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Abstract

Offline multi-agent reinforcement learning
(MARL) struggles to estimate out-of-distribution
states or actions due to the absence of real-time
interactions with the environment. Although
diffusion models have shown promising potential
in addressing these challenges, they primarily
apply independent diffusion to the historical
trajectories of individual agents, which overlooks
the crucial dynamics in multi-agent coordination
and limits the policy robustness in dynamic
environments. In this paper, we propose MCGD,
a novel Multi-agent Coordination framework
based on Graph Diffusion models to improve
the effectiveness and robustness of collaborative
policies. Specifically, we construct a sparse
coordination graph with continuous node
attributes and discrete edge attributes to identify
the underlying multi-agent dynamics effectively.
We then derive the transition probabilities
between edge categories and present adaptive
categorical diffusion to model the structure
diversity of inter-agent coordination. According
to the coordination structure, we define the
neighbor-dependent forward noise and design
anisotropic diffusion to increase the action
diversity of each agent. Extensive experiments
across various multi-agent environments demon-
strate that MCGD significantly outperforms
existing state-of-the-art baselines in coordination
performance and exhibits superior robustness to
dynamic environmental changes.
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1. Introduction
Offline Multi-Agent Reinforcement Learning (MARL) en-
ables policy learning from pre-collected datasets, circum-
venting the need for real-time interactions with the envi-
ronment (Lange et al., 2012; Levine et al., 2020). This
approach is essential in scenarios where real-time interac-
tions are expensive, unsafe, or infeasible, such as robotics
in hazardous environments or autonomous systems (Barde
et al., 2024; Wang et al., 2024). Offline MARL offers a path
for deploying intelligent agents without requiring continu-
ous interaction, but it introduces significant challenges.

The primary challenges in offline MARL arise from the ab-
sence of real-time feedback, which limits the ability to adapt
policies dynamically based on ongoing interactions with the
environment (Matsunaga et al., 2023). First, generalization
to unseen states and actions is difficult because policies are
trained on limited data, which may not fully capture the
diversity of real-world scenarios. In multi-agent settings,
this issue is compounded by the complexity of agent interac-
tions. Second, out-of-distribution (OOD) actions and states
present another challenge, as offline methods often strug-
gle to handle situations not represented in the training data.
This can lead to unreliable or unsafe behaviors due to the
model’s inability to properly extrapolate from the limited
data available (Kumar et al., 2019; Fujimoto et al., 2019).

Recent advancements have integrated diffusion models
(Song & Ermon, 2019; Ho et al., 2020) into both single-
agent and multi-agent offline reinforcement learning (RL)
to improve policy stability and performance. In single-agent
offline RL, diffusion models address issues like overesti-
mation bias by modeling the full distribution over actions,
leading to more robust value function estimates (Janner
et al., 2022; Ajay et al., 2022). This probabilistic approach
helps mitigate common challenges in high-dimensional state
spaces by capturing complex dependencies between states
and actions, offering a more stable alternative to traditional
Q-learning. For multi-agent offline RL, diffusion models
like MADIFF (Zhu et al., 2023) extend this framework to
model complex agent interactions, leveraging diffusion pro-
cesses to simulate cooperative dynamics within multiple
interacting agents. Additionally, methods such as EAQ
(Oh et al.) enhance the training process by incorporating
the Q-total function into the diffusion model, improving

1



Graph Diffusion for Robust Multi-Agent Coordination

a) current diffusion-based coordination

speed attribute
controlled vehicle

adversary vehicle
cooperative agent

b) our graph diffusion-based coordination

𝑓𝑓𝜃𝜃

𝑓𝑓𝜃𝜃

Figure 1: Comparison between current diffusion-based al-
gorithms and our graph diffusion-based framework in an il-
lustrative four-agent hunting scenario, focusing on dynamic
changes in speed attributes and coordination structures.
the estimation of joint action values in multi-agent settings.
DOM2 (Li et al., 2023), on the other hand, overcomes the
conservatism of offline RL by enabling greater exploration
of strategies, thus reducing the tendency to rely on subopti-
mal, overly cautious policies.

Nevertheless, these methods typically apply diffusion mod-
els independently to the historical trajectories of individual
agents, overlooking the crucial coordination dynamics be-
tween agents. This approach limits policy robustness in
dynamic multi-agent settings, as it adapts to changes in
individual agent attributes but fails to capture the evolv-
ing coordination strategies that emerge as agents interact.
Figure 1 illustrates this limitation using a four-agent collab-
orative hunting scenario, where four vehicles work together
to capture an adversary. This scenario mimics real-world
challenges in multi-agent systems, where agents must con-
tinuously coordinate and adapt to both internal and external
changes. The hunting strategy, trained on fixed speed at-
tributes from offline data, fails to generalize to real-time
shifts, such as changes in agent speed or the sudden unavail-
ability of an agent. When two agents’ speeds change, the
diffusion-based method can adjust the strategy through noise
addition and denoising, as shown in Figure 1(a), allowing
the task to proceed. However, when one agent unexpectedly
becomes unavailable, the remaining agents cannot adapt
their coordination structure, and the hunting task fails. This
example highlights a critical challenge in offline MARL:
the need for policies that not only adapt to individual agent
attributes but also dynamically adjust to shifts in the coordi-
nation structures. In real-world applications, such changes
in coordination are inevitable, and robust policies must be
able to handle these shifts to ensure successful and efficient
multi-agent collaboration.

In this work, we propose a novel generative framework
MCGD for Multi-agent Coordination based on Graph
Diffusion models to enable diverse and adaptive collab-
orative policies, as illustrated in Figure 1 (b), with enhanced
effectiveness and robustness in dynamic environments. Ini-

tially, to identify the collaborative dynamics, we construct
a sparse graph with continuous nodes and discrete edges,
retaining essential and eliminating ineffective multi-agent
interactions. Next, we measure the observational differences
to derive an edge transition matrix adapted to multi-agent be-
haviors, and present categorical diffusion to model the struc-
ture diversity in inter-agent coordination. For each agent,
we define neighbor-dependent forward noise to capture the
dynamic coordination structure and develop anisotropic dif-
fusion to model the diversity in single-agent actions. Finally,
extensive comparative evaluations on three well-established
benchmarks-MPE, MAMuJoCo, and SMAC-demonstrate
that our framework achieves superior coordination perfor-
mance and robustness, significantly outperforming state-of-
the-art baselines by up to 12.8% and 14.2%, respectively.
Our contributions are summarized as follows:

• We propose the first graph diffusion model for multi-agent
coordination with superior effectiveness and robustness in
dynamic multi-agent environments.

• We present a categorical diffusion process to simulate
transitions between edge categories, modeling the structure
diversity in multi-agent coordination.

• We develop an anisotropic diffusion process incorporating
neighbor-dependent forward noise to model the diversity in
single-agent actions.

• Comparative evaluations across various challenging multi-
agent environments demonstrate the significant advantages
of our framework in coordination performance and policy
robustness compared to state-of-the-art baselines.

