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Abstract

In the field of computer vision, convolutional neural networks (CNNs) have shown remark-
able capabilities and are excelling in various tasks from image classification to semantic
segmentation. However, their vulnerability to adversarial attacks remains a pressing issue
that limits their use in safety-critical domains. In this paper, we present Top-GAP – a
method that aims to increase the robustness of CNNs against simple PGD, FGSM, Square
Attack and distribution shifts. The advantage of our approach is that it does not slow down
the training or decrease the clean accuracy. Adversarial training instead requires many
resources, which makes it hard to use in real-world applications. On CIFAR-10 with PGD
ϵ = 8/255 and 20 iterations, we achieve over 50% robust accuracy while retaining the original
clean accuracy. Furthermore, we see increases of up to 6% accuracy against distribution
shifts. Finally, our method provides the ability to incorporate prior human knowledge
about object sizes into the network, which is particularly beneficial in biological and medi-
cal domains where the variance in object sizes is not dominated by perspective projections.
Evaluations of the effective receptive field show that Top-GAP networks are able to focus
their attention on class-relevant parts of the image.

1 Introduction

Modern computer vision has made remarkable progress with the proliferation of Deep Learning, particularly
convolutional neural networks (CNNs). These networks have demonstrated unprecedented capabilities in
tasks ranging from image classification to semantic segmentation (Zarándy et al., 2015). However, the
robustness of these models remains a critical problem (DBL, 2018).

Many previous attempts to improve robustness have focused on adversarial training and additional (syn-
thetic) images (Wang et al., 2023; Gowal et al., 2021). The disadvantage of these approaches is that both
the computational complexity of the training drastically increases and the clean accuracy typically suffers
(Clarysse et al., 2022; Raghunathan et al., 2019). A representative example is given by Peng et al. (2023),
where standard adversarial training improves the robust accuracy on CIFAR-10 from 0% to 50.94% for
ResNet-50, but the clean accuracy decreases from around 95% to 84.91%. Another example is Wang et al.
(2023), where 50M training samples were generated, which inevitably leads to a strong increase in training
time.

We propose a different approach that focuses on a novel method to regularize the network during training
without adversarial samples. A constraint is added to the training procedure that limits the spatial size
of the learned feature representation which a neural network can use for a prediction. Unlike Pathak
et al. (2015), we do not need KKT conditions or the Lagrangian. The disadvantage of direct constrained
optimization is that it can make gradient descent fail to converge if the algorithm is not modified. Instead,
we force the network to only use the most important k locations in the feature map. The "importance" stems
from an additional sparsity loss that forces the network to output an empty feature map. Part of the loss
tries to increase k locations, while another part tries to set all of them to zero. This constraint simplifies the
optimization problem and allows us to keep the same accuracy as the unconstrained problem.
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Figure 1: Example images from a biological classification dataset (a) and ImageNet (b), where we limit
the number of pixels (i.e. locations in the output feature map) that the CNN can use to make predictions.
Increasing the allowed pixel count leads to more pixels being highlighted in the class activation map (CAM).
If the object size is not known or variable, the pixel constraint with the highest accuracy can be selected.

Restricting the output feature maps fundamentally changes the way the network works internally. In fig. 1,
we see an example on how the constraint also affects the class activation map (CAM). We found that the
networks trained with our approach become more robust. The intuition behind our proposed method is
based on the observation that if the sample size of a class is too small, the network may tend to focus on the
background instead of the object itself (Sagawa et al., 2019; Ribeiro et al., 2016). This can lead to undesirable
biases in the classifier. In our approach, the constraint forces the network to not focus so much on the
background.

The main contributions of this paper are:

• We introduce Top-GAP, a new approach to regularize networks by including a size prior in the
network, which does not rely on the Lagrangian. This prior allows us to limit the number of
pixels the network can use during inference. We show that this is especially beneficial for object
classification tasks in imaging setups without perspective projections, such as biomedical imaging
or benchmark datasets with centered objects.

• Extensive experiments on various architectures and datasets show, that our method improves
robustness against certain cheap adversarial attacks while maintaining high clean accuracy. For
attacks such as FGSM/PGD, we achieve an increase in native robustness of over 50% accuracy
without adversarial training.

• Further, our evaluation shows, that even in the case of imaging setups with strong object size
variations, we can still find a size constraint leading to improvements over baseline settings.

• Analyzing the effective receptive, we show that Top-GAP is able to steer the network to focus on
object-pixels instead of the background.

• Finally, we report strong indications that our approach has the potential to mitigate bias. For
example, when we take distribution shifts into account, we can achieve improvements in accuracy
of up to 5%.
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2 Related Work

Our work is related to different strands of research, each dealing with different aspects of improving the
features and robustness of neural networks. This section outlines these research directions and introduces
their relevance to our novel approach.

Adversarial robustness. It has been shown that neural networks are susceptible to small adversarial
perturbations of the image (Goodfellow et al., 2015). For this reason, many methods have been developed
to defend against such attacks. Some methods use additional synthetic data to improve robustness (Wang
et al., 2023; Gowal et al., 2021). Wang et al. (2023) makes use of diffusion models, while Gowal et al. (2021)
uses an external dataset. Other methods have shown that architectural decisions can influence robustness
(Peng et al., 2023; Huang et al., 2022). For example, the Transformer-style patchify stem is less robust than a
classical convolutional stem. A disadvantage of all these approaches is that the clean accuracy and training
speed are negatively affected (Raghunathan et al., 2019; Clarysse et al., 2022). "Native robustness" (Grabinski
et al., 2022) on the other hand, is defined in literature as robustness which is achieved by architectural changes
only. The problem with regular adversarial training is also that the networks are usually only robust against
a single perturbation type Tramèr & Boneh (2019). Hence, methods not using adversarial training are less
expensive and less prone to overfitting on specific attacks.

Bias mitigation and guided attention. A notable line of research concentrates on channeling the network’s
focus towards specific feature subsets. Of concern is the prevalence of biases within classifiers, arising due
to training on imbalanced data that perpetuates stereotypes (Buolamwini & Gebru, 2018). Biases may also
stem from an insufficient number of samples (Burns et al., 2019; Zhao et al., 2017; Bolukbasi et al., 2016),
causing the network to emphasize incorrect features or leading to problematic associations. For instance,
when the ground truth class is "boat", the network might focus on waves instead of the intended object.

