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Abstract

In the field of computer vision, convolutional neural networks (CNNs) have shown remark-
able capabilities and are excelling in various tasks from image classification to semantic
segmentation. However, their vulnerability to adversarial attacks remains a pressing issue
that limits their use in safety-critical domains. In this paper, we present Top-GAP – a
method that aims to increase the native robustness of CNNs by restricting the spatial size
of feature representations. The advantage of our approach over common adversarial training
is that our method does not degrade in clean accuracy or training speed. On CIFAR-10
with PGD ϵ = 8/255 and 20 iterations, we achieve over 50% robust accuracy while retaining
the original clean accuracy. Moreover, our size constraint helps to generate sparser and less
noisy class activation maps, which significantly improves object localization and mitigates
potential biases. We demonstrate on a variety of datasets and architectures that our method
has comparable clean accuracy to regular trained models while improving localization and
robustness. In addition, our method provides the ability to incorporate prior human knowl-
edge about object sizes into the network, which is particularly beneficial in biological and
medical domains where the variance in object sizes is not dominated by perspective projec-
tions.

1 Introduction

Modern computer vision has made remarkable progress with the proliferation of Deep Learning, particularly
convolutional neural networks (CNNs). These networks have demonstrated unprecedented capabilities in
tasks ranging from image classification to semantic segmentation (Zarándy et al., 2015). However, the
robustness of these models remains a critical problem (DBL, 2018).

Many previous attempts to improve robustness have focused on adversarial training and additional (syn-
thetic) images (Wang et al., 2023; Gowal et al., 2021). The disadvantage of these approaches is that both
the computational complexity of the training drastically increases and the clean accuracy typically suffers
(Clarysse et al., 2022; Raghunathan et al., 2019). A representative example is given by Peng et al. (2023),
where standard adversarial training improves the robust accuracy on CIFAR-10 from 0% to 50.94% for
ResNet-50, but the clean accuracy decreases from around 95% to 84.91%. Another example is Wang et al.
(2023), where 50M training samples were generated, which inevitably leads to a strong increase in training
time.

We propose a different approach that focuses on a novel method to regularize the network during training
without adversarial samples. A constraint is added to the training procedure that limits the spatial size of the
learned feature representation which a neural network can use for a prediction. Unlike Pathak et al. (2015),
we do not need KKT conditions or the Lagrangian. The disadvantage of direct constrained optimization
is that it can make gradient descent fail to converge if the algorithm is not modified. Instead, we force
the network to only use the most important k locations in the feature map. The "importance" stems from
an additional sparsity loss that forces the network to output an empty feature map. Part of the loss tries
to increase k locations, while another part tries to set all of them to zero. This constraint simplifies the
optimization problem and allows us to keep the same accuracy as the unconstrained problem.
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Figure 1: Example images from a biological classification dataset (a) and ImageNet (b), where we limit
the number of pixels (i.e. locations in the output feature map) that the CNN can use to make predictions.
Increasing the allowed pixel count leads to more pixels being highlighted in the class activation map (CAM).
If the object size is not known or variable, the pixel constraint with the highest accuracy can be selected.

Restricting the output feature maps fundamentally changes the way the network works internally. In fig. 1,
we see an example on how the constraint also affects the class activation map (CAM). We found that the
networks trained with our approach become more robust. The intuition behind our proposed method is
based on the observation that if the sample size of a class is too small, the network may tend to focus on
the background instead of the object itself (Sagawa et al., 2019; Ribeiro et al., 2016). This can lead to
undesirable biases in the classifier. In our approach, the constraint forces the network to not focus so much
on the background.

The main contributions of this paper are:

• We introduce Top-GAP, a new approach to regularize networks by including a size prior in the
network, which does not rely on the Lagrangian. This prior allows us to limit the number of
pixels the network can use during inference. We show that this is especially beneficial for object
classification tasks in imaging setups without perspective projections, such as biomedical imaging
or benchmark datasets with centered objects.

• Extensive experiments on various architectures and datasets show, that our method improves robust-
ness to adversarial attacks while maintaining high clean accuracy. For attacks such as FGSM/PGD,
we achieve an increase in native robustness of over 50% accuracy without adversarial training.

• Further, our evaluation shows, that even in the case of imaging setups with strong object size
variations, we can still find a size constraint leading to improvements over baseline settings.

• We also show that our method consistently improves the localization of objects. Depending on the
dataset, we see an increase of up to 20% in IOU compared to GradCAM. This effect is even stronger
when we measure the ℓ1 of the CAMs.

• Finally, we report strong indications that our approach has the potential to mitigate bias. For
example, when we take distribution shifts into account, we can achieve improvements in accuracy of
up to 5%.
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2 Related Work

Our work is related to different strands of research, each dealing with different aspects of improving the
features and robustness of neural networks. This section outlines these research directions and introduces
their relevance to our novel approach.