2. Related Work
2.1. Offline Multi-agent Reinforcement Learning

Offline coordination is a significant hurdle that limits ad-
vancements and exploration within offline multi-agent rein-
forcement learning (MARL) (Zhu et al., 2023). To address
this, recent studies (Chen et al., 2021; Yang et al., 2021)
have extended single-agent offline algorithms to multi-agent
scenarios through policy regularization. However, these ex-
tensions face persistent extrapolation errors (Fujimoto et al.,
2019) in offline environments, which remain challenging
to resolve fully. An alternative approach, the centralized
training with decentralized execution (CTDE) paradigm
(Oliehoek et al., 2008), has driven notable progress through
algorithms such as QMIX (Rashid et al., 2020), MADDPG
(Lowe et al., 2017), and MAPPO (Yu et al., 2022). Addition-
ally, methods like MA-ICQ (Yang et al., 2021) and OMAR
(Pan et al., 2022) have been developed to address distribu-
tional shifts in offline settings by adopting conservatism
principles. Despite their success in reducing distributional
errors, these conservatism-based methods restrict the flex-
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ibility of agent coordination, limiting adaptability across
varied scenarios. To enhance multi-agent coordination, dif-
fusion models capable of capturing complex distributions
have recently been introduced into offline MARL (Zhu et al.,
2023; Li et al., 2023; Oh et al.). However, these algorithms
independently apply diffusion models to the historical tra-
jectories of individual agents, neglecting the inter-agent
coordination structure, which reduces their robustness to
environmental changes.

In response, this work introduces a graph diffusion-based
multi-agent coordination framework to explicitly capture
the coordination structure and utilize distinct diffusion pro-
cesses for structure and action diversity, achieving superior
adaptability and performance in dynamic environments.

2.2. Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) have emerged as a powerful generative framework
for modeling complex data distributions. They have shown
significant success in continuous generation tasks such as
image synthesis (Dhariwal & Nichol, 2021; Rombach et al.,
2022), animation creation (Ho et al., 2022; Luo & Hu, 2021),
and molecule design (Corso et al.; Trippe et al.). Recently,
two distinct strategies have been proposed to adapt diffu-
sion models for generating graphs with discrete structures
(Austin et al., 2021; Hoogeboom et al., 2021). The first ap-
proach (Chen et al.; Hoogeboom et al., 2022) embeds graph
data into a continuous space by adding Gaussian noise to
the node features and adjacency matrix, enabling the model
to learn the underlying graph distribution. An alternative
strategy (Vignac et al.; Hua et al., 2024) avoids continuous
perturbations, which are less effective at capturing the struc-
tural properties of graph data. Instead, it directly models cat-
egorical diffusion for discrete graph data by estimating the
transition probabilities between different categories. How-
ever, existing graph diffusion models primarily focus on the
independent diffusion of discrete attributes across nodes and
edges. This limitation makes them unsuitable for adaptively
modeling the diversity of discrete multi-agent structures
and continuous single-agent actions in offline multi-agent
reinforcement learning.

To address these challenges, we propose the first graph dif-
fusion model for modeling multi-agent collaboration, which
combines categorical diffusion for inter-agent structures
with continuous diffusion for multi-agent actions, facilitat-
ing more effective and robust collaboration.

3. Preliminaries
In this section, we formally define the fundamental concepts
and provide a summary of the primary notations, as detailed
in Appendix 7.1.1.

3.1. Offline Multi-agent Reinforcement Learning

We model the fully cooperative multi-agent task as a de-
centralized partially observable Markov decision process
(Dec-POMDP) (Oliehoek et al., 2016), described as a
tuple M = ⟨I,S,A,P,Ω,O,R, γ⟩ with agents I =
{n1, n2, . . . , n|I|}. In this context, S and A denote state
and action spaces, respectively, and γ ∈ [0, 1] is the discount
factor. At each timestep t, every agent ni observes a local
observation oti ∈ Ω produced by the function O(oti|St, a

t
i)

and chooses an action ati ∈ A. All chosen actions form a
joint action At ∈ A|I| and lead to a transition to the next
global state St+1 according to the function P(St+1|St, At),
resulting in a joint reward rt = R(St, At). In offline set-
tings, rather than interacting with the environment in real-
time, we have access to a historical dataset D to learn multi-
agent policies that maximize the discounted cumulative
reward. The offline dataset D typically consists of multi-
agent observation-action trajectories, where each trajectory
τ = [O0, A0, O1, A1, . . . , OT , AT ] includes the joint ob-
servations and actions at each time step.

3.2. Denoising Diffusion Probabilistic Model

The denoising diffusion probabilistic model (DDPM) (Ho
et al., 2020) is a generative model that synthesizes continu-
ous or discrete data through a forward noising process and
a corresponding reverse denoising process.

In continuous diffusion, DDPM introduces Gaussian noise
to the original data X0 ∼ q(X) at each iteration k, perturb-
ing it progressively as follows:

q(Xk|Xk−1) = N (Xk;
√

1− βkXk−1, βkI), (1)

where I denotes the identify covariance matrix, and βk ∈
(0, 1) controls the scale of the Gaussian noise added at iter-
ation k. In the reverse process, DDPM employs a trained,
parameterized Gaussian transition kernel pθ to iteratively
denoise samples, gradually reconstructing the original data
distribution from the noisy samples as follows:

pθ(Xk−1|Xk) = N (Xt−1;µθ(Xk, k),Σθ(Xk, k)), (2)

where µθ and Σθ represent the predicted average value and
covariance matrix parameterized by θ.

For discrete diffusion on data X (e.g., graph structures),
DDPM computes the transition probabilities between cate-
gories to replace the Gaussian noise, yielding the noisy data
at iteration k as follows:

q(Xk|Xk−1) = cat(Xk|Xk−1Qβk
), (3)

where Qβk
represents the transition matrix applied to the

discrete data Xk−1 at iteration k, and cat denotes the cate-
gorical distribution over possible categories of Xk. During
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the denoising process, the posterior distribution pθ is com-
puted using the Bayes rule as follows:

pθ(Xk−1|Xk, X) ∝ cat(Xk[Qβk
]T ⊙XQβk−1

), (4)

where Qβk−1
= Qβ1

Qβ2
. . . Qβk−1

, [Qβk
]T represents the

transpose of the transition matrix Qβk
, and ⊙ denotes the

Hadamard product.

4. Methodology
In this work, we propose the first graph-based diffusion
framework for offline multi-agent reinforcement learn-
ing, including categorical diffusion on discrete edges and
anisotropic diffusion on continuous nodes, to model the di-
versity of inter-agent coordination and single-agent actions,
respectively. The proposed framework consists of three pri-
mary processes: forward noising, reverse denoising, and
policy sampling, as detailed in Figure 2. Specifically, we
perturb forward the nearest-neighbor coordination graph
constructed from multi-agent historical trajectories, design
the graph transformer network to reversely recover the clean
attributes of discrete edges and continuous nodes, and em-
ploy the trained diffusion model to sample collaborative
policies for multi-agent decentralized execution.

For clarity, we denote the timestep in an episode as {t}Tt=1,
the diffusion iteration as {k}Kk=1, and the agent as {ni}|I|i=1.

4.1. Forward Noising Process

To capture the collaborative dynamics among agents, we
identify the essential multi-agent interactions to construct
the sparse coordination graph Gt = (At, Et) at timestep
t. For each agent ni ∈ I, we establish undirected edges
connecting it with its k nearest neighbors defined by their
observation difference, resulting in k-nn coordination graph.
In the graph Gt, At ∈ R|I|×d represents the d-dimensional
continuous node attributes that encode the actions of each
agent, while Et ∈ {0, 1}|I|×|I| is a binary adjacency matrix
where each entry indicates the presence (or absence) of
an edge between two agents. For discrete action spaces,
we represent each agent’s action using a one-hot vector of
dimension d, where d is the number of discrete actions.