He et al. (2023); Yang et al. (2019) introduce training strategies to use CAMs as labels and refine the classifier’s
attention toward specific regions. In contrast, Rajabi et al. (2022) proposes transforming the input images
to mitigate biases tied to protected attributes like gender. Moreover, Li & Xu (2021) suggests a method to
uncover latent biases within image datasets.

Weakly-supervised semantic segmentation (WSSS). (Li et al., 2018) focuses on accurate object segmentation
given class labels. The Puzzle-CAM paper (Jo & Yu, 2021) introduces a novel training approach, which
divides the image into tiles, enabling the network to concentrate on various segments of the object, enhancing
segmentation performance. There are many more publications that focus on improving WSSS (Sun et al.,
2023). Some making use of foundational models such as Segment Anything Model (SAM) (Kirillov et al.,
2023) or using multi-modal models like CLIP (Radford et al., 2021).

Priors. Prior knowledge is an important aspect for improving neural network predictions. For example,
YOLOv2 (Redmon & Farhadi, 2016) calculated the average width and height of bounding boxes on the
dataset and forced the network to use these boxes as anchors. However, there are many other works that
have tried to use some prior information to improve predictions (Zhou et al., 2019; Cai et al., 2020; Hou
et al., 2021; Wang & Siddiqi, 2016; Pathak et al., 2015). In particular, Pathak et al. (2015) has proposed to
add constraints during the training of the network. For example, they propose a background constraint to
limit the number of non-object pixels. However, they only train the coarse output heat maps with convex-
constrained optimization. The problem is that the use of constraints can make it harder to find the global
optima. Therefore, it is harder to train the whole network.

Our approach. Much like bias mitigation strategies and attention-guided techniques, we direct the network’s
focus to specific areas. However, our approach does not require segmentation labels and only minimally
changes the CNN architectures. The objective is to maintain comparable clean accuracy and the number of
parameters, while significantly improving the robustness and localization of objects. In contrast to WSSS,
we do not intend to segment entire objects, but instead continue to concentrate on the most discriminative
features. Given that we modify the classification network itself, we also diverge from methods that solely
attempt to enhance CAMs of pretrained models.
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3 Method

In most cases of image classification, the majority of pixels are not important for the prediction. Usually,
only a small object in the image determines the class. Our approach is geared towards these cases. In
contrast, many modern CNNs implicitly operate under the assumption that every pixel in an image can be
relevant for identifying the class. This perspective becomes evident when considering the global average
pooling (GAP) layer (Lin et al., 2014) used in modern CNNs. The aim of the GAP layer is to eliminate the
width and height dimensions of the last feature matrix, thereby making it possible to apply a linear decision
layer.

The GAP layer averages all locations within the last feature matrix without making a distinction between
the positions or values. This means that a corner position is treated in the same way as a center position.
We also note that each of the locations in the last feature matrix corresponds to multiple pixels in the input
image. This is known as the receptive field. Now, we want to define more formally the terminology.

Definition 3.1 (Effective receptive field). Let X
(p)
i(p),j(p) be the feature matrix on the pth layer for 1 ≤ p ≤ n

with coordinates (i(p), j(p)). The input to the neural network is at p = 1 and the output feature map at
p = n. Then the effective receptive field (ERF) of the output location (i(n), j(n)) with respect to the input

pixel (i(1), j(1)) is given by
∂X

(n)
i(n),j(n)

∂X
(1)
i(1),j(1)

(Luo et al., 2017). This definition assumes that each layer has only a

single channel. For multiple output channels, we compute
∑c(n)

k=1
∂X

(n)
i(n),j(n),k

∂X
(1)
i(1),j(1)

where c(n) are the channels of

the last feature map. The ERF characterizes the impact of some input pixel on the output.
Definition 3.2 (Global Average Pooling). The feature output of the neural network X(n) is averaged to obtain
a single value. This operation is known as Global Average Pooling (GAP) and is defined as:

GAP(X(n)) = 1
h(n)w(n)

h(n)∑
i=1

w(n)∑
j=1

X
(n)
i,j ,

where h(n) is the height and w(n) is the width of the output feature map. In practice, there is not only one
channel but c(n) channels.

An example shall explain the two terms. In case of EfficientNet-B0 (Tan & Le, 2020), X(n) has dimension
7 × 7 × 1280 for an input image of size 224 × 224 where c(n) = 1280 are the channels. The GAP(·) operation
reduces X(n) to a vector of size 1280 × 1. All of the 7 × 7 locations have an effect on the classification. With
the help of the ERF, we can measure how much the 2242 input pixels contribute to the 72 output locations.

Another method to analyze what the neural network focuses on are the so-called class activation maps.
These methods modify X(n) so that we get a visualization of what is important for the neural network.
Definition 3.3 (Class Activation Map). The product of multiplying the output tensor X(n) by some weight
coefficient W is known as a class activation map (CAM) (Zhou et al., 2015). The standard CAM, also known
as "CAM", uses the weights of the linear decision layer L.

In the previous example, the linear decision layer L would map the 1280 channels to c(n+1) class channels.
The output of the CAM would be in this case 7 × 7 × c(n+1). Each of the c(n+1) maps can be upsampled to
obtain a visualization.
Definition 3.4 (GradCAM). GradCAM is a generalization of CAM to non-fully convolutional neural net-
works (non-FCN) such as VGG. It is equivalent to the standard CAM for FCN like ResNet. It is defined as
follows

GradCAM(X, c) = ReLU
(∑

k

Wk,c, Xk

)
,
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with Wk,c = GAP
(

∂L(X)c

∂Xk

)
, k being the channel index of X and c being the index of the linear layer. Usually

the last feature map X(n) is chosen for X .

In addition to GradCAM, there are many other CAM methods. However, they are all based on reducing the
channels of X(n) in order to obtain a visualization. Instead of improving GradCAM, as so many approaches
have done before (Chattopadhay et al., 2018; Omeiza et al., 2019; Jiang et al., 2021; Fu et al., 2020; Wang
et al., 2020), we propose that the output of the CNN should be both a CAM and a prediction. Then we
can regularize the CAM during training and can more fundamentally influence what is highlighted in the
CAM.

