
Simplifying Constraint Inference with Inverse
Reinforcement Learning

Adriana Hugessen
Mila, Université de Montréal

Harley Wiltzer
Mila, McGill University

Glen Berseth
Mila, Université de Montréal

{adriana.knatchbull-hugessen,wiltzerh,glen.berseth}@mila.quebec

Abstract

Learning safe policies has presented a longstanding challenge for the reinforcement
learning (RL) community. Various formulations of safe RL have been proposed;
However, fundamentally, tabula rasa RL must learn safety constraints through
experience, which is problematic for real-world applications. Imitation learning is
often preferred in real-world settings because the experts’ safety preferences are
embedded in the data the agent imitates. However, imitation learning is limited in
its extensibility to new tasks, which can only be learned by providing the agent
with expert trajectories. For safety-critical applications with sub-optimal or inexact
expert data, it would be preferable to learn only the safety aspects of the policy
through imitation, while still allowing for task learning with RL. The field of
inverse constrained RL, which seeks to infer constraints from expert data, is a
promising step in this direction. However, prior work in this area has relied on
complex tri-level optimizations in order to infer safe behavior (constraints). This
challenging optimization landscape leads to sub-optimal performance on several
benchmark tasks. In this work, we present a simplified version of constraint
inference that performs as well or better than prior work across a collection of
continuous-control benchmarks. Moreover, besides improving performance, this
simplified framework is easier to implement, tune, and more readily lends itself to
various extensions, such as offline constraint inference. Our code is made available
at https://github.com/ahugs/simple-icrl.

1 Introduction

Reinforcement learning (RL) has made significant advances in recent years, yet real-world ap-
plications of RL remain limited due to various challenges, including particularly safety concerns
[Dulac-Arnold et al., 2021]. One common setting where RL holds promise for real-world deploy-
ments is replacing existing, possibly sub-optimal, human-managed control policies. For example, in
the field of power network control, decisions are often made by a combination of automatic control
policies combined with careful human monitoring and intervention [Marot et al., 2022]. However,
concerns regarding the deployment of autonomous systems on safety-critical tasks have hindered the
adoption of RL for replacing legacy control systems. This is particularly true for deep RL, which
functions as a black box controller.

In the setting of replacing legacy controllers, however, the challenge is simplified due to access to
data produced by the current control system. While existing control policies may be sub-optimal, they
are nonetheless “safe” in the sense that they obey some explicitly or implicitly defined constraints
corresponding to a human understanding of safety. Ideally, we would like to be able to learn an RL
policy that can outperform the current system, in terms of optimizing the reward, while continuing to
respect these constraints. When these constraints are unknown (i.e. defined implicitly through human
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actions), the implicit safety procedures that are being followed may not be explicitly known or have
an obvious encoding. Thus, it would be beneficial to infer the constraints directly from trajectories
produced by the existing control policy.

Typically, in settings with large-scale offline data, imitation learning [Schaal, 1996] or offline RL
[Kumar et al., 2020, Kostrikov et al., 2022] might be used. However, these methods only extract a
single policy that satisfies constraints and optimizes a reward function. Moreover, imitation learning
generally cannot outperform the expert, which is prohibiting in cases where we wish to improve over
current control policies. Offline RL can learn policies that outperform the demonstration [Kumar
et al., 2020], however, offline RL cannot ensure that safety constraints remain satisfied without access
to the constraint function or constraint violation annotations in the dataset.

Ideally, we would like to extract safety constraints from the data based on the expert behavior, which
can then be used downstream to constrain task-specific learning. Learning constraints from expert
trajectories is the purview of the field of constraint inference. Various methods have been proposed
in this domain, with early work focusing on simple settings such as tabular MDPs [Scobee and
Sastry, 2020]. More generally, inverse constrained reinforcement learning can infer constraints in
continuous settings using parameterized constraint functions and adapting IRL methods such as
maximum entropy IRL [Ziebart et al., 2008] to the constrained setting by solving a constrained MDP
in the inner optimization. However, this tri-level optimization creates a challenging landscape for
constraint inference.

In this work, we demonstrate that the constrained MDP inner loop is an unnecessary complication
and that regular IRL techniques can recover as good and sometimes better solutions to constraint
inference problems than these more complicated methods. This result is significant because it allows
us to simplify the training dynamics and complexity of constraint inference methods and implies
that advances in sub-domains of IRL can be directly applied to the constraint inference case. For
example, recent progress in offline IRL [Yue et al., 2023, Kim et al., 2023] can be readily adapted to
the constraint inference case to infer constraints entirely offline, significantly increasing the scope of
applicability in real-world settings.

In particular, we make the following contributions. First, we show that inverse constrained RL and
inverse RL are equivalent under certain classes of constraint functions. Next, we experimentally
validate this claim. Finally, we propose some practical modifications to adapt IRL to constraint
inference tasks and conduct ablations over these algorithmic choices to understand how to improve
the stability and performance of constraint inference.