Adversarial robustness. It has been shown that neural networks are susceptible to small adversarial
perturbations of the image (Goodfellow et al., 2015). For this reason, many methods have been developed
to defend against such attacks. Some methods use additional synthetic data to improve robustness (Wang
et al., 2023; Gowal et al., 2021). Wang et al. (2023) makes use of diffusion models, while Gowal et al. (2021)
uses an external dataset. Other methods have shown that architectural decisions can influence robustness
(Peng et al., 2023; Huang et al., 2022). For example, the Transformer-style patchify stem is less robust than
a classical convolutional stem. A disadvantage of all these approaches is that the clean accuracy and training
speed are negatively affected (Raghunathan et al., 2019; Clarysse et al., 2022). "Native robustness" (Grabinski
et al., 2022) on the other hand, is defined in literature as robustness which is achieved by architectural changes
only. The problem with regular adversarial training is also that the networks are usually only robust against
a single perturbation type Tramèr & Boneh (2019). Hence, methods not using adversarial training are less
expensive and less prone to overfitting on specific attacks.

Bias mitigation and guided attention. A notable line of research concentrates on channeling the
network’s focus towards specific feature subsets. Of concern is the prevalence of biases within classifiers,
arising due to training on imbalanced data that perpetuates stereotypes (Buolamwini & Gebru, 2018). Biases
may also stem from an insufficient number of samples (Burns et al., 2019; Zhao et al., 2017; Bolukbasi et al.,
2016), causing the network to emphasize incorrect features or leading to problematic associations. For
instance, when the ground truth class is "boat", the network might focus on waves instead of the intended
object.

He et al. (2023); Yang et al. (2019) introduce training strategies to use CAMs as labels and refine the
classifier’s attention toward specific regions. In contrast, Rajabi et al. (2022) proposes transforming the
input images to mitigate biases tied to protected attributes like gender. Moreover, Li & Xu (2021) suggests
a method to uncover latent biases within image datasets.

Weakly-supervised semantic segmentation (WSSS). (Li et al., 2018) focuses on accurate object seg-
mentation given class labels. The Puzzle-CAM paper (Jo & Yu, 2021) introduces a novel training approach,
which divides the image into tiles, enabling the network to concentrate on various segments of the object, en-
hancing segmentation performance. There are many more publications that focus on improving WSSS (Sun
et al., 2023). Some making use of foundational models such as Segment Anything Model (SAM) (Kirillov
et al., 2023) or using multi-modal models like CLIP (Radford et al., 2021).

Priors. Prior knowledge is an important aspect for improving neural network predictions. For example,
YOLOv2 (Redmon & Farhadi, 2016) calculated the average width and height of bounding boxes on the
dataset and forced the network to use these boxes as anchors. However, there are many other works that
have tried to use some prior information to improve predictions (Zhou et al., 2019; Cai et al., 2020; Hou
et al., 2021; Wang & Siddiqi, 2016; Pathak et al., 2015). In particular, Pathak et al. (2015) has proposed to
add constraints during the training of the network. For example, they propose a background constraint to
limit the number of non-object pixels. However, they only train the coarse output heat maps with convex-
constrained optimization. The problem is that the use of constraints can make it harder to find the global
optima. Therefore, it is harder to train the whole network.

Our approach. Much like bias mitigation strategies and attention-guided techniques, we direct the net-
work’s focus to specific areas. However, our approach does not require segmentation labels and only minimally
changes the CNN architectures. The objective is to maintain comparable clean accuracy and the number of
parameters, while significantly improving the robustness and localization of objects. In contrast to WSSS,
we do not intend to segment entire objects, but instead continue to concentrate on the most discriminative
features. Given that we modify the classification network itself, we also diverge from methods that solely
attempt to enhance CAMs of pretrained models.
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3 Method

In most cases of image classification, the majority of pixels are not important for the prediction. Usually,
only a small object in the image determines the class. Our approach is geared towards these cases. In
contrast, many modern CNNs implicitly operate under the assumption that every pixel in an image can be
relevant for identifying the class. This perspective becomes evident when considering the global averaging
pooling (GAP) layer (Lin et al., 2014) used in modern CNNs. The aim of the GAP layer is to eliminate the
width and height dimensions of the last feature matrix, thereby making it possible to apply a linear decision
layer.

For detection and segmentation tasks, GAP is not only applied to the last feature map, but also to the larger
feature maps. The intermediate feature maps are part of a pyramid. However, only the last map is usually
taken into account for pooling during classification.