In this subsection, we present a graph diffusion process over
the graph Gt to simulate the dynamic multi-agent behavior
when online coordination, detailed as follows:

q(Gt
k|Gt

k−1) = (
√
1− βkA

t
k−1 + βkϵ, E

t
k−1Qβk

), (5)

where ϵ and Qβk
are the forward noise and transition ma-

trix applied At
k−1 and Et

k−1, respectively, at iteration k.
To guarantee the efficiency and adaptivity of the forward
noising process, three desirable properties are required:

• The transition matrix Qβk
should be adaptive to the multi-

agent historical trajectories.
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Figure 2: The overall architecture of MGCD, including
forward noising process, reverse denoising process, and
policy sampling process.

• The marginal distribution q(Gt
K |Gt) should have a closed-

form expression for efficient calculation.

• The Gaussian noise ϵ should be anisotropic and dependent
on the inter-agent coordination Et.

4.1.1. CATEGORICAL NOISING ON EDGES

Considering the relevance among multiple agents, we define
an adaptive transition matrix between edge categories and
present a categorical diffusion process on the discrete edges
to model the diversity in inter-agent coordination.

To quantify the multi-agent relevance, for each pair of agents
ni and nj , we calculate the cosine similarity ci,j between
their observations oti, o

t
j ∈ Ot as a measure of the likeli-

hood of diffusion occurring between ni and nj . Intuitively,
a high similarity in the agents’ observations reflects a strong
alignment of their states and indicates the potential for sub-
stitutable coordination, thereby increasing the likelihood
of diffusion between them. Leveraging this metric, we
construct a similarity matrix C ∈ R|I|×|I| and derive the
transition matrix Qt between edge categories as follows:

Qt = e(C−D)t, (6)

where D is the diagonal degree matrix of C, normalizing the
similarity values. Theorem 4.1 establishes the rationality of
the transition matrix Qt for categorical diffusion, confirming
the necessary properties identified in prior studies (Yi et al.,
2024; Shi et al.).

Theorem 4.1. The transition matrix Qt satisfies the follow-
ing beneficial properties of symmetry, additivity, locality,
and convergence:

[Qt]
T
= Qt, Qti+tj = QtiQtj ,

lim
t→0

Qt = I , lim
t→∞

Qt =
1

|I|
11T .

(7)

The detailed proof is provided in Appendix 7.2.1.

By incorporating the scale parameter βk, the categorical
noising of edge discrete Et at diffusion iteration k is formal-
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Figure 3: Detailed designs of our proposed graph diffusion-based coordination framework.

ized as follows:

q(Et
k|Et

k−1) = cat(Et
k|Et

k−1Qβk
), Qβk

= e(C−D)βk ,
(8)

where cat(·) represents the categorical distribution, param-
eterized by the product Et

k−1Qβk
. Utilizing the symmetry

and additivity properties in Theorem 4.1, we derive the
closed-form expression for categorical noising on Et:

q(Et
K |Et) = cat(Et

K |EtQβK
),

QβK
= Qβ1

Qβ2
. . . QβK

= e
∑K

k=1[βk(C−D)].
(9)

4.1.2. ANISOTROPIC NOISING ON NODES

Instead of the noising process on historical trajectories in-
dependent of inter-agent coordination, we define a forward
Gaussian noise conditioned on neighboring agents’ actions
and then design an anisotropic diffusion on continuous
nodes to model the diverse single-agent actions.

For each agent ni ∈ I , we encode the action information of
its neighbors in the original coordination graph Gt as At

i ⊂
At, and calculate the covariance matrix Σi ∈ Rd×d of At

i

to characterize the anisotropy of its diffusion process. The
forward noising over the single-agent action ati at iteration
k is formalized as follows:

q(ati,k|ati,k−1) = N (ati,k;
√

1− βka
t
i,k−1, βkΣi). (10)

Given the parameters αk = 1 − βk and αK =
∏K

k=1 αk,
the closed-form expression of the marginal distribution of
ati,K is derived as follows:

q(ati,K |ati) = N (ati,K ;
√
αKati, (1− αK)Σi). (11)

The detailed proof is provided in Appendix 7.2.2.

By integrating the categorical diffusion over discrete edges
and anisotropic diffusion over continuous actions, we derive

the closed-form expression for the marginal distribution
q(Gt

K |Gt) as follows:

q(Gt
K |Gt) = (

√
αKAt + (1− αK)ϵ, EtQK), (12)

where ϵ deontes the multi-agent d-dimensional anisotropic
Gaussian noise, with each component ϵi for agent ni drawn
from N (0,Σi).

4.2. Reverse Denoising Process

In this subsection, we design a graph diffusion network
to reverse denoise the perturbed coordination graph, with
the goal of recovering the original attributes of inter-agent
coordination and single-agent actions.

Given the edge attributes Et
k and Et, we apply the Bayes

rule to derive the posterior distribution of Et
k−1 as follows:

q(Et
k−1|Et

k, Et) ∝ cat(Et
k−1|Et

kQβk
⊙ EtQβk−1

), (13)

where ⊙ denotes the pairwise Hadamard product operation.

To predict the unperturbed edge attributes Et, we employ a
graph transformer network (Yun et al., 2019) to construct
a graph denoising network fθ. This network takes as input
the noisy graph Gt

K = (At
K , Et

K) and outputs the estimated
edge attribute Êt

θ and node attribute Ât
θ

To optimize the graph diffusion model parameterized by
θ, we employ the cross-entropy loss Lce to quantify the
discrepancy between the clean edge attribute Et and the
predicted edge attribute Êt

θ as follows:

Lce = E(Ot,At)∈τ

∑
i,j

cross-entropy(Et
i,j , Ê

t
i,j), (14)

where Et
i,j and Êt

i,j denote the (i, j) entry in the discrete
attributes in Et and Êt

θ, respectively.

To further optimize the denoising network fθ, we compute
the Euclidean distance between the clean node attribute At
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and the predicted node attribute Ât
θ, and incorporate the

Q-loss (Wang et al.) to define the anisotropic diffusion loss
Lad, as follows:

Lad = E(Ot,At)∈τ

∑
i=1

[
||ati − âti||2 − λQϕi

(oti, â
t
i)
]

,

(15)
where âti ∈ Ât denotes the predicted action of agent ni ∈ I ,
oti represents the average observation of agent ni and its
neighbors, and λ is the regularization coefficient.

To reduce model complexity and maintain scalability,
we process each neighboring observation using a shared-
parameter MLP, followed by a mean pooling operation over
the resulting features. This replaces concatenation, which
can significantly increase the parameter count as the number
of neighbors grows. By limiting the neighbors to those with
higher similarity, the averaging operation is performed over
semantically similar features, thereby mitigating informa-
tion loss.

The training details of our MCGD framework are provided
in Appendix 7.1.2.

4.3. Policy Sampling Process

In this subsection, we design a policy sampling process
based on the trained graph diffusion model to generate multi-
agent collaborative behaviors, with the aim to progressively
denoise the inter-agent coordination and multi-agent actions
in a decentralized execution setting. The whole sampling
process is summarized in Algorithm 1.

