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Abstract

High-mix, low-volume manufacturing requires systems that
can adapt to changing parts and processes. We present
an agentic, language-grounded approach for robotic as-
sembly that employs a team of Large Language Models
and Vision-Language-Action Models to adapt to parts of
similar kind and perform corrective actions during assem-
bly. Given a high-precision wheel-on-axle insertion task,
we demonstrate that our agentic approach outperforms a
single-model and generalizes to out-of-distribution parts
and grasps without changing the nominal assembly process.

1. Introduction
As manufacturing shifts towards high-mix, low-volume
production, the need for robotic systems to generalize and
adapt has grown. Traditional systems, while fast and pre-
cise, still require task-specific programming and perception,
making it hard to adapt to new or even slightly varied de-
signs or processes during deployment.

Large Language Models (LLMs) like ChatGPT and
LLaMA, known for their ability to generalize across diverse
tasks could help us address these challenges [1, 10, 12, 18].
Moreover, Vision-Language-Action Models (VLA), which
ground visuomotor control in language, enable robots to in-
terpret and react appropriately to visual inputs.

We wonder: Can a team of these models learn what a
manufacturing process looks like and enable robots to adapt
when it varies on the factory floor?

In this work, we present an agentic, language-grounded
approach for robotic assembly that employs a team of LLMs
and VLAs to correct offsets during an high-precision wheel-
on-axle insertion task, shown in Figure 1. In it, the wheel
is picked-up, transported to an initial aligned pose with the
axle, inserted onto the axle, then released. Our experiments
show our approach outperforms a single-model in gener-
alizing across in-distribution (ID) and out-of-distribution
(OOD) parts and grasps without changing the nominal as-
sembly process.

Figure 1. The gripper in Vertical configuration, approaches the
Shark wheel at the start of a wheel-on-axle insertion experiment.

Our contributions include:
1. An agentic architecture for robotic assembly with task-

specific language agents for distance estimation, direc-
tion estimation, and programming.

2. Industrial application of LLM/VLA for precise, adaptive
control across varying parts and grasps.

3. Experiments showing this approach outperforms single-
models in terms of adaptivity and task completion.

2. Related Work
Massive, diverse, and domain-specific datasets like Open-
X Embodiment and DROID have laid the groundwork for
robotics foundation models [8, 13]. Projects like LERF and
VoxPoser show that grounding perception in language could
enable open-ended, adaptive control [6, 7]. Multi-modal
VLAs like OpenVLA and RT-2 show that such groundings
could enable visuomotor control of robots, while models
like Gemini generalize these capabilities to even more com-
plex and nuanced manipulation tasks [2, 9, 16]. Meanwhile,
simple prompting techniques have shown to improve these
outcomes: breaking problems down into intermediate steps
[20]; leveraging more diverse, rather than larger, datasets to
zero-shot new tasks [3]; refining processes through iterative,



Figure 2. Simplified control-flow diagram showing main loop,
agents, prompts, and assembly logic.

verbal feedback [4, 11, 14]; and using code-like specifica-
tions for actions and objects [15]. Agentic systems, where
multiple models collaborate to solve a problem, also show
promise for complex, nuanced tasks [5, 19, 21].

Building on these techniques, we create a language-
grounded, agentic system for adaptive robotic assembly,
making use of OpenVLA for adaptive visuomotor control
and ChatGPT-4o for dynamic task control during assembly.
In Section 3, we describe the architecture of our approach,
language agents, correction algorithm, as well as our ap-
proach to dataset generation and fine-tuning. In Section 4,
we present experiments wherein our agentic architecture is
applied to a wheel-insertion task.

3. Approach
Our system uses three specialized language model agents
for distance estimation, direction estimation, and program-
ming that work together to adaptively insert a part. Af-
ter a failed insertion, the system analyzes visual feedback
to compute and execute corrective actions proposed by the
agents, repeating until the part is successfully inserted (or
after a maximum number of attempts is reached), as shown
in Figure 2.

3.1. Dataset Generation
Although OpenVLA is trained on the Open X-Embodiment
dataset, differences in coordinate systems, viewing perspec-
tives, and robot architectures mean it can’t zero-shot with-
out fine-tuning. To gather a fine-tuning dataset, we simu-
late correcting random offsets, [X,Y, Z,Rx,Ry,Rz], gen-
erated using three schemes: 40% involve random transla-
tion of Y and Z by [−20, 20] mm; 20% involve random
rotation of Rx, Ry, and/or Rz by [−π

8 , π
8 ] radians; and the

rest combine both.
After the wheel is offset, it’s gradually moved back to

the aligned pose (generated using the ASAP algorithm [17])
through a series of interpolated waypoints. For each, we
save the episode number, waypoint index, offset, and image

Figure 3. Close-up of fine-tuning dataset generation, showing
Small wheel being manipulated by gripper near axle.

