obtain that

∇wk
L(W) = (1− p)πkx̄

k +
1

c
dk, ∇2

wk
L(W) = p(1− p)πkH̄

k +
1

c
Dk.

The terms dk, Dk are averages of terms weighted by cp(xi)k, which by assumption is O(1), and
as such both ∥dk∥ and Tr(Dk) are O(1). The ratio between the two will be dominated by the
contribution of their first term as long as πk dominates 1/c, in the sense that limc→∞

1
πkc

→ 0, as

lim
c→∞

∥∇wk
L∥

Tr(∇2
wk

L)
= lim

c→∞

∥∥(1− p)πkx̄
k + 1

cdk

∥∥
Tr(p(1− p)πkH̄k + 1

cDk)

= lim
c→∞

∥∥∥(1− p)x̄k + 1
cπk

dk

∥∥∥
Tr(p(1− p)πkH̄k + 1

cπk
Dk)

=
1

p

∥∥x̄k
∥∥

Tr(H̄k)
.

G.1 Off-diagonal blocks are orders of magnitude smaller than diagonal blocks
Our discussion Section 3.2 ignored the impact of off-diagonal blocks. In this section, we show that
they are small. The diagonal and off-diagonal blocks of the matrix for k ̸= k′.

Hkk := ∇2
wk

ℓ(W,x, y) = p(x)k(1− p(x)k)xx
⊤,

and for j ̸= k, Hkj := ∇wk
∇wk′ ℓ(W,x,y) = p(x)k(− p(x)k′)xx⊤.

From this, we can see that, on average, the magnitude of the off-diagonal blocks will be smaller than
that of the diagonal blocks, as

Hkk = −
c∑

j=1,j ̸=k

Hkj ,

because
∑c

k′=1,k′ ̸=k p(x)kp(x)k′ = p(x)k(1 − p(x)k), This means that the matrix T : [c × c]

formed by taking the trace of the blocks, Tjk = Tr(Hjk), is diagonally dominant.

Figures 9 and 33 show that the magnitude of the entries of the Hessian in off-diagonal blocks is orders
of magnitude smaller than those of the diagonal blocks. Instead of plotting the [cd× cd] Hessian, we
subsample 40 classes and 40 input dimensions and plot the resulting [160× 160] entries at different
points throughout the trajectory of Adam on the problem of Figure 4. Figure 9 shows the matrices
with classes sampled uniformly and Figure 33 with classes sampled log-uniformly

Hessian at = = = =

8

6

4

2

0

2

Figure 33: The off-diagonal blocks are much smaller than the diagonal blocks. Showing the
magnitude log10(

∣∣(∇2L)ij
∣∣) for a [160 × 160] subset of the Hessian, sampling 40 classes and 40

input dimensions uniformly.

32

H Continuous time GD and sign descent on a simple imbalanced problem
We give the proof of Theorem 3 on the simple imbalanced setting, restated here for convenience.

Simple imbalanced setting. Consider c classes with frequencies π1, ..., πc where all samples from a
class are the same, xi = ek if yi = k, where ek is the kth standard basis vector in Rc.

Theorem 3. On the simple imbalanced setting, gradient flow and continuous time sign descent
initialized at W = 0 minimize the loss of class k, ℓk(t) = − log(σ(W(t)ek)k), at the rate

Gradient flow: ℓk(t) = Θ(1/πkt), Continuous time sign descent: ℓk(t) = Θ
(
e−ct

)
.

We separate the proof for gradient flow into 3 parts. Lemma 4 simplifies the dynamics into smaller,
independent differential equations, Lemma 5 solves the differential equation and Lemma 6 bounds
the loss. The proof uses similar tools as for the gradient flow dynamics studied by Cabannes et al.
(2024), but we focus instead on the loss per class. We treat continuous time sign descent separately in
Lemma 7.

Notation. If W is a [a× b] matrix, then w1, ...,wa are the rows and w1, ...,wb are the vectors, and
wij is the entry at the ith column, jth row. For brevity, we use z = c− 1 as the term appears often.

