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Abstract

The scarcity of network traffic datasets has become a major impediment to recent
traffic analysis research. Data collection is often hampered by privacy concerns,
leaving researchers with no choice but to capture limited amounts of highly unbal-
anced network traffic. Furthermore, traffic classes, particularly network attacks,
represent the minority making many techniques such as Deep Learning prone to
failure. We address this issue by proposing a Generative Adversarial Network
for balancing minority classes and generating highly customizable attack traffic.
The framework regulates the generation process with conditional input vectors by
creating flows that inherit similar characteristics from the original classes while
preserving the flexibility to change their properties. We validate the generated
samples with four tests. Our results show that the artificially augmented data is
indeed similar to the original set and that the customization mechanism aids in the
generation of personalized attack samples while remaining close to the original
feature distribution.

1 Introduction

Despite the fact that enormous amounts of network data are generated every day as a result of
the Internet’s pervasiveness in our daily lives, the amount of network traffic that can be used for
research purposes is comparatively limited. In reality, the few publicly available datasets for intrusion
detection have a number of flaws, including artifacts if the traffic is artificially generated [Khraisat
et al., 2019]. Nonetheless, future network anomaly detection research is limited by the availability of
large and diverse network traffic datasets. Furthermore, recent cyber-attacks on critical infrastructures,
small/large/medium businesses, non-profit organizations, and even entire governments have once
again highlighted the vulnerability of network-connected software systems. This confirms that cyber-
security has emerged as a critical concern in our interconnected global society. Typically, Intrusion
Detection Systems (IDSs) are created to detect such malicious traffic within a network and recently,
there has been a trend towards Machine Learning (ML)-based IDSs that rely heavily on large-scale
datasets that contain a mixture of network traffic [Pacheco et al., 2018].

In this paper, we develop a framework based on Generative Adversarial Networks (GANs) to generate
and augment malicious network traffic in order to make anomaly detection methods more robust.
Effectively, we do not only generate similar samples, but also samples with specific characteristics
that necessitates the use of a condition-based generation process. To generate synthetic network flows,

NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications



we use four established GAN architectures: Conditional GAN (CGAN) [Mirza and Osindero, 2014],
Wasserstein GAN (WGAN) [Arjovsky et al., 2017], Auxiliary-Classifier GAN (AC-GAN) [Odena
et al., 2017], and Wasserstein GAN with Auxiliary Classifier (AC-WGAN). We also experimented
with Wasserstein GAN with Gradient Penalty (WGAN-GP) [Gulrajani et al., 2017], but the results
with this architecture were inconclusive. All of the preceding architectures support a defined input
vector that we call the condition vector for controlling the generation process.

We propose two ways of controlling attack generation. First, as is standard practice, we set conditions
on the network attack type. This enables the generation of flows that resemble a specific attack
type, such as Distributed Denial of Service (DDoS) attacks. However, this method only allows for
coarse control. As a result, the second approach aims at a finer-grained control over the generation
process by setting conditions on a set of the most important and intuitive features (for example, ’Flow
Duration’ or ’Mean Packet Length’) that the generated flow should or should not exhibit. This
doesn’t only allows for the generation of an attack of a specific type, but also of an attack that should,
for example, have a short ’Flow Duration’ and a high ’Mean Packet Length’. In general, this
method allows us to diversify the generation process thus, increasing the robustness of the IDS.

We evaluate the validity of the generated network flows on four dimensions to ensure that the
generated network attacks are as realistic as possible; otherwise, their effect could be unfavorable:
(1) Attack validity by checking if specific feature values are within the allowed ranges (e.g., a valid
protocol number, a non-negative packet length etc.), (2) Application of an external classifier, (3)
Statistical tests on the distribution of generated features in order to compare them to the original
distributions, and (4) Distance measures between generated and real attacks. It is noteworthy that
recent similar work on GANs for network traffic use the same approaches [Ring et al., 2019a, Rigaki
and Garcia, 2018, Charlier et al., 2019].

In short, we make the following contributions in this paper:

• We propose an architecture for balancing network traffic with GANs and compare it to a
state-of-the-art method.

• We propose and evaluate two control techniques for augmenting network traffic.
• We propose an approach that allows for fine-grained control over the generation process.

