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Abstract. Pathology image assessment plays a crucial role in disease
diagnosis and treatment. In this study, we propose a Patch alignment-
based Paired medical image-to-image Translation (PPT) model that
takes the Hematoxylin and Eosin (H&E) stained image as input and
generates the corresponding Immunohistochemistry (IHC) stained image
in seconds, which can bypass the laborious and time-consuming pro-
cedures of IHC staining and facilitate timely and accurate pathology
assessment. First, our proposed PPT model introduces FocalNCE loss in
patch-wise bidirectional contrastive learning to ensure high consistency
between input and output images. Second, we propose a novel patch
alignment loss to address the commonly observed misalignment issue in
paired medical image datasets. Third, we incorporate content and fre-
quency loss to produce IHC stained images with finer details. Extensive
experiments show that our method outperforms state-of-the-art meth-
ods, demonstrates clinical utility in pathology expert evaluation using
our dataset and achieves competitive performance in two public breast
cancer datasets. Lastly, we release our H&E to IHC image Translation
(HIT) dataset of canine lymphoma with paired H&E-CD3 and H&E-
PAX5 images, which is the first paired pathological image dataset with
a high resolution of 2048 × 2048. Our code and dataset are available at
https://github.com/coffeeNtv/PPT.

Keywords: High-Resolution Medical Image Translation · Virtual
Staining · Generative Adversarial Network

1 Introduction

Image-to-image translation is a technique that learns the mapping from the
source image domain to the target image domain. It gains increasing attention
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in medical domains recently, especially in pathology. Pathological diagnosis plays
a critical role in diagnosing and treating many diseases. Pathologists use various
techniques to examine samples for more diagnostic information to identify cellu-
lar changes associated with diseases. Specifically, Hematoxylin and Eosin (H&E)
staining is commonly used in pathological assessments since it is fast and cheap,
but it has limited information for disease diagnosis. To obtain more accurate
disease diagnosis and treatment, immunohistochemistry (IHC) staining is often
required. IHC staining provides more diagnostic information by detecting spe-
cific biomarkers associated with diseases, but it is time-consuming, taking hours
and even days to complete, and often expensive due to cumbersome procedures.

Virtual staining technique aims to transform H&E stained images into the
corresponding IHC stained images. It can bypass the time-consuming and costly
IHC staining procedures and provide doctors with virtual IHC images in seconds
for timely and accurate disease diagnosis and treatment. However, this technique
faces many challenges. First, medical and natural images have different natures.
Natural images have rich semantic information at instance level, such as category,
location, size, shape, color and texture. In comparison, medical images, such as
pathological images, typically contain detailed information at the cellular level,
such as clear cell structure and morphology, nuclear size and shape. Second, col-
lecting medical imaging data poses specific difficulties. Medical images typically
require specialized imaging equipment for collection and professional patholo-
gists for annotation, making collection and annotation laborious, expensive, and
time-consuming. Moreover, medical images involve privacy and ethical issues,
and many valuable datasets cannot be publicly available. Therefore, the existing
datasets are often limited. Third, medical images are usually high-resolution in
order to provide detailed information at the cellular level, posing computational
challenges when applying deep learning models. Complex models built for natu-
ral image tasks, such as models involving attention mechanism may be ineffective
and computationally intensive to be applied to high-resolution medical images.

To address the challenges in virtual staining, several research studies have
been conducted recently. Rivenson et al. [17] applied the generative adversarial
network (GAN) [2] with a U-Net [18] structure to transform autofluorescence
images into various histological stained images. Their results demonstrate the
feasibility of virtual staining with GAN and have since inspired many researchers
in this field. Pyramid Pix2pix [12] was proposed to generate IHC images from
H&E images using a low-pass filter and Gaussian convolutions at multiple scales.
Li et al. [8] introduced an adaptive supervised PatchNCE (ASP) loss into H&E-
to-IHC image translation to address the inconsistency between input and label
images. Meanwhile, virtual staining with unpaired images has also been investi-
gated when paired data are unavailable. Liu et al. [13] introduced the pathology-
consistent constraint in CycleGAN [25] to preserve microscopic structural details
and pathology properties from H&E stained images. Lin et al. [11] proposed
style-guided normalization and multiple-style encoding methods to capture the
relationships among different stains for multi-domain transfer.