Our approach involves integrating an object size constraint directly into the network, designed to enforce
the utilization of a limited set of pixels for classification. This constraint allows for noise reduction and the
elimination of unnecessary pixels from the CAM. In cases where specific-sized features determine the class,
we can incorporate this prior knowledge into the neural network, enhancing its classification accuracy.

Before introducing the object constraint, we first change the model structure to output a higher-resolution
CAM.

3.1 Changing the model output structure

Figure 2 shows the general structure of our architecture. The backbone can be any standard CNN such as
VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2015), ConvNeXt (Liu et al., 2022) or EfficientNet (Tan
& Le, 2020). Depending on the backbone, we use the last 3 or 4 feature maps as input to a feature pyramid
network (FPN) (Lin et al., 2017). We note that the original FPN as used for object detection was simplified in
order to reduce parameters. All the feature maps are upsampled to the size of the largest feature map and
added together. We found no advantage in using concatenation. This output is given to a final convolutional
layer that has the number of output classes as filters. Note that a convolutional layer with kernel size 1 is
used for the implementation of the final linear layer. Optionally, dropout can be applied as regularization
during training. Lastly, a pooling layer such as GAP is employed to obtain a single probability for each class.

Input

Backbone

F5

F4

F3

Conv BN ReLU Upsample +

Conv BN ReLU

Conv BN ReLU Upsample

FPN

Conv Top-GAP

Output

Dropout

Figure 2: Example of our architecture applied to a backbone with 3 feature maps (e.g. 7×7, 14×14, 28×28).
For all convolutions except the final one, a kernel size of 3 and 256 filters is used. The last convolution
employs a kernel size of 1, with the number of filters set to match the number of output classes. The CAM
is as large as the biggest feature map (here F3). Our pooling layer ("Top-GAP") averages the CAMs given
by the last convolutional layer ("Conv") to create a vector containing the probability for each class. For the
CAM, we disable "Top-GAP" and perform min-max scaling.

For convenience, we explicitly define two modes for our model (refer to fig. 2):

1. training/prediction: Top-GAP is enabled to obtain the probabilities for each class.
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2. CAM: Top-GAP is disabled. The output feature map is upsampled to the size of the input image
and normalized to be in the range [0, 1].

Without our modified model, we would need to use a method such as GradCAM to obtain a visualization.

Let us compare the two approaches: EfficientNet-B0 with GradCAM and EfficientNet-B0 with our output
structure (see fig. 2). GradCAM does not require any additional parameters because it generates the
activation map from the model itself. If we change the model structure, we have more parameters, but
also more influence on what is seen in the CAM. If we were to replace GradCAM with LayerCAM or some
other method, it would never have the same impact as changing the model training itself (our approach).
In addition, GradCAM does not combine multiple feature maps by default to achieve better localization.

In our approach, the standard output linear layer of some classification model like EfficientNet-B0 is substi-
tuted with f + 1 convolutional layers, where f corresponds to the number of feature maps (refer to fig. 2).
This leads to a small increase in the number of parameters.

Architecture Params (unmodified) Params (ours)
VGG11-BN 132.87M 12.43M
EfficientNet-B0 4.08M 4.75M
DenseNet-121 7.98M 8.03M

Table 1: Number of parameters for some architectures. We have less parameters than VGG because all
additional linear layers are removed.

As indicated in table 1, we can achieve a comparable number of parameters.

These changes to the model are prerequisites for enabling the integration of size constraints within the
neural network. If only the last feature map were used, a single value would correspond to an excessively
large area in the original image. Hence, combining multiple feature maps proves advantageous. This idea
is reinforced by findings from Jiang et al. (2021), which highlight that employing multiple layers enhances
the localization capabilities of CAMs.

3.2 Defining the pixel constraint (Top-GAP)

Instead of using the standard GAP layer, we replace the average pooling by a top-k pooling, where only the
k highest values of the feature matrix are considered for averaging. This pooling layer limits the number of
input pixels that the network can use for generating predictions.

In a standard CNN, the last feature map is at layer n. In our model (fig. 2), the last feature map is at n + 1
because we replaced the linear decision layer L by a 1 × 1 convolution.
Definition 3.5 (Top-GAP). We define the Top-GAP layer as follows:

Top-GAP(X̃, k)t = 1
k

k∑
i=1

X̃i,t ,

where X̃ represents the ordered feature matrix X(n+1) with dimensions h(n+1)w(n+1) × c(n+1), where c(n+1)

corresponds to the number of output classes. Each of the c(n+1) column vectors is arranged in descending
order by value, and k values are selected. i indicates the ranking, with i = 1 being the largest value and
i = k being the smallest. t is an index indicating the channel. We select for each channel different values.

When k = 1, we obtain global max pooling (GMP). When k = h(n+1)w(n+1), the layer returns to standard
GAP. The parameter k enforces the pixel constraint, and its value depends on the image size. For instance,
if the largest feature map has dimensions 56 × 56, then k

562 values are selected. Hence, when adjusting this
parameter, it is crucial to consider the relative object size in the highest feature map.
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3.3 Classification loss function

The last component of our method involves changing the loss function. While the Top-GAP(·) layer considers
only locations with the highest values, these locations might not necessarily be the most important ones.
Thus, it becomes essential to incentivize the reduction of less important positions to zero.

To achieve this, we add an ℓ1 regularization term to the loss function, inducing sparsity in the output. The
updated loss function is defined as follows:

L = λ||X(n+1)||1 + CE (ŷ, y) , (1)

where CE(ŷ, y) represents the cross-entropy loss between the prediction ŷ = softmax
(
Top-GAP(X̃, k)

)
and

the ground truth y. X̃ is the ordered X(n+1) feature output in our model, while k is a fixed non-trainable
parameter. Here, λ controls the strength of the regularization. We found that for most datasets λ = 1 is
sufficient.

The main difference between the regular classification loss and our loss is the addition of top-k pooling in
conjunction with ℓ1 regularization.

Lastly, it is important to highlight that it is the combination of these distinct components that yields good
results. In our ablation study, we will demonstrate that removing specific components lead to either reduced
accuracy or worse feature representations.

