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Abstract

Google’s “quantum supremacy” announcement [3] has received broad questions
from academia and industry due to the debatable estimate of 10, 000 years’ run-
ning time for the classical simulation task on the Summit supercomputer. Has
“quantum supremacy” already come? Or will it come in one or two decades
later? To avoid hasty advertisements of “quantum supremacy” by tech giants or
quantum startups and eliminate the cost of dedicating a team to the classical sim-
ulation task, we advocate an open-source approach to maintain a trustable bench-
mark performance. In this paper, we take a reinforcement learning approach for
the classical simulation of quantum circuits and demonstrate its great potential by
reporting an estimated simulation time of less than 4 days, a speedup of 5.40×
over the state-of-the-art method. Specifically, we formulate the classical simula-
tion task as a tensor network contraction ordering problem using the K-spin Ising
model and employ a novel Hamiltonian-based reinforcement learning algorithm.
Then, we evaluate the performance of classical simulation of quantum circuits. We
develop a dozen of massively parallel environments to simulate quantum circuits.
We open-source our parallel gym environments and benchmarks.

1 Introduction
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Figure 1: Running time of different
quantum circuit simulation methods.

Google proudly announced “achieving quantum supremacy”
[3] with its 53-qubit Sycamore circuits back in 2019,
which was later challenged by researchers claiming to have
pulled ahead of Google on classical computers. Quantum
supremacy [46] aims to demonstrate that a programmable
quantum device can solve a problem that no classical com-
puter can solve in any feasible amount of time, irrespective
of the usefulness of the problem. As illustrated in Fig. 1, for
the problem of random number generation, Google’s “quan-
tum supremacy” announcement [3] relied on an estimated
simulation time of 10, 000 years on the Summit supercom-
puter, while existing works reduce it to less than 21 days
and scale the number of quantum qubits up to around 100.
This raises the debate: Has “quantum supremacy” already
come? Or will it come in one or two decades later? Our
goal is to use machine learning methods to derive the best
performance curves for the classical simulation task, to settle down the present debate and suggest
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that achieving “empirical quantum supremacy” requires continuing quantum hardware develop-
ments without an unequivocal first demonstration.

There are several existing works on the classical simulation of quantum circuits [8]. One promising
method is using tensor networks [42] since quantum circuits can be naturally represented as tensor
networks, i.e., executing a quantum gate is mathematically a tensor contraction operation. There-
fore, establishing a benchmark curve for the classical simulation task is mathematically searching
for the optimal tensor network contraction ordering (TNCO), which is a combinatorial optimization
problem [25], a variant of the well-known traveling salesman problem (TSP) where reinforcement
learning (RL) algorithms [33] have shown powerful capability. We are motivated to take a reinforce-
ment learning approach to establish state-of-the-art performance.

There is a debate on the estimate of running time for classical simulation tasks, as illustrated in Fig.
2. Huang et al. [21] used a heuristic tensor network approach on a computing cluster and estimated
the simulation time to be 21 days. Meirom et al. [34] used a reinforcement learning algorithm where
the policy network used a graph neural network and reported an order-wise reduction compared to
the best heuristic method. However, there is no available dataset for training and benchmarking
machine learning algorithms, and it is reasonable to maintain a publically trustable performance
curve for the coming quantum supremacy.

Figure 2: Debatable time estimates
of classical simulation of Google’s
Sycamore circuits.

To avoid hasty advertisements of “quantum supremacy” by
tech giants or quantum startups and eliminate their cost of
dedicating a team to the classical simulation of quantum cir-
cuits, establishing a standard benchmark is important. In
this paper, we take a reinforcement learning (RL) approach
for the classical simulation of quantum circuits and demon-
strate its great potential by reporting an estimated simulation
time of less than 4 days, a speedup of 5.40× over the state-
of-the-art method. The result demonstrates that the ”quan-
tum supremacy” claim still lacks an unequivocal first demon-
stration. Specifically, we adopt the K-spin Ising model for
the classical simulation of quantum circuits, i.e., the tensor
network contraction order (TNCO) problem, and employ the
Hamiltonian-based reinforcement learning algorithm to mini-
mize the number of multiplications. Then, we establish stan-
dard criteria to evaluate the simulation performance for Google’s Sycamore circuits. We de-
velop a dozen of massively parallel environments for training and evaluating RL agents. We
release multiple datasets, including tensor-train, synthetic, and sycamore quantum circuits, and
benchmark curves, including OPT-Einsum, Cotengra, and our RL method, on Github at https:
//github.com/XiaoYangLiu-FinRL/RL4QuantumCircuits.

We hope the AI/ML community and quantum physics community will collaborate to maintain ref-
erence curves for validating an unequivocal first demonstration of “empirical quantum supremacy”.

2 Related Works

Random circuit sampling: Random Circuit Sampling (RCS) [35] is an approach that has garnered
considerable attention within the quantum computing community. It involves the generation of
random quantum circuits, which are subsequently subjected to measurement procedures. By sam-
pling the measurement outcomes, RCS enables the evaluation of the distribution of classical output
probabilities, providing valuable insights into the computational power of noisy intermediate-scale
quantum devices. While many works [27, 38, 35] demonstrate the hardness of RCS, highlighting its
computational complexity, the reinforcement learning-based method [34] presents a promising way
to accelerate the classical simulation of RCS.

Quantum circuits for random number generation task: One notable example of the application
of quantum circiuits [53] is the random number generation. It is NP-hard since simulating a proba-
bility distribution on classical computers involves an exponential time complexity. For the problem
of random number generation, Google’s Sycamore circuit [3] was a milestone in quantum comput-
ing, which used the random circuit sampling technique to achieve the random selection process and
claimed to demonstrate “quantum supremacy”. However, it is hard for most researchers to access
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the computing resources of quantum circuits for study. It is critical to simulate the quantum circuits
and establish the dataset and benchmark performance to verify such scientific claims.

Classical simulation of quantum circuits: In the field of classical simulation, several approaches
have been proposed to simulate quantum circuits, including the matrix representation methods [8],
variational algorithms [51], and tensor network methods [42]. Among these, the tensor network
method leverages the mathematical framework of tensor networks to approximate quantum states
and perform efficient simulations. Tensor network methods, such as the matrix product state
(MPS) [16] and projected entangled pair state (PEPS) [59], have shown promising results in simulat-
ing both one-dimensional and two-dimensional quantum systems. In this paper, we take the tensor
network method for simulating quantum circuits.