Figure 4. Typical images used for fine-tuning, showing Simulated
and Small wheels at Offset, Waypoint, and Aligned poses.

of the assembly scene (see Figure 4). This is done for a
Simulated wheel and four real-world wheels (Base, Large,
Shark, and Small), shown in Figure 5.

Building off the OpenVLA release checkpoint, a fine-
tuned distance or direction estimation model can be gener-
ated using this dataset. At inference time, we provide the
model the same prompt used for fine-tuning and an image
of the current assembly scene (captured from same view-
point used for fine-tuning).

3.2. Distance Estimation Agent

The Distance Estimation Agent outputs the wheel’s distance
from the aligned pose given an image of the assembly scene.
A fine-tuned OpenVLA model outputs [0, 0, 0, 0, 0, 0, D],
where D represents the estimated distance – repurposing
the model’s original gripper-action output. The agent also
outputs a retry flag to trigger reinsertion, raised after at least
5 cycles when the distance is minimal or constant over mul-
tiple cycles.

For fine-tuning, the current offset of each waypoint is
converted to a distance using a scaled, normalized version



of the 6D L1 distance. This is stored in the output vec-
tor, then paired with the corresponding image and prompt
to create an input-output pair. Most models in our experi-
ments were fine-tuned on 1000 episodes (11000 entries) for
one wheel, except the All+ model, which was fine-tuned on
the Simulated wheel and all four ID wheels (55000 entries)

3.3. Direction Estimation Agent
The Direction Estimation Agent outputs the directional off-
set of the wheel from the aligned pose. The fine-tuned
model outputs [X,Y, Z,Rx,Ry,Rz, 0], where the first six
components represent the estimated offset. While their
magnitudes are usually extreme, their signs (1, -1, or 0) cor-
respond consistently with the correct direction and are used
to guide corrective movement.

Like the Distance Estimation Agent, the initial offset of
each waypoint is scaled, stored in the output vector, and
paired with its image and prompt for fine-tuning. We then
train three types of model: (1) real-world data over 1000
episodes per ID wheel: Base, Large, Shark, Small; (2) com-
bined real and simulated data over 1000 episodes per ID
wheel and the Simulated wheel: Base+, Large+, Shark+,
Small+; a large, diverse model trained on 5000 episodes
across all wheels: All+.

3.4. Programming Agent
The Programming Agent, built on ChatGPT-4o, acts as an
adaptive controller synthesizing outputs from the Distance
and Direction Estimation Agents into executable code. Un-
like the other agents, it relies on prompt engineering instead
of fine-tuning. At initialization, we provide it with the task
context, coding references and examples, and behavioral
guidelines. It can also control the robot, capture images,
and talk to other agents.

Typically, the agent moves the wheel along the estimated
direction, scaled by the estimated distance. However, it
can adjust this behavior dynamically by reversing the di-
rection, reducing the scale of movements over time, and
triggering early retries when no correction appears to be
needed. These behaviors aren’t canned, and emerge from
ChatGPT’s ability to reason about its task, context, status,
and goals.

4. Experiments
We evaluate accuracy and adaptivity of our approach for
the wheel-on-axle insertion task described in Section 1,
testing agents on an array of in-distribution (ID), out-
of-distribution (OOD), and far-out-of-distribution (FOOD)
parts and grasps.

We use two UR10e robots, a Robotiq 2F-140 gripper,
and a Zivid 2+ depth camera. A partially-assembled skate-
board truck is mounted in a fixture that allows ±2 mm po-
sitional variation. The wheels have a 8 mm hole and the

Figure 5. Side-by-side comparison of ID (Base, Large, Shark,
Small) and OOD (Green, Gear) wheels used in experiments.

Figure 6. Side-by-side comparison of ID (Vertical) and OOD
(Horizontal, Occluding) grasps used in experiments.

tapered axle allows an insertion tolerance of ±0.75 mm, as
shown in Figure 3.

4.1. Distance Estimation Experiments

To validate distance estimation models, we conduct 100
tests per wheel – including those not used for fine-tuning. In
each, the wheel is moved to a random offset, and the model
receives a text prompt and image of the scene to estimate
distance.

In Table 1, we see a positive correlation (C) between
actual and estimated distances. Models fine-tuned on a
wheel show an average of 0.83 for that wheel and 0.64 for
wheels they weren’t fine-tuned. The model fine-tuned on
all wheels, All+, shows an average correlation of 0.92, sug-
gesting that a larger, more diverse dataset improves perfor-
mance. We also correlate the order of distances in a set
without outliers, Cq. Models fine-tuned on a single wheel
show an average of 0.86 for that wheel and 0.70 for wheels
they weren’t fine-tuned. The estimates also appear to clus-
ter in tiers, or discrete values rather than a continuous range.
For example, the Shark model produced 21 tiers for the
Shark wheel but only 12 for the Large wheel, suggesting
it learns classifications of distance and uses coarser classifi-
cations for OOD parts.