At each timestep t, each agent ni ∈ I obtains its local ob-
servation oti from the environment and selects the optimal
action ati according to its trained Q-value function Q∗

ϕi
(line

5 in Algorithm 1). Instead of the noise initialization used
in prior methods (Li et al., 2023; Zhu et al., 2023), for each
agent ni, we generate N random action samples from the
continuous action space to construct a candidate set. We
then evaluate each candidate using the trained Q-function
Q∗

ϕi
and select the action with the highest Q-value, provid-

ing a more informed and value-guided sampling strategy.
Since the optimal action is selected from a finite set of sam-
pled candidates, this approach is naturally applicable to both
discrete and continuous action spaces and does not require
differentiability or closed-form maximization over actions.
For the actions of other agents that are inaccessible, we
replace them with a standard Gaussian noise of the same
dimensionality, thereby forming the multi-agent actions At.

Using the actions At as continuous node attributes, we ini-
tialize a fully connected coordination graph Gt

i = (At, Et)
(line 6 in Algorithm 1), where the edge attribute Et is de-
fined such that off-diagonal entries are set to 1. The at-
tributes Et and At are treated as the initial perturbed data
Et

K and At
K in the context of categorical and anisotropic

Algorithm 1 MCGD Sampling Algorithm

1: Input: diffusion parameter K, graph diffusion model
fθ∗ , and Q-value function Q∗

ϕi
for each agent ni

2: Initialize: initial observation o0i for each agent ni

3: for each timestep t do
4: for each agent ni do
5: Select action ati based on Q∗

ϕi

6: Construct the fully-connected graph Gt
i

7: for each diffusion iteration k do
8: Predict the clean attributes Êt

θ and Ât
θ based on

the denoising network fθ
9: Sample the edge attributes Et

k−1 from the pos-
terior distribution pθ(E

t
k−1|Et

k, Ê
t
θ)

10: end for
11: Execute the single-agent action ati ∈ Ât

θ

12: end for
13: end for

diffusion processes, respectively.

At each diffusion iteration k, we employ the denoising net-
work fθ to predict the denoised edge attribute Êt

θ and node
attribute Ât

θ (line 8 in Algorithm 1). Using the edge at-
tributes Êt

θ and Et
k, we derive the posterior distribution

pθ(E
t
k−1|Et

k, E
t
0), from which we sample the edge attribute

Et
k−1 at iteration k − 1 (line 9 in Algorithm 1), as follows:

Et
k−1 ∼ cat(Et

k−1|Et
kQβk

⊙ fθ(E
t
k, k)Qβk−1

). (16)

Based on the sampled edge attribute Et
k−1 and the predicted

node attribute Ât
θ, we construct the perturbed coordination

graph Gt
k−1 = (Ât

θ, E
t
k−1), which will be used in the next

denoising iteration k− 1. After the final denoising iteration,
we extract the single-agent action ati from the final predicted
node attribute Ât

θ as the sampled action of agent ni ∈ I at
timestep t (line 11 in Algorithm 1).

Under decentralized execution, each agent ni extracts its
own action by retrieving the i-th row of Ât

θ, ensuring consis-
tency with the fully decentralized setting. In discrete action
spaces, the denoised continuous output is passed through
a softmax layer, and the final discrete action is selected
via an argmax operation over the corresponding softmax
probabilities.

5. Evaluation
In this work, we conduct comparative experiments across
different multi-agent environments, aiming to validate our
method’s ability to model the complex and diverse behav-
iors of cooperative agents. Specifically, we evaluate whether
MCGD outperforms state-of-the-art baselines in coordina-
tion performance and demonstrates superior robustness to
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Table 1: Comparison between MCGD and baselines on offline Expert or Good datasets across the MPE, MAMuJoCo, and
SMAC benchmarks: “average value ± standard deviation”. Bold: the best performance, underline: the second performance.

Method Expert MPE Good MAMuJoCo Good SMAC
Spread Tag World 2halfcheetah 2ant 4ant 3m 2s3z 5m6m 8m

MA-ICQ 79.2± 4.3 92.6± 15.5 83.5± 20.7 1735.2± 748.3 1186.2± 653.9 1214.9± 738.4 18.8± 0.6 19.6± 0.3 16.3± 0.9 19.6± 0.3
MA-CQL 74.1± 5.8 68.3± 13.2 57.7± 20.5 2722.8± 1022.6 1394.8± 604.3 1039.1± 617.5 19.6± 0.3 19.0± 0.8 13.8± 3.1 11.3± 6.1
OMAR 82.9± 2.4 97.9± 16.4 84.8± 21.0 2963.8± 410.5 1075.3± 374.1 954.8± 319.7 18.4± 0.2 18.8± 0.5 15.7± 0.3 16.2± 0.5

MA-SfBC 87.5± 7.3 77.4± 13.9 97.3± 19.1 2386.6± 440.3 1764.1± 457.4 1721.8± 392.3 19.1± 0.3 19.2± 0.3 15.2± 0.1 18.1± 0.3
DOM2 88.7± 6.3 98.2± 14.4 99.5± 17.1 3676.8± 248.5 2187.4± 190.3 1836.2± 241.6 19.4± 0.2 19.0± 0.4 18.1± 0.7 18.2± 0.4

MADIFF 82.1± 5.9 103.0± 12.0 96.4± 13.7 3446.5± 213.3 2479.3± 105.8 2414.5± 128.3 19.6± 0.7 19.4± 0.1 18.0± 1.0 19.2± 0.1
MCGD 93.8 ± 2.7 109.6 ± 13.3 110.9 ± 11.5 3917.4 ± 193.7 2782.7 ± 203.9 2609.2 ± 165.2 22.1 ± 0.1 20.7 ± 0.1 18.9 ± 0.5 20.1 ± 0.2

Abs.(%) Avg.↑ 5.1(5.7) 6.6(6.4) 11.4(11.5) 240.6(6.5) 303.4(12.2) 194.7(8.1) 2.5(12.8) 1.1(5.6) 0.9(5.0) 0.9(4.7)

Table 2: Comparison between MCGD and baselines in shifted environments including MPE Spread, MPE Tag, MPE World,
and MAMuJoCo 2halfcheetah, with dynamic changes in agent attributes and coordination structure: “average value ±
standard deviation”. Bold: the best performance in each graph, underline: the second performance.

Method MPE Spread MPE Tag MPE World MAMuJoCo 2halfcheeta
agent attribute coordination structure agent attribute coordination structure agent attribute coordination structure agent attribute coordination structure

MA-ICQ 61.3± 13.7 34.1± 18.7 83.7± 13.1 47.8± 15.3 69.4± 14.7 41.6± 17.3 1583.2± 547.7 712.6± 375.2
MA-CQL 59.4± 8.3 35.6± 14.3 62.4± 16.7 41.2± 21.7 51.1± 11.0 37.2± 18.5 2678.2± 900.9 948.4± 462.7
OMAR 66.5± 9.7 38.2± 14.9 85.6± 29.3 44.7± 26.8 71.1± 15.2 40.9± 23.8 2295.0± 357.2 926.3± 364.5

MA-SfBC 69.1± 19.2 44.8± 25.9 64.4± 21.5 40.3± 26.1 82.0± 33.3 49.1± 29.5 2397.4± 670.3 1083.1± 492.5
DOM2 74.0± 16.1 57.2± 19.1 89.1± 21.7 64.5± 24.2 91.8± 34.9 69.4± 26.3 3178.7± 370.5 1748.7± 357.4

MADIFF 66.7± 12.9 53.9± 16.4 91.6± 18.4 65.2± 22.9 83.1± 26.7 69.6± 28.4 2741.9± 360.4 1427.5± 290.3
MCGD 78.4 ± 14.2 65.3 ± 15.6 99.3 ± 20.1 73.8 ± 19.6 104.2 ± 19.4 79.5 ± 21.6 3518.4 ± 273.0 1925.8 ± 318.3

Abs.(%) Avg.↑ 4.4(5.9) 8.1(14.2) 7.7(8.4) 8.6(13.2) 12.4(13.5) 9.9(14.2) 339.7(10.7) 177.1(10.1)

dynamic environmental changes (e.g., agent attributes and
coordination structure). For fair evaluation, we run each
offline experiment five times with different random seeds
and report the average episodic return obtained in online
rollout as the performance measure.