Tensor network contraction [48] and the search for the optimal contraction path [4] have gar-
nered significant attention in computational physics and quantum information theory. Various tech-
niques [9] are employed to identify the most efficient way to contract tensors, minimizing computa-
tion cost. These advancements enable efficient simulation of quantum circuits. There are two pop-
ular open-source libraries, OPT-Einsum [13] and Cotengra [18] (CTG-Greedy and CTG-Kahypar),
while Cotengra achieves state-of-the-art performance for most tensor networks.

Ising model: The Ising model [11] can serve as a unified formulation of combinatorial optimization
problems, including graph coloring, maximum cut problems, and traveling salesman problems. The
Ising model describes a system of interacting spins that can be either up or down, representing binary
variables in studied problems. By mapping the studied problem onto an Ising model, the problem
can be reformulated as finding the configuration of spins that minimizes the corresponding energy
function [57]. The tensor network contraction problem can be analyzed into one kind of combination
problem, especially the TSP. Thus, it motivates us to model the tensor network contraction problem
as the Ising model and learn the optimal tensor contraction path by minimizing the energy function
to reduce the computation complexity.

AI/ML + X: In recent years, the integration of artificial intelligence (AI) and machine learning (ML)
techniques in scientific research has revolutionized various domains [12, 26, 6, 23]. The application
of AI/ML in scientific fields, often referred to as AI+X or machine learning for science, has brought
about significant advancements and novel approaches to solving complex problems [54]. For exam-
ple, tensor network factorization can be used for probabilistic modeling [15]. The quantum entan-
glement can be built as a fundamental connection with deep neural network design [28]. Quantum
K-spin Hamiltonian Regularization is proposed to stabilize the reinforcement learning process [29].
A recent study uses the tensor network-based quantum circuits for image classification [19].

3 Classical Simulation of Quantum Circuits Using Tensor Networks

We use uppercase calligraphic letters to denote tensors, e.g.,X ∈ RI×J×K , uppercase and lowercase
boldface letters to denote matrices and vectors, e.g., X ∈ RI×J and x ∈ RI .

3.1 Quantum Circuits

Qubits: A qubit in a superposition state can be represented as |φ〉 = α0 |0〉+α1 |1〉, where α0, α1 ∈
C, and |α0|2 + |α1|2 = 1. For n qubits, we use a linear combination of 2n coefficients and states
|0...0〉, |0...1〉, · · · |1...1〉, respectively,

|ψ〉 = α0...0 |0...0〉+ ...+ α1...1 |1...1〉 , (1)

where α0...0, ..., α1...1 ∈ C, and |α0...0|2 + ...+ |α1...1|2 = 1.

Quantum gates: Single- and double-qubit quantum gates are building blocks of quantum circuits,

• Single-qubit gate:

√
X =

1√
2

[
1 −i
−i 1

]
,
√
Y =

1√
2

[
1 −1
1 1

]
,
√
W =

1√
2

[
1 −

√
−i√

−i 1

]
, (2)
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• Double-qubit gate:

fSim(θ, φ) =

 1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 exp−iφ

 , (3)

where θ ≈ π/2 and φ ≈ π/6 are used in the Sycamore quantum circuits.

Quantum circuits consists of a sequence of quantum gates. For a given initial state |ψ0〉
and a quantum circuit U = Um · · ·U1, the final state is |ψ〉 = Um × · · · × U1 |ψ0〉.
Fig. 3 illustrates an example of 4 qubits and a circuit U of m = 2 cycles. the ini-
tial state |ψ0〉 = |0000〉. The quantum circuit U takes an initial state |ψ0〉 of n qubits
as input, performs m cycles of gate operations, and outputs a bit-string i1...in of length n.

Figure 3: A quantum circuit where the
classical simulation lies in the middle.

In the i-th cycle, two operations are performed:

1. A single-qubit gate Rj
i ∈ C2×2 randomly selected

from set {
√
X,
√
Y ,
√
Z} is applied to |ψi−1〉j , re-

sulting in state |ψi〉j = Ri |ψi−1〉j .
2. Then, execute a two-qubit quantum gate Up

i ∈
C4×4 to |ψi−1〉p and |ψi−1〉p+1 and obtain a new
state |ψi〉p,p+1. Specifically, during an odd cycle,
qubit pairs with indices originating at 0, such as
(0, 1), (2, 3), are chosen. For even cycles, qubit pairs
with indices starting at 1 are selected, including pairs such as (1, 2), (3, 4). This systematic ap-
proach ensures the appropriate application of the Up

i operation on the designated qubit pairs.

Before measurement, each qubit |ψm〉j undergoes a random single-qubit quantum gate Rj
m+1.

The random binary bit-string i1...in is sampled from the probability distribution P =
|〈i1i2...in| |ψm+1〉 |2, which is obtained from the measurement outcome. More details about the
random circuit sampling can be found in Appendix A.

3.2 Random Circuit Sampling

Quantum supermacy: Quantum supremacy refers to a major milestone in quantum computing,
representing the point at which a quantum computer can solve a specific problem that is practically
infeasible for classical computers to solve within a reasonable timeframe. It is a demonstration of the
superior computational power of quantum systems compared to classical counterparts. Achieving
quantum supremacy signifies the ability of a quantum computer to perform computations exponen-
tially faster than even the most powerful classical supercomputers.

A quantum circuit defines a distribution: Quantum circuit is a sequence of quantum operations or
gates applied to a set of qubits. These gates manipulate the quantum state of the qubits, transforming
them according to the specific operations performed. At the end of a quantum circuit, measurements
are typically performed on the qubits, extracting classical information from the quantum system.
The results of these measurements are probabilistic, meaning that they occur with certain probabil-
ities. Therefore, a quantum circuit defines a distribution by specifying how these probabilities are
distributed among the different possible measurement outcomes.