Lemma 4 (Separation of the dynamics). The dynamics of the parameter matrix W separate into c
2-dimensional differential equations, wkk(t) = ak(t) and wjk(t) = bk(t) for j ̸= k, where

ak(0) = 0,
d

dt
ak = πk

(
1− exp(ak)

exp(ak) + (c− 1) exp(bk)

)
,

bk(0) = 0,
d

dt
bk = πk

(
− exp(bk)

exp(ak) + (c− 1) exp(bk)

)
.

Proof. Our goal is to simplify the dynamics starting at W(0) = 0 and following the gradient flow
d
dtW = −∇L(W), where W : [c× d]. For the simplified setting, we have that d = c are the inputs
are the standard basis vectors in Rc. The derivative of L w.r.t. a single element wkj is

∂wkj
L(W) = −πk1[k = j] + πjσ(w

j)k.

As ∂wkj
only depends on wj for all k, The dynamics are independent across the columns of W,

giving c independent equations in Rc,

wj(0) = 0,
d

dt
wj = πj(ej − σ(wj)).

To further simplify the dynamics, we use the fact that the weights that are not associated with the
correct class have the same dynamics. For any indices i, j different from k, wik(t) = wjk(t). They
have the same derivatives if they have the same value, as

− d

dt
wik = πkσ(w

k)i = πk
exp(wik)∑
k′ exp(wk′k)

= πk
exp(wjk)∑
k′ exp(wk′k)

= πkσ(w
k)j = − d

dt
wjk,

so they will have the same dynamics and the equation can be reduced to a system of 2 variables,
wkk = ak and wjk = bk for any j ̸= k, with

ak(0) = 0,
d

dt
ak = πk

(
1− exp(ak)

exp(ak) + (c− 1) exp(bk)

)
,

bk(0) = 0,
d

dt
bk = πk

(
− exp(bk)

exp(ak) + (c− 1) exp(bk)

)
.

Lemma 5 (Solution of the dynamics). For a given class with frequency π, the dynamics of the
parameters a and b in Lemma 4 evolve as follows, using the shortcuts f(t) = 1 + cπt and z = c− 1,

a(t) =
1

c

(
f(t)− zW

(
1

z
exp

(
1

z
f(t)

)))
b(t) = −1

z
a(t),

33

Proof. We want the solution to the differential equation

a(0) = 0
d

dt
a = π

(
1− exp(a)

exp(a) + (c− 1) exp(b)

)
,

b(0) = 0
d

dt
b = π

(
− exp(b)

exp(a) + (c− 1) exp(b)

)
.

The general solution, ignoring the initial conditions, uses the Lambert W function and constants
K1,K2.1 For brevity, we introduce the shortcut z = c− 1.

a(t) =
1

zc

(
ce−K1K2 + czπt− z2W

(
1

z
exp
(c

z2
(
zπt+ e−K1K2

)
−K1

)))
,

b(t) = K1 −
1

z2c

(
ce−K1K2 + czπt− z2W

(
1

z
exp
(c

z2
(
zπt+ e−K1K2

)
−K1

)))
.

We need to set K1,K2 to satisfy the initial conditions a(0) = b(0) = 0. As b(t) = K1 − a(t)/z, we
must have that K1 = 0, giving the simplification

a(t) =
1

zc

(
cK2 + czπt− z2W

(
1

z
exp
(c

z2
(zπt+K2)−K1

)))
, b(t) = −1

z
a(t).

To set K2, we need to have

0 = zca(0) = cK2 − z2W

(
1

z
exp
(
K2

c

z2

))
=⇒ W

(
1

z
exp
(
K2

c

z2
)
))

=
c

z2
K2

Since W (xex) = x for x > 0, the equation is satisfied for K2 = z
c , as we get W

(
1
z e

1
z

)
= 1

z , giving

a(t) =
1

c

(
1 + cπt− zW

(
1

z
exp

(
1

z
(1 + cπt)

)))
b(t) = −1

z
a(t).