2 Related Work

General imitation learning The problem of imitation learning (IL) is primarily concerned with
learning a policy that produces similar behavior to a class of reference policies. Specifically, given
transition data from “experts”, the goal is to produce a new policy that, in a sense, generates a similar
transition distribution. The simplest approach to IL is behavior cloning (BC) [Pomerleau, 1988],
which estimates a policy via maximum likelihood to match the conditional distribution on actions
conditioned on state observations. BC tends to perform well in the regime of massive data but suffers
from compounding errors over long trajectories as state observations veer outside the coverage of the
dataset [Ross et al., 2011]. Methods such as DAgger [Ross et al., 2011] show that, given the ability
to interact with the environment during IL and to query expert trajectories, strong policies can be
learned with relatively few queries to the expert. More recently, behavior cloning losses have been
integrated into standard reinforcement learning methods to enhance offline RL performance — that is,
RL from a fixed (offline) dataset [Fujimoto and Gu, 2021]. Alternative approaches to IL have focused
on learning a policy that induces a similar state-visitation distribution to the dataset [Pirotta et al.,
2023]. Such an objective explicitly accounts for the long-term behavior of a policy as opposed to
the myopic predictions of BC methods, resulting in more coherent learned behaviors over longer
horizons with less data. IL methods as discussed above can generally learn performant imitation
policies, but provide no insight about the reward function that the expert is implicitly optimizing;
this is the focus of inverse reinforcement learning, which will be useful for the purpose of learning
constraint functions.
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Inverse Reinforcement Learning Inverse reinforcement learning (IRL) learns a policy that can
mimic expert trajectories and also aims to infer a reward function that explains the expert behavior
[Ng et al., 2006]. The IRL problem is considerably more difficult than the IL problem; in particular,
there is no unique reward function that maximally explains the expert behavior. The work of Abbeel
and Ng [2004] alleviates this issue with a maximum margin constraint in the optimization. The
work of Ziebart et al. [2008] resolves this problem by inferring the most likely reward function
under a particular probabilistic model; this approach is widely known as maximum entropy IRL
(MaxEnt IRL). One approach for achieving strong guarantees in IRL is to approximate the expert
occupancy distribution in the operator norm — that is, to have a low discrepancy between expected
returns under any reward function. Achieving this generally involves a bilevel optimization procedure
where one alternates between optimizing a policy for a given reward function, and then adversarially
training the reward function [Gleave and Toyer, 2022]. The work of Garg et al. [2021] reduces
this problem in the maximum entropy framework by estimating a soft action-value function (Q),
inferring the reward function from a novel “inverse Bellman operator” applied to Q and showing
that the policy π(· | s) ∝ exp(Q(s, ·)) is MaxEnt-optimal. Effectively, their method reduces the
bilevel optimization discussed above into a simpler RL optimization. Alternatively, Swamy et al.
[2021] assumes that the reward function lies in a reproducing kernel Hilbert space, which allows
them to obtain an unbiased estimate of the adversarial reward function from data for any policy –
this is yet another method for eliminating one of the layers of the bilevel optimization discussed
above. However, these aforementioned IRL methods have not considered the issue of modeling
environmental constraints which can be transferred when learning policies for novel tasks.

Inverse Constrained Reinforcement Learning Early work in constraint inference focused primar-
ily on particular settings such as convex constraints [Menner et al., 2019, Miryoosefi et al., 2019], or
tabular RL [Scobee and Sastry, 2020, McPherson et al., 2021, Chou et al., 2020]. More recent methods
have integrated the power of deep learning within the constraint inference framework through adap-
tions of MaxEnt IRL to the constrained setting through inverse constrained reinforcement learning
(ICRL) [Malik et al., 2021, Liu et al., 2023a, Kim et al., 2023]. These methods essentially replace the
forward RL inner loop of IRL with a constrained version of the problem by casting it as a constrained
MDP (CMDP) and solving by Lagrangian or other methods. This adds additional complexity to
the IRL problem which is already difficult due to the bi-level optimization and identifiability issues
[Gleave and Toyer, 2022]. Though these prior works have sometimes considered simple IRL baselines
[Malik et al., 2021, Liu et al., 2023a], none have specifically outlined the connections between IRL
and ICRL, nor have they attempted to optimize IRL for constraint inference. A related line of work
from the control theory community also considers learning constraints from expert data as control
barrier functions, [Robey et al., 2020, Castaneda et al., 2023, Lindemann et al., 2024], however these
methods rely on access to a known or learned model of the dynamics, which we do not assume.

3 Background

Imitation Learning. Imitation learning is the process of training a new policy to reproduce expert
policy behavior. Given a set of expert trajectories De = {τ (i)e }Ni=0, which follow a policy πE , a new
policy π can be learned to match these trajectories using supervised learning, i.e. maximizing the
expectation: EπE

[∑T
t=0 log π(at|st, θ)

]
. While this simple method can work well, it often suffers

from distribution mismatch issues leading to compounding errors as the learned policy deviates
from the expert’s behavior [Ross et al., 2011]. Inverse reinforcement learning avoids this issue by
extracting a reward function from observed optimal behavior [Ng et al., 2000].