The rest of this paper is organized as follows: In the next Section, we discuss related work in traffic
generation, in particular with GANs. In Section 3 we describe the dataset we use for our experiments
and the preprocessing steps we conduct. Furthermore, we explain the methodology and configuration
of our approach, that allows us to control the generation process. In addition, we present the evaluation
benchmark that we conduct to validate our approach. In Section 4 we present the results we obtain
and evaluate the proposed framework. Finally, we conclude the paper in Section 5.

2 Background

Recently, ML has been widely applied to a variety of network traffic applications and has emerged as
a competitive alternative to the commonly used rule- and pattern-based methods. GANs, in particular,
are used in a variety of approaches where the task is to generate new data. In this section, we go over
the preliminary foundations for this work in a nutshell. First, we discuss ML approaches for intrusion
detection. Then, GAN architectures for network traffic generation are reviewed.

ML for Intrusion Detection. IDSs are a critical component of any network’s cyber security arsenal.
Their primary task, as the name implies, is to assist in the detection of unauthorized network
intrusions [Buczak and Guven, 2015]. In general, there are two types of intrusion detection systems:
(1) signature-based IDSs and (2) anomaly-based IDSs [Khraisat et al., 2019]. Signature-based
IDSs rely on pattern matching to detect (known) attacks. There are a number of commercial and
open-source signature-based IDSs available, the most well-known of which is SNORT [Roesch et al.,
1999]. Although signature-based IDSs can provide strong protection against known threats, they
have their limitations, most notably their inability to detect unknown attacks or known attacks with
evolving patterns. Anomaly-based IDSs, on the other hand, are an appealing alternative because
they can overcome the aforementioned limitations. Such methods employ ML techniques to learn a
detection model from available network datasets and use it afterwards to detect outliers. As many of
those do not rely on signatures, they have the ability to detect zero-day attacks [Khraisat et al., 2019].
They do, however, rely on the availability of large and diverse datasets to learn the detection model.

2



GANs for Cyber Security. A GAN is a type of neural network architecture that was originally
developed for synthetic image generation [Goodfellow et al., 2014]. The quality of images generated
with original architectures was low, and they were easily distinguishable from real images [Radford
et al., 2015]. In recent years, however, GAN-architectures, such as StyleGAN v2, have become more
sophisticated making it increasingly hard to tell if generated samples are real or fake [Karras et al.,
2020]. Since their inception, GANs have been applied successfully to numerous other tasks, such
as generating video, audio, text, tabular data, and even entire video games [Tulyakov et al., 2018,
Donahue et al., 2018, Engel et al., 2019, Nie et al., 2018, Xu et al., 2019, Kim et al., 2020]. The
success of GANs has also attracted the attention of the cyber security research community. GANs
were recently also used to generate network traffic on a flow level [Ring et al., 2019a] or on a packet
level [Cheng, 2019] and to generate both normal traffic [Shahid et al., 2020] as well as synthetic
malicious traffic [Charlier et al., 2019, Lin et al., 2018].

Network Traffic Generation and Data Balancing. The generation of network traffic, on the other
hand, has been a long-standing issue due to a shortfall of labeled traffic for research purposes. Many
works used techniques other than GANs to solve this problem, including [Vishwanath and Vahdat,
2009, Botta et al., 2007, Wu and Xia, 2016, Ghazanfar et al., 2020, Kuang et al., 2018, Zhang et al.,
2015], and even proposed methods to control the generation process [Sommers and Barford, 2004].

Some proposed Deep Learning (DL)-based solutions that aid in balancing minority classes to deal
with class imbalance; an issue that is frequently encountered in anomaly detection datasets [Hasibi
et al., 2019, Yuan et al., 2020, Jan et al., 2020].

To the best of our knowledge, we are the first to propose fine-grained control over the generation
process for network data. Our proposal provides a) generated samples with superior quality and b)
the option to tune the generation process.

3 Methodology

In this section, we describe the methodology used in this paper. First, we provide a brief overview of
the CIC-IDS207 dataset [Sharafaldin et al., 2018], including aggregate statistics and a few notable
flaws. Then we describe the model architecture, as well as our two conditioning approaches that we
use in our subsequent experiments. Finally, we describe our evaluation strategy for data augmentation
as well as controlled traffic generation.

