
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARALLEL PROMPTING: FAST LLM INFERENCE FOR
SHARED-CONTEXT, SHORT-TO-MODERATE OUTPUT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Parallel Prompting, a method for high-throughput, quality-preserving
decoding of multiple large language model (LLM) queries that share a common
prefix. Such shared-context structure arises naturally in applications including
document question answering, few-shot learning, multi-user chat, and evaluation
pipelines. Prior approaches either degrade generation quality by merging queries
into a single prompt that the model cannot reliably disentangle or impose rigid
batching and preallocated memory that limit practical deployment. Parallel Prompt-
ing is a free lunch for batch prompting: it improves throughput and memory
efficiency without requiring model retraining or sacrificing accuracy. The gains
are most pronounced when prefix overlap is high and output lengths are short to
moderate, with the relative advantage diminishing as unique suffixes grow longer.
Our method executes a single pass over the shared context and decodes all con-
tinuations in parallel through efficient matrix–matrix operations, while avoiding
cross-query interference and supporting flexible batching across multiple sharing
groups with dynamic, on-demand KV-cache management. This design enables
high resource utilization during decoding without compromising output quality.
Experiments on popular datasets with Llama 3-8B show up to a 4× reduction
in end-to-end latency relative to competitive baselines, with no loss in accuracy,
demonstrating that Parallel Prompting complements existing batching strategies
and expands the practical throughput of LLM-based systems.

1 INTRODUCTION

Batch text generation is a standard paradigm for large language model (LLM) inference. In many
practical scenarios, prompts within a batch often share a common prefix. This setting is prevalent
in wide range of use-cases, such as document question answering, few-shot learning, multi-user
chat, LLM-as-judges for model evaluation, and LLM-based verification for fact-checking. For
instance, chatbots frequently serve diverse users using a shared system prompt, assistant models
leverage few-shot exemplars for domain-specific tasks, and programming systems generate multiple
candidate solutions to a single problem. As deployment of transformer-based LLMs continues to
scale, harnessing these shared prefixes for efficiency becomes increasingly valuable.

A growing body of work seeks to accelerate LLM inference by exploiting shared information across
requests. Several systems (Zhu et al., 2024; Juravsky et al., 2024) reuse parts of the cache when
different prompts begin with the same prefix, thereby avoiding redundant computation. While these
approaches achieve meaningful speedups, they remain limited in important ways: some require rigid
memory layouts, and others only handle batches in which all inputs share exactly the same prompt.
Related methods (Kwon et al., 2023; Zheng et al., 2024; Gim et al., 2024) extend cache reuse further
but still follow a fundamentally sequential decoding pattern, leaving substantial efficiency gains
unrealized. Meanwhile, simple batch prompting strategies that merge multiple queries into a single
prompt often degrade output quality because the model cannot reliably separate the different requests.
These limitations highlight the need for a method that simultaneously avoids interference, supports
flexible sharing groups, and fully exploits parallelism during decoding.

In this paper, we propose Parallel Prompting, a method for efficiently decoding multiple queries with
a shared prefix by processing them in parallel. The key insight is that we can independently encode
each query with respect to the shared context using specialized attention masks, then generate outputs

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

in parallel during the decoding phase. This approach leverages efficient matrix-matrix operations on
modern GPUs to achieve significant speedups without compromising output quality. Critically, we
find that maximizing throughput requires carefully balancing two parameters: the batch size and the
degree of parallelism during decoding—the optimal point depends on hardware and model specifics.

To summarize, our work makes the following contributions:

• We propose a simple and effective method leveraging parallel prompting in LLM that allows
efficient batching of multiple LLM prompts which share a prefix.

• We conduct extensive experiments and show that our method can achieve improvements
in throughput and computational resource management over prior methods across a range
of workloads, although there are some workloads for which our proposed method is less
efficient than some prior methods.

• We show theoretically and experimentally that maximizing inference throughput for parallel
prompting requires a careful balance between attention parallelism and batch size.

Figure 1: Overview of our method. The input is a prompt with a shared context and multiple questions.
Batch prompting (Cheng et al., 2023; Lin et al., 2024) concatenates all questions together, and the
output is generated squentially using the typical LLM decoding method, taking 9 generation timesteps.
Our method generates the output in parallel and produces the result faster, taking only 3 generation
timesteps.

Our approach is a free lunch for batch prompting: it boosts throughput and memory efficiency without
requiring any model retraining and without compromising accuracy. The gains are largest when prefix
overlap is high and outputs are short to moderate, with the relative advantage tapering off as unique
suffixes grow longer. Unlike simple batch-prompting heuristics—which often degrade generation
quality by forcing the model to disentangle multiple requests within a single prompt—our method
avoids cross-query interference, supports flexible sharing groups, and fully exploits parallelism
throughout decoding.

2 BACKGROUND: ATTENTION MECHANISM

A core component of the Transformer is the attention computation. Given the sequence of queries
Q ∈ RNq×d, keys K ∈ RNkv×d, values V ∈ RNkv×d , the transformer model computes the attention
output O ∈ RNq×d with the causal masking M as follows:

O = Attention(Q,K, V) = softmax

(
QKT

√
d

+M

)
V (1)

At the start of the generation process, a prefill stage processes the initial sequence of tokens that
the LLM will complete. During this stage, the entire prompt is encoded in parallel using a single
transformer forward pass. This results in a high number of queries and key-value pairs (Nq = Nkv ≫
1), making the matrix multiplications in Equation 1 more hardware-friendly.