Maximum Entropy IRL As discussed in Section 2 there are several formulations of IRL. Here we
describe maximum entropy IRL [Ziebart et al., 2008, Ziebart, 2010]. Given a set of expert trajectories
De = {τ (i)e }Ni=0, which follow a policy πE , a policy π can be trained to produce similar trajectories
by solving the min-max problem

min
r∈R

max
π

(
Eπ

[
T∑
t=0

r(st, at)

]
+H(π)− EπE

[
T∑
t=0

r(st, at)

])
, (1)

where r is a learned reward function and H(π) is a causal entropy term. Hence, IRL is searching for
a reward function r that is high for the expert πE and low for other policies.
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Constrained RL One way to formulate constrained MDPs (CMDPs) is through trajectory-level
constraints. In this formulation, the agent must solve the following objective

max
π

Eπ

[
T∑
t=0

r(st, at)

]
s.t. Eπ

[
T∑
t=0

c(st, at)

]
≤ δ, (2)

where c(st, at) is a cost function with δ budget.

The most common method for solving this problem is Lagrangian variations of RL methods, such as
SAC-Lag [Ha et al., 2020], where Equation (2) is converted to a min-max problem

min
λ≥0

max
π

Eπ

[
T∑
t=0

γtr(st, at)

]
− λ

(
Eπ

[
T∑
t=0

γtc(st, at)

]
− δ

)
. (3)

Inverse constrained RL Inverse constrained reinforcement learning (ICRL) is a class of methods
used to infer constraints from expert trajectories. As in imitation learning and IRL, it is assumed that
we have access to a set of expert trajectories De = {τ (i)e }Ni=0, which follow a policy πE , however, it
is now assumed that the expert policy is optimal under a CMDP instead of an MDP. It is generally
assumed that the agent has access to the unconstrained (nominal) MDP with which to interact, and
that the (constraint-agnostic) reward is observed by the agent when interacting with the environment.

Kim et al. [2023] present a general formulation of ICRL as game-solving, though we note that their
formulation was preceded by that of Malik et al. [2021], and, though motivated differently, generally
matches it, up to some implementation details.

As shown in prior work [Swamy et al., 2023], the inverse RL problem can be cast as a two-player
zero-sum game

OptIRL(Π,F) = min
π∈Π

sup
f∈F

J(πE , f)− J(π, f) (4)

where F is convex and compact and J(π, f) = Eπ
[∑T

t=0 f(st, at)
]
.

Similarly, the constrained RL problem in Equation (2) with a single constraint can also be cast as a
two-player zero-sum game

min
π∈Π

max
λ≥0

−J(π, r) + λ(J(π, c)− δ). (5)

Finally, Kim et al. [2023] show that for inverse constrained RL, these two games can be combined
into a three-player game of the following form (where r is a given reward function in a class Fr)

OptICRL(Π,Fr,Fc) = sup
c∈Fc

max
λ>0

min
π∈Π

J(πE , r − λc)− J(π, r − λc). (6)

Practically speaking, solving this game involves running IRL where the inner loop optimization
solves a constrained MDP using a Lagrangian version of RL, such as SAC-Lag [Ha et al., 2020].

4 Method

Starting from Equation (6), we now demonstrate that this tri-level optimization is equivalent to
a simpler bi-level optimization under certain classes of constraint functions and that this bi-level
optimization is equivalent to the IRL game-solving formulation in Equation (4).

4.1 Inverse constrained RL as IRL

Note that there are two outer maximizations in Equation (6), the first over constraints in the class Fc
and the second over λ > 0. Our key insight is that, under a broad class of constraint functions Fc,
this tri-level optimization can be cast as a bi-level optimization, reducing ICRL to IRL.

Theorem 4.1 Let πE ∈ Π and a reward function r ∈ Fr be given. Consider the objective

OptS−ICRL(Π,Fr,Fc) = max
c∈Fc

min
π∈Π

J(πE , r − c)− J(π, r − c). (7)

4



Then, if Fc is a convex cone (that is, c ∈ Fc =⇒ λc ∈ Fc for any λ ≥ 0), it holds that
OptICRL(Π,Fr,Fc) = OptS−ICRL(Π,Fr,Fc).
Moreover, suppose Π is compact and Fr = Fc = F is a vector space with elements f : (s, a) 7→
⟨ϕ(s, a), wf ⟩, where ϕ : S × A → [0, 1]d is a fixed (not necessarily known) feature map and
wf ∈ Rd identifies the elements of F . Then any solution to OptIRL(Π,F − r)1 is a solution to
OptICRL(Π,F ,F)—that is, the ICRL problem is simply an instance of IRL.

Proof. See Appendix B. □

The intuition for this is the following. The only difference between solving a constrained MDP
with Lagrange multiplier λ and solving an unconstrained MDP with a cost penalty term weighted
by λ is that, in the former case λ is optimized to ensure constraint satisfaction. Indeed, given the
optimal λ∗ a priori, constrained MDPs can be solved exactly by optimizing the later problem. This
distinction is generally important when the cost function is fixed and unknown, however in the case
of inverse learning where we learn the cost function from a class closed to scalar multiplication, it is
possible to learn a cost that directly ensures constraint satisfaction, without scaling by the Lagrange
multiplier. Note that optimizing over a convex cone Fc can pose challenges when exact optimization
is required—for instance, convex cones violate a compactness condition required to prove regret
bounds for inverse constrained RL given by Kim et al. [2023]. However, in large scale applications
that approximately optimize a constraint model represented by a deep neural network, one is often
already in the setting where these regret bounds do not hold. Hence, when employing parameterized
constraint inference through deep learning, it is sufficient to select an appropriate class as the output
activation of our neural network and use a bi-level optimization to learn the scaled constraint.