4 Evaluation

In this section, we will systematically verify the claims of our method on multiple datasets. We give a
detailed description of the datasets in appendix A. These datasets were chosen to have varying characteristics
(different class counts, domains and object sizes). We test for each dataset multiple architectures.

We train all models except ImageNet using stratified cross-validation. The results obtained from each fold
are then averaged. Employing cross-validation mitigates the impact of randomness on our findings (Picard,
2021).

The main hyperparameter of our approach is given by the pooling layer Top-GAP(·, k). This layer defines
the constraint. We always combine this layer with our model structure (see fig. 2) and ℓ1 loss. We test for
all the numerical experiments the values k ∈ {64, 128, 256, 512, 1024, 2048}, except for CIFAR-10 where we
test k ∈ {8, 16, 32, 64, 128, 256}. Due to the high computational cost of training on ImageNet, ResNet-18 was
only trained on k = 256.

For an image of size 224 × 224, the output CAM has dimensions 56 × 56. This means that we use approx.
64
562 ≈ 2% of the feature map for k = 64. The highest value that we tested corresponds to 2048

562 ≈ 65%.

4.1 Hypothesis: certain input pixels become less important for classification

We want to show that with our method not all pixels in the input image have the same influence on the
output feature map X(n+1).

In most datasets (e.g. ImageNet), the object to be classified is located in the center of the input image. While
each pixel in the input image corresponds to multiple values in the output feature map X(n+1), the general
position is the same. The center in the output is also the center in the input.

The input pixels should contribute much more to the center than to the background of X(n+1). We want to
quantify how much influence the input pixels have on the center of X(n+1) and on the corner of X(n+1). For
this, we use definition 3.1 and define a metric.

Definition 4.1 (ERF distance). We define ERF(1, 1) = 1
hw

∑
i,j

∣∣∣∣∂X
(n+1)
1,1

∂X
(1)
i,j

∣∣∣∣ to be the absolute change of the

output corner position (1, 1) with all input pixels (i, j). Similarly, we define ERF( h
2 , w

2 ) to be the change of
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the output center position with respect to the input, where h and w is the width of the output feature map.
Then the ERF distance is ERF( h

2 , w
2 ) − ERF(1, 1).

Intuitively, we expect a low value for ERF(1, 1) because the corner position of the feature map contains less
information. Similarly, ERF( h

2 , w
2 ) should be a high value because the object is in the center. If the difference

between the two values is low, it means that each pixel contributes similarly to the output.

Dataset Arch ERF distance ↑ ERF distance (ours) ↑
COCO (Lin et al., 2015) EN 0.108 0.447
COCO (Lin et al., 2015) CN 0.072 0.288
COCO (Lin et al., 2015) RN 0.273 0.399
Oxford (Parkhi et al., 2012) EN 0.013 0.383
Oxford (Parkhi et al., 2012) RN 0.060 0.443
CUB-200-2011 (Wah et al., 2011) EN -0.033 0.480
CUB-200-2011 (Wah et al., 2011) CN -0.034 0.242
CUB-200-2011 (Wah et al., 2011) RN 0.092 0.529

Table 2: The table shows that our approach leads to a different ERF. The center has a different effect than the
corner of the image. "Ours" is our approach (with pixel constraint, ℓ1 loss and the changes to the model). The
other columns are the standard models without any changes. EN = EfficientNet-B0, CN = ConvNeXt-tiny,
RN = ResNet-18.

Table 2 shows that for the standard CNN the center of the image has the same effect as the corner. ERF(1, 1)
has the same value range as ERF( h

2 , w
2 ). Compare this to our approach, where there is a large difference

between the center and the corner ERF. More details are provided in the appendix in table A1 and table A2.
A visual experiment in the appendix validates our approach with different positions (refer to fig. A1 and
fig. A2).

4.2 Hypothesis: Top-GAP can be used as a size prior

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Constraint (% of pixels)

0.1

0.2

0.3

0.4

0.5

1

ImageNet
COCO
Oxford
CUB
Wood

Figure 3: Each line in the graph represents a dataset+architecture
combination. The x-axis shows the normalized k value (e.g.
64
562 ) for the constraint, while the y-axis represents the ℓ1 norm.
The constraint is given by the previously defined pooling layer
Top-GAP(·, k).

Since our approach is concerned with
limiting the number of pixels that a neu-
ral network can use, we evaluate sparsity
using the ℓ1 matrix norm. The metric is
defined as 1

nm ||X||1 where X = X(n+1)

is the normalized and upsampled feature
map. We only select the ground truth
channel. This is our CAM. Although
this metric alone does not determine the
quality of a CAM, it serves as an indi-
cator of its noise level. In addition, a
CAM with fewer highlighted pixels can
facilitate the explanation of certain image
features.

It is evident from fig. 3 that as we increase
the constraint k, the number of displayed
pixels on the CAM also rises (i.e. ||X||1
rises). This observation validates that
our constraint effectively achieves the in-
tended sparsity. While there are some
fluctuations for certain datasets and ar-
chitectures, the overall trend remains
consistent. Details of the results can be found in table A3. The table shows that we achieve higher
sparseness than standard models. Furthermore, table A8 shows that simple ℓ1 regularization does not
achieve the same level of sparsity.
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32 pixels 256 pixels 1024 pixels No constraint

(a) COCO

32 pixels 256 pixels 1024 pixels No constraint

(b) Wood identification

Figure 4: Impact of pixel constraint on CAM. The pixel constraint is always combined with ℓ1 loss and
our new model structure. "No constraint" denotes a standard unmodified EfficientNet-B0 model using
CAM/GradCAM (Selvaraju et al., 2019). For COCO: the ground truth for the first row is "bed". For the
second row, it is "train" and for the third row, it is "scissors".

To visually demonstrate the effect of the constraint, we use the COCO dataset as an illustrative example.
Consider the four images in the second row of fig. 4a showing a train on rails. In the first image, the
constraint is 32 pixels and only the train is highlighted. In the 2nd through 4th images, either both the train
and the rails or only the rails are highlighted. Since the ground truth class is "train", the rails should not be
highlighted because the object ("train") itself best represents the class. With our approach (here: 32 pixels)
it is possible to force the network not to use the feature "rails". This shows that our constraint allows to
perform bias mitigation. The first and third row also show that different parts of the objects become more
important. When not using any constraint, the CAM is affected by noise. This can be seen in the first row.