For example, given a quantum circuit U , the initial state |0〉, and the output sampling bit-string
x = a1a2...an ∈ {0, 1}n, the modeled probability is p(x) = |〈x|U |0〉 |2. The Google team used [1]
the following noise model for the noisy samples produced by the Sycamore circuits,

Nc(x) = φPC + (1− φ)2−n, (4)

where φ is a fidelity parameter describing the quality of the sample, PC is the probability distribution
defined by the quantum circuit. The parameter φ is estimated by follows,

φ =
∏
g∈G1

(1− eg1)
∏
g∈G2

(1− eg2)
∏
q∈Q1

(1− eq), (5)
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where G1 is the set of single-qubit gate, G2 is the set of double-qubits gate, and Q1 is the set of
qubits. Google set [1] eg1 = 0.16%, eg2 = 0.62% and eq = 3.8%.

XEB [2]: XEB stands for “Linear Cross-Entropy Benchmarking” and is a metric used to assess
the performance of quantum processors. It quantifies the fidelity of a quantum computer’s output
compared to a classical reference model. Mathematically, XEB is defined as:

FXEB(x) = 2n
1

M

∑
x∈D

p(x)− 1, (6)

where we have a collection of M random bit-strings D = {x1, ..., xM}. If a random quantum
circuit runs without errors, we have FXEB = 1. If bit-strings are sampled from a classical uniform
distribution, we have FXEB = 0.

By evaluating the XEB metric, researchers can assess the performance of quantum circuits. It pro-
vides a quantitative measure of how well a quantum computer reproduces the expected outcomes
and is a valuable tool for evaluating and improving quantum computing technologies.

3.3 Classical Simulation Using Tensor Networks

The classical simulation task aims to efficiently calculate U = Um · · ·U1 in (7) on classical
computers, as marked red in Fig. 3. It is mathematically a combinatorial optimization problem
tensor network contraction ordering (TNCO).

|ψ〉 = Um × · · · ×U1︸ ︷︷ ︸
classical simulation task

|ψ0〉 . (7)

Tensor contraction operation: Given two tensors X ∈ RI×J×K and Y ∈ RK×M×N , their con-
traction results in a 4D tensor Z ∈ RI×J×M×N where

Zi,j,m,n =

K∑
k=1

Xi,j,kYk,m,n, (8)

which takes IJKMN multiplications. Using the tensor diagram representation, as in Fig. 4, a node
denotes a tensor and an edge denotes a tensor contraction operation.

Tensor network representation: Leaving the input quantum bits and the final measurement out, the
quantum circuit U = Um · · ·U1 can be represented as a tensor network. Specifically, a single-qubit
gate R is represented as a matrix (a 2D tensor), while a double-qubit quantum gate U is represented
as a 4D tensor. Using tensor diagrams, a quantum circuit in Fig. 3 is mapped into a tensor network
in Fig. 4. Note that the final result of the classical simulation task is an 8D tensor shown in Fig. 4.
We provide more details about the tensor representations in Appendix B.

Simulation efficiency: We would like to illustrate that the contraction ordering for calculating
U = Um · · ·U1 is critical to the simulation efficiency. Different orderings may result in a sig-
nificant difference in the number of multiplications. The difference may be hundreds of orders for
quantum circuits with a large number of qubits and many cycles [34]. For a simple example in
Fig. 4, two contraction orderings (blue and red) for the same quantum circuit involve 976 and 5056
multiplications, respectively.

4 Tensor Network Contraction Ordering Using Reinforcement Learning

First, we formulate the classical simulation task as a combinatorial optimization problem, i.e., tensor
network contraction order (TNCO). Then, we adopt a K-spin Ising model whose Hamiltonian is
used as the loss function to train a policy network via curriculum learning. We also provide a pool
of implementation tricks to improve training efficiency and boost performance.

4.1 Problem Formulation

Tensor network contraction order (TNCO). Given a tensor network G = (V,E), a contraction
path P = (e1, . . . , en−1) , et ∈ Et, and a corresponding sequence of graphs (G1, . . . Gn−1), the
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Figure 4: For the quantum cirtuis in Fig. 3, two contraction orderings (blue and red) involove 976
and 5056 multiplications, respectively.

goal is to find a path P with minimum cost,

P ∗(G) = argminP

n−1∑
t=1

Rt (et)

s.t. P = (e1, . . . , en−1) , et ∈ Et,
(9)

where Et is the set of remaining edges between tensors, Gt is the tensor network af-
ter t-th tensor contraction and the reward Rt is defined as the number of multiplica-
tions for the tensor contraction along edge et. This formulation is consistent with [34].

Figure 5: An example of tensor network contraction.

Consider an example in Fig. 5, graph
G1 has V1 = (1, 2, 3, 4), E1 =
(k, j,m, i, s), w = {K,J,M, I, S}. As-
suming that the first contraction operation
is on index m in G1, tensors 3 and 4
are contracted into tensor 34 at a com-
putation cost of IJMS multiplications.
Then, the graph is updated to G2 with
V2 = (1, 2, 34), E2 = (k, ij, s), w =
{K, IJ, S}. Assuming the second con-
traction operation is on index k in G2, tensor 1 and 2 are contracted into tensor 12 at a computation
cost of SKIJ multiplications. The updated graph G3 has V3 = (12, 34), E3 = (sij), w = {sij}.
Finally, tensors 12 and 34 are contracted into a real number using SIJ multiplications. The total
number of multiplications is IJMS + SKIJ + SIJ .

4.2 The Proposed Reinforcement Learning Method

First, we reformulate (9) into an Ising model. Then, we extend it to a K-spin Ising model, which
allows training a policy network using the curriculum learning method [5].

TNCO using Ising model: The Ising model of TNCO problem usesN2 spins xu,j , where u denotes
the tensor and j denotes its order in the TNCO path. We use J iu,v to denote the cost introduced by
the tensor contraction between u and v for the i-th order, i.e., the number of multiplications. The
energy of the original TNCO problem has three terms. The first term requires each tensor to appear
at least once in the TNCO path. The second term requires there are exactly two tensors selected at
order j along a path. The third term measures the contraction cost at order j. These are encoded in
the following Hamiltonian:

H(x) =

N−1∑
i=1

{
(2−

N−i∑
u=1

xu,i)
2 +

N∑
u=1

N∑
v=1

J iu,vxu,ixv,i

}
. (10)

As shown for example, in Fig. 6, it can be computed by H(x) = (2 − x1,1 − x2,1 − x3,1 −
x4,1)

2 + (2−x1,2−x2,2−x3,2)
2 + (2−x1,3−x2,3)

2 +w1(1, 4)x1,1x4,1 +w1(1, 2)x1,1x2,1 +
w1(2, 3)x2,1x3,1 +w1(2, 4)x2,1x4,1 +w1(3, 4)x3,1x4,1 +w2(1, 3)x1,2x3,2 +w2(1, 2)x1,2x2,2 +
w2(2, 3)x2,2x3,2 + w3(1, 2)x1,3x2,3
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Figure 6: Illustration of TNCO problem: conventional Ising model vs. our K-spin Ising model.