3.1 Dataset

The CIC-IDS2017 dataset is a well-known collection of network traffic containing 14 different types
of attacks as well as a variety of normal traffic protocols and services extensively used in network
traffic analysis [Vinayakumar et al., 2019, Ring et al., 2019b, Khraisat et al., 2019, Meghdouri et al.,
2020]. The number of samples and proportion of each class in the dataset are shown in Table 1.
The dataset is highly imbalanced: benign activity accounts for 80% of the traffic, the first three
attack classes account for 18%, and the rest account for only 2% of all samples in the dataset.
This is reflected in the results presented in the following sections, as the GANs perform well on
over-represented classes but poorly on under-represented classes, such as Heartbleed or Sql Injection.
Nonetheless, this is unsurprising and discussed in section 4.

Each sample in the dataset represents a communication flow with 85 statistical features defined
in [Sharafaldin et al., 2018]. However, because Flow ID, Source IP, Destination IP, Source
Port, Destination Port, Protocol, and Timestamp are traffic identifiers rather than statistical
features, we drop them during the generation process. If the Destination Port or the Protocol
are required during analysis after the generation process, they can simply be appended based on the
attack class since each class often exhibits the same value for these features.

3.2 GANs for Data Balancing: Proposed Architecture

We use GAN models for both attack network traffic generation and augmentation. We experiment
with four established GAN architectures: CGAN, WGAN, AC-GAN and AC-WGAN discussed in
Section 1.
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Class Samples Proportion (%)
BENIGN 2273097 80.30037

DoS→ Hulk 231073 8.16298
Port Scan 158930 5.61443
DDoS 128027 4.52273

DoS→ GoldenEye 10293 0.36361
Patator→ FTP 7938 0.28042
Patator→ SSH 5897 0.20832
DoS→ slowloris 5796 0.20475
DoS→ Slowhttptest 5499 0.19426
Bot 1966 0.06945
Web Attack→ Brute Force 1507 0.05324
Web Attack→ XSS 652 0.02303
Infiltration 36 0.00127
Web Attack→ Sql Injection 21 0.00074
Heartbleed 11 0.00039

Table 1: Number of samples per class type in CIC-IDS2017

Figure 1: Proposed architecture for network attack generation.

Figure 1 illustrates our architecture on a conceptual level. Overall, there are two central components:
the generator and the discriminator which are both fully connected neural networks. The generator
produces increasingly more realistic traffic flow samples whereas the discriminator must decide
whether the given samples are real or fake i.e., come from the same distribution as the original
samples. Hence, the generator and discriminator are, in a way, competing against each other. As
one component improves the other keeps up, and vice versa. This is the fundamental idea of GANs
[Goodfellow et al., 2014]. Among the different architectures discussed above, we keep the same
network size and we only alter the optimizers. Before feeding them into the network, we normalize
all input features into the range [0,1].

Generator. In order to generate new (attack) samples, the generator is given two inputs: a noise
vector z concatenated with an additional condition vector (discussed in what follows). The noise
vector z is a 128-dimensional random vector sampled from a normal distribution (µ = 0, σ2 = 1)
that is generated anew with each forward pass. The generator is composed of two 256 neuron layers
and one 512 neuron layer. We use batch normalization [Ioffe and Szegedy, 2015] between layers to
re-scale batches and make the network training more stable, as well as Leaky Relu activations [Xu
et al., 2015], except at the final layer, where we use a linear activation.

4



Discriminator. During training, the discriminator determines whether the attacks generated by the
generator are real or fake. To learn to distinguish real samples from fake ones, it also receives real
attacks that are sampled from the dataset. Therefore, the discriminator obtains two inputs: the (attack)
sample to be generated picked from the original dataset and an additional condition. Depending on the
GAN model used, there are a few differences. For example, with AC-GAN the discriminator doesn’t
only predict whether the input is real or fake but also what class it belongs to. The discriminator has
a similar architecture to the generator, but we use no batch normalization.

Training. To compute the loss at the generator and the two losses (real and fake samples) at
the discriminator, we use a sigmoid activation followed by a Binary Cross Entropy (BCE) loss.
Furthermore, we use the Adam optimizer [Kingma and Ba, 2015] with a learning rate of 0.0002 or
RMSprop [Igel and Hüsken, 2000] in the case of WGAN with the same lr.