Figure 1 and fig. 4b show another example. The wood identification dataset with ConvNeXt-tiny was used
for generating fig. 1. Given that the object size can be an important feature, the network attempts to capture
this feature even with low constraint values. For instance, with the pixel constraint k = 64, we can observe
that the network generated dots along the object’s edges (see fig. 1a). This suggests that the network is
attempting to figure out the object size by employing this strategy.

In the appendix, table A4 we show using a ground truth mask that our model focuses more on objects than
background.

4.3 Hypothesis: higher robustness against simple PGD, FGSM and Square Attack

It was shown by Guo et al. (2018) that there exists a relationship between sparsity and adversarial robustness.
Since we use the ℓ1 norm in our loss function, we expect increased robustness against certain adversarial
attacks.

However, only applying ℓ1 to activations would greatly reduce clean accuracy. With our Top-GAP layer,
we keep a high accuracy for datasets like ImageNet. Therefore, we do not set too many gradients to zero
because this would make training the networks also harder ("shattered gradients" (Athalye et al., 2018)).

To assess this, we perturb the images in the datasets with FGSM and PGD using ℓ∞ = 1/255 (except for
CIFAR-10 where we use ℓ∞ = 8/255). Then the predicted class of the perturbed images is compared with the
class of the original images. The robust accuracy is the percentage of images where the prediction remains
the same ("predicted class of perturbed image" equal to "predicted class of original image"). We use the
library Foolbox (Rauber et al., 2017; 2020) for the adversarial attacks.
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We tested for Top-GAP all k and only report the value with the best clean accuracy and robust accuracy
(FGSM, PGD). First, we consider datasets with higher resolution such as ImageNet.

Dataset Arch FGSM ↑ FGSM ↑ (ours) PGD ↑ PGD ↑ (ours) Clean Acc Clean Acc (ours)
COCO EN 0.07 0.3063 0.0 0.1098 0.801 ± 0.009 0.803 ± 0.006
COCO CN 0.51 0.678 0.301 0.463 0.939 ± 0.006 0.940 ± 0.005
COCO RN 0.288 0.394 0.08 0.142 0.853 ± 0.004 0.868 ± 0.005
Wood EN 0.0 0.277 0.0 0.085 0.672 ± 0.037 0.681 ± 0.041
Wood CN 0.0 0.404 0.0 0.01 0.721 ± 0.030 0.724 ± 0.033
Oxford EN 0.037 0.107 0.0 0.0 0.854 ± 0.008 0.863 ± 0.010
Oxford RN 0.104 0.281 0.016 0.104 0.861 ± 0.007 0.862 ± 0.007
CUB EN 0.04 0.147 0.0 0.04 0.76 ± 0.01 0.77 ± 0.005
CUB RN 0.06 0.212 0.0 0.111 0.69 ± 0.014 0.685 ± 0.006
CUB CN 0.134 0.314 0.03 0.158 0.862 ± 0.007 0.854 ± 0.005
ImageNet VG 0.029 0.217 0.0 0.01 0.704 0.699
ImageNet RN 0.065 0.256 0.0 0.059 0.698 0.697

Table 3: Our approach refers to the changed model with pixel constraint and ℓ1 loss. The original models
come from PyTorch Image Models (Wightman, 2019) and are pretrained on ImageNet. EN = EfficientNet-B0,
CN = ConvNeXt-tiny, RN = ResNet-18, VG = VGG11-bn.

For all the experiments in table 3, we use ℓ∞ = 1/255 (FGSM/PGD) and 40 steps (PGD). The ± sign denotes
the standard deviation of the accuracy across 5 different folds. For ImageNet, we only report a single run
due to computational complexity.

Next, we evaluate our method in table 4 on CIFAR-10.

Method Arch PGD20 ↑ PGD50 ↑ Clean ↑
Baseline PRN18 0.0 0.0 0.945
Top-GAP (ours) PRN18 0.517 0.313 0.951
FGSM-AT (Andriushchenko & Flammarion, 2020) PRN18 - 0.476 0.81
SAT (Peng et al., 2023) RN50 0.552 - 0.849

Table 4: Results on CIFAR-10. We use ℓ∞ = 8/255 and 20/50 steps. SAT = Standard Adversarial Training,
PRN18 = PreAct ResNet-18, RN50 = ResNet-50. Our results are close to the robustness of adversarially
trained networks. Refer to appendix E for more experiments.

We see a much greater increase in adversarial robustness. Our method comes close to the results of
adversarially trained networks for certain methods while maintaining high accuracy and high training
speed. We repeated the experiments with the adversarial attacks of AutoAttack (Croce & Hein, 2020).
While all attacks together lead to 0%, we achieve robustness against certain attacks. With PRN18, we
achieve 34.26% with the square attack. For the adaptive APGD attacks, however, we see a decrease to about
7% (with 20 iterations). While this result is still much higher than the 0% achieved with a regular network,
it is less than with an adversarial trained network.

Notably, square attack (Andriushchenko et al., 2020) does not rely on local gradient information. It should,
therefore, be not affected by gradient masking. Nevertheless, we perform quite well against this attack; our
model only suffers against adaptive attacks. This shows that our robustness is not necessarily a result of
"shattered gradients" (Athalye et al., 2018).

Method Clean ↑
k-WTA (Xiao et al., 2019) 0.439 ± 0.011
FLC Pooling (Grabinski et al., 2022) 0.525 ± 0.022
Top-GAP (ours) 0.685 ± 0.006

Table 5: Results on CUB with ResNet-18.

Finally, we want to compare our method with other
approaches that do not use adversarial training to
achieve robustness. FLC Pooling (Grabinski et al.,
2022) uses the 2D Fourier transform to achieve ro-
bustness, while k-WTA (Xiao et al., 2019) removes
the top-k values after each layer.
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Table 5 shows that for real-world datasets like CUB, we achieve higher accuracy. Additionally, the use of
the Fourier transform leads to slower training.