5.1. Experimental Setup

5.1.1. BENCHMARKS

We conduct extensive evaluations on three following well-
established multi-agent benchmarks:

• Multi-Agent Particle Environments (MPE) (Lowe et al.,
2017). Multiple 2D particles work together to achieve
shared objectives across various scenarios. In the Spread
task, three particles are positioned randomly and must cover
three landmarks without colliding. In the Tag task, three
predators cooperate to capture a pre-trained, faster-moving
prey. In the World task, three predators catch a pre-trained
prey, which aims to collect food while evading capture. For
the offline datasets, we use four datasets from (Pan et al.,
2022), each corresponding to different levels of training
quality, Expert, Medium-Replay, Medium, and Random.

• Multi-Agent MuJoCo (MAMuJoCo) (Peng et al., 2021).
Independent agents control different robotic joints to max-
imize forward speed. Three configurations are chosen: 2-
agent halfcheetah (2halfcheetah), 2-agent ant (2ant), and
4-agent ant (4ant). The offline datasets are sourced from
(Formanek et al., 2023), which includes varying quality
levels-Good, Medium, and Poor-for each control task.

• StarCraft Multi-Agent Challenge (SMAC) (Samvelyan
et al., 2019). A team of agents collaborates to fight against

an enemy team controlled by hand-coded AI. Four different
maps are explored: three Marines per team (3m), two Stalk-
ers and three Zealots per team (2s3z), five Marines versus
six Marines (5m vs 6m), and eight Marines per team (8m).
The off-the-grid offline datasets (Formanek et al., 2023) are
used here, with varying quality levels—Good, Medium, and
Poor—available for each map.

5.1.2. BASELINE

We compare the MGCD framework with the various state-
of-the-art baselines including: offline MARL algorithms
such as MA-ICQ (Yang et al., 2021), MA-CQL (Jiang &
Lu, 2023), and OMAR (Pan et al., 2022)), the extension of
the single-agent diffusion-based policy, MA-SfBC (Chen
et al., 2022)), and diffusion-based MARL methods such as
DOM2 (Li et al., 2023) and MADIFF (Zhu et al., 2023).

5.2. Numerical Results

To evaluate the effectiveness of collaborative policies, we
report numerical results for both MCGD and baseline meth-
ods, using offline Expert and Good datasets across three
environments. The average values and standard deviations
of the episodic returns for each model are summarized
in Table 1. Notably, our MCGD framework consistently
achieves state-of-the-art performance across all multi-agent
cooperative scenarios, with smaller deviations in most set-
tings, which demonstrates its advantages in terms of both
effectiveness and stability. The fact that the DOM2 and
MADIFF algorithms rank second and third in each task un-
derscores the potential of diffusion models in addressing
the out-of-distribution challenge in offline multi-agent re-
inforcement learning. When compared to diffusion-based
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a) Standard Environment b) Shifted Environment (2A) c) Shifted Environment (CS)

Landmark 0 Landmark 1 Landmark 2 Agent 0 Agent 1 Agent 2

Figure 4: Visualization of two episodic trajectories in the
MPE Spread task with three agents and three landmarks,
showing: a) the standard environment, b) dynamic agent
attributes (2A), and c) dynamic coordination structure (CS)
in the shifted environment.

baselines, MCGD achieves improvements of at least 5.7%,
6.5%, and 4.7% in the MPE, MAMujoco, and SMAC bench-
marks, respectively. These significant advantages further
highlight the importance of the underlying multi-agent co-
ordination framework when applying diffusion models to
historical trajectories. The experimental results on Medium
and Poor datasets are provided in Appendix.

To further validate the policy robustness, we design shifted
environments (details are provided in Appendix 7.3.2) by
altering agent attributes and coordination structures. Specif-
ically, we randomly modify the particle speed in the MPE
environment and adjust the power, density, and friction of
joints in MAMuJoCo to simulate dynamic changes in agent
attributes. Additionally, we randomly select a particle or
joint to fix its speed or power attribute as zero, simulating
changes in coordination structures caused by the sudden
disconnection of an agent. For each selected task, we train
the collaborative policies using the offline datasets gener-
ated in standard environments and evaluate them in shifted
environments. The corresponding experimental results are
shown in Table 2. We observe that MCGD consistently
achieves the highest episodic return across all shifted envi-
ronments, underscoring the robustness of our framework.
Furthermore, in more challenging scenarios with dynamic
coordination structures, MCGD’s performance advantage
becomes even more pronounced. This superiority can be
attributed to the modeling of diverse edge structures and
node actions within the multi-agent collaboration graph,
facilitated by our defined graph diffusion process.

5.3. Qualitative Analysis

To investigate the effectiveness and robustness of the MCGD
framework, we focus on the MPE spread task involving 3
agents and 3 landmarks, conducted in both standard and
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Landmark 0 Landmark 1 Landmark 2 Agent 0 Agent 1 Agent 2

Figure 5: Visualization of dynamic learned coordination
graph over timesteps in the MPE Spread task with three
agents and three landmarks under different settings: stan-
dard environment, dynamic agent attributes, and dynamic
coordination structure.

shifted environments. The team reward is defined as the
sum of the distances between each landmark and its closest
agent. When an agent collides with another, it incurs a
penalty, which is subtracted from the team reward. Two
example episodic trajectories are visualized in Figure 4,
illustrating the coordinative behavior of agents in the task.

In the standard environment, each agent quickly approaches
one or two landmarks to minimize the distance to the closest
landmark. When the minimum speed of Agent 0 decreases,
anisotropic diffusion within the MCGD framework dynam-
ically reallocates the target landmarks for all three agents,
altering their motion trajectories. Additionally, the diffu-
sion process’s neighbor dependence helps prevent collisions
caused by excessive action uncertainty when two agents are
close to one another. This cooperation ensures the success-
ful completion of the task.

When Agent 0 goes offline and can no longer move, cat-
egorical diffusion alters the coordination structure among
the remaining agents. With Agent 0’s influence removed,
the remaining two agents shift their focus from minimizing
the distance to a single landmark to minimizing the sum of
distances to multiple landmarks.

To illustrate how the learned coordination graph evolves
during task execution, we further provide a case study on
the MPE Spread task in Figure 5, where the horizontal axis
indicates timesteps and the vertical axis shows different
experimental settings.

Initially, although a nearest-neighbor graph is used for ini-
tialization, large positional differences between agents cause
the forward diffusion process to disrupt coordination edges.
As a result, the model predicte no edges, and agents act
independently. As agents move closer, the learned graph
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Table 3: Comparison of different processing methods for neighboring observations—average observation (AO) and feature
concatenation (FC)—on offline Good datasets in the SMAC benchmark, in terms of average reward and computation time.