4.2 Techniques for stabilizing constraint learning

Given that IRL and ICRL are mathematically equivalent under the class of constraint functions
described above, the question of how best to perform constraint inference through inverse learning
becomes largely a practical one. Is the optimization landscape smoother if we explicitly optimize
for λ as a Lagrange multiplier or implicitly as part of the constraint function? Do previous imple-
mentations of Lagrangian methods add additional algorithmic components that could explain the
improved performance of ICRL over IRL in prior work? Moreover, are there other regularizations or
modifications that we could consider? In this regard, we suggest the following practical modifications
to IRL for the constraint learning case, which we will test in Section 5.

Bounding rewards One advantage of prior methods’ use of a binary classifier for constraint
representations is that it restricts learned costs within a range of positive values [Malik et al., 2021].
In practice, it is advantageous for interpretability and transferability to restrict the constraint function
to be strictly positive, so that the learned constraint can only discourage the agent from visiting certain
states not visited by the expert. Bounding the rewards above can also be beneficial for preventing
divergences during training. However, in the case of IRL for constraint inference, it is necessary to
optimize over a convex cone and hence a binary activation function cannot be used.

We propose and evaluate two possible solutions. As a baseline solution, we consider simply clipping
the output values of a linear activation function to within some fixed positive range, while also
re-scaling rewards using the rolling mean and variance. Though clipping technically violates the
convex cone assumption, in practice the reward scaling should restrict the range of the constraint
function necessary to ensure constraint satisfaction.

This baseline solution is potentially problematic, however. Besides violating the convex cone
assumption, hard clipping the output of a neural network can be challenging due to the potential for
vanishing gradients. Alternatively, we propose softly enforcing the constraint function to the positive
range by using a Leaky ReLU activation and adding an L2 regularization term to the imitation gap
loss, similar to Malik et al. [2021], so that the loss becomes

L(π, c) = J(πE , r − c)− J(π, r − c) + Es,a∼τE
[
c(s, a)2

]
, (8)

where Es,a∼τE
[
c(s, a)2

]
is an L2 regularization on the learned cost of the expert trajectories. Unlike

in Malik et al. [2021], we only regularize the output of the constraint function on the expert data,

1The notation F − r refers to the set {f − r : f ∈ F}.
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allowing the constraint function to grow unconstrained, except on states visited by the expert, where
the cost should be zero by the assumption that the expert trajectories are safe, i.e. non-violating.

IRL with separate critics One component of prior methods for constraint inference that is implicitly
added when utilizing a Lagrangian method for policy optimization, is the use of separate critics
for the reward and constraint functions. Separate critics may potentially be beneficial for learning,
since separating the critics disentangles the value function learning of the reward (which is not
changing during training) with the constraint function (which changes as the constraint is learnt). By
Q-decomposition [Russell and Zimdars, 2003], additive rewards can also be evaluated by separate
additive critics and hence it is a straightforward modification to implement separate critics in any
actor-critic IRL implementation without the additional Lagrangian optimization, which we outline in
Algorithm 1.

Algorithm 1 IRL for ICRL - Separate Critics

1: Initialize cost network parameters ϕ, policy parameters ψ and cost and reward critic parameters
θ and α. Let M be the number of cost function updates and N be the number of policy updates.

2: for m = 0, 1 . . . ,M do
3: for n = 0, . . . , N do
4: Collect experience (st, at, st−1, rt) from nominal environment and add to buffer β
5: Sample batch {(si, ai, si+1, ri)}Bi=1 ∼ β.
6: Compute learned cost for batch ci = Rϕ(si, ai) ∀i ∈ B
7: Update cost critic parameters θ from ci and reward critic parameters α from ri.
8: Update policy parameters using critic Q(s, a) = Qα(s, a)−Qθ(s, a)
9: end for

10: Update cost function using loss EπE [Rϕ(s, a)]− Eπψ [Rϕ(s, a)]
11: end for

Last-layer policy resetting Recent work has demonstrated that the primacy bias caused by plasticity
loss can be a significant challenge for training deep RL agents [Nikishin et al., 2022]. This challenge
is exacerbated in the case of IRL and particularly ICRL since the learned cost function changes
constantly during training while the true rewards are provided from the environment, potentially
biasing early policy training towards learning the unconstrained policy. To combat this plasticity loss
issue, we adopt the recommendations from Lyle et al. [2023] for MLPs, which advises periodically
resetting the final layer of the network during training.

5 Experiments

In this section, we conduct a series of experiments across several environments in order to answer the
following questions: (1) How does IRL perform on constraint inference tasks compared to Lagrangian
methods? and (2) How do the proposed modifications or regularizations over vanilla IRL improve
performance on constraint inference tasks?

Environments For our experiments, we consider the virtual environments for benchmarking
inverse constraint learning, introduced by Liu et al. [2023a] since these were specially designed to
test the performance of constraint inference tasks and also provide a recent baseline for Lagrangian-
based constraint inference methods, including expert data. The environments include five MuJoCo
environments, Ant, Half Cheetah, Walker 2D, Swimmer and Inverted Pendulum, modified to include
constraints, which are primarily binary restrictions on the x-position of the agent. For more details,
see Liu et al. [2023a].