TNCO using K-spin Ising model: Our solution takes K steps to solve the TNCO problem, i.e.,
x1 → x2 → · · · → xK , which can be encoded in the following Hamiltonian,

H(x1, · · · ,xK) =

K∑
k=1

H(xk) +

K∑
k=1

∑
i1∈V 1

· · ·
∑
ik∈V k

J1···k
i···i x

1
i1 · · ·x

k
ik
, (11)

where Ji1···ik =
∑K
k=2 γ

K−kw(i1, i2)w(i2, i3) · · ·w(ik−1, ik).
Policy network: We build the policy network with a transformer neural network. We represent the
tensor network with an undirected graph, demonstrated as a symmetric matrix M . If i-th and j-th
tensors are connected with a shared index d, then Mi,j = d. The policy network takes M as input
and generates the contraction ordering P = (e1, ..., en−1), where et ∈ Et is the connected edge
between u-th and i-th tensors xu,i.

Challenges: Several challenges for using RL algorithms include the wide dynamic range, huge
search space, slow convergence due to Heavy-tailed cost distribution, incorporating existing solvers,
and credit assignment problem [34]. The sampling bottleneck is a major challenge in training RL
agents [32]. Next, in Section 4.3, we develop a pool of implementation tricks to overcome these
challenges, including massively parallel gym-environment, learning to optimize, dual replay buffers,
swarm intelligence, and curriculum learning.

4.3 Implementation Tricks

Massively parallel gym-environment. The sampling bottleneck is a major challenge in training RL
agents. We implement a massively parallel gym-environment to accelerate the sampling efficiency.
We initialize N independent environments and generate and forward different tensor network con-
traction paths to these environments at each step. Each environment performs the contraction oper-
ations according to the given path, yielding the next state and calculating the number of multiplica-
tions as rewards. We store these transitions, including the tensor networks and their corresponding
multiplications, in the replay buffer.

Learn to optimize. We adopt the learn-to-optimize (L2O) strategy [10] for training an RL agent.
Instead of using conventional optimizers like Adam or Nestrov, we employ a long-short-term mem-
ory (LSTM) network. It takes the current gradient and loss value as inputs and produces gradients.
This L2O strategy effectively accelerates the convergence process, particularly in the presence of a
Heavy-tailed cost distribution. This approach enables faster and more efficient training by dynami-
cally adapting the parameter updates based on the current gradient and loss value.

Dual replay buffers. We maintain two replay buffers, one saves the tensor contraction ordering from
the agent in an iterative rollout manner, and the other saves high-quality tensor contraction orders
so far. The reason for two replay buffers is that we want to avoid high-quality tensor contraction
ordering being deleted by the rule of first in, first out (FIFO) due to the GPU memory limit. We
use the Hamiltonian value to measure the quality. We sample from two replay buffers alternatively
during the training process, which stabilizes the RL training.

Swarm intelligence. We train multiple optimizers since different optimizer is easily stuck into
local optima [7, 39]. To mitigate the impact, different optimizer shares knowledge with others reg-
ularly, thus escaping local optima and approaching the global optima. Specifically, during training,
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optimizers keep the top-N solutions while optimizers share them. Rather than directly using the
orderings for training, the optimizer will manually add some noise to the shared orders to search for
the solution in the neighborhood of that local optimum.

Curriculum learning. We apply curriculum learning method [5, 17, 62]. With an acceptable
performance on small-scale tensor network contraction problems, the optimizer has successfully
escaped multiple local optima. The optimizer may approach the global optima when varying the
studied tensor networks from small to large scale. We have two tricks for measuring the problem
scale: the number of iterations and parameter freezing strategies.

• The first trick is varying the number of iterations, K. A large K may result in insufficient
optimization, while in contrast, small-scale optimization problems corresponding to a small
K may experience over-fitting. Therefore, starting with an initial large K, we gradually
decrease K during the training process.

• The second trick is masking network parameters, i.e., freezing different ratios of param-
eters. Specifically, at first, we randomly freeze 90% of the parameters and optimize the
rest 10% parameters, which is easy to optimize. Then, we gradually decrease the ratio of
masked parameters. It can help the optimizer escape the local minima.

Note that the two curriculum learning tricks can be integrated with the swarm intelligence trick to
boost performance.

5 Performance Evaluation and Benchmark

We present experimental results on both synthetic tensor networks and Google’s Sycamore circuits.
Further, we investigate the scalability performance of our method for large-scale quantum circuits
that have a similar structure to Google’s Sycamore circuits.

5.1 Baseline Methods

We provide the following five baselines for verification purposes:

• OE-GREEDY [13]: an open-source solver from OPT-Einsum library, which uses the
greedy search algorithm to find the optimal tensor contraction path.

• CTG-Greedy [18]: an open-source solver from the Cotengra library, which uses the greedy
search algorithm to find the optimal tensor contraction path.

• CTG-Kahypar [18]: A robust graph partitioning-based solver from the Cotengra library,
which achieves state-of-the-art results in many tensor networks.

• ACQDP [21, 22]: Using the stem optimization, including the hypergraph partitioning, local
optimization, and dynamic slicing, to search the optima tensor contraction order2.

• RL-TNCO [34]: an RL approach combined with graph neural networks to search the opti-
mal tensor contraction order, which is one of the state-of-the-art methods for the classical
simulation of quantum circuits3.