4.2. Direction Estimation Experiments

For direction estimation we use the same testing approach
for distance models but apply offsets along all axes: Y and
Z in [−20, 20] mm and Rx, Ry, and Rz in [−π

8 ,
π
8 ] radi-

ans. This insures the model will estimate direction, not just
detect offset presence.

In Table 1, the All+ model performed comparably to
single-wheel models, but estimates rotational offsets more
often. On average, it estimates Ry and Rz offsets 69% and
72% of the time, as opposed to 8% and 11% for the single-
wheel models. Both rarely estimate offsets in Rx, the axis
of rotation about the axle, likely due to minimal visual cues.

Most models classify direction with more than 80% ac-
curacy, so a more telling metric is how often they estimate a
non-zero offset. The high frequency of the All+ model sug-
gests that it’s able to detect small rotations, which is useful
in an iterative approach. Additionally, smaller + models
perform nearly as well as the All+ model for translation and
estimate Ry and Rz rotations 25% and 22% of the time,
suggesting that simulated data indeed helps compensate for
limited physical datasets.

Many of the wheels resemble those used in fine-tuning
but are still considered OOD, allowing us to compare their
zero-shot performance. Single-wheel models achieved 90%
accuracy estimating Y and Z for OOD wheels, compared to
96% for ID wheels. Some models also performed well on
specific OOD wheels (e.g. the Shark model on the Small
wheel), while others struggled (e.g. the Base model on the
Shark wheel).

4.3. Full Assembly Experiments

We also conduct full assembly experiments where the robot
removes the wheel from the axle, applies a random Y and
Z offset, and attempts reinsertion. Importantly, the agentic
system is unaware of the initial offset or which wheel it’s
assembling.

In Table 2, the All+ model consistently performs well,
achieving a perfect success rate for both agentic and single-
agent approaches, while the Base+ and Shark+ models per-
form worse with average success rates of 56% and 81%.
The agentic approach also performs well, achieving aver-
age success rate of 90%. By comparison, the single-agent
approach generally struggles with OOD parts, for which it
achieves an averages success rate of only 73%. This is most
obvious for the Base+ model, which achieves success rates
of 0% two OOD parts and only 10% for the third. On the
flip side, the single-agent approach completes the task faster
than the agentic approach by an average of 165 s and for ID
wheels achieves a 95% success rate with 1.215 mm less er-
ror. This suggests the agentic approach is a good choice
for adapting to OOD parts, rather than for fast and precise
assembly of ID parts.

4.4. Assembly with FOOD Parts
A hypothesis in this work is that the language-grounding
of these models might enable them to generalize to FOOD
parts. We use the All+ model on two unseen parts – a Green
wheel and a Gear – as shown in Figure 5.

Table 3 shows a clear distinction between the single-
agent and agentic approaches in terms of adaptability and
efficiency. For the Gear, both achieve 100% success rate,
with the single-agent showing 0.10 mm greater accuracy
and completing the task 158 s faster. For the Green wheel,
the agentic approach achieves a 67% success rate while
the single-agent fails entirely. Despite taking considerably
longer and requiring more queries and attempts, the agentic
approach keeps trying until it finds a solution. While both
models performed well for the White Gear, performance
dropped significantly for the Green wheel, suggesting that
color affects the models’ ability to identify and generalize
relevant visual features.

4.5. Assembly with FOOD Grasps
We also hypothesize that the language-grounding of our
models enables them to generalize to FOOD grasps. Us-
ing the All+ model and Base wheel, we compare the perfor-
mance of two unseen grasps – Horizontal and Occluding –
against the trained Vertical grasp (Figure 6).

The results in Table 4 show a noticeable performance
change for the FOOD grasps. The difference in error be-
tween the ID and FOOD grasps for the single-agent is 1.14
mm for the Horizontal Grasp and 5.45 mm for the Occlud-
ing Grasp, which, for an industrial assembly task, is con-
siderable. While the agentic approach had slightly lower
success rate for the Horizontal Grasp, it was twice as likely
to succeed for the Occluding Grasp, despite considerably
large errors and a longer completion time. This reinforces
the idea that the agentic approach offers benefits for tasks
where the ability to complete a task outweighs speed and
precision.