This GAP layer can be formally defined as:

GAP(X)t = 1
nm

n∑
i=1

m∑
j=1

Xi,j,t , (1)

where X is the last feature map of dimension n × m × c. For instance, in case of EfficientNet-B0 (Tan & Le,
2020), X has dimension 7 × 7 × 1280 for an input image of size 224 × 224. The GAP(·) operation reduces X
to a vector of size 1280 × 1. Hence, all of the 7 × 7 pixels have an effect on the classification. We would like
to point out that the term "pixel" here is actually a large area in the original image when considering the
receptive field (Luo et al., 2017). For simplicity, we refer to these spatial locations inside the 7 × 7 matrix as
"pixels".

In numerous architectures, there exist attention mechanisms such as the Convolutional Block Attention
Module (CBAM) (Woo et al., 2018) or Squeeze-and-Excitation blocks (SE) (Hu et al., 2019) to direct the
network’s focus towards specific regions. However, these techniques remain incapable of fully constraining
the extent of highlighted pixels. For this reason, the GAP layer will still highlight unimportant pixels.

Normally, the features decisive for determining the class do not cover the entirety of the image. For example,
when distinguishing between dogs and cats, focusing on the head or even just the eyes can prove to be
sufficient. This suggests that a single position in the final low-dimensional feature matrix is often enough to
identify the class.

Our approach involves integrating an object size constraint directly into the network, designed to enforce
the utilization of a limited set of pixels for classification. This constraint allows for noise reduction and the
elimination of unnecessary pixels from the CAM. In cases where specific-sized features determine the class,
we can incorporate this prior knowledge into the neural network, enhancing its classification accuracy.

Instead of improving GradCAM, as so many approaches have done before (Chattopadhay et al., 2018; Omeiza
et al., 2019; Jiang et al., 2021; Fu et al., 2020; Wang et al., 2020), we propose that the output of the CNN
should be both a CAM and a prediction. Then we can regularize the CAM during training and can more
fundamentally influence what is highlighted in the CAM. This makes it possible to incorporate an object
size constraint into the model. Before introducing the object constraint, we first change the model structure
to output a higher-resolution CAM.

3.1 Changing the model output structure

Figure 2 shows the general structure of our architecture. The backbone can be any standard CNN such as
VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2015), ConvNeXt (Liu et al., 2022) or EfficientNet
(Tan & Le, 2020). Depending on the backbone, we use the last 3 or 4 feature maps as input to a feature
pyramid network (FPN) (Lin et al., 2017). We note that the original FPN as used for object detection was
simplified in order to reduce parameters. All the feature maps are upsampled to the size of the largest feature
map and added together. We found no advantage in using concatenation. This output is given to a final
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convolutional layer that has the number of output classes as filters. Note that a convolutional layer with
kernel size 1 is used for the implementation of the final linear layer. Optionally, dropout can be applied as
regularization during training. Lastly, a pooling layer such as GAP is employed to obtain a single probability
for each class.

Input

Backbone

F5

F4

F3

Conv BN ReLU Upsample +

Conv BN ReLU

Conv BN ReLU Upsample

FPN

Conv Top-GAP

Output

Dropout

Figure 2: Example of our architecture applied to a backbone with 3 feature maps (e.g. 7 × 7, 14 × 14,
28 × 28). For all convolutions except the final one, a kernel size of 3 and 256 filters is used. The last
convolution employs a kernel size of 1, with the number of filters set to match the number of output classes.
The CAM is as large as the biggest feature map (here F3). Our pooling layer ("Top-GAP") averages the
CAMs given by the last convolutional layer ("Conv") to create a vector containing the probability for each
class. For the CAM, we disable "Top-GAP" and perform min-max scaling.

For convenience, we explicitly define three modes for our model (refer to fig. 2):

1. training: dropout and the pooling layer is enabled

2. prediction: same as training but dropout is deactivated and batch normalization (BN) is frozen

3. CAM: dropout and the pooling layer is deactivated, BN is frozen. The output is normalized to be
in the range [0, 1].

The same three modes also exist in standard CNNs. Networks that contain multiple fully-connected layers
require the use of GradCAM (Selvaraju et al., 2019) or similar methods. When there is, however, only a
single final linear layer, the CAM can be obtained from modifying the last operation. An example shall
illustrate this: For EfficientNet-B0, the last feature map has the size 7 × 7 × 1280. This tensor can be
reshaped to 49 × 1280. Then by multiplying this reshaped output with the weight matrix 1280 × c of the
original linear layer, we obtain c CAMs with c being the classes.

Let us compare the two approaches: EfficientNet-B0 with GradCAM and EfficientNet-B0 with our output
structure (see fig. 2). GradCAM does not require any additional parameters because it generates the ac-
tivation map from the model itself. If we change the model structure, we have more parameters, but also
more influence on what is seen in the CAM. If we were to replace GradCAM with LayerCAM or some other
method, it would never have the same impact as changing the model training itself (our approach). In
addition, GradCAM does not combine multiple feature maps by default to achieve better localization.