Experiment setup. We conducted all experiments on a DGX-2 server with NVIDIA A100 GPUs,
each of which consists of 48 GB device memory. There are two Intel(R) Xeon(R) Gold 5118 CPUs.
Each of CPUs has 12 cores @2.30GHz supporting 24 hardware threads. There are 128 GB DDR4
memories on the server. We set the learning rate η as 3 × 10−3 with a decay factor 0.9 (reduce the
learning rate every 1, 000 epochs), and the total number of epochs is 1, 000, 000. We set K = 3
for our K-spin Ising model. The number of parallel environments is 2048, while the large-scale
cases use 1024. When the number of tensors increases, the GPU memory consumption increases;
therefore, we use 1024 environments for large-scale tensor networks.

2It is not generalizable to all tensor networks. We only add ACQDP’s performance in Sycamore circuits.
3The codes are not public, so we took results from Table 3 of the paper [34].
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5.2 Verification on Synthetic Tensor Networks

Synthetic tensor-train networks. We tested tensor-train networks with tensors from 400 up to
2000. From Table 1, our RL-Ising method achieves a speedup of 2× over the CTG-Kahypar method
for tensor size from 400 to 1000. Both OE-Greedy and CTG-Greedy cannot work for the problem
instances with over 1, 500 tensors, while the RL-Ising method exhibits good scalability, outperform-
ing CTG-Kahypar by a speedup of 1.73× for tensor sizes 1500 and 2000.

Table 1: Results on synthetic tensor-train networks.

Tensors 400 600 800 1000 1500 2000
Scale ×10120 ×10180 ×10241 ×10301 ×10451 ×10602
OE-Greedy [13] 17.22 27.67 4.44 3.83 - -
CTG-Greedy [18] 10.33 16.60 2.67 4.28 - -
CTG-Kahypar [18] 10.23 16.60 4.67 4.26 14.12 4.57
RL-Ising 5.16 8.28 2.14 2.14 7.01 2.29

Synthetic random tensor networks. We generate random tensor networks with the same settings
in [34]. Random networks were generated with varying tensors, namely 25, 50, 75, and 100. The
connections in these networks were assigned an average degree of 3, with the degrees of individual
nodes independently drawn from the set {2, 3, 4, 5, 6}. We report the mean and median results of 5
random instances for each size. As given in Table 2, our RL-Ising method outperforms all baselines
with a speedup of 3.98×.

Table 2: Number of multiplications for synthetic random tensor networks.

Qbits 25 50 75 100
Scale ×104 ×107 ×1010 ×1012
OE-Greedy [13] 53.7/27.7 75.4/11.3 104/4.5 5296/26.4
CTG-Greedy [18] 40.3/20.3 12.8/ 4.2 8.3/0.9 27.9/ 2.2
CTG-Kahypar [18] 46.4/24.8 13.4/ 4.3 4.1/0.4 54.2/ 1.2
RL-TNCO [34] 13.1/12.5 3.2/ 1.8 1.2/0.2 5.5/ 1.8
RL-Ising 12.5/11.4 2.5/ 1.5 0.7/0.1 4.9/ 1.1

5.3 Benchmark Performance on Google’s Sycamore Circuits

Google’s Sycamore circuits [3] has 53 qubits and m cycles, m = 12, 14, 16, 18, 20. As shown in
Fig. 3, each cycle has one layer of random single-qubit gates and one layer of two-qubit gates. In
different cycles, the two-qubit gates are applied to different pairs of quantum qubits.

The results are summarized in Table 3. Specifically, the RL-Ising method outperforms the
RL-TNCO method with a speedup of 2.84×. With 20 cycles, our RL-Ising method has
a speedup of 4.64× over the CTG-Kahypar method, 5.40× over the ACQDP method, and

Table 3: Number of multiplications for Google’s Sycamore circuits.

Cycles m = 12 m = 14 m = 16 m = 18 m = 20
Scale ×1010 ×1012 ×1013 ×1016 ×1018
OE-Greedy [13] 6.23× 107 4.77× 107 7.74× 1012 6.21× 1010 9.59× 108

CTG-Greedy [18] 1.16× 107 1.91× 107 1.42× 1010 3.71× 107 4.19× 107

CTG-Kahypar [18] 2.55× 103 1.41× 102 1.03× 104 48.0 6.69
ACQDP [21] 1.09× 103 71 1.15× 104 25.8 6.65
RL-TNCO [34] 5.44 7.39 - - 3.49
RL-Ising 1.31 1.07 9.27 12.98 1.23
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2.42× over the RL-TNCO method. The estimated running time of ACQDP is 21 days [21,
22]; therefore, the estimated running time of our RL-Ising method is 21/5.40 ≈ 3.9 days.

Figure 7: Number of multiplications (in log-scale)
by different methods.

We provide a comparison of different methods
in Fig. 7. With an increasing number of cycles,
the number of multiplications in the log scale
increases linearly, which corresponds to expo-
nential trends (as illustrated in Fig. 1). Both
RL methods, the RL-TNCO method and our
RL-Ising method, are much lower than existing
heuristic methods. Furthermore, the RL-Ising
method is lower than that of the RL-TNCO
method, with an improvement of 0.384 orders.

Take-home message I: The “quantum
supremacy” claim still lacks an unequivocal
first demonstration, since Google’s announce-
ment [3] was under serious questions due
to the debatable estimate of 10, 000 years’
running time for the classical simulation task
on the Summit supercomputer.

Table 4: Number of multiplications on large-scale quantum circuits.

Qbits 100 200 300 400 500
Scale ×1021 ×1023 ×1025 ×1028 ×1033
OE-Greedy [13] 8.31× 109 2.26× 109 6.90× 1011 7.55× 1011 4.34× 109

CTG-Greedy [18] 3.34× 108 4.24× 108 5.37× 109 4.49× 109 1.38× 109

CTG-Kahypar [18] 3.96× 104 2.31× 104 3.51× 103 6.25× 102 4.18× 102

RL-Ising 3.85 5.12 2.27 3.98 1.84

5.4 Scale Up to Large-Scale Quantum Circuits

Scalability is very important for evaluating future hardware developments. We scale up to large-
scale quantum circuits with 100, 200, 300, 400 and 500 qubits, respectively. There are 20 cycles
for each generated quantum circuit, taking a similar structure as in Fig. 3. As given in Table 4, our
RL-Ising method surpasses all the baseline methods with 227 speedups. With increasing the scale of
quantum circuits, the performance gap between our method and the runner-up method CTG-Kahypar
becomes large. It further shows the strong scalability of our RL-Ising method.