3.3 Coarse control: Static Class Condition Vectors

In order to generate a sample of a specific attack, we represent the condition vector shown in in
Figure 1 as a static one-hot vector that encodes the attack class. As there are 14 attack classes, the
condition vector is of dimension 14. For CGAN and WGAN this condition vector is provided for
both the generator and the discriminator. However, for models that additionally employ an auxiliary
classifier within the discriminator, only the generated “real” sample is fed into the discriminator,
otherwise, it would be simple to predict the right class and the additional cross entropy loss on the
attack class would be useless. This setup makes it possible to not only generate attacks, but attacks of
a particular type.

3.4 Fine-grained control: Dynamic Feature Condition Vectors

While the static class approach allows to generate attacks of a particular attack type, it only enables
coarse control. Therefore, we propose a dynamic condition vector that aims for a more fine-grained
control over the generation process, by setting conditions on a subset of eleven features present in our
dataset and letting the GAN predict the rest therefore, generating samples using a subset of features
that represent a condition. The features selected are shown in Table 2. These features are selected
based on their relevancy from the IDS trained on the original data. Instead of constructing a condition
vector using the plain feature values, we encode them in such a way that they are easily adjustable
during the generation process as shown in the same table.

Feature Condition on Value
Flow Duration

Low/Mid/High

Total Backward Packets
Total Forward Packets
Mean Packet Length
Bytes/s
Minimum IAT
Maximum IAT

PSH Flags

Flags/No FlagsSYN Flags
RST Flags
ACK Flags

Table 2: Dynamic features chosen for the condition vector.

Overall, this results in a 25-dimensional binary condition vector (3 × 7 + 4 = 25 dimensions) for
each training sample shown in Figure 2. This approach enables a more fine-grained control over
the generation process. For example, we can specify that attack “X” with a short ’Flow Duration’
and high ’Mean Packet Length’ should be generated. However, if the goal is simply to augment
a certain predefined class, we can compute the mean flow and then extract the respective dynamic
condition vector to be used afterwards. In contrary to the static class condition vector, generating
the training set in this case is not trivial. We pick at most 10k random samples from each class then
construct the dynamic condition vector for each sample, as explained below. The resulting subset is
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then used as a training set. This allows the generator to also learn the relation between the output
value and the selection technique explained above.

1/0 1/0 1/0 1/0 1/01/0 1/0 1/0

Flow Duration Bytes/s SYN RST

... ... ......

Low Mid High Low Mid High Set/Unset Set/Unset

25

Figure 2: Dynamic Condition Vector.

All three-level features are continuous. In order to convert them into a three level binary vector, each
feature value is binned into 3 buckets: low, mid and high. For each feature in the training dataset the
33rd and the 66th quantiles (Q33 and Q66) are computed and the encoded vector (Ex,f ) of a feature
f and sample x is chosen such that:

Ex,f =

{ [1, 0, 0], (low) if xf < Q33

[0, 1, 0], (mid) if Q33 ≤ xf < Q66

[0, 0, 1], (high) if Q66 ≤ xf
(1)

The flag-features however, are binary and determine whether a flag is set in at least one of the
flow packets or not. Therefore, we simply include them in the condition vector as a single binary
dimension.

3.5 Evaluation

Often, GANs are used to generate 2D data (i.e. images) which makes the (visual) evaluation and
inspection easier. However, when dealing with tabular data the evaluation is not as straightforward
and generated samples cannot be visually validated thus, many challenges arise [Borji, 2019].
Therefore, our approach requires additional methods to evaluate the quality of the generated samples.
Subsequently, we present and employ three techniques to quantify the quality of generated samples
as well as the evaluation method for the coarse control of the generation process.

3.5.1 Attack Validity

One aspect of evaluating the process is ensuring that the generated samples represent genuine
attack flows. Unfortunately, GANs are blind to the generated values and their meaning, so we set
rules to filter out all samples with inconsistent feature value combinations, such as samples where
the Maximum IAT is less than the Minimum IAT. The rules for each feature that exhibits multiple
statistical operators are as follows:

• Maximum X > Minimum X
• Maximum X > Mean X > Minimum X

After cleaning the generated data, we assess its quality using an external Random Forest (RF) classifier
trained on the original dataset (excluding normal traffic). The idea behind this approach is that when
the generated network flows are fed into an IDS, they should produce high detection ratios. We
chose this ML-model because it trains quickly and produces the highest classification scores, as
presented by the dataset authors [Sharafaldin et al., 2018]. To avoid over-fitting, we perform a 5-fold
cross-validation and report the accuracy-, precision-, recall-, and F1-scores (marco and weighted) in
the comparison.