Lemma 6 (Bound for the loss). For t sufficiently large such that 1 + cπkt ≥ z log z + 1,

ℓk(t) = Θ

(
1

πkt

)
.

Using the simplification derived in Lemma 4 and the solution of the differential equation in Lemma 5,
we can rewrite the loss for a specific class as a function of time as

Lk(W) := − log(σ(Wek)k) = − log

(
exp(wkk)∑c
j=1 exp(wjk)

)
,

ℓk(t) := Lk(W(t)) = − log

(
exp(ak(t))

exp(ak(t)) + (c− 1) exp(bk(t))

)
= log(1 + (c− 1) exp(cbk(t))),

where the equality uses that ak(t) = (c− 1)bk(t). For brevity, we will drop the index k in ak, bk, ℓk
and πk and use the shortcut z = c− 1, bounding the quantity

ℓ(t) = log(1 + z exp(cb(t))).

Expanding the definition of b(t) using Lemma 5, we have

z exp(cb(t)) = z exp

(
−1

z

(
f(t)− zW

(
1

z
exp

(
1

z
f(t)

))))
, where f(t) = 1 + cπt.

To simplify the W function, we use the fact that for x > e (Hoorfar and Hassani, 2008, Theorem 2.7)

W (x) = log(x)− log(log(x)) + δ(x) where
1

2
≤ δ(x)

log(x)

log(log(x))
≤ e

e− 1
.

1WolframAlpha solution for π = 1: https://www.wolframalpha.com/input?i=d/dt+x(t)+=+1-
exp(x(t))/(exp(x(t))+c*exp(y(t))),+d/dt+y(t)+=+-exp(y(t))/(exp(x(t))+c*exp(y(t)))

34

https://www.wolframalpha.com/input?i=d/dt+x(t)+=+1-exp(x(t))/(exp(x(t))+c*exp(y(t))),+d/dt+y(t)+=+-exp(y(t))/(exp(x(t))+c*exp(y(t)))
https://www.wolframalpha.com/input?i=d/dt+x(t)+=+1-exp(x(t))/(exp(x(t))+c*exp(y(t))),+d/dt+y(t)+=+-exp(y(t))/(exp(x(t))+c*exp(y(t)))

To use this bound on W
(
1
z exp

(
1
z f(t)

))
, we need 1

z exp
(
1
z f(t)

)
≥ e, which is satisfied for t

sufficiently large, once f(t) ≥ z(log z + 1).

Using that log
(
1
z exp

(
1
z f(t)

))
= 1

z f(t)− log(z), and writing h(t) = δ
(
1
z exp

(
1
z f(t)

))
, we have

f(t)− zW

(
1

z
exp

(
1

z
f(t)

))
= f(t)− z

(
1

z
f(t)− log(z)− log

(
1

z
f(t)− log(z)

)
+ h(t)

)
,

= z(log(f(t)− z log(z))− h(t)),

giving the simplification

z exp(cb(t)) = z exp

(
−1

z

(
f(t)− zW

(
1

z
exp

(
1

z
f(t)

))))
,

= z exp(− log(f(t)− z log(z)) + h(t)) =
z exp(h(t))

f(t)− z log z
,

This gives the average loss

ℓ(t) = log(1 + z exp(cb(t))) = log

(
1 +

z exp(h(t))

f(t)− z log z

)
To bound this expression, we can use that z exp(h(t))

f(t)−z log z ≥ 0 after f(t) ≥ z log z, which we have already
assumed to apply the bound on the W function, and use the bounds x

1+x ≤ log(1 + x) ≤ x to get

z exp(h(t))

f(t)− z log z + z exp(h(t))
≤ ℓ(t) ≤ z exp(h(t))

f(t)− z log z
.

As h(t) is upper bounded by a constant and limt→∞ h(t) = 0, limt→∞ exp(h(t)) = 1, we have

ℓ(t) = Θ

(
z

f(t)− z log z

)
= Θ

(
1

πt

)
.