Evaluation metrics Evaluating constrained RL is challenging due to the dual objectives of optimiz-
ing rewards and satisfying constraints, which are typically in conflict with one another. Hence, in
our evaluation, we report two metrics, following Liu et al. [2023a], feasible rewards and violation
rate. Feasible rewards are calculated as the total returns for an episode up to the point of the first
constraint violation. The violation rate is the percentage of episodes with one or more constraint
violations. Using these metrics allows us to compare the baselines along the same axis as prior work.
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We compare all methods according to average performance in the last 50 testing episodes and report
statistics (IQM, Median, Mean and Optimality Gap) with bootstrapped 95% confidence intervals
computed across five seeds according to the method recommended in Agarwal et al. [2021]. We
provide the full learning curves in Appendix C.2.

Prior methods for comparison We compare our results against two baselines from Liu et al.
[2023a]. The first is their implementation of MaxEnt ICRL [Malik et al., 2021] (denoted MECL),
which is the canonical method for Lagrangian-based constraint inference that provides the primary
baseline for our method. The second is their implementation of GAIL for constraint inference
(denoted GACL), introduced as a baseline for MECL in Malik et al. [2021]. This is a basic version
of IRL for constraint inference, which uses the GAIL algorithm [Ho and Ermon, 2016] with an
additive log term for the constraint. In Liu et al. [2023a], they test an additional two algorithms
which, for conciseness, we do not include in this work, as one has been shown to underperform other
methods in previous work and the other introduces Bayesian inference into the constraint learning,
which is not considered here. We obtain results for MECL and GACL using the implementation and
hyperparameters provided by the authors of Liu et al. [2023a]. We note that for our implementation of
constraint inference, we use SAC as the forward RL algorithm, similar to Kim et al. [2023], whereas
Malik et al. [2021] and Liu et al. [2023a] use PPO with an entropy regularization term. 2.

Experimental Setup As mentioned, we use SAC for policy optimization. As the IRL algorithm,
we utilize a version of maximum entropy IRL as implemented in Zeng et al. [2022]. The learnt
constraint function is parameterized as a two-layer MLP with linear output activation. We adopt
the hyperparameters for SAC as used in Achiam [2018], except that we use automatic α-tuning
[Haarnoja et al., 2018]. All the hyperparameters for IRL were set to those used in Zeng et al. [2022],
except the learning rate on the constraint function which we tune for each environment. We find
that when training with separate critics, warm-starting the policy learning by training without the
constraint critic initially is beneficial, so we warm-start configurations with separate critics with 500k
environment steps. We train all variations in all environments for 5M environment steps across five
seeds. Full hyperparameter configurations are included in Appendix A.1.3

In the following sections, the modifications proposed in Section 4.2 are labeled as IRL-Base for IRL
with clipping and no modifications, L2 for using L2 regularization in place of clipping, SC for adding
separate critics and PR for policy reset. IRL-Plus includes all proposed modifications (L2, SC, PR).

5.1 IRL versus ICRL

First, we compare our IRL implementation to the baseline methods. In Figure 1 we present a summary
of our findings across environments, showing the final expert-normalized performance, aggregated
across all five environments, with 95% bootstrapped confidence intervals computed across five seeds.

Notably, basic IRL (IRL-Base) already performs quite favorably versus MECL. Statistics on the
feasible rewards are generally improved for IRL-Base versus MECL, though this improvement does
not always have statistical significance. On the other hand, violation rate is improved over MECL
with statistical significance across all but one statistic. Notably, the base IRL method performs
similarly to the prior baseline IRL method GACL, with no statistical difference in feasible rewards
across all four statistics, though it generally outperforms in terms of the violation rate.

With the added modifications, IRL-Plus outperforms MECL with statistical significance across all
four metrics in feasible rewards and all but one metric in violation rate. IRL-Plus also outperforms
the baseline IRL method GACL with statistical significance across almost all metrics for both feasible
rewards and violation rate, with the median being the only exception.

5.1.1 Sub-optimal Expert Trajectories

Previous work has found that constraint inference with a Lagrangian inner loop is more robust to
suboptimal expert trajectories as compared to previous IRL methods which cannot learn effectively
[Liu et al., 2023a]. We conduct experiments on the suboptimal dataset for Half Cheetah provided in

2Though we have attempted to re-implement Malik et al. [2021] using SAC, our performance is low compared
to Liu et al. [2023a]. We include full results of our SAC implementation in Appendix C.1

3Our code is available at: https://github.com/ahugs/simple-icrl
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Figure 1: Normalized final performance aggregated across the five MuJoCo environments, where
feasible rewards are normalized by the expert returns. Both IRL-Base and IRL-Plus perform better
than the baseline ICRL method MECL on average, with IRL-Plus out-performing by a statistically
significant margin across most metrics, for both feasible rewards and violation rate.

Liu et al. [2023a] to test whether this remains true with our implementation. The sub-optimal datasets
are constructed to contain varying percentages of unsafe expert trajectories, i.e. expert trajectories
with one or more constraint violations. For these experiments, we test the combination of all proposed
modifications (IRL-Plus), i.e. L2 regularization on the expert rewards, separate critics and policy
resets versus the two baselines MECL and GACL.