As the generation continues, completion tokens are decoded sequentially, with each decoding step
producing a new token and requiring a forward pass. To speed up this process, a KV cache is used
to store the attention keys and values of all previous tokens, eliminating the need to reprocess the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

entire sequence during each decoding step. Instead, only the most recent token is passed through
the model. However, this approach results in a different attention computation where the number of
queries is 1 while the number of key-value pairs is still high (Nq = 1 and Nkv ≫ 1). This leads to
matrix-vector products for the multiplications with KT and V , making the attention during decoding
memory-bound and not utilizing tensor cores.

3 METHOD

3.1 PROBLEM SETUP AND MOTIVATION

Consider a scenario where we have a shared context Doc (e.g., a document) and n questions q1, . . . , qn
to answer based on this context. We want to generate answers A = {a1, a2, . . . , an} efficiently.

Standard Approach with Shared Prefix. The baseline processes each query independently, comput-
ing each answer as ai = πLLM(Doc, qi), where πLLM denotes the language model. For every query,
the model performs a prefill pass or reuses part of the cache over the concatenated input (Doc, qi)
and then executes a sequence of incremental decode steps to autoregressively generate the tokens of
ai. Answering n queries requires repeating the computationally expensive generation stage n times,
which dominates overall runtime.

'RF

%DWFK�3URPSWLQJ
7\SH�0HWKRGV

%DWFK�3URPSWLQJ��EDWFK ���&KHQJ�HW�DO������
3DUDOOHO�3URPSWLQJ��EDWFK ���RXUV�

6KDUHG�3UHIL[
7\SH�0HWKRGV

+\GUDJHQ��-XUDYVN\�HW�DO������
�5HOD\�$WWHQWLRQ��=KX�HW�DO������

'RF

$�

4�

$�

4�

$�

4�

$�

4�

$�

4�

$�

4�

'RF��

$�

4�

$�

4�

$�

4�

'RF��

$�

4�

$�

4�

$�

4�

'RF�1

$�

4�

$�

4�

$�

4�

%DWFKLQJ�
GLPHQVLRQ

%DWFKLQJ�%DWFK�3URPSWLQJ
7\SH�0HWKRGV

%DWFK�3URPSWLQJ��EDWFK 1��&KHQJ�HW�DO������
3DUDOOHO�3URPSWLQJ��EDWFK 1��RXUV�

Figure 2: Methods for efficiently handling multiple prompts with a shared prefix. Shared prefix type
methods, such as Hydragen and Relay Attention, batch together multiple questions and process them
in parallel. Batch prompting type methods put multiple prompts together into one prompt, which
can batch multiple documents together (Batching Batch Prompting).

Batch Prompting Type Methods(SeqBatch) (Cheng et al., 2023; Lin et al., 2024). A straightforward
attempt to avoid redundant computation is to concatenate all queries into a single prompt and let the
model generate a single long sequence containing all answers (see Figure 2, middle). While this
approach amortizes the cost of encoding the shared context Doc, it introduces a prompt interference
problem: due to the autoregressive nature of decoding, the model’s hidden state at step i contains all
previously generated tokens. Consequently, the answer for query i becomes implicitly conditioned
on other questions and earlier answers, and the resulting outputs are no longer independent. This
entanglement often degrades answer quality.

Our Approach (Parallel Prompting). We propose a method that generates all n answers in parallel
while ensuring that each answer remains conditioned only on its own query and the shared context.
The central idea is to apply query-specific attention masks during both the prefill and decoding stages
(see Figure 2, right), thereby isolating each question–answer flow while still enabling extensive
sharing of computation. This yields three key advantages:

1. Shared-context prefill: the computationally intensive encoding of Doc is executed once and
reused for all queries;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2. Parallel decoding: at every generation step, the model produces multiple next tokens
simultaneously for each query in a single batched forward pass;

3. Independence of answers: attention masking prevents cross-query information leakage,
ensuring that the generation of ai depends solely on (Doc, qi).

Together, these mechanisms substantially reduce computation while preserving the independence and
quality of the generated answers.

Our method integrates seamlessly with the batching technique. By batching texts with multiple unique
documents and corresponding questions, efficiency can be improved further. Parallel generation
with batching provides two distinct advantages: firstly, inference throughput is further amplified by
batching with multiple unique prefix documents; secondly, it enables the balancing of batch size and
sequence length for model input, optimizing overall performance.

3.2 PARALLEL GENERATION WITH PROMPT-WISE INDEPENDENT ENCODING

Our method operates in two stages: Prefill and Parallel Decode.

Prefill Stage. We concatenate all queries into a single input sequence and encode them jointly together
with the shared context). To avoid any form of cross-query interference, we construct a query-specific
attention mask (see Figure 1, right) that ensures each query token attends only to the shared context
and to its own query tokens. This masking scheme is related to prepacking (Zhao et al., 2024), but
here we extend it to support multiple independent decoding streams simultaneously. To preserve
positional consistency, tokens for each query are assigned disjoint position indices immediately
following the shared-context sequence. If the shared context has been previously prefetched, we
directly reuse its KV-cache, thereby avoiding redundant prefill computation.