5. Conclusions
We presented a novel approach to robotic assembly using
a team of specialized language-agents for perception and
decision-making to complete an assembly task. Applied to
a wheel-on-axle insertion task, the system was effective in
correcting part offsets and generalizing to OOD parts and
grasps. Its iterative design allows it to propose and evaluate
multiple options before re-attempting assembly, making it
slower but more adaptive than a single-model. This makes
it well-suited for high-mix manufacturing and, with broader
training data, we hope an approach like this could someday
enable robots to make anything.
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Part Model Direction Distance
Y Z Rx Ry Rz C Cq Tr

Base

All+ 97 97 100 100 82 0.91 0.90 34
Base+ 96 95 100 100 89 - - -
Small+ 84 94 100 100 100 - - -
Shark+ 86 94 0 100 70 - - -
Large+ 85 91 100 100 67 - - -
Base 94 93 100 0 75 0.84 0.84 26
Small 92 92 100 100 100 0.74 0.78 21
Shark 93 91 0 100 93 0.47 0.62 17
Large 92 93 100 100 83 0.68 0.71 27

Large

All+ 96 95 100 100 75 0.93 0.94 29
Base+ 86 91 100 100 81 - - -
Small+ 93 96 80 100 40 - - -
Shark+ 93 90 0 100 96 - - -
Large+ 96 98 0 97 75 - - -
Base 87 96 86 100 100 0.71 0.81 17
Small 92 92 100 100 100 0.45 0.46 21
Shark 91 95 0 100 89 0.55 0.66 12
Large 98 96 100 100 86 0.86 0.89 22

Shark

All+ 95 92 100 100 74 0.93 0.94 29
Base+ 76 78 0 100 80 - - -
Small+ 90 91 0 100 70 - - -
Shark+ 94 92 0 100 92 - - -
Large+ 83 92 100 100 86 - - -
Base 67 84 100 100 90 0.66 0.75 25
Small 95 86 0 100 0 0.69 0.74 18
Shark 95 98 0 95 97 0.82 0.86 21
Large 88 88 90 100 100 0.62 0.64 22

Small

All+ 99 99 100 100 78 0.72 0.75 23
Base+ 81 92 100 100 92 - - -
Small+ 94 95 75 100 100 - - -
Shark+ 96 91 0 100 79 - - -
Large+ 88 94 0 100 82 - - -
Base 89 88 100 0 100 0.72 0.75 23
Small 98 97 100 100 0 0.80 0.85 27
Shark 97 93 0 100 91 0.71 0.74 16
Large 82 87 83 75 93 0.71 0.72 25

Table 1. Combined Distance and Direction Estimation Experiment
Results. For direction estimation models, we compare % accuracy
of estimates per axis. For distance estimation models, we compare
correlation C and Cq between estimated and actual distances and
number of tiers Tr.

Part Ag Model SR E T Q A

Base

3
All+ 100 1.96 106 8 1

Base+ 100 1.83 227 17 4
Shark+ 70 2.85 456 24 5

1
All+ 100 0.65 72 12 2

Base+ 100 1.81 88 16 2
Shark+ 60 2.44 75 35 1

Large

3
All+ 100 1.60 212 16 3

Base+ 90 3.78 303 21 4
Shark+ 100 3.18 287 19 5

1
All+ 60 0.80 172 40 6

Base+ 0 3.31 64 50 1
Shark+ 30 3.03 88 41 2

Shark

3
All+ 100 1.44 130 10 2

Base+ 60 11.25 501 34 3
Shark+ 100 1.18 167 12 2

1
All+ 80 1.08 125 27 4

Base+ 10 5.54 64 47 1
Shark+ 90 1.50 84 17 2

Small

3
All+ 100 1.42 197 15 3

Base+ 90 2.81 232 18 3
Shark+ 100 1.14 184 14 3

1
All+ 100 1.46 72 15 2

Base+ 0 2.72 64 50 1
Shark+ 100 1.17 59 14 1

Table 2. Full Assembly Experiments Results. We compare suc-
cess rate SR%, average error Emm, completion time T s, number
queries Q, and number attempts A across approaches and models.

Part Ag Model SR E T Q A

Gear 3 All+ 100 2.82 214 15 3
1 All+ 100 2.72 56 9 1

Green 3 All+ 67 2.64 359 25 4
1 All+ 0 4.12 123 50 6

Table 3. Assembly With FOOD Parts Results

Grasp Ag Model SR E T Q A

Vert 3 All+ 100 1.96 106 8 1
1 All+ 100 0.65 72 12 2

Horz 3 All+ 80 3.68 372 24 5
1 All+ 100 1.76 76 11 2

Occl 3 All+ 40 6.79 600 40 12
1 All+ 20 6.10 945 46 11

Table 4. Assembly With FOOD Grasps Results
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