0 2500 5000 7500
GACL
MECL

IRL-Plus (Ours)
Feasible Rewards

0.00 0.25 0.50 0.75 1.00
GACL
MECL

IRL-Plus (Ours)
Violation Rate

(a) 20%

0 2500 5000 7500

Feasible Rewards

0.00 0.25 0.50 0.75 1.00

Violation Rate

(b) 50%

0 2500 5000 7500

Feasible Rewards

0.00 0.25 0.50 0.75 1.00

Violation Rate

(c) 80%

Figure 2: Interquartile mean (IQM) of final performance on Half-Cheetah with sub-optimal trajecto-
ries in ratios of 20%, 50% and 80%. In all three scenarios, IRL-Plus out-performs MECL in terms
of feasible rewards, though only with statistical significance in the 20% scenario. Neither MECL nor
IRL-Plus clearly outperforms in terms of violation rate, with both methods achieving near zero.

As shown in Figure 2, in all cases, our method performs much better than the prior IRL baseline
method GACL, which does not achieve any feasible rewards. Our method also generally outperforms
the Lagrangian-based method MECL though with notably high variance, so that the improved
performance is only statistically significant in the 20% scenario. Overall, however, it is clear that the
ICRL method MECL does not outperform IRL-Plus on a statistically significant basis.

5.2 Impact of Modifications

Here, we more closely examine the impact of the proposed modifications (Section 4.2) on constraint
inference with IRL. Overall, while the impact of the modifications varies somewhat across environ-
ments, as can be seen in Figure 4, aggregated across all environments on a normalized basis, the
combination of all modifications, i.e. L2 regularization, separate critics and policy resets (IRL-Plus)
results in an increase in feasible rewards vs IRL-Base which is statistically significant in all statistics
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Figure 3: Normalized final performance for all ablations aggregated across the five MuJoCo envi-
ronments, where feasible rewards are normalized by the expert returns. IRL with L2-regularization,
separate critics and policy resets (IRL-Plus) generally performs the best in terms of feasible rewards
with only a slight increase in violation rate versus IRL-Base.

except the median, with only a slight increase in the violation rate which is not statistically significant
in any of the statistics.

L2 regularization versus clipping with reward normalization Overall, the most substantial
increase in performance comes from the L2 regularization versus clipping with reward normalization.
This modification improves feasible rewards by a statistically significant amount as measured by
three of the four metrics, excepting the median. At the same time, it results in a small increase in
violation rate, however this increase is not statistically significant for any of the four statistics. The
addition of L2 regularization has the largest impact on Walker2D as can be seen in Figure 4.

Policy reset and separate critics Adding both separate critics and policy reset (SC+PR) slightly
improves performance over IRL+L2, across most statistics, in both feasible rewards and violation rate,
though the impact is marginal and only statistically significant in some metrics. Interestingly, neither
the separate critics modification nor the policy reset modification alone results in an improvement
over IRL+L2, suggesting it is the interaction of these two modifications that are beneficial. For
example, separate critics without policy resets (IRL+L2+SC) slightly hurts performance in terms of
feasible rewards with similar violation rate, and policy resets without separate critics (IRL+L2+PR)
slightly increases violation rate without much improvement in feasible rewards, though we note that
these effects are generally not statistically significant. Notably, when combining separate critics with
policy resets we reset the last layer of only the constraint critic and not the reward critic. This allows
the reward critic to learn the unchanging reward function without resets, while the constraint critic
can adapt more quickly through resets to the changing constraint function, which may explain the
performance boost observed when combining these two methods.

While the impact of separate critics and policy resets is marginal overall, in certain environments
such as Inverted Pendulum and Half Cheetah, it does confer a meaningful improvement in feasible
rewards, as can be seen in Figure 4, though with notably high variance across seeds.

6 Discussion and Conclusions

Overall, we have demonstrated that Lagrangian-based methods for constraint inference are theoret-
ically equivalent to IRL for a broad constraint class. Moreover, these Lagrangian methods do not
appear to confer performance benefits over simpler IRL methods, when IRL is implemented using
MaxEnt IRL with constraint functions parameterized by neural networks with appropriate activation
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Figure 4: Interquartile mean (IQM) of final performance for all proposed modifications and baselines
in each individual MuJoCo environment. All methods display relatively high variance including
MECL. Even so, in three of the five environments, at least one method achieves CI that do not
overlap with the baseline ICRL method MECL in feasible returns while being within the CI of the
baseline in violation rate. In the remaining two environments, confidence intervals for both feasible
rewards and violation rate overlap between the baseline ICRL method MECL.

functions. Further, with the addition of some simple-to-implement practical modifications to the
IRL algorithm we can further improve performance of IRL over previous Lagrangian-based ICRL
methods for constraint inference tasks.

Advantages of IRL over ICRL Besides performance improvements, using IRL for constraint
inference confers several benefits to the field. IRL reduces the complexity of the optimization problem
versus ICRL by removing a level in the nested optimization, making a simpler to implement solution
that can more easily be applied to new domains. For example, we highlight that we did not have to
perform any hyperparameter tuning, except on the constraint function learning rate, to achieve decent
results in all environments. In contrast, previous ICRL methods use many environment-specific
hyperparameters [Liu et al., 2023a]. Additionally, the use of IRL methods to solve constraint inference
problems could facilitate applying the much broader field of research in IRL and its sub-fields to
various extensions of constraint inference that have not yet been fully explored. These could include,
in particular, offline constraint inference using offline IRL techniques [Yue et al., 2023].