SMAC 3m 2s3z 5m6m 8m
average reward spent time average reward spent time average reward spent time average reward spent time

MCGD-AO 22.1± 0.1 174.38± 10.45 20.7± 0.1 179.01± 9.83 18.9± 0.5 177.52± 14.77 20.1± 0.2 184.74± 11.37
MCGD-FC 21.3± 0.3 195.40± 8.77 20.5± 0.1 203.18± 16.04 18.4± 0.4 207.54± 13.80 19.4± 0.4 210.39± 10.08
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Figure 6: Ablation study on categorical diffusion and
anisotropic diffusion within the MCGD framework, evalu-
ated in SMAC environments.

gradually recover the underlying coordination structure, en-
abling effective collaboration such as landmark assignment
and collision avoidance.

In a modified setting where the speed of Agent 0 is re-
duced, coordination edges emerge primarily between the
other agents. Agent 0, due to its reduced speed, require more
timesteps to engage in coordination, delaying the full coordi-
nation graph reconstruction. In a more extreme case where
Agent 0 is inactive, it remains isolated, and coordination is
exclusively formed between the other two agents. These
visualizations demonstrate the adaptive nature of the learned
graph, which dynamically reflects the agents’ interaction
context and task demands.

5.4. Ablation Studies

To verify the functionality of key modules, categorical dif-
fusion and anisotropic diffusion, we have designed two
model variants, MCGD-CD and MCGD-AD. Specifically,
in MCGD-CD, we ignore the dynamics of the multi-agent
coordination structure and fix it to the k-nearest neighbor-
ing graph, whereas in MCGD-AD, we perform indepen-
dent diffusion on multi-agent trajectories and aggregate the
observations from neighboring agents based on the coordi-
nation structure. We experimentally compare the MCGD
framework and its variants with the best performing base-
line, MADIFF, using offline datasets categorized as Good,
Medium, and Poor in the SMAC environment. As shown
in Figure 6, the full MCGD framework outperforms all
datasets, with both variants also surpassing the baseline,

highlighting the importance of the two key modules in the
MCGD framework. Although MCGD-CD performs satis-
factorily in simpler tasks such as 3m and 2s3z, it struggles
in other complex scenarios, reflecting the limitations of
fixed coordination structures in multi-agent collaboration
and highlighting the need for modeling coordination struc-
ture diversity in MCGD.

We further validate the design of processing neighboring
observations through an ablation study using the SMAC
benchmark, comparing two variants: MCGD-AO (with ob-
servation averaging) and MCGD-FC (with feature concate-
nation). As shown in Table 3, MCGD-AO achieves both
higher average rewards and lower computational cost across
all tasks. The inferior performance of MCGD-FC is largely
attributed to increased parameterization and greater opti-
mization difficulty, further supporting the effectiveness and
generality of our averaging-based approach.

6. Conclusion
This work proposes the first graph diffusion model for of-
fline multi-agent coordination, which employs categorical
diffusion on discrete edge attributes and anisotropic dif-
fusion on continuous node attributes to capture structure
diversity and action diversity, respectively. Extensive eval-
uations across three benchmark multi-agent environments
demonstrate the effectiveness of the MCGD framework in
coordination and its superior robustness to dynamic changes
in environmental conditions.

In future work, we aim to introduce more complex and
adaptable collaboration graph structures to support a broader
range of agent interactions. Real-world validation remains
a critical direction to further demonstrate the practical appli-
cability of our framework. Our team is currently working
on deploying the proposed method in real-world multi-robot
hunting scenarios. Although quantitative results are not yet
available for inclusion in this version, we are actively col-
lecting data and refining the deployment process. We plan to
report these findings as part of a more extensive evaluation
in a future extension of this work.

Impact Statement
This paper contributes to advancing the field of Machine
Learning. While there are numerous potential societal im-
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7. Appendix
7.1. Framework Detail

7.1.1. NOTATIONS

To facilitate comprehension, we summarize the primary no-
tations related to multi-agent reinforcement learning and
graph diffusion models, along with their corresponding de-
scriptions, in Table 4.

Table 4: Glossary of Notations.

Notation Description
M Markov decision process
n; I Single agent; Agent set
S;A State and action spaces
P;O Transition and observation functions
R; γ Reward function; Discount factor
O;S;A Multi-agent observations, states, and actions
o, s, a Single-agent observation, state, and action
D; τ Replay buffer; Historical trajectory
X Random variable
q; p Prior and posterior distributions
N ;Q Gaussian noise; Transition matrix
µ; Σ Average value and covariance matrix
G;E Coordination graph; Coordination edges
C;D Similarity matrix; Diagonal degree matrix
K,T Diffusion iterations; Timesteps
f Graph denoising network
L Loss function

7.1.2. MCGD TRAINING PROCESS

We summarize the training process of MCGD framework
in Algorithm 2. At each training episode, we randomly
sample a multi-agent historical trajectory τ from the of-
fline dataset D. Within this trajectory τ , we initialize a
nearest-neighboring coordination graph Gt = (At, Et) at
each timestep t and sample a parameter K as the number of
diffusion iterations (lines 5 and 6 in Algorithm 2). For the
discrete edges Et, we apply the closed-form expression of
categorical diffusion to calculate the perturbed structure Et

K

(line 7 in Algorithm 2). For each agent ni ∈ I, we calcu-
late the covariance matrix Σi, which defines the anisotropic
structure of the Gaussian noise applied to its action space
(line 9 in Algorithm 2). We then employ the closed-form
continuous diffusion on the agent’s action ati to obtain the
noisy action atK (line 10 in Algorithm 2). Integrating the
perturbed edges and each agent’s action, we derive the per-
turbed coordination graph Gt

K = (At
K , Et

K) and optimize
the graph diffusion model by minimizing the training losses
Lce and Lad (lines 13 and 14 in Algorithm 2).

Algorithm 2 MCGD Training Algorithm

1: Input: offline multi-agent dataset D
2: Initialize: graph diffusion model fθ and Q-value func-

tion Qϕi
for each agent ni

3: for each training episode do
4: for each training step t do
5: Construct the nearest coordination graph Gt

6: Sample the diffusion parameters K
7: Calculate the perturbed edge attribute Et

K

8: for each agent ni do
9: Calculate the covariance matrix Σi

10: Calculate the noisy single-agent action ati,K
11: Optimize the Q value function Qϕi

12: end for
13: Derive the perturbed coordination graph Gt

K

14: Optimize the graph diffusion model fθ by mini-
mizing Lce and Lad

15: end for
16: end for

12
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7.2. Theorem Proof

7.2.1. PROOF FOR THEOREM 4.1

Proof. We begin by considering the Taylor expansion of the
matrix exponential for QE

t :

QE
t = e(C−D)t = I +

∞∑
i=1

[
(C −D)

i
ti

i!

]
, (17)

where I denotes the identity matrix.

Symmetry. Since both the similarity matrix C and the
diagonal degree matrix D are symmetric, it follows that:

(C −D)
T
= (C −D). (18)

Thus, the transpose of QE
t is:

[
QE

t

]T
= IT +

k∑
i=1

[
ti

i!
·
[
(C −D)i

]T]

= I +

k∑
i=1

[
ti

i!
· (C −D)

i

]
= QE

t .

(19)

Therefore, QE
t is symmetric.