4.4 Hypothesis: higher robustness against distribution shifts

In addition to assessing adversarial robustness, it is valuable to analyze the network’s performance under
distribution shifts and potential biases. To address this, we use the Waterbirds dataset (Sagawa et al., 2019),
where the backgrounds of images are replaced. Furthermore, we evaluate accuracy on ImageNet-Sketch
(Wang et al., 2019) and ImageNet-C (Hendrycks & Dietterich, 2019). The results are in table 6.

Dataset Arch Acc ↑ Acc ↑ (ours)
CUB → Waterbirds EN 0.521 0.564
CUB → Waterbirds CN 0.722 0.737
CUB → Waterbirds RN 0.468 0.52
ImageNet → Sketch VG 0.179 0.20
ImageNet → Sketch RN 0.206 0.236
ImageNet → ImageNet-C VG 0.494 0.498
ImageNet → ImageNet-C RN 0.513 0.535

Table 6: Evaluation of the out-of-distribution accuracy by using images outside the original dataset. X → Y
means train on X and validate on Y. For instance, we trained an EfficientNet-B0 (EN) model on the CUB
dataset and then assessed its accuracy on the Waterbirds dataset. For ImageNet-C (Hendrycks & Dietterich,
2019), we use strength level 1 and take the average of all types of corruption.

A slight improvement in accuracy can be observed for all datasets. While there are many works that show
higher accuracy for datasets such as ImageNet-Sketch Fang et al. (2022), they are based on specialized
training methods (self-supervised, semi-supervised) and/or more data. Our proposed method comes
"without cost" in the sense that it works for any architecture and dataset, without requiring more GPU
resources. It can be viewed as a regularization technique as well.

4.5 Ablation studies

Having established the effectiveness of our approach across various datasets and architectures, our next
objective is to assess the impact of the individual components within our solution. We aim to determine
whether each component is essential or if certain components can be omitted while still maintaining satis-
factory performance. Furthermore, we want to show that the increase of accuracy as seen in table 3 is not a
consequence of having a slightly higher number of parameters.

We perform an ablation study on the COCO dataset. There are in total 23 = 8 possibilities as can be seen in
table 7.

FPN ℓ1 loss Top-GAP AccCOCO ↑ FGSMCOCO
✗ ✗ ✗ 0.801 0.07
✗ ✗ ✓ 0.681 0.0
✗ ✓ ✗ 0.799 0.297
✗ ✓ ✓ 0.796 0.263
✓ ✗ ✗ 0.796 0.082
✓ ✗ ✓ 0.532 0.054
✓ ✓ ✗ 0.790 0.305
✓ ✓ ✓ 0.803 0.306

Table 7: Ablation study using the COCO dataset and EfficientNet-B0. The ℓ1 regularization is beneficial for
robustness, but only the combination of all three components also leads to improvements in localization
(while maintaining accuracy). We repeated the experiments with the Wood dataset and came to the same
results.
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When FPN is deactivated, we set the pixel constraint to k = 4 for Top-GAP since the final feature matrix has
dimensions 72. However, when FPN is activated, we increase the constraint to k = 256 because the final
feature matrix is larger due to upsampling (size 562). The ratio is the same e.g. 1024

562 = 16
72 .

Table 7 shows that adding a FPN module to the architecture does not consistently increase the accuracy.
Only a combination of multiple components leads to an increase. Furthermore, ℓ1 regularization alone
would not lead to better interpretability/robustness (refer to appendix table A7).

FPN+Topk+L1 Topk+L1 Topk FPN+L1 L1 FPN + Topk FPN GradCAM

Figure 5: Visual ablation study on COCO. The first two rows show a bicycle, while the third one shows
a sign. Only the variant FPN + Top-GAP + ℓ1 localizes all three objects correctly. The models that were
trained with some kind of ℓ1 regularization tend to have less noise.

Although our approach has shown improved accuracy, it is still critical to visually assess the impact of the
constraints. To illustrate this, refer to fig. 5. Here we compare all eight configurations using three images
from the COCO dataset. The figures clearly show that the combination of the three components: FPN,
ℓ1-loss, and Top-GAP, provides the most favorable results. The figure also shows that the inclusion of some
form of ℓ1-loss generally improves the quality of the CAMs by reducing noise.

5 Discussion and Outlook

In this paper, we presented a new approach to improve the native robustness of CNNs. Depending on the
dataset and architecture, we see major improvements against simple PGD, FGSM and Square Attack. Our
method has no negative effects like other techniques (accuracy, speed, memory). It is well suited to defend
against fast attacks. Slower ensemble attacks such as AutoAttack are computationally more expensive.

Our method focuses on controlling the number of pixels a network can use for predictions, resulting in
CAMs with lower noise and better localization. The results show that our approach is effective on a
variety of datasets and architectures. We have consistently observed both visually and numerically more
concise feature representations in the CAMs. In addition, our approach provides a novel form of network
regularization. By forcing the network to focus exclusively on objects of a predefined size, we reduce the
risk of highlighting irrelevant regions, which can be critical for applications that require precise object
localization or for reducing bias.

Limitations. Determining the optimal value for the pixel constraint parameter k currently depends on
hyperparameter tuning. It is possible to explore automated methods for determining this parameter to
improve efficiency and adaptability. Second, given the variety of object sizes, it may not be ideal to rely on
a single parameter for all objects. Only in specific areas such as biomedical imaging, where object size are
not influenced by perspective projections (e.g. microscope) typically show low size variances. Investigating
ways to dynamically adjust this parameter for different object sizes would be a valuable line of research.
Finally, the proposed FPN module can be further refined to improve accuracy even more.
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Top-GAP: Integrating Size Priors in CNNs for more Robustness,
Interpretability, and Bias Mitigation

Supplementary Material

The appendix contains the following additional materials:

• A detailed description of the datasets.

• More details regarding the effective receptive field: table A1, table A2. Qualitative analysis of the
ERF with fig. A1 and fig. A2.

• More details regarding sparsity: table A3.

• An experiment verifying the overlap with human annotations: table A4.

• More experiments for the CIFAR datasets: appendix E

• Effect of ℓ1 normalization on robustness and interpretability: table A7, table A8 and table A9.