Importantly, we emphasize that the constraint function learned through our modified IRL procedure is
equivalent to the constraint function learned through Lagrangian-based ICRL methods, up to a scalar
multiplicative constant, and hence can be treated as a constraint function in downstream transfer
tasks. More specifically, though the constraint function is learned as an additive term in the reward
of an unconstrained MDP, the learned function can be transferred as a constraint in a constrained
MDP. Solving this constrained MDP will require scaling the learned constraint by a new Lagrangian
term when optimizing for the new transfer task. Hence, there is no loss in the transferability of the
constraint when performing constraint inference with IRL versus ICRL.

Limitations and Future Work While we show the feasibility of IRL for constraint inference as an
alternative to ICRL, we note that there is substantial variance in the solutions produced by IRL on a
per environment basis, as can be observed in Figure 4. Reducing this variance should be a priority
of future work. Moreover, ongoing work is still needed to improve the performance of constraint
inference across more challenging environments such as Inverted Pendulum.

Additionally, while our results indicate that our IRL-Plus method outperforms previous ICRL method
MECL, we note that there are several algorithmic differences between our implementation and that
of Liu et al. [2023a], such as the use of SAC vs PPO as the RL policy optimization algorithm. While
we believe we have effectively demonstrated certain implementations of IRL can be competitive with
ICRL we cannot conclude that IRL is strictly better than ICRL in all cases.

As mentioned, an exciting extension for future work would be to explore various subdomains of IRL
in the context of constraint inference, particularly the offline IRL case, and to apply these techniques
to real datasets.
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A Experiment Details

A.1 Hyperparameters

All of our code is based on the Tianshou [Weng et al., 2022] and FSRL [Liu et al., 2023b] imple-
mentations of SAC and SAC-Lagrangian, respectively. Here we include all the hyperparameter
configurations for our experiments. Any hyperparameters not listed here use the default hyperparam-
eters in their respective libraries (Tianshou version 1.0.0 and FSRL version 0.1.0).

SAC Parameters

τ 0.005
γ 0.99
α LR 0.0003
α optimizer Adam
Critic hidden layers [256, 256]
Critic optimizer Adam
Critic learning rate 0.001
Actor hidden layers [256, 256]
Actor learning rate 0.001
Actor optimizer Adam
n-step returns 1

Training Parameters

Max epochs 1000
Batch size 128
Environment steps per epoch 5000
Gradient steps per environment step 1
Test episodes per epoch 5
Episodes between gradient updates 1
Buffer size 1000000

Constraint Learning Parameters IRL-Base IRL-L2

Output clip range [0,20] None
Output activation Linear Leaky ReLU
Hidden layers [64, 64] [64, 64]
Optimizer Adam Adam
Weight decay 0.001 0.001
Batch size 5000 5000
Gradient steps per epoch 1 1
L2 regularization coefficient 0 0.1

The constraint function learning rate was tuned over two values (0.001, 0.0001) per environment with
the following final parameters:

Half Cheetah Ant Inverted Pendulum Walker Swimmer

0.0001 0.0001 0.001 0.0001 0.001

A.2 Computational Resources

Each run (consisting of five seeds) was trained on a node with a single GPU (varying GPU re-
sources were used), 6 CPUs and 6GB of RAM per CPU. A single run across three seeds under this
configuration took approximately 1.5 days to complete training.

B Proof of Theorem 4.1

We prove both claims individually.
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B.1 Step 1: OptICRL = OptS−ICRL

We begin by proving the first claim, that OptICRL(Π,Fr,Fc) = OptS−ICRL(Π,Fr,Fc) when Fc is a
convex cone. Firstly, it is simple to show that OptICRL(Π,Fr,Fc) ≥ OptS−ICRL(Π,Fr,Fc),

OptICRL(Π,Fr,Fc) = max
c∈Fc

max
λ≥0

min
π∈Π

J(πE , r − λc)− J(π, r − λc)

≥ max
c∈Fc

min
π∈Π

J(πE , r − 1 · c)− J(π, r − 1 · c)

= OptS−ICRL(Π,Fr,Fc).

It remains to show that OptICRL(Π,Fr,Fc) ≤ OptS−ICRL(Π,Fr,Fc). We have

OptS−ICRL(Π,Fr,Fc) = max
c∈Fc

min
π∈Π

J(πE , r − c)− J(π, r − c)

≥ max
c∈Fc

min
π∈Π

J(πE , r − λc)− J(π, r − λc) ∀λ ≥ 0

≥ max
c∈Fc

max
λ≥0

min
π∈Π

J(πE , r − λc)− J(π, r − λc)

= OptICRL(Π,Fr,Fc),

where the first inequality holds since λc ∈ Fc whenever c ∈ Fc by the hypothesis that Fc is a convex
cone. It follows that OptICRL(Π,Fr,Fc) = OptS−ICRL(Π,Fr,Fc). ■

B.2 Step 2: IRL Solves ICRL

We now prove the second claim. For any policy π, we define the successor features [Ng et al., 2000,
Ziebart et al., 2008, Barreto et al., 2017] ψπ : S → Rd according to

ψπ(s) = E

∑
t≥0

γtϕ(St, At)

∣∣∣∣S0 = s

 (9)

where At ∼ π(· | St). Then, for any initial state distribution µ0 and r ∈ F , we have J(π, r) =
Es0∼µ[⟨ψπ(s0), wr⟩], where r(x, a) = ⟨ϕ(x, a), wr⟩ — this holds by the linearity of expectation.