Additivity. Using the properties of the matrix exponential,
we have:

QE
ti+tj = e(C−D)(ti+tj)

= e(C−D)tie(C−D)tj

= QE
tiQ

E
tj .

(20)

Thus, QE
t satisfies the additivity property.

Locality. From the Taylor expansion, each term in the series
for QE

t involves powers of t. For i > 1, we have:

lim
t→0

(C −D)
i
ti

i!
=

(C −D)
i
0i

i!
= 0. (21)

Therefore, as t → 0, the transition matrix reduces to:

lim
t→0

QE
t = lim

t→0

[
I +

∞∑
i=1

[
(C −D)

i
ti

i!

]]
= I . (22)

This establishes the locality of QE
t as t approaches zero.

Convergence. First, note that the matrix C − D has an
eigenvalue of 0:

(C −D)1 = C1−D1 = 0 = 0 · 1, (23)

where 1 and 0 are the vectors of all ones and zeros, re-
spectively. If C − D is irreducible, then the geometric
multiplicity of the eigenvalue 0 is 1, and the corresponding
normalized eigenvector is 1

|I|1.

Next, we show that C −D is a semi-negative definite. For
any vector x ∈ R|I|, we have:

xT (C −D)x = xTCx− xTDx

=

|I|∑
i,j=1

Ci,jxixj −
|I|∑
i=1

Di,ix
2
i

= −1

2

 |I|∑
i=1

Di,ix
2
i −

|I|∑
i,j=1

2Ci,jxixj +

|I|∑
j=1

Dj,jx
2
j


= −1

2

 |I|∑
i,j=1

(
Ci,j (xi − xj)

2
)

≤ 0.
(24)

Thus, C −D is semi-negative definite, and all eigenvalues
except for the one corresponding to 1 are negative.

We can now express QE
t in terms of the eigenvalue decom-

position of C −D:

QE
t = e(C−D)t = V eΛtV T , (25)

where V is the matrix of eigenvectors of C−D and Λ is the
diagonal matrix of eigenvalues 0 = λ1 > λ2 ≥ · · · ≥ λ|I|.

As t → ∞, the matrix exponential eΛt behaves as follows:

lim
t→∞

eλit =

{
1 if i = 1,
0 if i > 1.

(26)

Therefore, in the limit as t → ∞, the matrix QE
t converges

to the rank-1 matrix formed by the eigenvector correspond-
ing to the zero eigenvalue:

lim
t→∞

QE
t =

1

I
11T . (27)

This completes the proof of the convergence of QE
t as t →

∞ when C −D is irreducible.

13
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7.2.2. FORWARD ANISOTROPIC PROCESS

Proof. Given the anisotropic noising process at iteration k,
we derive the following expression for ati,k:

ati,k =
√
1− βka

t
i,k−1 +

√
βkϵi,k, (28)

where ϵi,k ∼ N (0,Σi) represents the anisotropic noise of
agent ni.

By recursively unrolling the forward process, we rewrite
ati,k as follows:

ati,k =
√

1− βka
t
i,k−1 +

√
βkϵi,k

=

k∏
j=1

√
1− βja

t
i,0 +

k∑
j=1

√
βj(1− βk) · · · (1− β1)ϵi,j .

(29)
Using αk = 1 − βk and αk =

∏k
i=1 αi, we express the

marginal distribution of ati,k as:

ati,k =
√
αka

t
i,0 +

k∑
j=1

√
βj

αk

αi,j
ϵj . (30)

Since each noise term ϵi,j is independently sampled from
N (0,Σi), we know that:

E[ϵi,j ] = 0, Cov(ϵi,j) = Σi. (31)

The mean and variance of the weighted sum of independent
and identically distributed Gaussian noises are given by:

E

 k∑
j=1

√
βj

αk

αj
ϵi,j

 =

k∑
j=1

k∑
j=1

√
βj

αk

αj
E[ϵi,j ] = 0,

(32)

Cov

 k∑
j=1

√
βj

αk

αj
ϵi,j

 =

k∑
j=1

βj
αk

αj
Cov(ϵi,j)

=

k∑
j=1

βj
αk

αj
Σi

=

k∑
j=1

αk · · ·αj+1(1− αj)Σi

= (1− αk)Σi.
(33)

Therefore, the distribution of this weighted sum of Gaussian
noises is given by:

k∑
j=1

√
βj

αk

αj
ϵi,j ∼ N (0, (1− αk)Σi), (34)

Finally, based on the previous steps, the marginal distribu-
tion of ati,k can be written as follows:

q(ati,k|ati,0) = N (ati,k;
√
αka

t
i,0, (1− αk)Σi). (35)
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7.3. Environmental Details

7.3.1. IMPLEMENTATION DETAILS

All experiments are conducted on Linux servers with a
64-core Intel Xeon Platinum 8336C CPU (2.30 GHz) and
an NVIDIA A800-SXM4-80GB GPU. Across all experi-
ments, the diffusion parameter K is varied within the range
[50, 200], with a learning rate of 2e−4, a batch size of 32, a
reward discount γ of 0.99, and the Adam optimizer utilized.

For the MPE experiments, we employ the earlier version
of the environment provided by OMAR (Pan et al., 2022),
where agents receive distinct, environment-specific rewards
that depend on their individual actions and contributions to
the collective task. To ensure fairness and consistency in
comparisons, we utilize OMAR’s datasets and environments,
ensuring all baseline models were trained and evaluated
under identical conditions.

In the MAMuJoCo experiments, we rely on an off-the-
shelf dataset (Formanek et al., 2023), which includes Good,
Medium, and Poor quality datasets for each task. Each
dataset is generated using three independently trained MA-
TD3 policies (Ackermann et al., 2019), supplemented with
exploration noise to enhance behavioral diversity.

Similarly, for the SMAC experiments, we utilize a sepa-
rate off-the-shelf dataset (Formanek et al., 2023) that in-
cludes Good, Medium, and Poor quality datasets for each
map. These datasets are constructed using three indepen-
dently trained QMIX policies (Rashid et al., 2020), with
exploration noise deliberately introduced to the policies to
encourage behavioral diversity.

7.3.2. SHIFTED ENVIRONMENTS

The parameter settings for agent attributes are summarized
in Table 5. In the MPE experiments, we design the shifted
Spread, Tag, and World environments by reducing the mini-
mum speed of a single random agent from the original value
of 0.8 to 0.3. For the MAMuJoCo experiments, we design
the shifted 2halfcheetah environment following prior work
(Packer et al., 2018). Specifically, we randomly sample val-
ues for the following three parameters: power (influencing
the multiplied force), density (affecting the weight), and
friction (determining the sliding friction of the joints).

Table 5: Parameter setting in the shifted MPE and MAMu-
JoCo environments.

MPE Standard Shifted
Speed [0.8, 1.0] [0.3, 1.0]

MAMuJoCo Standard Shifted
Power 1.0 [0.8, 1.2]

Density 1000 [750, 1250]
Friction 0.4 [0.25, 0.55]
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7.4. Supplemental Experiments

7.4.1. SENSITIVE ANALYSIS

To investigate the effect of the regularization coefficient λ
on our framework’s performance, we increase its value from
0.1 to 20.0 in the MPE Tag task, evaluating performance at
the Random, Medium-Replay, Medium, and Expert levels.
We then report the resulting episodic returns to evaluate
performance at each setting, as shown in Table 7. For the
expert dataset, smaller values of λ lead to better perfor-
mance, because the policy is already well-trained, and the
regularization does not need to be as strong. In contrast,
larger values of λ tend to improve performance in the other
datasets, as regularization plays a more significant role in
preventing overfitting and stabilizing offline learning.
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Figure 7: Sensitivity analysis on the λ value in offline
datasets from the Tag task at the Random, Medium-Replay,
Medium, and Expert levels.