Parallel Decoding Stage. During autoregressive generation, we replace the standard one-token-per-
query decoding pattern with a fully parallel decoding scheme. The SeqBatch method processes all
documents and questions sequentially within a single batch. In contrast, the parallel generation method
employs efficient matrix operations to process multiple documents and questions simultaneously,
significantly accelerating the generation process by leveraging parallel computation capabilities.
In each forward pass, the model generates n tokens simultaneously (see Figure 1, right). This
transforms attention operations from a sequence of memory-bound matrix–vector products into a
single compute-bound matrix–matrix multiplication, resulting in significantly higher GPU utilization.
The attention masks defined during prefill are reused at every decoding step and expanded following
the same structural pattern, guaranteeing strict separation of decoding streams throughout generation.

The full algorithmic description is provided in Algorithm 1.

Since all questions are independent conditioned on the shared context, their answer distributions can
be computed simultaneously. To support this, we allow the model to generate N next-token logits in
a single forward pass, which corresponds to constructing a query matrix Q of shape N × d in the
attention module.

During decoding, our method generates tokens for all questions in parallel. In each forward step, the
model extends the sequence with N new tokens—one per question. To maintain positional correctness,
we track the final prefix position of each stream and increment the corresponding positional index
before appending new tokens. After each step, the newly generated tokens are inserted into their
respective query streams, and the attention masks are updated according to the fixed pattern defined
during prefill. Because the mask structure is predetermined, only lightweight incremental updates are
required.

3.3 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of the parallel prompting method, focusing on
its efficiency gains in LLM inference. We begin by discussing the implications of Amdahl’s Law
in the context of parallel algorithms, followed by an examination of the speedup and throughput
improvements achieved through our approach.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Parallel Batch Prompting: Parallel Prompt Generation with Shared-Prefix Cache

Require: Shared prefix Doc, unique suffix set Q all, batch size N, parallel size P, language model
πLLM

Ensure: List of generated answers
1: Optional: cache← PRECOMPUTE(πLLM, Doc) ▷ Prefill KV-cache for shared prefix
2: i← 0
3: N p← N / P ▷ Samples per parallel group
4: while i < |Q all| do
5: Q n← Q all[i : i + N]
6: Q np← PARALLIZEINTERLEAVE(Q n, P)
7: prompts← PREPAREINPUT(Doc, Q np, N p)
8: masks← PREPAREMASK(prompts)
9: answers, output mask← PARALLELGENERATE(πLLM, prompts, masks, P, cache)

10: for n = 1 to N p do
11: for p = 1 to P do
12: final answer.append(DECODE(answers[n, p], output mask[n, p]))
13: end for
14: end for
15: i← i + N
16: end while
17: return final answer
18:
19: function PARALLELGENERATE(πLLM, prompts, masks, P, cache)
20: finished← False
21: input ids← TOKENIZE(prompts)
22: while not finished do
23: outputs← πLLM.FORWARD(input ids, masks, cache)
24: logits← outputs[:, -P:] ▷ Outputs P logits on sequence dimension
25: next tokens← SAMPLE(logits)
26: input ids← CONCAT(input ids, next tokens)
27: if STOPPINGCRITERIA(input ids) then
28: finished← True
29: else
30: masks← UPDATEPARALLELMASK(input ids, P)
31: end if
32: end while
33: return input ids, masks
34: end function
35:
36: function PRECOMPUTE(πLLM, Doc)
37: kv cache← πLLM.FORWARD(Doc)
38: return kv cache
39: end function

Amdahl’s Law provides a theoretical framework for understanding the potential speedup of a task
when a portion of it is parallelized. It is defined as:

S(N) =
1

(1− p) + p
N

(2)

where S(N) is the speedup with N processors, p is the fraction of the task that can be parallelized,
1 − p is the fraction that remains serial. This law highlights that the overall speedup is limited by
the serial portion of the task. As N increases, the speedup approaches 1

1−p , indicating diminishing
returns if p is not close to 1.

In the context of LLM inference, traditional methods process each query sequentially, leading to
inefficiencies due to the serial nature of prompt processing. Our proposed method introduces parallel
prompting, allowing multiple queries to be processed simultaneously. This approach effectively

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

maximizes throughput and reduces the time of the LLM’s inference task. We measure throughput as
queries (prompts) processed (a full output completion is generated) per unit time.

Theorem 1 (Amdahl’s Law for Inference Throughput Improvement). The throughput improvement
∆ (tasks processed per unit time above baseline) from using N -way parallel inference is:

∆ =
N · S(N)− 1

Tseq
(3)

See proofs and further details in Equation A.1.

Proposition 2. Consider inference on N independent queries using (a) standard batch processing
and (b) parallel prompting (packing all queries as independent subsequences in a single sequence
with attention masking).

Let Tbatch = Tsetup + N · TMV be the wall-time for a batch (with matrix-vector attention), and
Tparallel = Tsetup + TMM for parallel prompting (with matrix-matrix attention). Then, the respective
throughput values are:

Throughputbatch =
N

Tbatch
, Throughputparallel =

N

Tparallel
(4)

and

Throughputparallel

Throughputbatch
=

Tbatch

Tparallel
=

Tsetup +NTMV

Tsetup + TMM
(5)

where TMV is per-query wall-time for the matrix-vector attentions, and TMM is wall-time for the
matrix-matrix product in the attention.