In our approach, the standard output linear layer of some classification model like EfficientNet-B0 is substi-
tuted with f + 1 convolutional layers, where f corresponds to the number of feature maps (refer to fig. 2).
This leads to a small increase in the number of parameters.
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Architecture Params (unmodified) Params (ours)
VGG11-BN 132.87M 12.43M
EfficientNet-B0 4.08M 4.75M
DenseNet-121 7.98M 8.03M

Table 1: Number of parameters for some architectures. We have less parameters than VGG because all
additional linear layers are removed.

As indicated in table 1, we can achieve a comparable number of parameters.

These changes to the model are prerequisites for enabling the integration of size constraints within the neural
network. If only the last feature map were used, a single pixel would correspond to an excessively large area
in the original image. Hence, combining multiple feature maps proves advantageous. This idea is reinforced
by findings from Jiang et al. (2021), which highlight that employing multiple layers enhances the localization
capabilities of CAMs.

3.2 Defining the pixel constraint (Top-GAP)

Instead of using the standard GAP layer, we replace the average pooling by a top-k pooling, where only the
k highest values of the feature matrix X are considered for averaging. This pooling layer limits the number
of pixels that the network can use for generating predictions.

The layer is defined mathematically as follows:

Top-GAP(X̃, k)t = 1
k

k∑
i=1

X̃i,t , (2)

Here, X̃ represents the ordered feature matrix with dimensions nm × c, where c corresponds to the number
of channels. For our model, c is the number of output classes. Each of the c column vectors is arranged in
descending order by value, and k values are selected. When k = 1, we obtain global max pooling (GMP).
When k = nm, the layer returns to standard GAP. The parameter k enforces the pixel constraint, and its
value depends on the image size. For instance, if the largest feature map has dimensions 56 × 56, then k

562

pixels are selected. Hence, when adjusting this parameter, it is crucial to consider the relative object size in
the highest feature map.

3.3 Classification loss function

The last component of our method involves changing the loss function. While the Top-GAP(·) layer considers
only pixels with the highest values, these pixels might not necessarily be the most important ones. Thus, it
becomes essential to incentivize the reduction of less important pixels to zero.

To achieve this, we add an ℓ1 regularization term to the loss function, inducing sparsity in the output. The
updated loss function is defined as follows:

L = λ||X||1 + CE
(
softmax

(
Top-GAP(X̃, k)

)
, y

)
, (3)

where CE(ŷ, y) represents the cross-entropy loss between the prediction ŷ = softmax
(
Top-GAP(X̃, k)

)
and

the ground truth y. Here, λ controls the strength of the regularization. We found that for most datasets
λ = 1 is sufficient.

The main difference between the regular classification loss and our loss is the addition of top-k pooling in
conjunction with ℓ1 regularization.
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Lastly, it is important to highlight that it is the combination of these distinct components that yields good
results. In our ablation study, we will demonstrate that removing specific components lead to either reduced
accuracy or worse feature representations.

4 Evaluation

To demonstrate the generalization capability of our method, we conduct experiments on multiple distinct
datasets. We give a detailed description of the datasets in appendix A. These datasets were chosen to have
varying characteristics (different class counts, domains and object sizes). We test for each dataset multiple
architectures.

We train all models except ImageNet using stratified cross-validation. The results obtained from each fold
are then averaged. Employing cross-validation mitigates the impact of randomness on our findings (Picard,
2021).

The main hyperparameter of our approach is given by the pooling layer Top-GAP(·, k). This layer defines
the constraint. We always combine this layer with our model structure (see fig. 2) and ℓ1 loss. We test for
all the numerical experiments the values k ∈ {64, 128, 256, 512, 1024, 2048}, except for CIFAR-10 where we
test k ∈ {8, 16, 32, 64, 128, 256}. Due to the high computational cost of training on ImageNet, ResNet-18
was only trained on k = 256.

For an image of size 224 × 224, the output CAM has dimensions 56 × 56. This means that we use approx.
64
562 ≈ 2% of the feature map for k = 64. The highest value that we tested corresponds to 2048

562 ≈ 65%.

4.1 Sparsity of the CAMs

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Constraint (% of pixels)

0.1

0.2

0.3

0.4

0.5

1

ImageNet
COCO
Oxford
CUB
Wood

Figure 3: Each line in the graph represents a
dataset+architecture combination. The x-axis shows the
normalized k value (e.g. 64

562 ) for the constraint, while the y-axis
represents the ℓ1 norm. The constraint is given by the previously
defined pooling layer Top-GAP(·, k).

Since our approach is concerned with lim-
iting the number of pixels that a neural
network can use, we first evaluate spar-
sity using the ℓ1 matrix norm. The met-
ric is defined as 1

nm ||X||1 where X ∈
[0, 1]n×m is the CAM (direct output from
our model, refer to fig. 2). Although this
metric alone does not determine the qual-
ity of a CAM, it serves as an indicator of
its noise level. In addition, a CAM with
fewer highlighted pixels can facilitate the
explanation of certain image features.