Existing approaches often utilized GAN-based models to learn the pathologi-
cal properties of stained images and used images at a low resolution for training,
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such as 256 × 256 or 512 × 512 [11,15,17], to minimize computational com-
plexity, while virtual staining on high-resolution images still remains to be fully
investigated. It is also noteworthy that existing studies rarely explored the imper-
fect registration of paired images. Even though perfectly aligned paired images
are desirable for supervised learning, acquiring such images in clinical settings
is impractical, as paired images are often obtained from adjacent tissue sec-
tions to minimize anatomical differences, and additional algorithms are required
for image pair registration. Therefore, the misalignment at the pixel level is
inevitable in paired images. Based on these observations, we release a paired
pathological image dataset with high resolution regarding the data scarcity issue
for public use, and we propose a novel image translation model named Patch
alignment-based Paired medical image Translation (PPT) with bidirectional con-
trastive learning to alleviate the misalignment problem in paired images and gen-
erate more consistent and fine-grained virtual IHC images to effectively achieve
IHC image translation for timely and accurate diagnosis.

Our contributions are summarized as: 1)We build and publish the H&E to
IHC image Translation (HIT) dataset of canine lymphoma with two sets of 2048
× 2048 high-resolution paired images: H&E-CD3 and H&E-PAX5. To the best of
our knowledge, this is the first paired high-resolution pathological image dataset
of lymphoma. 2)We introduce the FocalNCE loss in bidirectional contrastive
learning to preserve more consistent results from H&E stained images and learn a
better feature representation of IHC stained images. 3)We propose a novel patch
alignment loss to supervise output images at the patch level, which mitigates the
negative impact of pixel mismatch on imperfectly registered pathological images.
4)We incorporate content loss and frequency loss to regulate IHC stained images
at the feature and frequency levels to further improve the staining quality of IHC
stained images. 5)Extensive experiments are conducted using our dataset and
two public breast cancer datasets, and results show that our method outperforms
state-of-the-art methods on our dataset and has competitive performance in
public datasets with different IHC staining techniques.

2 Methodology

Given the input x ∈ X from the H&E staining image domain X ⊂ RH×W×C

and the ground truth y ∈ Y from IHC staining domain Y ⊂ RH×W×C , we aim
to preserve the content in the domain X while keeping the staining style in the
domain Y . The framework of our proposed model is demonstrated in Fig. 1.

Adversarial Learning. We apply the GAN framework [2] to generate realistic
IHC image ŷ = G(x) from H&E image x. The adversarial loss Ladv is defined as
follows: Ladv(X,Y ) = Ey∼Y [logD(y)] − Ex∼X [log(1 − D(G(x))].

Bidirectional Contrastive Learning. Prior to presenting our bidirec-
tional contrastive learning, we first introduce contrastive learning, which is
a framework based on noise contrastive estimation [3] implemented by the
InfoNCE loss [14] to maximize the mutual information [14] within a dataset for
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Fig. 1. Framework of proposed method.(a)Align images at patch level rather than pixel
level. (b)Associate positive patch feature while push negative ones away bidirectionally.

better feature representation. The PatchNCE loss [16] applied InfoNCE loss in
a patch manner within images where associated patches are brought together
while disassociated patches are pushed away. Let xp, ŷp ⊂ RHpatch ×Wpatch ×C

be the patches from the input x and the output ŷ at the same spatial loca-
tion. Then the patch feature representations of ŷp and xp are v = F (ŷp) and
v+ = F (xp), where F is a shared encoder that projects the input patch into
a K-dimensional space. v− ⊂ RK×N denotes the feature vector of N negative
patches in x that have different spatial location from xp. We can obtain the
probability of the selected positive example over the other N negative exam-

ples: Prob (v, v+, v−) =
exp(v·v+/τ)

exp(v·v+/τ)+
∑N

n=1 exp(v·v−
n /τ) , where τ is the parameter

of temperature, v−
n is the nth negative patch. Moreover, x and ŷ are extracted

in a multi-layer setting in F with L layers in Sl spatial locations. The Patch-
NCE loss is applied using cross-entropy loss for N + 1 patches where one patch
is a positive sample and the other N patches are negative samples. This may
result in a class imbalance problem, but focal loss is effective for addressing this
problem [10,20]. Therefore, we introduce focal loss into our contrastive learning,
where α and γ are balance and modulating factors.

�f

(
v, v+, v−)

= −α
(
1 − Prob

(
v, v+, v−))γ logProb

(
v, v+, v−)

(1)

We denoted the PatchNCE loss combined with focal loss as LFocalNCE .

LFocalNCE(X, Ŷ ) = E(x,ŷ)∼(X,Ŷ )

L∑

i=1

Sl∑

s=1

�f

(
vis, v

+
is, v

−
i

)
(2)

where vis and v+
is are patch features extracted from the same spatial location

in ŷ and x, respectively. v−
i is the feature of N negative patches in x that



182 W. Zhang et al.

have different spatial location from xis. Inspired by previous work [1,16], we
use contrastive learning between the input and the output images to force the
model to generate images with more consistent details from the input. Further,
we apply the FocalNCE loss between the output and the ground truth images in
a bidirectional manner to learn a better feature representation of target images.
Therefore, our bidirectional contrastive loss is constructed as follows:

Lcont (X,Y, Ŷ ) = LFocalNCE(X, Ŷ )+LFocalNCE(Y, Ŷ )+LFocalNCE(Ŷ , Y ) (3)

Consistency Learning. Paired pathological images are usually collected from
nearby tissue slices to avoid anatomic differences [23] or from the same tissue
by the de-stain and re-stain method [5]. Thus, perfectly aligned images may not
always be available. We focus on the pixel mismatch problem in paired images
and try to alleviate this problem at the patch, feature, and frequency levels.
We proposed patch alignment loss, allowing for imperfect alignment within the
patches in images. We first use a sliding window on the output and ground truth
images without overlap and then flatten them into vectors. Then we compute
the difference at the patch level instead of pixel level on the y-axis of patch vec-
tors. The patch alignment loss is: �patch = β

∑I
i=1 E(y,ŷ)∼(Y,Ŷ ) [‖pi(y) − pi(ŷ)‖1],

where I is the total number of all patches, pi denotes the vector of the ith patch
in the corresponding image and β is the weight of loss.

Inspired by perceptual loss [7], we consider the consistency at feature level
as our content loss �content with a pre-trained VGG-19 network [19]. Further,
we also adopt a Gaussian reconstruction loss [8,9,12] to preserve consistency at
frequency levels as frequency loss �freq . Hence, the objective of our consistency
learning is: Lcons (Y, Ŷ ) = �patch + �content + �freq.

Full Objective. The objective of PPT model is the combination of the adver-
sarial, contrastive, and consistency loss: Ltotal (X,Y, Ŷ ) = Ladv +Lcont +Lcons ,
where X, Y , Ŷ are input, ground truth, and output images, respectively.

3 Experiments

Datasets. (1) Our HIT dataset includes paired H&E-CD3 stained images and
paired H&E-PAX5 stained images of canine lymphoma with a resolution of 2048
× 2048, dubbed CD3 dataset and PAX5 dataset. We utilize 1652 image pairs
for training and 155 image pairs for testing in CD3 dataset and 1614 image
pairs for training and 163 image pairs for testing in PAX5 dataset. (2) BCI
dataset [12] was collected from breast cancer tissues with a resolution of 1024 ×
1024. It consists of 3896H&E-HER2 pairs for training and 977 pairs for testing.
(3) MIST dataset [8] contains four paired H&E-IHC datasets for breast cancer
diagnosis, denoted as HER2, ER, Ki67 and PR dataset. Each subset includes
4000∼5000 pairs for training and 1000 pairs testing with a resolution of 1024 ×
1024.
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Implementation Settings. We use 9 residual blocks in generator and adopt
PatchGAN discriminator [6]. The patch size in patch alignment loss is 4 × 4.
Our PPT models are trained with 1024 × 1024 resolution images for 300 epochs,
where the initial learning rate is set as 0.0002, and linear decay is applied after
100 epochs. We use Adam optimizer with β1 = 0.5 and β2 = 0.999 and set batch
size as 1. Our experiments are conducted on NVIDIA RTX A6000 GPU.

Fig. 2. Comparison between our model and benchmark models on PAX5 dataset.

Fig. 3. Comparison using PAX5 dataset on (a)image details (b)cell type prediction.

Evaluation Metrics. We apply Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM) [22] to compare the similarity at the pixel
level. Further, we use Fréchet Inception Distance (FID) [4] to measure the fea-
ture distance between two image distributions and use Learned Perceptual Image
Patch Similarity (LPIPS) [24] to evaluate the perceptual similarity between two
images that are perceptible to the human visual system.

Qualitative Evaluation. We demonstrate our results in Figs. 2 and 3. It can
be observed that ASP [8], CycleGAN [25], and CUT [16] preserve most of details
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Table 1. Quantitative comparisons among benchmarks on PAX5 dataset, where the
best and the second best results are highlighted.

Model SSIM↑ PSNR ↑ FID ↓ LPIPS ↓
ASP 0.3531 16.8270 109.2708 0.3700
Pyramid 0.3695 17.3896 121.2043 0.4019
Pix2pix 0.3240 15.7357 160.3297 0.4124
Pix2pixhd 0.3484 17.3660 87.2724 0.3153
CycleGAN 0.3507 16.6412 84.7979 0.3259
CUT 0.3534 16.7610 92.2355 0.3312
PPT(Ours) 0.3548 17.4063 80.7147 0.2988

from H&E stained images. Still, they have poor performance in predicting cell
types appearing in brown and purple colors, which are crucial for disease diag-
nosis. The Pyramid [12] and Pix2pixhd [21] models produce relatively accurate
PAX5-stained cell types compared with other models. Nevertheless, they fail to
keep as many details in H&E images as other models. The Pix2pix [6] model
produces images with checkerboard artifacts and inaccurate staining prediction.
Compared with these models, our model generates images with the best quality,
preserving fine-grained details and predicting accurate cell types.