In practical settings, due to the efficiency of matrix multiplications on a GPU, TMM ≈ TMV. If
Tsetup ≪ TMM, then Throughputparallel is up to N× that of standard batching.

While the theoretical analysis suggests significant improvements, practical factors such as com-
munication overhead, memory bandwidth constraints, and synchronization costs can impact actual
performance. It is essential to consider these factors when implementing parallel prompting to ensure
that the theoretical gains translate into real-world efficiency.

3.4 THROUGHPUT MAXIMIZATION BY BALANCING ATTENTION PARALLELISM AND BATCH
SIZE

The use of batching is a crucial technique to enhance throughput in LLM inference. Through
batched decoding, each forward pass of the model processes the latest token from multiple sequences
concurrently rather than just one. This approach amplifies the arithmetic intensity of transformer
components, such as the multilayer perceptron (MLP) blocks, and facilitates the use of hardware-
friendly matrix multiplications.

However, the computation intensity of attention does not inherently benefit from batching, as each
sequence possesses its distinct key and value matrix. Consequently, while other model components
can leverage tensor cores during batched decoding, attention is required to be computed using
numerous independent matrix-vector products. Our parallel generation technique aims to address this
by enhancing the computation intensity of attention.

Proposition 3 (Throughput Maximization). Let P be the parallel size (number of independent queries
packed into a sequence for matrix-matrix attention), B the batch size (number of such sequences
processed in parallel), and P ·B ≤ S∗ a hardware resource constraint (e.g., total token capacity).

Let Tattn(P) denote the attention computation cost (function of P), and Tmlp(B) denote the
MLP/other backend (function of B).

Then, the throughput (queries per unit time) satisfies:

Throughput(P,B) =
P ·B

Tattn(P) + Tmlp(B)
(6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and maximal throughput is achieved at

(P ∗, B∗) = argmax
P ·B≤S∗

P ·B
Tattn(P) + Tmlp(B)

(7)

where Tattn(P) generally improves with P up to a hardware limit (then degrades), and Tmlp(B)
improves with B up to a limit.

The maximizing pair (P ∗, B∗) is found by balancing optimal matrix-matrix utilization for attention
and optimal batch size for MLP efficiency. The throughput function is quasi-concave in (P,B) under
natural hardware scaling assumptions for transformer kernels. The theoretical maximum exists at an
interior point determined by hardware and model specifics, and is not achieved by maximizing either
P or B alone.

4 EXPERIMENTS

We evaluate our method through two complementary sets of experiments: (1) controlled scaling
studies on small and medium-sized models using synthetic data, and (2) a downstream task evaluation
on reading comprehension datasets using Llama 3–8B. This combination enables both fine-grained
analysis of computational behavior and validation on a realistic application. All experiments are
conducted on a single NVIDIA A100-80GB GPU using PyTorch implementations built on the
HuggingFace architecture (Wolf et al., 2020). Additional implementation details are provided in
Appendix B.

4.1 SCALING EXPERIMENTS

Setup. Following Juravsky et al. (2024), we construct synthetic datasets with varying document
lengths, numbers of unique documents, and numbers of queries. Document content is drawn from a
subset of War and Peace (Tolstoy, 1869), with procedurally generated sentences added for greater
length diversity. We perform all scaling studies on CodeLlama-7B-Instruct (Rozière et al., 2024),
Sheared-LLaMA-1.3B (Xia et al., 2024), and LLaMA-160M (Miao et al., 2023) to enable controlled
analysis under constrained compute.

Memory Constraints and Throughput Under Increasing Context Length. We first examine
memory usage and throughput as the number of queries and the shared-context length increase. Fig-
ure 3 summarizes the results. Several baselines (e.g., HuggingFace with DynamicCache, Hydragen)
encounter out-of-memory failures at high query counts, whereas our method remains stable. As
shown in the right panel of Figure 3, throughput decreases with longer prefixes for all methods, but
our parallel prompting consistently achieves higher throughput without sacrificing generation quality.
A full breakdown of memory measurements across all conditions appears in Table 6 and Table 5 in
the Appendix.

Figure 3: Left: Memory usage for multiple prefix-sharing methods under increasing numbers
of queries with CodeLlama-7B-Instruct on an A100 GPU. Right: Throughput comparison for
CodeLlama-7B-Instruct on an A100 GPU as the shared-context length increases. We fix 256 total
queries, 8 unique documents, a query length of 12, and generate 5 tokens per query.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Left: Throughput (tokens/sec) as a function of prefix and output lengths with CodeLlama-
7B-Instruct on an A100 GPU; lines correspond to different output lengths, markers denote the number
of queries. Right: GPU memory usage with varying prefix and output lengths. Results shown for 4
documents and 32 queries.

Scaling with Output Length. To further isolate computational factors, we study performance as a
function of generated output length. Figure 4 reports both throughput and GPU memory usage across
varying prefix and output lengths. Longer prefixes and outputs impose higher computational load, but
our method maintains efficiency and stable scaling.

100 200 300
Output Tokens

4000

6000

8000

10000

12000

14000

Ti
m

e
(m

s)

Generation Time vs Output Tokens
SGLang
vLLM
Our Method

Figure 5: Comparison of generation time versus output tokens for our method, vLLM and SGlang
with CodeLlama-7B-Instruct on an A100 GPU. As the number of output tokens increases, both
methods require more time; however, our method consistently achieves lower generation time for
shorter outputs and remains competitive as the output length grows. The blue line represents our
method, while the light green line represents vLLM and the orange line represents SGLang, both
evaluated with 4 documents and 32 questions per batch.