It is evident from fig. 3 that as we increase
the constraint k, the number of dis-
played pixels on the CAM also rises (i.e.
||X||1 rises). This observation validates
that our constraint effectively achieves
the intended sparsity. While there are
some fluctuations for certain datasets and
architectures, the overall trend remains
consistent.

Details of the results are presented in ta-
ble 2. Only the lowest ℓ1 of the different k values is reported. We observe that in general a strong pixel
constraint such as k = 64 pixels leads to the lowest ℓ1 value.

For almost all datasets and architectures, our approach achieved sparser CAMs. We see especially large
decreases for ImageNet. To visually demonstrate the effect of the constraint, we use the COCO dataset as
an illustrative example.

7



Under review as submission to TMLR

Dataset Arch ℓ1 ↓ ℓ1 ↓ (ours)
COCO (Lin et al., 2015) EN 0.179 0.064
COCO (Lin et al., 2015) CN 0.251 0.151
COCO (Lin et al., 2015) RN 0.173 0.194
Wood (Nieradzik et al., 2023) EN 0.190 0.032
Wood (Nieradzik et al., 2023) CN 0.110 0.046
Oxford (Parkhi et al., 2012) EN 0.154 0.072
Oxford (Parkhi et al., 2012) RN 0.151 0.064
CUB-200-2011 (Wah et al., 2011) EN 0.235 0.05
CUB-200-2011 (Wah et al., 2011) CN 0.164 0.096
CUB-200-2011 (Wah et al., 2011) RN 0.121 0.056
ImageNet (Deng et al., 2009) VG 0.279 0.064
ImageNet (Deng et al., 2009) RN 0.387 0.123

Table 2: The last column reports the sparsity of the CAM using our approach (with pixel constraint, ℓ1
loss and the changes to the model). The third column is a standard model without any changes. For the
standard model, we use GradCAM. EN = EfficientNet-B0, CN = ConvNeXt-tiny, RN = ResNet-18, VG =
VGG11-BN.

32 pixels 256 pixels 1024 pixels No constraint

(a) COCO

32 pixels 256 pixels 1024 pixels No constraint

(b) Wood identification

Figure 4: Impact of pixel constraint on CAM. The pixel constraint is always combined with ℓ1 loss and
our new model structure. "No constraint" denotes a standard unmodified EfficientNet-B0 model using
CAM/GradCAM (Selvaraju et al., 2019). For COCO: the ground truth for the first row is "bed". For the
second row, it is "train" and for the third row, it is "scissors".

Consider the four images in the second row of fig. 4a showing a train on rails. In the first image, the
constraint is 32 pixels and only the train is highlighted. In the 2nd through 4th images, either both the train
and the rails or only the rails are highlighted. Since the ground truth class is "train", the rails should not be
highlighted because the object ("train") itself best represents the class. With our approach (here: 32 pixels)
it is possible to force the network not to use the feature "rails". This shows that our constraint allows to
perform bias mitigation.

The first and third row also show that different parts of the objects become more important. When not
using any constraint, the CAM is affected by noise. This can be seen in the first row.

Figure 1 and fig. 4b show another example. The wood identification dataset with ConvNeXt-tiny was used
for generating fig. 1. Given that the object size can be an important feature, the network attempts to capture
this feature even with low constraint values. For instance, with the pixel constraint k = 64, we can observe
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that the network generated dots along the object’s edges (see fig. 1a). This suggests that the network is
attempting to figure out the object size by employing this strategy.

4.2 Robustness and Accuracy

Limiting the number of pixels accessible to the network does not only impact the CAM but also has an
effect on the network’s overall functionality. Intuitively, we expect that our approach enhances the network’s
resilience against adversarial attacks. Typical attacks, like the Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2015), manipulate each pixel uniformly. However, with our constraint, specific pixels in the
image no longer exert any influence on predictions. Consequently, we anticipate increased robustness of our
network.

To assess this, we perturb the images in the datasets with FGSM and PGD using ϵ = 1/255 (except for
CIFAR-10 where we use ϵ = 8/255). Then the predicted class of the perturbed images is compared with the
class of the original images. The robust accuracy is the percentage of images where the prediction remains
the same ("predicted class of perturbed image" equal to "predicted class of original image"). We use the
library Foolbox (Rauber et al., 2017; 2020) for the adversarial attacks.

We tested all k and only report the value with the best clean accuracy and robust accuracy (FGSM, PGD).

First, we consider datasets with higher resolution such as ImageNet.