7.4.2. SAMPLING EFFICIENCY

To assess the efficiency and scalability of our framework, we
incrementally increase the number of agents and record the
time required (in ms) for the policy sampling process in both
our graph diffusion model and the baseline diffusion model,
MADIFF, as shown in Table 6. As shown in the table, while
our proposed graph-based diffusion model introduces some
additional time overhead compared to the baseline, the gap
remains relatively small and stable as the number of agents
increases. This demonstrates the sampling efficiency and
scalability of the MCGD framework.

Table 6: Wall-clock time spent on sampling multi-agent
policies in the MCGD and MADIFF models.

Method 8 16 32 64
MADIFF 145.47 149.36 148.19 149.84
MCGD 153.69 154.27 155.38 154.94
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Table 7: Comparison between MCGD and baselines on offline Medium-Replay, Medium, and Random datasets across the
MPE benchmark: “average value ± standard deviation”. Bold: the best performance, underline: the second performance.

Method Random Medium-Replay Medium
Spread Tag World Spread Tag World Spread Tag World

MA-ICQ 6.3± 3.5 2.2± 2.6 1.0± 3.2 11.2± 8.4 28.3± 19.2 9.7± 6.4 24.5± 8.6 55.8± 19.3 53.7± 21.8
MA-CQL 24.0± 9.8 5.0± 8.2 0.6± 2.0 15.3± 7.6 22.8± 19.4 15.9± 14.2 27.9± 8.1 57.4± 21.8 44.3± 14.1
OMAR 34.4± 5.3 11.1± 2.8 5.9± 5.2 35.6± 15.2 41.6± 17.9 21.1± 15.6 41.7± 21.3 53.4± 25.9 45.6± 16.0

MA-SfBC 5.1± 3.9 11.6± 5.1 7.4± 3.9 8.2± 4.6 12.7± 7.3 9.1± 5.9 51.6± 14.2 47.1± 17.9 54.2± 22.7
DOM2 37.4± 11.3 29.6± 8.1 38.9± 11.8 63.1± 9.5 68.2± 16.7 65.9± 10.6 78.6± 8.1 82.6± 18.2 84.5± 23.4

MADIFF 7.2± 3.6 4.6± 2.6 0.7± 3.1 35.1± 7.2 53.9± 11.4 56.4± 12.5 60.3± 10.6 72.7± 9.4 87.2± 13.9
MCGD 41.8 ± 11.7 43.7 ± 11.8 48.3 ± 10.1 74.4 ± 10.3 78.3 ± 9.6 79.3 ± 14.2 88.6 ± 9.3 94.8 ± 12.4 99.4 ± 12.8

Table 8: Comparison between MCGD and baselines on offline Poor and Medium datasets across the MAMuJoCo benchmark:
“average value ± standard deviation”. Bold: the best performance, underline: the second performance.

Method Poor Medium
2halfcheetah 2ant 4ant 2halfcheetah 2ant 4ant

MA-ICQ 271.4± 183.6 583.4± 327.9 658.4± 392.7 749.2± 296.4 581.4± 257.4 1025.8± 437.1
MA-CQL 293.5± 138.6 437.6± 291.4 593.1± 385.5 963.4± 316.6 638.2± 244.9 900.4± 281.6
OMAR 362.7± 314.2 837.5± 194.2 509.4± 241.4 2797.0± 445.7 772.5± 216.4 917.3± 349.2

MA-SfBC 216.4± 208.5 883.1± 372.5 976.4± 241.3 1386.8± 248.8 1038.4± 294.5 1529.4± 371.6
DOM2 803.0± 274.6 916.2± 181.6 1157.9± 224.5 2851.2± 145.5 1431.7± 304.8 1691.5± 183.3

MADIFF 814.2± 245.7 934.8± 174.2 1362.8± 274.3 2194.7± 319.6 1247.3± 358.1 1728.9± 249.3
MCGD 1244.7 ± 159.2 1479.3 ± 164.9 1738.4 ± 149.2 3168.4 ± 210.8 1867.2 ± 247.1 2074.3 ± 156.2

7.4.3. ADDITIONAL RESULTS

For a comprehensive evaluation of MCGD and baselines,
we conduct comparative experiments across offline datasets
from various difficulty levels in the MPE, MAMuJoCo, and
SMAC benchmarks. Specifically, we report collaborative
performance on the Random, Medium-Replay, and Medium
datasets in the Spread, Tag, and World tasks from the MPE
benchmark (Table 7), performance on the Poor and Medium
datasets in the 2halfcheetah, 2ant, and 4ant tasks from the
MAMuJoCo benchmark (Table 8), and performance on the
Poor and Medium datasets in the 3m, 2s3z, 5m6m, and 8m
tasks from the SMAC benchmark (Table 9). As shown in
these tables, our MCGD framework consistently and sig-
nificantly outperforms all baseline methods across different
datasets and environments, improving the average episodic
return by at least 4.1, 317.2, and 0.3 in MPE, MAMuJoCo,
and SMAC, respectively. In the most challenging (Random
or Poor) scenarios, MCGD increases the average returns
in MPE from 35.3 to 44.6 in MPE, in MAMuJoCo from
1037.3 to 1487.5,and in SMAC from 9.1 to 10.3, achieving
average improvements of 9.3(26.3%), 450.2(43.4%), and
1.2(13.2%) over baselines and demonstrating the effective-
ness advantage of our method.
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Table 9: Comparison between MCGD and baselines on offline Poor and Medium datasets across the SMAC benchmark:
“average value ± standard deviation”. Bold: the best performance, underline: the second performance.

Method Poor Medium
3m 2s3z 5m6m 8m 3m 2s3z 5m6m 8m

MA-ICQ 4.9± 0.5 7.8± 0.3 9.1± 0.6 6.4± 0.3 18.1± 0.7 17.2± 0.6 15.3± 0.7 18.6± 0.8
MA-CQL 5.8± 0.4 10.1± 0.7 10.4± 1.0 4.6± 2.4 18.9± 0.7 14.3± 2.0 17.0± 1.2 16.8± 3.1
OMAR 4.7± 0.4 5.8± 0.6 9.6± 1.2 5.9± 0.5 16.3± 0.5 14.5± 0.4 14.8± 0.6 16.3± 0.7

MA-SfBC 5.2± 0.4 7.4± 0.6 8.1± 0.3 6.9± 0.7 17.4± 0.9 16.8± 0.5 16.5± 0.5 18.1± 0.4
DOM2 9.1± 0.2 9.6± 0.3 8.9± 0.2 5.7± 0.4 18.7± 0.4 17.1± 0.5 17.2± 0.8 18.0± 0.7

MADIFF 8.9± 0.1 9.9± 0.2 8.9± 0.3 5.1± 0.1 17.2± 0.7 17.4± 0.3 17.5± 0.6 19.2± 0.7
MCGD 10.4 ± 0.2 11.3 ± 0.5 10.7 ± 0.8 8.8 ± 0.3 20.6 ± 0.5 18.8 ± 0.7 18.3 ± 0.6 19.7 ± 0.4
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