A Description of datasets

We test all our models on the following datasets:

• COCO (Lin et al., 2015): We turned this segmentation dataset into a classification dataset by
excluding images with more than one object. Furthermore, we kept only classes with a minimum
of 20 samples per class. The resulting subset comprises 53 classes.

• Wood identification dataset (Nieradzik et al., 2023): This dataset consists of high-resolution mi-
croscopy images for hardwood fiber material. Nine distinct wood species have to be distinguished.

• Oxford-IIIT Pet Dataset (Parkhi et al., 2012): The task is to differentiate among 37 breeds of dogs
and cats.

• CUB-200-2011 (Wah et al., 2011) and Waterbirds (Sagawa et al., 2019): 200 classes of birds have to
be distinguished. Waterbirds replaces the background of the original images to test the models for
biases.

• ImageNet (Deng et al., 2009): A large-scale dataset with 1000 different classes. ImageNet-Sketch
(Wang et al., 2019) / ImageNet-C (Hendrycks & Dietterich, 2019) replaces the original validation
images with out-of-distribution / corrupted images.

• CIFAR10: A dataset where each image has a size of 32 × 32. 10 classes have to be distinguished.
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B Effective Receptive Field (ERF)

B.1 Quantitative analysis

In table 2, we only showed the difference between the center and the corner ERF. In the following tables, we
provide the individual values. The gradients were z-normalized to have mean at 0 and standard deviation
at 1.

Dataset Arch Center ERF ↑ Center ERF (ours) ↑
COCO (Lin et al., 2015) EN 0.534 0.54
COCO (Lin et al., 2015) CN 0.47 0.439
COCO (Lin et al., 2015) RN 0.595 0.571
Oxford (Parkhi et al., 2012) EN 0.087 0.51
Oxford (Parkhi et al., 2012) RN 0.104 0.542
CUB-200-2011 (Wah et al., 2011) EN 0.489 0.493
CUB-200-2011 (Wah et al., 2011) CN 0.477 0.398
CUB-200-2011 (Wah et al., 2011) RN 0.538 0.534
Average - 0.412 0.503

Table A1: Center ERF. "Ours" is our approach (with pixel constraint, ℓ1 loss and the changes to the model).
The other columns are the standard models without any changes. EN = EfficientNet-B0, CN = ConvNeXt-
tiny, RN = ResNet-18.

The table shows that for the center pixel the gradient with respect to the input image is higher, when using
our method.

Dataset Arch Corner ERF ↓ Corner ERF (ours) ↓
COCO (Lin et al., 2015) EN 0.426 0.093
COCO (Lin et al., 2015) CN 0.398 0.151
COCO (Lin et al., 2015) RN 0.322 0.172
Oxford (Parkhi et al., 2012) EN 0.074 0.127
Oxford (Parkhi et al., 2012) RN 0.044 0.099
CUB-200-2011 (Wah et al., 2011) EN 0.522 0.013
CUB-200-2011 (Wah et al., 2011) CN 0.511 0.156
CUB-200-2011 (Wah et al., 2011) RN 0.446 0.005
Average - 0.343 0.102

Table A2: Corner ERF. The values are lower using our approach.

Similarly, we see that the pixels have less of an effect when the corner of the input image is considered.
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B.2 Qualitative analysis

After having analyzed numerically the receptive field for positions corner = (1, 1) and center = (4, 4), we
also want to visually analyze the effect on the ERF.

ERF(1,1) ERF(1,4) ERF(1,7)

ERF(4,1) ERF(4,4) ERF(4,7)

ERF(7,1) ERF(7,4) ERF(7,7)

Figure A1: Standard ResNet-18 (dataset: CUB)

ERF(1,1) ERF(1,28) ERF(1,56)

ERF(28,1) ERF(28,28) ERF(28,56)

ERF(56,1) ERF(56,28) ERF(56,56)

Figure A2: ResNet-18 with our approach (dataset: CUB)

Comparing fig. A1 and fig. A2, we see that the background has less of an effect using our approach.
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C Sparsity

For almost all datasets and architectures, our approach achieved sparser CAMs. We see especially large
decreases for ImageNet.

Dataset Arch ℓ1 ↓ ℓ1 ↓ (ours)
COCO (Lin et al., 2015) EN 0.179 0.064
COCO (Lin et al., 2015) CN 0.251 0.151
COCO (Lin et al., 2015) RN 0.173 0.194
Wood (Nieradzik et al., 2023) EN 0.190 0.032
Wood (Nieradzik et al., 2023) CN 0.110 0.046
Oxford (Parkhi et al., 2012) EN 0.154 0.072
Oxford (Parkhi et al., 2012) RN 0.151 0.064
CUB-200-2011 (Wah et al., 2011) EN 0.235 0.05
CUB-200-2011 (Wah et al., 2011) CN 0.164 0.096
CUB-200-2011 (Wah et al., 2011) RN 0.121 0.056
ImageNet (Deng et al., 2009) VG 0.279 0.064
ImageNet (Deng et al., 2009) RN 0.387 0.123

Table A3: The last column reports the sparsity of the CAM using our approach (with pixel constraint, ℓ1
loss and the changes to the model). The third column is a standard model without any changes. For the
standard model, we use GradCAM. EN = EfficientNet-B0, CN = ConvNeXt-tiny, RN = ResNet-18, VG =
VGG11-BN.

Only the lowest ℓ1 of the different k values is reported. We observe that in general a strong pixel constraint
such as k = 64 pixels leads to the lowest ℓ1 value.

D Human annotation

Although neural networks may prioritize different regions compared to humans, segmentation masks
remain valuable sources of information. For example, if the network focuses on the background instead
of the relevant object, it suggests potential classification errors when the object appears no longer with the
same background.

Dataset Arch IOU ↑ IOU ↑ (ours)
COCO EN 0.309 0.348
COCO CN 0.103 0.361
COCO RN 0.371 0.391
CUB EN 0.323 0.414
CUB CN 0.125 0.389
CUB RN 0.268 0.435

Table A4: The last column is our approach ("ours").
The third column is a standard unchanged model. For
the standard model, we use GradCAM.