Dataset Arch FGSM ↑ FGSM ↑ (ours) PGD ↑ PGD ↑ (ours) Clean Acc Clean Acc (ours)
COCO EN 0.07 0.3063 0.0 0.1098 0.801 ± 0.009 0.803 ± 0.006
COCO CN 0.51 0.678 0.301 0.463 0.939 ± 0.006 0.940 ± 0.005
COCO RN 0.288 0.394 0.08 0.142 0.853 ± 0.004 0.868 ± 0.005
Wood EN 0.0 0.277 0.0 0.085 0.672 ± 0.037 0.681 ± 0.041
Wood CN 0.0 0.404 0.0 0.01 0.721 ± 0.030 0.724 ± 0.033
Oxford EN 0.037 0.107 0.0 0.0 0.854 ± 0.008 0.863 ± 0.010
Oxford RN 0.104 0.281 0.016 0.104 0.861 ± 0.007 0.862 ± 0.007
CUB EN 0.04 0.147 0.0 0.04 0.76 ± 0.01 0.77 ± 0.005
CUB RN 0.06 0.212 0.0 0.111 0.69 ± 0.014 0.685 ± 0.006
CUB CN 0.134 0.314 0.03 0.158 0.862 ± 0.007 0.854 ± 0.005
ImageNet VG 0.029 0.217 0.0 0.01 0.704 0.699
ImageNet RN 0.065 0.256 0.0 0.059 0.698 0.697

Table 3: Our approach refers to the changed model with pixel constraint and ℓ1 loss. The original models
come from PyTorch Image Models (Wightman, 2019) and are pretrained on ImageNet. EN = EfficientNet-
B0, CN = ConvNeXt-tiny, RN = ResNet-18, VG = VGG11-bn.

For all the experiments in table 3, we use ϵ = 1/255 (FGSM/PGD) and 40 steps (PGD). The ± sign denotes
the standard deviation of the accuracy across 5 different folds. For ImageNet, we only report a single run
due to computational complexity. We achieve a comparable clean accuracy but a much higher adversarial
robustness.

Next, we evaluate our method in table 4 on CIFAR-10.

We see a much greater increase in adversarial robustness. Our method comes close to the results of adver-
sarially trained networks while maintaining high accuracy and high training speed.

Overall, we found that there is a strong correlation between robust and clean accuracy. In other words,
choosing the k parameter associated with the highest clean accuracy also tends to lead to optimal robustness.

In addition to assessing adversarial robustness, it is valuable to analyze the network’s performance under
distribution shifts and potential biases. To address this, we use the Waterbirds dataset (Sagawa et al.,
2019), where the backgrounds of images are replaced. Furthermore, we evaluate accuracy on ImageNet-
Sketch (Wang et al., 2019) and ImageNet-C (Hendrycks & Dietterich, 2019). The results are in table 5.
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Method Arch PGD20 ↑ PGD50 ↑ Clean ↑
Baseline PRN18 0.0 0.0 0.945
Top-GAP (ours) PRN18 0.517 0.313 0.951
FGSM-AT (Andriushchenko & Flammarion, 2020) PRN18 - 0.476 0.81
SAT (Peng et al., 2023) RN50 0.552 - 0.849

Table 4: Results on CIFAR-10. We use ϵ = 8/255 and 20/50 steps. SAT = Standard Adversarial Training,
PRN18 = PreAct ResNet-18, RN50 = ResNet-50. Our results are close to the robustness of adversarially
trained networks. Refer to appendix B for more experiments.

Dataset Arch Acc ↑ Acc ↑ (ours)
CUB → Waterbirds EN 0.521 0.564
CUB → Waterbirds CN 0.722 0.737
CUB → Waterbirds RN 0.468 0.52
ImageNet → Sketch VG 0.179 0.20
ImageNet → Sketch RN 0.206 0.236
ImageNet → ImageNet-C VG 0.494 0.498
ImageNet → ImageNet-C RN 0.513 0.535

Table 5: Evaluation of the out-of-distribution accuracy by using images outside the original dataset. X → Y
means train on X and validate on Y. For instance, we trained an EfficientNet-B0 (EN) model on the CUB
dataset and then assessed its accuracy on the Waterbirds dataset. For ImageNet-C (Hendrycks & Dietterich,
2019), we use strength level 1 and take the average of all types of corruption.

4.3 Combination with Adversarial Training

Next, we test whether our approach can be combined with adversarial training. Since adversarial training
requires extensive computational resources, only CIFAR-10 is tested.

For our evaluation, we use the RaWideResNet-70-16 model (Peng et al., 2023), which represents the current
state-of-the-art on RobustBench. This model was trained with an additional 50 million synthetic images
under the (ℓ∞, ϵ = 8

255 ) threat model. Then we modified this architecture by adding our FPN module, the
ℓ1 loss and the Top-GAP pooling layer. Only the layers of the FPN module were trained, while all other
layers were frozen. No adversarial training was used for finetuning. Finally, we compare this modified model
with the standard model.