3.5.2 Statistical Test

In addition, we run statistical tests to compare the generated feature distributions to the real feature
distributions. The underlying assumption of this evaluation method is that for generated samples
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to be realistic, their feature distributions should be similar to real ones. As a result, we apply the
two-sample t-test (with significance level α = 5%) [Snedecor and Cochran, 1989] to each feature in
a batch of generated and real attacks. The test considers a feature to be “real” if its distribution is
similar to the original one and their means are fairly equal. In the best-case scenario, all distributions
are not significantly different when compared pairwise, and thus all features are considered real.

3.5.3 Distance Measures

We compute the Euclidean distances between generated samples and the original class centroid.
Smaller distances represent samples near the original class mean and vice versa.

3.5.4 Output Control

We also assess how well the generation process can be controlled under dynamic conditions. We
accomplish this by varying one feature at a time and observing the effect on the related features at the
output. However, because the input condition contains features of various types, we group them into
two families: three-level features and binary features.

Three-level features. We manipulate the value of each feature three times, setting it to low (1,0,0),
mid (0,1,0), or high (0,0,1) and then generate 1000 samples of each attack class to see if the averaged
output over all samples µ meets a given condition by comparing it to the original means µlow, µmid

and µhigh. As an example:

• Set the Mean Packet Length to a low value (1,0,0),

• generate 1000 DDoS samples,

• compute the average value of the Mean Packet Length at the output,

• increment an initially zeroed quantity called the “success score” based on the following
conditions:

Ô +1 if low is selected and µ < µmid < µhigh,
Ô +1 if mid is selected and µlow < µ < µhigh,
Ô +1 if high is selected and µlow < µmid < µ,
Ô 0 otherwise.

To make the success score more understandable, we normalize it by the total number of conditions
checked: number of attack classes × number of features × number of levels (14 × 7 × 3 = 294)
which yields a success rate.

Binary features. For transport layer flags, we again generate 1000 samples per class and flag, then
use the accuracy score since the input is a single bit indicating whether the flag is present at least
once in the flow or not.

4 Results & Discussion

In this section, we present and discuss the obtained results. The source code as well as the used
model weights are available1 for reproducibility and future use of the framework. During training,
we ensure that all architectures are trained for the same number of epochs (150) and that the weights
of the last epoch are chosen to generate artificial attack samples.

4.1 Data Augmentation

As discussed in the previous section, we run a variety of tests and generate 10k samples of each
class to assess the quality of generated samples when augmenting the training dataset or balancing
the minority classes. Furthermore, we compare the scores obtained using the four proposed GAN
architectures and Synthetic Minority Oversampling Technique (SMOTE) [Chawla et al., 2002], a
widely used de-facto technique for balancing datasets. We show the classification scores obtained
at the output of the RF classifier in Table 3. High detection scores represent samples that were

1<hidden-for-blind-review>
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Metric AC-GAN AC-WGAN CGAN WGAN Dynamic-CGAN SMOTE
Accuracy 0.86±0.02 0.72±0.03 0.84±0.01 0.55±0.10 0.83±0.01 0.67±0.00
Macro f1 0.19±0.00 0.27±0.02 0.48±0.13 0.15±0.05 0.52±0.03 0.38±0.04
Macro precision 0.19±0.00 0.31±0.01 0.45±0.09 0.14±0.04 0.56±0.08 0.39±0.06
Macro recall 0.22±0.00 0.30±0.02 0.57±0.11 0.18±0.08 0.52±0.06 0.42±0.09
Weighted f1 0.83±0.02 0.71±0.02 0.85±0.02 0.53±0.12 0.84±0.01 0.79±0.02
Weighted precision 0.78±0.01 0.71±0.00 0.88±0.06 0.57±0.11 0.82±0.02 0.78±0.02
Weighted recall 0.87±0.01 0.72±0.01 0.84±0.01 0.56±0.10 0.85±0.02 0.80±0.06

Table 3: Classification performance of generated samples over two trials.

correctly classified by the IDS trained on the original set. We observe that AC-GAN has the highest
accuracy, whereas CGAN has the highest macro and weighted f1 score with its two condition vectors.
This demonstrates that the CGAN architecture can generate distinguishable attack types with high
detection scores. SMOTE, on the other hand, performed poorly but is still superior to WGAN and
AC-WGAN.