We also conduct experiments varying output length up to 300 tokens. Results on our syntactic
dataset in Figure 5 show that Parallel Prompting consistently delivers throughput gains over the
vLLM method up to approximately 200 output tokens per question. As an example, for four unique
documents with 4 × 32 questions, our method required 7,295 milliseconds (throughput ≈ 3,500
tokens/sec), while the vLLM method takes 7,605 milliseconds (throughput ≈ 3,360 tokens/sec).
When the output length exceeds 200 tokens, vLLM may offer a greater advantage.

Batch Size vs. Parallel Size. We next analyze how throughput depends jointly on batch size and
parallel size. Intuitively, increasing parallel size improves efficiency up to a point, after which larger
batch sizes provide better arithmetic intensity. Figure 6 (left and middle) illustrates that the optimal
throughput is achieved by balancing these two factors. Our preliminary results suggest that longer
prefixes prefer larger parallel size, as also visible in Figure 6 (Left). A detailed numerical comparison
for 1B and 7B models appears in Table 4 in the Appendix. However, due to limited resources, we
were unable to perform a comprehensive sweep across many model sizes and hardware settings.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 4 2 0 2 4 6
log(Parallel Size / Batch Size)

1500

2000

2500

3000
Th

ro
ug

hp
ut

s(
to

ke
ns

/s
ec

on
ds

)

Prefix: 64
Prefix: 128
Prefix: 256
Prefix: 512
Prefix: 1024

6 4 2 0 2 4 6
log(Parallel Size / Batch Size)

20

30

40

50

60

70

80

M
em

or
y(

GB
)

Prefix: 64
Prefix: 128
Prefix: 256
Prefix: 512
Prefix: 1024

Figure 6: Left: Throughput comparison for 1024 queries across multiple document settings with
CodeLlama-7B-Instruct on an A100 GPU. The X-axis represents the logarithm of the ratio between
the parallel size and the batch size. This metric is used to show that these two parameters must be
balanced to achieve maximum inference throughput. Middle: GPU memory usage for the same
settings. Right: Throughput under long-context inference. Notation such as 8 × 64 means there are 8
unique documents, and each document has 64 associated questions (total = 512 questions).

4.2 CASE STUDY: QUESTION ANSWERING PERFORMANCE

We evaluate our method on downstream reading comprehension tasks to assess end-to-end impact
on both quality and generation speed. We use Llama 3–8B (Grattafiori et al., 2024) and measure
F1 scores (standard for QA) on SQuAD (Rajpurkar et al., 2016), QuAC (Choi et al., 2018), and
DROP (Dua et al., 2019).

Figure 7: Comparison of generation time and F1 performance across prompting methods using Llama
3–8B on an A100 GPU. Reported results are averaged over five runs.

As shown in Figure 7, our parallel prompting achieves substantially lower latency compared to stan-
dard prompting, sequential batching, Hydragen, SGLang, vLLM (with and without relay attention),
while maintaining equivalent answer quality across all datasets.

5 RELATED WORK

Recent advancements in language modeling have delved into the prediction of multiple tokens
simultaneously to enhance both efficiency and performance. Notable works such as (Miao et al.,
2024; Leviathan et al., 2023; Wu et al., 2024) focus on speculative decoding methods, where potential
future sequences are built and verified to expedite inference. Similarly, (Gloeckle et al., 2024) and
(Cai et al., 2024) propose predicting multiple future tokens using different output heads, thereby
speeding up the inference process. Efforts to increase throughput in LLM inference have led to
various innovative techniques aimed at optimizing GPU utilization and improving throughput. (Dao
et al., 2022) and (Sheng et al., 2023) aim to improve memory usage efficiency, enabling higher
throughput in generative inference tasks. (Jin et al., 2023) schedules prompts based on estimated
output sequence lengths to optimize GPU usage. (Gim et al., 2024) proposes reusing precomputed
caches in a predefined schema to reduce latency. (Sun et al., 2024) applies dynamic sparse KV
caching in decoding to accelerate long sequence generation. Efficient prompting techniques could
also increase the throughput of LLM.(Cheng et al., 2023) groups multiple questions in a single prompt,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

though it will lead to performance degradation when the number of questions increases. (Zhao et al.,
2024) enhances throughput during the prefilling stage by prepacking data. (Ning et al., 2024) uses
the skeleton of the answer to batch-generate the final answer. To avoid the KV cache duplication,
existing work (Kwon et al., 2023) vLLM uses its PagedAttention and paged memory management
to point multiple identical input prompts to only one physical block across multiple queries. Also,
(Juravsky et al., 2024) proposes a decomposition of attention computation of shared prefixes and
unique suffixes. (Lu et al., 2024) increases efficiency by sharing cache in the encoder-decoder model
for decomposable tasks. Compared with the above methods, our work introduces a novel inference
technique that allows LLMs to leverage GPU parallel capacity to improve inference throughput and
memory utilization without degrading reasoning performance.

6 CONCLUSION

We introduce an efficient parallel prompting method for decoding prompt queries in parallel. We
conduct experiments with multiple downstream datasets, constructed synthetic data, and show our
method achieves improvements in throughput and computational resource management, offering a
robust solution for different tasks in LLMs.