Arch PGD20 ↑ PGD50 ↑ Clean Acc ↑
RaWideResNet-70-16 0.8494 0.7462 0.9372
RaWideResNet-70-16 + ours 0.8463 0.7168 0.953

Table 6: The numbers of the standard model differ slightly from the numbers in the original paper because
we evaluated all 50,000 images of the test set. We again use ϵ = 8/255.

While we see a slight decrease in robustness of around 3%, the accuracy increases when using our approach.
There is an improvement of around 2%.

4.4 Human annotation

Although neural networks may prioritize different regions compared to humans, segmentation masks remain
valuable sources of information. For example, if the network focuses on the background instead of the
relevant object, it suggests potential classification errors when the object appears no longer with the same
background.
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Dataset Arch IOU ↑ IOU ↑ (ours)
COCO EN 0.309 0.348
COCO CN 0.103 0.361
COCO RN 0.371 0.391
CUB EN 0.323 0.414
CUB CN 0.125 0.389
CUB RN 0.268 0.435

Table 7: The last column is our approach ("ours").
The third column is a standard unchanged model. For
the standard model, we use GradCAM.

The segmentation masks serve as the "ground truth"
in our analysis of the COCO and CUB datasets.
We compute the pixel-wise intersection over union
(IOU) to identify the predicted mask that has the
largest overlap with the ground truth. Since stan-
dard CNN models do not inherently generate a class
activation map, we use the GradCAM method to
generate the predicted mask in this context. The
results are in table 7.

In all cases, our approach consistently demonstrates
a higher IOU. Interestingly, ConvNeXt-tiny exhibits
a more pronounced improvement (≈ 25%) with our
approach compared to the other architectures. The
best k value depends here on the actual size of the object. Since the objects of the CUB and COCO datasets
are relatively large, we need higher k values.

4.5 Ablation studies

Having established the effectiveness of our approach across various datasets and architectures, our next
objective is to assess the impact of the individual components within our solution. We aim to determine
whether each component is essential or if certain components can be omitted while still maintaining satis-
factory performance. Furthermore, we want to show that the increase of accuracy as seen in table 3 is not
a consequence of having a slightly higher number of parameters.

We perform an ablation study on the COCO dataset. There are in total 23 = 8 possibilities as can be seen
in table 8.

FPN ℓ1 loss Top-GAP AccCOCO ↑ IOUCOCO ↑ FGSMCOCO
✗ ✗ ✗ 0.801 0.309 0.07
✗ ✗ ✓ 0.681 0.196 0.0
✗ ✓ ✗ 0.799 0.304 0.297
✗ ✓ ✓ 0.796 0.169 0.263
✓ ✗ ✗ 0.796 0.308 0.082
✓ ✗ ✓ 0.532 0.261 0.054
✓ ✓ ✗ 0.790 0.325 0.305
✓ ✓ ✓ 0.803 0.348 0.306

Table 8: Ablation study using the COCO dataset and EfficientNet-B0. The ℓ1 regularization is beneficial
for robustness, but only the combination of all three components also leads to improvements in localization
(while maintaining accuracy). We repeated the experiments with the Wood dataset and came to the same
results.

When FPN is deactivated, we set the pixel constraint to k = 4 for Top-GAP since the final feature matrix
has dimensions 72. However, when FPN is activated, we increase the constraint to k = 256 because the final
feature matrix is larger due to upsampling (size 562). The ratio is the same e.g. 1024

562 = 16
72 .

Table 8 shows that adding a FPN module to the architecture does not consistently increase the accuracy.
Only a combination of multiple components leads to an increase.

Although our approach has shown improved accuracy, it is still critical to visually assess the impact of the
constraints. To illustrate this, refer to fig. 5. Here we compare all eight configurations using three images
from the COCO dataset. The figures clearly show that the combination of the three components: FPN,
ℓ1-loss, and Top-GAP, provides the most favorable results. The figure also shows that the inclusion of some
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FPN+Topk+L1 Topk+L1 Topk FPN+L1 L1 FPN + Topk FPN GradCAM

Figure 5: Visual ablation study on COCO. The first two rows show a bicycle, while the third one shows a
sign. Only the variant FPN + Top-GAP + ℓ1 localizes all three objects correctly. The models that were
trained with some kind of ℓ1 regularization tend to have less noise.

form of ℓ1-loss generally improves the quality of the CAMs by reducing noise. Figure A1 in the appendix
shows an example for the wood identification dataset (Nieradzik et al., 2023).

5 Discussion and Outlook

In this paper, we presented a new approach to improve the native robustness of CNNs. Depending on the
dataset and architecture, we see major improvements against common adversarial attacks such as FGSM or
PGD.