Table 2. Comparisons on CD3, BCI, and HER2 datasets with benchmarks, where the
best and the second best results are highlighted.

Dataset Model SSIM↑ PSNR↑ FID↓ LPIPS↓
CD3 ASP 0.3958 17.0627 92.9461 0.3202

Pyramid 0.4127 17.4546 119.1605 0.3778
PPT(Ours) 0.4074 17.7863 78.5448 0.2913

BCI ASP 0.3932 17.0835 199.6659 0.6087
Pyramid 0.456 19.2723 84.1875 0.5105
PPT(Ours) 0.4968 19.0914 52.522 0.5058

HER2 ASP 0.2048 14.5789 49.433 0.5500
Pyramid 0.1718 13.7607 130.1539 0.5583
PPT(Ours) 0.1981 14.5811 49.4197 0.5323

Quantitative Evaluation. We compare our model with benchmarks over mul-
tiple metrics in Table 1. Our approach has the best performance among these
methods on PSNR, FID, and LPIPS, indicating that our model generates images
with the best quality, which are most similar to the ground truth distribution
and are closer to human visual perception than others. Pyramid seems to have
higher SSIM evaluation, which may be because the Pyramid model tends to gen-
erate images with similar colors while ignoring many details, as demonstrated in
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Figs. 2 and 3(a), which may lead to better performance in SSIM. Moreover, we
apply our method to other virtual staining scenarios, such as CD3 staining of
lymphoma and HER2 IHC of breast cancer, to further evaluate the performance
of our model. Note that CD3 dataset has the same trend as PAX5 dataset on
other baselines, and the ASP and Pyramid are the latest SOTAs, therefore, we
only compare these two SOTAs in Table 2. As shown in Table 2, our method
achieved the best performance in PSNR, FID, and LPIPS compared with the
state-of-the-art methods on BCI and HER2 datasets (more results in supple-
mentary materials). Moreover, it can be observed in Fig. 4 that our results are
more consistent with the input images and have closer staining style to the label
images compared to benchmarks.

Fig. 4. Comparisons with benchmarks on different datasets.

Ablation Study. We performed an ablation study to investigate the effective-
ness of the frequency loss, patch alignment loss, and content loss. The baseline
is our bidirectional contrastive learning with FocalNCE loss, denoted as base.
We conduct ablation experiments by incrementally adding the �freq, �patch and
�content on the PAX5 dataset. The results are demonstrated in Table 3 which
further indicate the feasibility of our proposed model.

Table 3. Results of the ablation study on PAX5 dataset.

Model SSIM↑ PSNR↑ FID↓ LPIPS↓
base 0.3494 16.3711 90.9563 0.3461
base + �freq 0.3515 17.1360 85.9513 0.3194
base + �freq + �patch 0.3529 17.2724 82.7983 0.3095
base + �freq + �patch + �content 0.3548 17.406380.71470.2988
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Expert Evaluation. To validate the effectiveness of our proposed model in the
clinical setting, we invited two registered veterinary pathologists to evaluate our
virtually stained images on the PAX5 and CD3 test sets. Pathologists were asked
to rate the similarity between the real and the generated images on a scale of 1-5
for five diagnostic indicators for lymphoma, including staining intensity, cellular
localization, cellular distribution, quantification, and morphological correlation.
The overall clinical accuracy is the average of the five indicators in percent-
age. For pathologist 1, the accuracy for CD3 and PAX5 dataset is 76.23% and
68.91% respectively, and the accuracy for pathologist 2 is 66.14% and 60.32%
respectively, which has 25.86% higher accuracy than existing work [12]. Expert
evaluation results demonstrate the clinical utility of our proposed model in real-
world clinical applications for diagnosing lymphoma using both CD3 and PAX5
stained images. We can also see there is room for further improvement. Details
of the expert evaluation are provided in supplementary materials.

4 Conclusion

This study released a paired high-resolution pathological image dataset HIT of
canine lymphoma and proposed a Patch alignment-based Paired medical image-
to-image Translation model named PPT to transform the H&E stained images
into corresponding IHC stained images for timely and accurate diagnosis. Specif-
ically, we propose a patch alignment loss to address the pixel mismatch problem
in paired pathological images and incorporate FocalNCE loss bidirectionally in
contrastive learning with content and frequency loss to generate more consis-
tent and fine-grained IHC stained images. Extensive experiments indicate our
method outperforms benchmarks in our dataset and can be applied to differ-
ent types of IHC staining scenarios with competitive performance. Moreover,
two pathologists were invited to further validate our effectiveness in virtual IHC
staining from H&E to CD3 and PAX5 images in the clinical setting. Future work
will further improve the virtual staining model to enhance clinical utility and
promote the application in clinical settings.
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