Lemma 7. The loss at time t for continuous time sign descent is ℓk(t) = log(1 + (c− 1) exp(−ct))

Proof. The same decomposition as in Lemma 4 hold, with the dynamics

ak(0) = 0,
d

dt
ak = 1, ak(t) = t, bk(0) = 0,

d

dt
bk = −1, bk(t) = −t,

leading to the following loss

ℓk(t) = log(1 + (c− 1) exp(−ct)) = Θ(z exp(−ct)).

35

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims of the abstract and introduction refer to the following sections.

• Section 2 and Figures 1 to 5 support the claim that heavy-tailed class imbalance leads
to a performance gap between SGD and Adam, and that this gap can be made to appear
by taking typically uniform datasets and making the class distribution heavy-tailed.

• Section 3 and Figures 6 to 9 supports the analysis on a softmax linear model under
heavy-tailed class imbalance, where Adam outperforms SGD. We provide a toy ex-
ample where a correlation between the magnitude of the gradient and Hessian across
coordinates can be argued to benefit Adam (Section 3.1), show that the class imbalance
on a linear model leads to such a correlation and explain how through an assignment
mechanism in (Section 3.2), and prove that, on a simplified problem and in continuous
time, gradient descent performs poorly on low-frequency classes while sign descent is
unaffected (Section 3.3).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the main limitations of our results, regarding the interaction between
class imbalance and stochasticity, the validity of our findings on generalization error, and
additional optimization difficulties not captured by class imbalance in Section 4. Throughout
the paper, we point out subtleties that are further discussed in the appendix, such that it is
possible to create pathological imbalance datasets that are still easy to optimize with GD
in Section 2.2, that the correlation between class frequencies, gradients and Hessian due to
the assignment mechanism is not a global property and requires the model to fit the data in
Section 3.2, and point out what properties of the optimization dynamics are not capture by
the simple imbalanced setting in Section 3.3.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

36

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proof of Proposition 2 relies on Assumption 1 and is given in Appendix G.
The proof of Theorem 3 on the simple imbalanced setting is given in Appendix H.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental details needed to reproduce the main experimental results
are given in Appendix A. We use standard architectures and datasets where possible and a
simple training procedure for reproducibility, and the main claims of section Section 2.2
and Section 3 can easily be reproduced on linear models with synthetic data.

Guidelines:

• The answer NA means that the paper does not include experiments.

37

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code to reproduce our experiments is uploaded to the openreview submis-
sion and will be made publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting are presented at a high-level in Section 2 and detailled
in Appendix A. The accompagnying code provides a full specification of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The main figures do not report error bars, as the figures show detailled trajecto-
ries for specific runs that do not lend themself to show the behavior averaged over mutliple
runs. Instead, we account for factors of variability by reproducing the observed behavior,
the performance gap across class frequencies, across multiple datasets, architectures, and
training procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

39

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Appendix A.4 lists the type of compute and the estimated overall total compute
budget used, including preliminary experiments. The details of per-experiment compute
type and budget is available in the code, where each experiment file specifies the hardware
configuration and runtime.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors confirm that the research was conducted conforming to the Code
of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on foundational research to understand the behavior of
generic algorithms used to optimize neural networks. The paper is not tied to a particular
applications and we do not see a direct path to a social impact impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

40

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Appendix A gives references for the datasets, models, and code used in this
project, along with citations to the original papers and URLs where available.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

41

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets. Existing publicly available datasets are
used to create variants with more classes, using the procedures are detailled in Appendix A.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

42

paperswithcode.com/datasets

Answer: [NA]

Justification: the paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

43

	Introduction
	Experimental results and ablation studies
	An investigation on linear models
	Discussion and limitations
	Conclusion
	I Appendix
	Experimental details
	Language problems
	Vision problems
	Linear models
	Alternative optimizers
	Dynamics of the gradient and Hessian
	Correlation between the gradient and Hessian across blocks
	Continuous time GD and sign descent on a simple imbalanced problem