Therefore, we believe that reinforcement learning methods have great potential for finding the best
performance curve.

Take-home message II: To validate “empirical quantum supremacy” for future quantum hardware
developments, the machine learning community is expected to play a critical role in maintaining
publicly trustable benchmark performances with open-source training datasets..

6 Conclusion and Future work

In this paper, we have demonstrated the potential of a reinforcement learning approach for the clas-
sical simulation of quantum circuits. We reported an estimated simulation time of less than 5 days,
which is a remarkable speedup of 4.62× over the state-of-the-art heuristic methods. We conduct ex-
tensive experiments to evaluate the classical simulation performance. Moreover, we have developed
parallel gym environments and benchmarks, which are openly accessible as open-source resources.

However, the provided environments may not cover all types of classical simulation tasks. The best
performance is an open question, which asks for continuing efforts. This project may initiate long-
term collaborations from the AI/ML and quantum physics communities to maintain reference curves
for validating the “empirical quantum supremacy” and drive continuing hardware advancements.
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Appendix A Classical simulation task

It should be needed to sample one million samples, achieving the required XEB.

Fig. 3 shows a corresponding circuit example. It has n = 2 qubits for the initial state |ψ0〉 and
m = 2 cycles. The sampling process using the quantum circuit is computed as follows,

1. In the first cycle, random selected single-qubit quantum gates are first applied to all the
four qubits of |ψ0〉; Then, the double-qubit quantum gates are applied to R0

1 |ψ0〉0,1 and
R2

1 |ψ0〉2,3, respectively, and obtain |ψ1〉;
2. In the second cycle, random selected single-qubit quantum gates are first applied to all the

four qubits of |ψ1〉; Then, the double-qubit quantum gates are applied to R1
2 |ψ1〉1,2, and

obtain |ψ2〉;
3. Next, random selected single-qubit quantum gates are first applied to all the four qubits of
|ψ2〉, and obtain Rj

2 |ψ1〉j , j = 0, 1, 2, 3;

4. Last, we have a measurement αi1i2i3i4 = 〈i1i2i3i4 |ψ3〉. The sampled output is a bit-string
αi1i2i3i4 .

Algorithm 1 Random circuit sampling
1: Input: initial state |ψ0〉, number of cycles m, single-qubit quantum gate {

√
X,
√
Y ,
√
W }, double-qubit

quantum gate Ui,
2: for i = 1, ...,m do
3: for j = 0, ..., n− 1
4: Rj

i ← randomly select from {
√
X,
√
Y ,
√
W },

5: |ψi〉j = Rj
i |ψi−1〉j ,

6: end for
7: for j = (i+ 1)%2, ..., n/2− 1
8: p← compute the manipulate quantum bit index 2j + (i+ 1)%2
9: |ψi〉p,p+1 = Up

i |ψi−1〉p,p+1,
10: end for
11: end for
12: for j = 0, ..., n− 1
13: Rj

m+1← randomly select from {
√
X,
√
Y ,
√
W },

14: |ψm+1〉j = Rj
m+1 |ψm〉j ,

15: end for
16: Obtain a measurement by αi1i2...in = 〈i1i2...in |ψm+1〉,
17: Output: a bit-string αi1i2...in .

Quantum circuits: There have been many quantum circuits proposed as follows,

• Sycamore quantum [3]: It consists of 53 qubits and 20 cycles. For the Boson sampling
problem, it only needs 200 seconds to finish this task, while it needs 10, 000 years for
classical simulation.

• Jiu Zhang [60]: It consists of 74 qubits. For the Gaussian Boson Sampling problem, it can
use 200s to finish up to a million times compared with classical simulations.

• Zuchongzhi [61]: It has 60 qubits with the number of 24. The achieved sampling task is
about 6 orders of magnitude more difficult than that of Sycamore in the classic simulation.

Appendix B Data Generators and Reinforcement Learning Environments.

B.1 Tensor Network Representations

We use the unidirectional graph to represent the tensor network. Specifically, for a given tensor net-
work with n tensors, we use a symmetric n×nmatrix M to represent the dimensional relationships
between tensors, which is named the dimension matrix. Specifically, if the tensors with index i and
j are connected with a shared dimension as dij , then we set Mij = Mji = dij , otherwise, it is
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Figure 8: Example of the tensor network contraction environment.

set as 0. We also denote a connection matrix C, where Cij = Cji = 1 indicates the connection
between the i-th tensor and j-th tensor.

B.2 Tensor Network Contraction

We employ tensor network contraction as the underlying computational framework in our quantum
circuit simulation. Given a specific tensor network structure and a specified contraction order, the
environment is designed to provide the number of multiplications required during the tensor con-
traction process.

Specifically, as illustrated in Figure 8, we consider a tensor network comprising 4 tensors connected
in a grid structure. When performing a tensor contraction between tensors C and D, it is necessary
to compute the number of multiplications involved. From the unidirectional graph representation,
tensor C has dimensions M × J , tensor D has dimensions S × I ×M , and a shared edge with
dimension M exists.

To contract tensorsC andD along the edge with dimensionM , the number of multiplications can be
computed as (MJ)×(SIM)

M . This expression takes into account the multiplication of the dimensions
MJ from tensor C and SIM from tensor D, divided by the shared dimension M .

Upon completing the contraction, it is essential to update the unidirectional graph representation.
The contracted tensor formed by the contraction of C and D retains an independent edge with di-
mension M (M33 = M34 = M43 = M44 = M ). The connected edges between the contracted
tensor (C or D) and other tensors are determined by multiplying the original edge dimensions be-
tween them (M23 = M24 = M32 = M42 = IJ). This update to the unidirectional graph ensures
accuracy and reflects the changes resulting from the contraction step.

By incorporating the update of the unidirectional graph and computing the number of multiplica-
tions, we complete the current simulation step.