Architecture Distance
AC-GAN 0.40±0.08
AC-WGAN 0.41±0.08
CGAN 0.35±0.05
WGAN 0.49±0.21
Dynamic-CGAN 0.39±0.06
SMOTE 0.24±0.10

Table 4: Average distance measure
to the class mean over two trials.

Architecture Real Features
AC-GAN 19.7±1.5
AC-WGAN 28.1±0.4
CGAN 25.0±4.3
WGAN 25.6±0.1
Dynamic-CGAN 41.8±1.0
SMOTE 45.7±0.1

Table 5: Average number of “real”
features over two trials.

We show the average distance to the original class mean across all classes in Table 4. Low numbers
indicate a shorter distance. Unsurprisingly, SMOTE obtains the lowest (best) score because its
generation technique generate samples approximately by computing the mean coordinates between
each pair; thus, on average, all generated samples are relatively close to the centroid of a given
cluster. However, CGAN obtains the next best scores with its two condition vectors, indicating a high
similarity between artificial and real samples.

We show the estimated average number of “real” features computed from the generated sample
distributions using the t-test discussed in Section 3.5.2 over all attack classes in Table 5. If all
distributions match the real ones, the maximum number of features obtained is 78. We again see that
SMOTE obtains the highest score because it does not generate samples arbitrarily but rather respects
the original distribution. However, using dynamic conditioning with CGAN, we still achieve a similar
score. This demonstrates that, on average, the generated samples have distributions similar to the
original ones.

4.2 Inter/extra-polated Traffic

To generate customized samples, or more precisely, inter-/extrapolating samples, we employ the
technique described in Section 3.5.4 and evaluate it using the success rate, which represents how
accurate the control is (in %). The performance for controlling each feature, level, and transport layer
flag is shown in Tables 6, 7 and 8 respectively. In terms of features, we notice that not all features are
equally controllable. For example, the total number of packets and the maximum inter-arrival time can
be controlled with high precision, but the minimum inter-arrival time is difficult to control. TCP flags,
on the other hand, achieve nearly equal scores with the exception of the RST flag, where it was found
after a thorough investigation that a low score is caused by the fact that very few training samples
with the respective condition (with RST set) exist, resulting in the network lacking good knowledge
and being unable to build the relationship between the input condition and the desired output. Finally,
we summarize the results in Table 7, which displays the success rate per level. All levels achieve
roughly comparable scores, with the exception of the mid level, which has a slightly lower score. We
believe this is because the mid level condition has two constraints: the predicted value should be
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Feature Success Rate
Flow Bytes/s 59.3%
Flow Duration 85.5%
Flow IAT Max 92.0%
Flow IAT Min 54.2%
Packet Length Mean 91.1%
Total Backward Packets 84.4%
Total Fwd Packets 96.5%

Table 6: Success rate by feature.

Level Success Rate
Low 84.9%
Mid 74.2%
High 80.8%

Overall 80.0%

Table 7: Success rate by level.

Feature Success Rate
ACK Flags 79.5%
PSH Flags 87.2%
RST Flags 50.0%
SYN Flags 73.7%

Table 8: Success rate for binary features.

lower than Q66 and higher than Q33, whereas the other levels have only one constraint, i.e., either
larger than Q66 or smaller than Q66.

5 Conclusion

In this paper, we use GANs to solve the problem of network dataset augmentation and balancing.
We apply four well-known GAN architectures: CGAN, WGAN, AC-GAN, and AC-WGAN, to
the CIC-IDS2017 dataset and explore two kinds of conditions for attack flow generation. The first
approach uses a binary attack-type condition vector to control the generation process and allows for
data balancing with only limited control. By conditioning the values of a set of eleven features, the
second approach aims for more fine-grained control over the generation process therefore, allowing
for a controlled dataset augmentation. Overall, we show that our approach achieves high accuracy
scores across three evaluation methods, i.e., t-test, distance measure and detection accuracy with an
external classifier; indicating that the proposed framework can be used to balance minority classes
in various network traffic datasets as well as for augmenting a given dataset. Furthermore, we
demonstrate how to control the attack generation process in order to create customized network
flows by superficially altering a set of intuitive features. When compared to the state of the art, our
technique produces better results in terms of the representativeness of the generated samples and
demonstrates a better understanding of the distributions and feature values. Future work includes
using a similar architecture for per-packet generation in which the framework is supposed to construct
the entire sequence of packets of a given flow instead of aggregate statistics.
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