LIMITATIONS

Skewed Generation Lengths Our method achieves the highest throughput gains when suffix
lengths are similar, and performance may degrade when generation lengths are highly skewed during
decoding. To mitigate this, we propose several practical strategies: In cases where generation lengths
become highly unbalanced, the system can fall back to standard inference. In real-world applications,
expected output length can often be heuristically estimated based on properties such as question and
context length. This enables grouping questions with similar expected output lengths, minimizing
skew. More advanced solutions, such as dynamic batching (e.g., as introduced in Verl), could be
adopted to support streaming scenarios and further optimize batching efficiency.

Prompt-Agnostic Batching Our method’s gains are largest when there is a clear shared-prefix
structure and output lengths are short to moderate. As the length of unique suffixes increases, the
benefit of parallel generation diminishes, since more computation must be performed individually for
each query. For very long outputs, prompt-agnostic batching (such as vLLM’s default scheduling)
may outperform our approach. We recommend a hybrid scheduling policy in production, using
Parallel Prompting for workloads with substantial shared context and prompt-agnostic batching for
others. This method is designed to complement, not replace, existing batching strategies.

REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate reproducibility. Assumptions and proofs for all theoretical
claims are provided in Appendix [A], which states all conditions under which the results hold.
Experimental settings—including datasets, preprocessing, model configurations, training schedules,
hyperparameters, and evaluation protocols in Section Experiments. An anonymized, self-contained
supplementary .zip archive includes source code and scripts to reproduce the main tables/figures and
ablations. Known limitations, potential failure modes, and scope of applicability are discussed in
Section Limitations. Any deviations from the default procedures or additional implementation notes
are included in Appendix [B].

REFERENCES

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language
model apis. arXiv preprint arXiv:2301.08721, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke
Zettlemoyer. Quac: Question answering in context. arXiv preprint arXiv:1808.07036, 2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt
cache: Modular attention reuse for low-latency inference. Proceedings of Machine Learning and
Systems, 6:325–338, 2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vı́tor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. s3: Increasing gpu utilization during
generative inference for higher throughput. Advances in Neural Information Processing Systems,
36:18015–18027, 2023.

Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia Mirhoseini.
Hydragen: High-throughput llm inference with shared prefixes. arXiv preprint arXiv:2402.05099,
2024.

12

https://arxiv.org/abs/2407.21783

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Jianzhe Lin, Maurice Diesendruck, Liang Du, and Robin Abraham. Batchprompt: Accomplish more
with less, 2024. URL https://arxiv.org/abs/2309.00384.

Bo-Ru Lu, Nikita Haduong, Chien-Yu Lin, Hao Cheng, Noah A Smith, and Mari Ostendorf. Encode
once and decode in parallel: Efficient transformer decoding. arXiv preprint arXiv:2403.13112,
2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-
thought: Prompting llms for efficient parallel generation. In The Twelfth International Conference
on Learning Representations, 2024.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text, 2016. URL https://arxiv.org/abs/1606.05250.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024. URL
https://arxiv.org/abs/2308.12950.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Leo Tolstoy. War and Peace. 1869.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Pengfei Wu, Jiahao Liu, Zhuocheng Gong, Qifan Wang, Jinpeng Li, Jingang Wang, Xunliang Cai, and
Dongyan Zhao. Parallel decoding via hidden transfer for lossless large language model acceleration.
arXiv preprint arXiv:2404.12022, 2024.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning, 2024. URL https://arxiv.org/abs/2310.06694.

13

https://arxiv.org/abs/2309.00384
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2310.06694

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Siyan Zhao, Daniel Israel, Guy Van den Broeck, and Aditya Grover. Prepacking: A simple method for
fast prefilling and increased throughput in large language models. arXiv preprint arXiv:2404.09529,
2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured
language model programs. arXiv preprint arXiv:2312.07104, 2024.

Lei Zhu, Xinjiang Wang, Wayne Zhang, and Rynson WH Lau. Relayattention for efficient large
language model serving with long system prompts. arXiv preprint arXiv:2402.14808, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOF OF THEOREM 1.

Amdahl’s Law for Inference Throughput Improvement The throughput improvement ∆ (tasks
processed per unit time above baseline) from using N -way parallel inference is:

∆ =
N · S(N)− 1

Tseq
(8)

Assumptions:

• Each inference computation can be split into a parallelizable fraction and a sequential
fraction.

• There are N independent queries, each requiring Tseq execution time if performed sequen-
tially.

• There is no communication, scheduling, or parallelization overhead. Negligible coordination
or resource contention.

• N processors are available, and the parallel workload is divided equally among them. In
parallel, independent N queries are processed in time Tpar(N) = Tseq/S(N), where S(N)
is given by Amdahl’s law Equation 2

Proof of Theorem 1. The sequential throughput is 1
Tseq

. With parallel prompting, the time to process

N queries is Tpar(N), so the parallel throughput is N
Tpar(N) . The improvement is:

∆ =
N

Tpar(N)
− 1

Tseq

Assuming Tpar(N) =
Tseq

S(N) , we substitute to get:

∆ =
N
Tseq

S(N)

− 1

Tseq
=

N · S(N)

Tseq
− 1

Tseq
=

N · S(N)− 1

Tseq

A.2 ASSUMPTIONS OF PROPOSITION 2

Let Tbatch = Tsetup + N · TMV be the wall-time for a batch (with matrix-vector attention), and
Tparallel = Tsetup + TMM for parallel prompting (with matrix-matrix attention). Then, the respective
throughput values are:

Throughputbatch =
N

Tbatch
, Throughputparallel =

N

Tparallel
(9)

and

Throughputparallel

Throughputbatch
=

Tbatch

Tparallel
=

Tsetup +NTMV

Tsetup + TMM
(10)

where TMV is per-query wall-time for the matrix-vector attentions, and TMM is wall-time for the
matrix-matrix product in the attention.
Assumptions:

• The model and hardware support this masking and packing; TMV and TMM are measured
compatibly.