B.3 Verification

Unified representation: We use a tuple consisting of the contracted tensor indices to represent the
tensor contraction order. The resulting tensor is labeled as a new index. As shown for example in
Fig. 5, we first write down (3, 4) for the first contraction operation. We label the generated tensor 34
as 5. Next, we use (1, 2) to label the second tensor contraction operation and 6 to label the resulting
tensor 12. Last, we contract the tensor 12 and 34, where we use (5, 6) to represent the contraction
record. Thus, we have the contraction order {(3, 4), (1, 2), (12, 34)}
Calculating the number of multiplications: Given the tensor contraction order, we will compute
the number of involved multiplications. In Fig. 5, using different optimizers, we can get a specific
contraction order, like {(3, 4), (1, 2), (12, 34)}. We first contract the 3-th and 4-th tensor, of which
the number of multiplication is IJMS. Then, for the contraction order (1, 2), we have the num-
ber of multiplication as SKIJ . Last, for the contraction order (12, 34), we have the number of
multiplication as SIJ .
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(a) Tensor-train network. (b) Tensor-ring network.

Figure 9: Illustration of the tensor train and tensor ring network.

B.4 Datasets for Different Tensor Networks

In this section, we will first introduce the data structure used to describe the relationships between
different tensor nodes. Then, we will demonstrate the generation process of the dataset for different
tensor networks.

Data Structure: The tensor network can be represented as an undirected graph G = {V,E,w} and
is amenable to be stored using the adjacent table, which can be defined as follows (C-format),

1 c l a s s TensorNetwork {
2 i n t V; / / number o f t e n s o r nodes
3 i n t E ; / / number o f edges
4 Queue [ ] a d j ; / / a d j a c e n t nodes f o r each node
5

6 TensorNetwork ( i n t V) { / / i n i t t h e g raph
7 t h i s .V = V; t h i s . E = 0 ;
8 t h i s . a d j = new Queue [V ] ;
9 f o r ( i = 0 ; i < V; i ++) {

10 t h i s . a d j [ i ] = new Queue [ ] ;
11 }
12 }
13 vo id AddEdge ( i n t v , i n t w) { / / add t h e edges
14 i f (w > v ) v , w = w, v ;
15 t h i s . a d j [ v ] . enqueue (w) ;
16 t h i s . E++;
17 }
18 vo id B u i l d ( . . . ) ; / / d i f f e r s i n d i f f e r e n t t e n s o r n e t w o r k s
19 }

Specifically, we use V and E to save the number of tensor nodes and edges, respectively. The
variable adj is a queue with flexible length, where adj[j] is also a queue to save the adjacent tensor
nodes. Given the total number of tensor nodes V , TensorNetwork(V ) is used to initialize the
undirected graph, where each tensor node is assigned an empty queue. The addEdge(·, ·) is invoked
to add the connected relationship between the connected tensor nodes v andw. We make a simplified
assumption that only the larger index w can be added to the adjacent queue of v. Different tensor
network differs in the implementation of the Build(...) function, which invokes the addEdge(·, ·)
depending on the specified tensor network structure.

Tensor-Train Network or Matrix Product States: The matrix product state (MPS) [41, 56] or
tensor-train (TT) represents a tensor as a chain-like contraction of third-order tensors with the head
and tail as matrices. The tensor diagram of MPS/TT is shown in Fig. 9(a).

MPS has been widely used in modeling quantum circuits such as [47, 16, 45]. In the Build(...)
function, for each tensor node i, we need to use the AddEdge(i, i + 1) to add the i + 1-th node to
the adjacent lists of i-th node, i < |V | − 1. We can set up different number of tensor nodes N to
generate the dataset for MPS tensor network.

1 vo id TensorNetwork : : B u i l d ( ) { / / B u i l d f o r MPS
2 f o r ( i = 0 ; i < t h i s . V−1; i ++) t h i s . AddEdge ( i , i +1) ; }
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The generation code for the tensor-train network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/mps/mps_generate.py.

Tensor ring network: The tensor ring (TR) represents a high-order (or high-dimensional) tensor by
a sequence of 3rd-order tensors that are multiplied circularly, whose tensor diagram notation can be
represented in Fig. 9(b).

The tensor-ring network has been utilized to simulate the quantum circuit in [44].

The main difference between the tensor ring and the MPS tensor network is that the first and last
tensor nodes in tensor ring network are also connected. Thus, only a minor modification of MPS
generation can be applied to generate the tensor ring network.

1 vo id TensorNetwork : : B u i l d ( ) { / / B u i l d f o r t r e e t e n s o r
2 f o r ( i n t i = 0 ; i < t h i s .V; i ++)
3 t h i s . AddEdge ( i , ( i +1)%t h i s .V) ; }

The generation code for the tensor-ring network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/tr/tr_generate.py.

Tree Tensor Network: Tree tensor network (TTN) [37, 52, 55] or Hierarchical Tucker (HT) is a
generalization of MPS that encodes a tree entanglement structure. The diagram notation of a TTN
can be represented in Fig. 10.

Figure 10: Tree tensor network.

Tree tensor network has been used to model the quantum [24, 50], and quantum chemistry [36, 37].

Tree tensor network is a fully binary tree structure, of which the number of tensor nodes depends on
the height. we reload the initialization function and write the build function as follows,

1 TensorNetwork : : TensorNetwork ( i n t H) { / / i n i t t h e g raph
2 t h i s .H = H; t h i s .V = pow ( 2 ,H) − 1 ; t h i s . E = 0 ;
3 t h i s . a d j = new Queue [V ] ;
4 f o r ( i = 0 ; i < V; i ++) {
5 t h i s . a d j [ i ] = new Queue [ ] ;
6 }
7 }
8 vo id TensorNetwork : : B u i l d ( ) { / / B u i l d f o r t e n s o r r i n g
9 t h i s . AddEdge ( 0 , 1 ) ; t h i s . AddEdge ( 0 , 2 ) ;

10 f o r ( h = 1 ; h < t h i s .H; h ++){
11 f o r ( v = pow ( 2 , h −2) ; v < pow ( 2 , h −1) + 1 ; v ++){
12 t h i s . AddEdge ( v , 2v ) ; t h i s . AddEdge ( v , 2v +1) ;
13 }
14 }
15 }
16

The generation code for the tree tensor network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/tree/tree_generate.
py.

PEPS Network: The PEPS (projected entangled pair state) tensor network [49, 58] generalizes MPS
from a one-dimensional network to a network on an arbitrary graph, whose tensor diagram notation
can be represented in Fig. 11.

Some work applies the PEPS network to quantum circuits [43] and quantum systems [40, 31].
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Figure 11: PEPS tensor network.