Now, we define Ψ = {Es0∼µψπ(s0) : π ∈ Π} ⊂ Rd. Note that s 7→ ψπi (s) is equivalent to the
value function under policy π for the reward function ϕi, for any i ∈ [d]. Thus, since Π is assumed
to be compact and ϕ is bounded, Dadashi et al. [2019] shows that the set Vi = {ψπi : π ∈ Π}
is convex and compact for each i ∈ [d]. By continuity, Vi = {Es0∈µψπi (s0) : π ∈ Π} is convex
compact. Therefore, it holds that as a product of convex and compact sets, Ψ =

⊗d
i=1 Vi is convex

and compact.

Next, suppose (π⋆, c⋆ − r) realizes OptIRL(Π,F − r). Since Ψ is compact and convex and F is
convex, we apply Sion’s minimax theorem and observe that, for ψE := Es0∼µ0

ψπE (s0),

15



J(π⋆, c⋆ − r)− J(πE , c
⋆ − r) = OptIRL(Π,F − r)

= min
π∈Π

sup
c∈F

J(π, c− r)− J(πE , c− r)

= min
ψ∈Ψ

sup
wc∈Rd

⟨ψ − ψE , wc − wr⟩

= min
ψ∈Ψ

sup
wc∈Rd

⟨ψE − ψ,wr − wc⟩

= sup
wc∈Rd

min
ψ∈Ψ

⟨ψE − ψ,wr − wc⟩ Sion’s minimax theorem

= sup
c∈F

min
π∈Π

J(πE , r − c)− J(π, r − c)

= OptS−ICRL(Π,F ,F)

= OptICRL(Π,F ,F) Step 1
∴ J(πE , r − c⋆)− J(π⋆, r − c⋆) = OptICRL(Π,F ,F),

where the penultimate step holds because F , as a vector space, is a convex cone. Thus, we conclude
that solving the IRL problem over the reward class F − r and policy class Π solves the inverse
constrained RL problem of interest. ■

C Additional Results

C.1 ICRL SAC Implementation Results

We attempted to reproduce the results of Liu et al. [2023a] using SAC for policy learning. We tested
six settings for the Lagrangian and reward learning rates shown in Figure 5. All other hyperparameters
were kept the same as Appendix A.1, except we ran each configuration for 3M timesteps. Notably,
we had considerable difficulty reproducing the results of Liu et al. [2023a] using the SAC algorithm.
While Kim et al. [2023] provided a SAC implementation of a similar algorithm, we note that their
implementation added various additional components to the algorithm to improve convergence,
including in particular, interleaving reward learning with behavior cloning. We did not use these
techniques here.

C.2 Learning Curves

Here we provide the full learning curves for all ablations and all environments. An additional
configuration, IRL-Base+BN is included which was tested but not included in the main results due to
poor performance. This configuration added batch normalization to the output of the reward function
to potentially help combat issues with vanishing gradients.
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Figure 5: Training curves for feasible rewards (top) and violation rate (below) for ICRL with SAC
with varying learning rates for the reward function and Lagrange multiplier across the five MuJoCo
environments. None of the hyperparameter settings perform consistently well across environments.
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Figure 6: Training curves for feasible rewards (top) and violation rate (below) for all variations across
the five MuJoCo environments.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that simple IRL methods can perform as well or better than ICRL
methods across environments. This is shown in our experiments comparing MECL to IRL
(see Figure 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a limitations section (see Section 6).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes] .
We provide a complete and correct proof of our theoretical result in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided full hyperparameter details for our experiments in Appendix A.1.
Besides this, we reference exact implementations for each component of our algorithm (i.e.
IRL from Zeng et al. [2022]) and we utilize standard and well-maintained libraries [Weng
et al., 2022, Liu et al., 2023b] as the basis for our code. The datasets used are available from
Liu et al. [2023a]. Finally, we provide a public Github for the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We do not include code directly in the supplemental materials, however a link
to the publicly available Github repository is provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided the most relevant configuration details in Section 5 and full
hyperparameter details for our experiments in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We include error bars in all figures (see Figures 1 to 4), computed across
five seeds (and aggregated across five environments in the case of Figures 1 and 3) using
bootstrapped 95% confidence intervals as recommended in Agarwal et al. [2021].
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details of the computational resources used in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Section 1 we discuss possible real-world applications for constraint inference
such as in power grid control, that could confer societal benefits. We do not see any negative
societal impacts that would come from our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models with high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The only assets we use in our experiments are the data provided by Liu et al.
[2023a] which we cite extensively, including particularly in Section 5 to note that we are
using these datasets in our experiments. We also cite the relevant code packages used to
implement our experiments in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

24

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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