Our method focuses on controlling the number of pixels a network can use for predictions, resulting in
CAMs with lower noise and better localization. The results show that our approach is effective on a variety of
datasets and architectures. We have consistently observed both visually and numerically more concise feature
representations in the CAMs. In addition, our approach provides a novel form of network regularization. By
forcing the network to focus exclusively on objects of a predefined size, we reduce the risk of highlighting
irrelevant regions, which can be critical for applications that require precise object localization or for reducing
bias.

Limitations. Determining the optimal value for the pixel constraint parameter k currently depends on
hyperparameter tuning. It is possible to explore automated methods for determining this parameter to
improve efficiency and adaptability. Second, given the variety of object sizes, it may not be ideal to rely on a
single parameter for all objects. Only in specific areas such as biomedical imaging, where object size are not
influenced by perspective projections (e.g. microscope) typically show low size variances. Investigating ways
to dynamically adjust this parameter for different object sizes would be a valuable line of research. Finally,
the proposed FPN module can be further refined to improve accuracy even more.

In summary, our approach represents a promising step towards more interpretable and robust CNNs. It
opens new possibilities for solving critical problems in computer vision, including robustness, bias mitigation
and size priors.
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Top-GAP: Integrating Size Priors in CNNs for more Robustness,
Interpretability, and Bias Mitigation

Supplementary Material

The appendix contains the following additional materials:

• A detailed description of the datasets.

• A visual ablation study for the wood dataset: fig. A1

• More experiments for the CIFAR datasets: appendix B

A Description of datasets

We test all our models on the following datasets:

• COCO (Lin et al., 2015): We turned this segmentation dataset into a classification dataset by
excluding images with more than one object. Furthermore, we kept only classes with a minimum of
20 samples per class. The resulting subset comprises 53 classes.

• Wood identification dataset (Nieradzik et al., 2023): This dataset consists of high-resolution mi-
croscopy images for hardwood fiber material. Nine distinct wood species have to be distinguished.

• Oxford-IIIT Pet Dataset (Parkhi et al., 2012): The task is to differentiate among 37 breeds of dogs
and cats.

• CUB-200-2011 (Wah et al., 2011) and Waterbirds (Sagawa et al., 2019): 200 classes of birds have to
be distinguished. Waterbirds replaces the background of the original images to test the models for
biases.

• ImageNet (Deng et al., 2009): A large-scale dataset with 1000 different classes. ImageNet-Sketch
(Wang et al., 2019) / ImageNet-C (Hendrycks & Dietterich, 2019) replaces the original validation
images with out-of-distribution / corrupted images.

• CIFAR10: A dataset where each image has a size of 32 × 32. 10 classes have to be distinguished.
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A.1 Visual ablation study

We compare three configurations: ℓ1 + Top-GAP(X̃, k), FPN + ℓ1 + Top-GAP(X̃, k) and no constraint
(standard EfficientNet-B0 model)

l1 + topk FPN + l1 + topk No constraint

Figure A1: Ablation study on the wood identification study with three different configurations.

The variant without constraint shows considerably more noise.
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B More CIFAR-10 experiments

B.1 Effect of steps on PGD

We analyze the effect of the parameter steps on the function LinfProjectedGradientDescentAttack of
Foolbox. Three models are compared: Andriushchenko2020Understanding (Andriushchenko & Flammarion,
2020), baseline (standard PreAct ResNet-18), Top-GAP (our approach). We sampled 500 images from the
dataset.
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Figure A2: Effect of steps on ℓ∞-PGD

B.2 Architectures

The experiments from the main paper were repeated for different architectures. Furthermore, the hyperpa-
rameters were optimized for robust accuracy. The results were averaged across 5 different seeds.

Arch PGD20 ↑ PGD50 ↑ Clean Acc ↑
PreAct-ResNet18 0.5484 ± 0.0135 0.3528 ± 0.0277 0.9493 ± 0.0013
ResNet18 0.5407 ± 0.033 0.3361 ± 0.0516 0.9501 ± 0.0009
ResNet34 0.4254 ± 0.08 0.2989 ± 0.1181 0.9513 ± 0.0023
ResNet50 0.4815 ± 0.0299 0.336 ± 0.0462 0.9515 ± 0.0023
WideResNet40-4 0.4156 ± 0.0092 0.2811 ± 0.0253 0.9462 ± 0.0002

Table A1: We use ϵ = 8/255 and 20/50 steps.

3


	Introduction
	Related Work
	Method
	Changing the model output structure
	Defining the pixel constraint (Top-GAP)
	Classification loss function

	Evaluation
	Sparsity of the CAMs
	Robustness and Accuracy
	Combination with Adversarial Training
	Human annotation
	Ablation studies

	Discussion and Outlook
	Description of datasets
	Visual ablation study

	More CIFAR-10 experiments
	Effect of steps on PGD
	Architectures