The generation code for the PEPS network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/peps/peps_generate.
py.

MERA Network: The MERA (Multiscale Entanglement Renormalization Ansatz) [14] tensor net-
work colleagues as a refinement of the MPS and PEPS. It has a hierarchical structure, with layers
of tensors representing increasingly coarse-grained degrees of freedom, which can be represented in
Fig. 12.

Figure 12: MERA tensor network.

Some work applies the MERA network to quantum circuits [1, 20, 1, 30].

The generation code for the MERA tensor network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/mera/mera_generate.
py.

Google’s Sycamore Circuits: Some work has put efforts into transforming the Sycamore circuits
into tensor representations. The provided data is usually organized into the adjacent graph structure,
while the indices of the i-th row are the indices of connected tensors to i-the tensor. The tensor
network representation of the Sycamore circuits corresponds to a complicated net structure. To map
the Sycamore circuits into the tensor network environment, we need to iteratively read each line of
the given Sycamore file and fill it up with corresponding dimension information.

The generation code for the Sycamore circuit is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/tree/main/datasets/sycamore.

B.5 Environment

We provide the gym-environment for the tensor network contraction problem in our clas-
sical simulation of quantum circuits. The code is provided in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/rl/mps/env.py for tensor-train ten-
sor network and https://github.com/XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/
main/rl/sycamore/env.py for Sycamore circuits.
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Specifically, the gym-environment for the tensor network contraction problem in our classical sim-
ulation of quantum circuits is designed as follows,

• Init/Restart: initialize the states of environments, including the number of nodes, the num-
ber of edges, etc.

• Step: Given the tensor network contraction order, compute the number of involved multi-
plications as the reward. The rewards are represented in log scale.

The implementations can be found in init(), and get log10 multiple times() functions of our env.py.

B.6 High-Performance Reinforcement Learning for TNCO

Mapping onto the K-spin Ising Model: We use the K-spin Ising model to formulate the TNCO
problem as follows,

H(x) =

N−1∑
i=1

(2− N−i∑
u=1

xu,i

)2

+

N∑
u=1

N∑
v=1

Jui,vixu,ixv,i

 ,
H(x1, ..., xK) =

K∑
k=1

H(xk) +

K∑
k=1

∑
i1∈V 1

...
∑

i1∈V k

Ji1...ikx
1
i1 ...x

k
ik ,

(12)

where we denote the N(N − 1) spin as xu,j , u as the tensor and j denotes its order in the TNCO
path.

We use the variational annealing methods to solve the K-spin Ising model problem of TNCO. Specif-
ically, we minimize the KL divergence between the transition distribution of x to x′ with the target
Boltzmann distribution as follows,

DKL(qθ||p) =
∑
x

qθ(x→ x′) ln

(
qθ(x→ x′)

p(x→ x′)

)
=
∑
x

qθ(x→ x′) ln qθ(x→ x′)

+
qθ(x→ x′)(H(x)−H(x′))

T
+ lnZx,

(13)

where T is the temperature, qθ is the distribution of TNCO path x → x′ parameterized by θ,

p(x′|x) is the transition distribution of Boltzmann distribution p(x′|x) =
exp(−H(x′)

T )

Z , Zx =∑H(x′)<H(x)
x′ e−

H(x′)
T . During the learning process, we gradually anneal the temperature to op-

timize (13).

Parallel data sampling: We use RNN parameterized by θ as the policy network to model the
transition probability qθ(x → x′). We input the K-spin representation of tensor contraction order,
(x1, ..xK), sequentially from left to right, and compute the transition probability as follows,

1. Randomly initialize the hidden variable h1;
2. Input x1 and h1 to the RNN, and output the next hidden variable h2 and a transition prob-

ability qθ(x1);
3. Input x2 and h2 to the RNN, and output the next hidden variable h3 and a transition prob-

ability qθ(x1 → x2);
4. ......
5. Input xK and hK to the RNN, and output the next hidden variable hK+1 and a transition

probability qθ(xK−1 → xK).

Then, by sampling the tensor contraction ordering trajectories, (x1, x2, ..., xK), we can optimize
(13) to train the RNN. The sampling process can be batched onto multiprocess to achieve high-
performance data sampling, thus alleviating the performance bottleneck of reinforcement learning
training.
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Parallel training: We initialize multiple optimizers in parallel to learn to optimal tensor contraction
order. Specifically, at the t-th iteration

1. We parallelly sampleN tensor contraction ordering from the TNCO environment and store
them in the reply buffer.

2. For the optimizer i -th, we first freeze ρt,i parameters, 0 < ρi < 1, then sample data from
replay buffer, and compute the loss function (13) with the temperature Tt,i, independently.

3. For i-th optimizer, we compute the gradient and use LSTM to learn to optimize the param-
eter.

We vary the parameter masked ratio ρ and temperature T by increasing the number of iterations and
initialized all the parameters differently to achieve swarm intelligence integrated with the curriculum
learning.

Appendix C Accessibility, Usage, License, and Maintenance

Accessibility: All the code, dataset, and tensor network contraction orderings, including
the Sycamore circuits, can be found in our open source project https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits without personal request.

Dataset generation: We generate the classical simulation of quantum circuits synthetically using
https://github.com/XiaoYangLiu-FinRL/RL4QuantumCircuits/tree/main/datasets.

For example, we run https://github.com/XiaoYangLiu-FinRL/RL4QuantumCircuits/
blob/main/datasets/mps/mps_generate.py to generate quantum circuits based on the tensor
train, where V in code controls the number of nodes in generated data.

Code organization: We implement the baseline methods using Opt-einsum and Cotengra to
search for the tensor network contraction orderings. The codes for calling these solvers are
provided in https://github.com/XiaoYangLiu-FinRL/RL4QuantumCircuits/tree/main/
baseline. We provide two methods to solve each type of quantum circuit, like tensor train-based
quantum circuits.

Usage: To run the baseline methods, execute “python cotengra.py” or “python opt einsum.py”,
where the variable n is the number of nodes. To generate the dataset, please execute “python gener-
ate.py”, where the variable V in the central part is the number of tensor nodes.

License: MIT License.

Maintenance: On GitHub, we keep updating our codes, merging pull requests, and fixing bugs and
issues. We welcome contributions from community members and researchers.
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