• Time for setup is equal for standard batch processing and parallel prompting,

• N is small enough to avoid exceeding hardware or memory limits for both methods.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 ASSUMPTIONS OF PROPOSITION 3

Throughput Maximization Let P be the parallel size (number of independent queries packed into
a sequence for matrix-matrix attention), B the batch size (number of such sequences processed in
parallel), and P ·B ≤ S∗ a hardware resource constraint (e.g., total token capacity).

Let Tattn(P) denote the attention computation cost (function of P), and Tmlp(B) denote the
MLP/other backend (function of B).

Then, the throughput (queries per unit time) satisfies:

Throughput(P,B) =
P ·B

Tattn(P) + Tmlp(B)
(11)

and maximal throughput is achieved at

(P ∗, B∗) = argmax
P ·B≤S∗

P ·B
Tattn(P) + Tmlp(B)

(12)

where Tattn(P) generally improves with P up to a hardware limit (then degrades), and Tmlp(B)
improves with B up to a limit.

Assumptions:

• P queries packed per prompt, B prompts in a batch, PB ≤ S∗ (resource or hardware
constraint).

• Model/hardware supports this arrangement; Tattn(P) and Tmlp(B) are the attention/MLP
module wall times.

• Tattn(P), Tmlp(B) are nonincreasing (improve) up to hardware limits, then nonmonotone.

B TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

The decision to use different models and datasets for the analytical and ablation studies, as compared
to the main downstream task evaluations, is motivated by both practical and scientific considerations.
Large models like Llama 3-8B are computationally intensive, making it challenging to run extensive
ablation and scaling experiments across a wide range of parameters. By using smaller models and
synthetic datasets for these studies, we are able to systematically vary key factors (such as batch
size, prefix length, and number of queries) and isolate the effects of our method in a controlled
environment. This approach enables us to provide deeper insights into the scaling laws, bottlenecks,
and generalization of our method, while reserving the large-scale, real-world benchmarks for the
main results. We believe this combination offers a comprehensive and rigorous evaluation of our
approach.

Table 1: Comparison of generation time and performance for downstream tasks with different methods
on average of five times with Llama 3 8B model on A100-80G. Std denotes the across-run standard
deviation of the time. F1 is computed as the harmonic mean of precision and recall in extractive QA.

Method SQuAD QuAC DROP
Times(s) Std F1(%) Time(s) Std F1(%) Time(s) Std F1(%)

Standard 1277 0.08 87.2 3512 0.06 34.0 1330 0.08 58.1
SeqBatch 566 0.21 84.2 386 0.10 29.1 1007 0.41 42.5
Hydragen 1651 20.9 87.1 1230 6.74 34.0 471 3.85 58.2
SGLang 337 0.49 87.4 854 0.17 32.7 377 0.56 58.5
vLLM 369 0.46 87.4 889 0.57 32.8 413 0.44 58.5
vLLM-RA 365 0.21 87.3 469 0.15 32.8 179 0.51 58.5
Parallel 167 0.16 87.2 243 0.32 33.9 110 0.09 58.1

Memory Usage The observed increase in memory usage for the Parallel method on datasets results
from dynamically maximizing batch sizes during inference. Our approach allows processing more

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

examples in a fixed memory footprint, improving throughput. To validate this, we reduced the
maximum allowed batch size during inference on QuAC and observed a significant drop in memory
usage, while still demonstrating substantial speedup over the baseline with the maximum possible
batch size. For transparency, Table 3 lists the results across different batch size settings with our
method. This demonstrates that our method flexibly trades off memory and throughput by adjusting
batch size, and can achieve substantial speedup even at lower memory footprints.

Table 2: Comparison of memory usage with different methods with Llama 3 8B model on A100-80G.

Dataset Method Time(s) Memory(GB)

SQuAD
Standard 590 55.7
Parallel 168 48.6

QuAC
Standard 1799 55.0
Parallel 352 33.1

DROP Standard 654 54.3
Parallel 111 36.1

Table 3: QuAC: Inference Time and Memory Usage for Different Batch Sizes (Parallel Method)

Batch Size Inference Time (s) Memory (GB)
Baseline 1799 55.0
8 872 16.9
16 677 19.8
32 420 24.7
64 352 33.1
128 342 54.0

Effect of the Number of Questions. We sweep over the number of queries for fixed document and
query lengths. Table 4 shows that throughput improves as the number of parallel queries increases,
particularly for larger models. At small batch sizes, non-attention operations dominate, but at large
query counts, attention over long prefixes becomes the bottleneck—precisely where our parallel
decoding provides the largest gains.

Table 4: Throughput (tokens/sec) under different batch sizes for parallel generation with CodeLlama-
1B and CodeLlama-7B when doc len = 512, q len = 12, and ans len = 5.