The segmentation masks serve as the "ground truth"
in our analysis of the COCO and CUB datasets.
We compute the pixel-wise intersection over union
(IOU) to identify the predicted mask that has the
largest overlap with the ground truth. Since stan-
dard CNN models do not inherently generate a class
activation map, we use the GradCAM method to
generate the predicted mask in this context. The
results are in table A4.

In all cases, our approach consistently demonstrates
a higher IOU. Interestingly, ConvNeXt-tiny exhibits
a more pronounced improvement (≈ 25%) with our
approach compared to the other architectures. The
best k value depends here on the actual size of the
object. Since the objects of the CUB and COCO datasets are relatively large, we need higher k values.
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E More CIFAR-10 experiments

E.1 Effect of steps on PGD

We analyze the effect of the parameter steps on the function LinfProjectedGradientDescentAttack of
Foolbox. Three models are compared: Andriushchenko2020Understanding (Andriushchenko & Flammar-
ion, 2020), baseline (standard PreAct ResNet-18), Top-GAP (our approach). We sampled 500 images from
the dataset.
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Figure A3: Effect of steps on ℓ∞-PGD

E.2 Architectures

The experiments from the main paper were repeated for different architectures. Furthermore, the hyperpa-
rameters were optimized for robust accuracy. The results were averaged across 5 different seeds.

Arch PGD20 ↑ PGD50 ↑ Clean Acc ↑
PreAct-ResNet18 0.5484 ± 0.0135 0.3528 ± 0.0277 0.9493 ± 0.0013
ResNet18 0.5407 ± 0.033 0.3361 ± 0.0516 0.9501 ± 0.0009
ResNet34 0.4254 ± 0.08 0.2989 ± 0.1181 0.9513 ± 0.0023
ResNet50 0.4815 ± 0.0299 0.336 ± 0.0462 0.9515 ± 0.0023
WideResNet40-4 0.4156 ± 0.0092 0.2811 ± 0.0253 0.9462 ± 0.0002

Table A5: We use ϵ = 8/255 and 20/50 steps.

E.3 Combination with Adversarial Training

Next, we test whether our approach can be combined with adversarial training. Since adversarial training
requires extensive computational resources, only CIFAR-10 is tested.

For our evaluation, we use the RaWideResNet-70-16 model (Peng et al., 2023), which represents the current
state-of-the-art on RobustBench. This model was trained with an additional 50 million synthetic images
under the (ℓ∞, ϵ = 8

255 ) threat model. Then we modified this architecture by adding our FPN module, the ℓ1
loss and the Top-GAP pooling layer. Only the layers of the FPN module were trained, while all other layers
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were frozen. No adversarial training was used for finetuning. Finally, we compare this modified model
with the standard model.

Arch PGD20 ↑ PGD50 ↑ Clean Acc ↑
RaWideResNet-70-16 0.8494 0.7462 0.9372
RaWideResNet-70-16 + ours 0.8463 0.7168 0.953

Table A6: The numbers of the standard model differ slightly from the numbers in the original paper because
we evaluated all 50,000 images of the test set. We again use ϵ = 8/255.

While we see a slight decrease in robustness of around 3%, the accuracy increases when using our approach.
There is an improvement of around 2%.

F Effect of ℓ1 normalization on robustness and interpretability

From the ablation study in table 7, we have seen that the ℓ1 regularization has a strong influence on the
results. Here we want to show that without the other components we would have lower interpretability,
robustness and/or accuracy.

We consider the following variants of ResNet-18:

• ℓ1 regularization only on the last feature output (activations) with λ = 1.0

• ℓ1 regularization only on the last feature output (activations) with λ = 0.1

• ℓ1 regularization on all activations with λ = 10−3

• ℓ1 regularization on all activations with λ = 10−5

• ours: our approach

We use the CUB-200-2011 dataset. λ denotes the strength of the regularization.

F.1 Interpretability and accuracy

First, we analyze the effective receptive field and accuracy.

Approach λ Center ERF ↑ Corner ERF ↓ Accuracy
last 1.0 0.514 0.002 0.63
last 0.1 0.536 0.113 0.69
all 10−5 0.488 0.416 0.69
all 10−3 0.335 0.26 0.19
ours 1.0 0.534 0.005 0.69

Table A7: ℓ1 regularization is a tradeoff between accuracy and ERF for the other approaches.

We see that we are only able to influence the ERF by regularizing the last feature map. While the approach
"last + λ = 1.0" also achieves the same ERF as "ours", we see a significant decrease in accuracy of about 6%.
Instead, we can also decrease λ, then the accuracy is the same, but we lose interpretability.

Additionally, without our Top-GAP pooling, we can no longer control the number of pixels. The λ parameter
cannot be used for that.
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Let X be the last feature output. We measure how many pixels are highlighted in the output, when adjusting
λ and our Top-GAP k pixel constraint.

Approach λ ||X||1 Accuracy ↑
last 1.0 0.141 0.63
last 0.1 0.152 0.69
all 10−5 0.119 0.69
all 10−3 0.389 0.19
ours, k = 128 1.0 0.057 0.66
ours, k = 256 1.0 0.072 0.67
ours, k = 512 1.0 0.126 0.68
ours, k = 1024 1.0 0.174 0.69
ours, k = 2048 1.0 0.193 0.68

Table A8: As we increase the constraint value k, the number of pixels increases. The same behavior is not
possible using λ. The accuracy would suffer too much.

When we increase the regularization strength from λ = 0.1 to λ = 1.0, the number of pixels only decreases
from 0.152 to 0.141. However, the accuracy decreases by 6%.

Compare this to our approach. We can decrease the number of pixels while keeping the accuracy at the
same level.

F.2 Robustness

Next, we analyze the level of robustness with respect to ℓ1 regularization.

Approach λ PGD40 ↑ FGSM
last 1.0 0.06 0.15
last 0.1 0.03 0.11
all 10−5 0.0 0.06
all 10−3 0.0 0.03
ours 1.0 0.11 0.21

Table A9: Regularizing the last layer leads to the highest level of robustness. Our approach surpasses a
simple regularization.

Regularizing only the last layer also brings a certain degree of robustness, but it comes at a price. The
accuracy is lower and we still do not achieve the same level of sparsity for λ = 1.0 as with our approach.
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