Num Questions Batch Size Throughput-1B Throughput-7B

128

1 4283 1931
2 4625 1843
4 3654 1468
8 2850 1018

256

1 5911 2115
2 6384 2250
4 5748 2071
8 4959 1615

512

1 5419 1850
2 6845 2214
4 7725 2382
8 7181 2146

Sequence Length vs. Computation Gains Trade-off. Both theory and empirical results confirm
that throughput increases with batch/parallel size up to a point—after which the computational

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

overhead of longer input sequences (from packed prompts) outweighs the matrix-matrix compute
advantage. For example, on A100s, parallel sizes between 32 and 64 are optimal for typical workloads.

Compatibility with Speculative Decoding. Parallel Prompting (fanning out multiple suffixes at
lock-step) is designed for simultaneous multi-query generation, while speculative decoding focuses on
verifying a single sequence. These are distinct but potentially complementary: speculative decoding
could be performed within each branch created by Parallel Prompting, or adapted to verify multiple
shared-prefix continuations in parallel.

Developer Overhead and Practical Adoption. In many production stacks, the shared-prefix bound-
ary is already explicit: for example, retrieval-augmented generation (RAG) pipelines concatenate
retrieved context (prefix) with a question (suffix), and batched APIs naturally group queries under a
common header or instruction. In these settings, enabling Parallel Prompting requires only providing:
(1) the token span (or delimiter) for the shared prefix, and (2) a list of per-query suffixes. This makes
practical adoption straightforward in most modern LLM serving pipelines.

Memory Scaling Experiments To systematically study memory and throughput scaling, we
conducted experiments varying shared prefix length (128, 256, 512, 1024 tokens), output length (5
vs 100 tokens), number of unique prefixes (num doc: 4 vs 8), and number of questions per prefix
(num q: 32, 64, 128). Our results reveal several key patterns: (1) Output length is the dominant
driver of memory usage, followed by num doc and context length, with num q having a smaller but
non-negligible effect. (2) Long outputs dominate memory via KV cache growth across all decode
steps. (3) num doc has a much larger impact when output is long, as a longer context is carried
through every generated token. (4) Longer shared prefixes add memory, but the effect is modest
compared to output length and num doc, consistent with effective prefix sharing across the batch.

Table 5: Memory Usage (MB) and Throughput (tokens/s) for Output Length 100

Prefix num doc num q Memory (MB) Throughput (tok/s)
128 4 32 7031 4490
128 8 32 15814 5286
128 4 64 20104 4825
128 8 64 28617 2868
128 4 128 37509 3704
128 8 128 54429 2810
256 4 32 7131 4540
256 8 32 16109 5231
256 4 64 20399 4624
256 8 64 28927 2834
256 4 128 37829 3705
256 8 128 54761 2780
512 4 32 7333 4462
512 8 32 16689 4852
512 4 64 20968 4627
512 8 64 29545 2752
512 4 128 38472 3692
512 8 128 55433 2747

1024 4 32 7766 4289
1024 8 32 17932 4217
1024 4 64 22174 4262
1024 8 64 30787 2639
1024 4 128 39751 3792
1024 8 128 56787 2559

Effect of Model Size The performance of LLM’s generation can be affected by various factors such
as number of queries, batch size and the length of prefixes. We also run experiments with various

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Memory Usage (MB) and Throughput (tokens/s) for Output Length 5 tokens

Prefix Length Num Documents Num Questions Memory (MB) Throughput (tok/s)
128 4 32 3187 2144
128 8 32 4324 6794
128 4 64 4798 7412
128 8 64 5767 9700
128 4 128 6735 9060
128 8 128 8724 9602
256 4 32 3290 1875
256 8 32 4622 5605
256 4 64 5095 7264
256 8 64 6073 8928
256 4 128 7039 8627
256 8 128 9041 9304
512 4 32 3512 1976
512 8 32 5260 5098
512 4 64 5687 6479
512 8 64 6684 7472
512 4 128 7671 7831
512 8 128 9727 8520
1024 4 32 4143 1573
1024 8 32 6906 3601
1024 4 64 7135 4882
1024 8 64 8426 5404
1024 4 128 9261 6282
1024 8 128 11751 6689

configurations with CodeLlama-7b-Inst (Rozière et al., 2024) and Sheared-LLaMA-1.3B (Xia et al.,
2024) since different model sizes could also affect generation performance. See Table 7 for results.

Table 7: Comparing the throughput using parallel Batching with 7B and 1B Llama model with
different lengths of doc length when q len = 12∥q num = 128∥ans len = 5 and the number
of unique doc content equals 8. As the content length increases, the degradation of throughput
performance becomes severe.

doc len Throughput(1B)(tokens/second) Throughput(7B)(tokens/second)
256 9512 2750
512 8199 2430
1024 6591 1924

19

	Introduction
	Background: Attention Mechanism
	Method
	Problem Setup and Motivation
	Parallel Generation with Prompt-wise Independent Encoding
	 Theoretical Analysis
	Throughput Maximization by Balancing Attention Parallelism and Batch Size

	Experiments
	Scaling Experiments
	Case Study: Question Answering Performance

	Related work
	Conclusion
	Appendix
	Proof of Theorem 1.
	Assumptions of Proposition 2
	Assumptions of Proposition 3

	Technical Appendices and Supplementary Material

