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ABSTRACT

We introduce Parallel Prompting, a method for high-throughput, quality-preserving
decoding of multiple large language model (LLM) queries that share a common
prefix. Such shared-context structure arises naturally in applications including
document question answering, few-shot learning, multi-user chat, and evaluation
pipelines. Prior approaches either degrade generation quality by merging queries
into a single prompt that the model cannot reliably disentangle or impose rigid
batching and preallocated memory that limit practical deployment. Parallel Prompt-
ing is a free lunch for batch prompting: it improves throughput and memory
efficiency without requiring model retraining or sacrificing accuracy. The gains
are most pronounced when prefix overlap is high and output lengths are short to
moderate, with the relative advantage diminishing as unique suffixes grow longer.
Our method executes a single pass over the shared context and decodes all con-
tinuations in parallel through efficient matrix–matrix operations, while avoiding
cross-query interference and supporting flexible batching across multiple sharing
groups with dynamic, on-demand KV-cache management. This design enables
high resource utilization during decoding without compromising output quality.
Experiments on popular datasets with Llama 3-8B show up to a 4× reduction
in end-to-end latency relative to competitive baselines, with no loss in accuracy,
demonstrating that Parallel Prompting complements existing batching strategies
and expands the practical throughput of LLM-based systems.

1 INTRODUCTION

Batch text generation is a standard paradigm for large language model (LLM) inference. In many
practical scenarios, prompts within a batch often share a common prefix. This setting is prevalent
in wide range of use-cases, such as document question answering, few-shot learning, multi-user
chat, LLM-as-judges for model evaluation, and LLM-based verification for fact-checking. For
instance, chatbots frequently serve diverse users using a shared system prompt, assistant models
leverage few-shot exemplars for domain-specific tasks, and programming systems generate multiple
candidate solutions to a single problem. As deployment of transformer-based LLMs continues to
scale, harnessing these shared prefixes for efficiency becomes increasingly valuable.

A growing body of work seeks to accelerate LLM inference by exploiting shared information across
requests. Several systems (Zhu et al., 2024; Juravsky et al., 2024) reuse parts of the cache when
different prompts begin with the same prefix, thereby avoiding redundant computation. While these
approaches achieve meaningful speedups, they remain limited in important ways: some require rigid
memory layouts, and others only handle batches in which all inputs share exactly the same prompt.
Related methods (Kwon et al., 2023; Zheng et al., 2024; Gim et al., 2024) extend cache reuse further
but still follow a fundamentally sequential decoding pattern, leaving substantial efficiency gains
unrealized. Meanwhile, simple batch prompting strategies that merge multiple queries into a single
prompt often degrade output quality because the model cannot reliably separate the different requests.
These limitations highlight the need for a method that simultaneously avoids interference, supports
flexible sharing groups, and fully exploits parallelism during decoding.

In this paper, we propose Parallel Prompting, a method for efficiently decoding multiple queries with
a shared prefix by processing them in parallel. The key insight is that we can independently encode
each query with respect to the shared context using specialized attention masks, then generate outputs
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in parallel during the decoding phase. This approach leverages efficient matrix-matrix operations on
modern GPUs to achieve significant speedups without compromising output quality. Critically, we
find that maximizing throughput requires carefully balancing two parameters: the batch size and the
degree of parallelism during decoding—the optimal point depends on hardware and model specifics.

To summarize, our work makes the following contributions:

• We propose a simple and effective method leveraging parallel prompting in LLM that allows
efficient batching of multiple LLM prompts which share a prefix.

• We conduct extensive experiments and show that our method can achieve improvements
in throughput and computational resource management over prior methods across a range
of workloads, although there are some workloads for which our proposed method is less
efficient than some prior methods.

• We show theoretically and experimentally that maximizing inference throughput for parallel
prompting requires a careful balance between attention parallelism and batch size.

Figure 1: Overview of our method. The input is a prompt with a shared context and multiple questions.
Batch prompting (Cheng et al., 2023; Lin et al., 2024) concatenates all questions together, and the
output is generated squentially using the typical LLM decoding method, taking 9 generation timesteps.
Our method generates the output in parallel and produces the result faster, taking only 3 generation
timesteps.

Our approach is a free lunch for batch prompting: it boosts throughput and memory efficiency without
requiring any model retraining and without compromising accuracy. The gains are largest when prefix
overlap is high and outputs are short to moderate, with the relative advantage tapering off as unique
suffixes grow longer. Unlike simple batch-prompting heuristics—which often degrade generation
quality by forcing the model to disentangle multiple requests within a single prompt—our method
avoids cross-query interference, supports flexible sharing groups, and fully exploits parallelism
throughout decoding.

2 BACKGROUND: ATTENTION MECHANISM

A core component of the Transformer is the attention computation. Given the sequence of queries
Q ∈ RNq×d, keys K ∈ RNkv×d, values V ∈ RNkv×d , the transformer model computes the attention
output O ∈ RNq×d with the causal masking M as follows:

O = Attention(Q,K, V ) = softmax

(
QKT

√
d

+M

)
V (1)

At the start of the generation process, a prefill stage processes the initial sequence of tokens that
the LLM will complete. During this stage, the entire prompt is encoded in parallel using a single
transformer forward pass. This results in a high number of queries and key-value pairs (Nq = Nkv ≫
1), making the matrix multiplications in Equation 1 more hardware-friendly.

As the generation continues, completion tokens are decoded sequentially, with each decoding step
producing a new token and requiring a forward pass. To speed up this process, a KV cache is used
to store the attention keys and values of all previous tokens, eliminating the need to reprocess the
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entire sequence during each decoding step. Instead, only the most recent token is passed through
the model. However, this approach results in a different attention computation where the number of
queries is 1 while the number of key-value pairs is still high (Nq = 1 and Nkv ≫ 1). This leads to
matrix-vector products for the multiplications with KT and V , making the attention during decoding
memory-bound and not utilizing tensor cores.

3 METHOD

3.1 PROBLEM SETUP AND MOTIVATION

Consider a scenario where we have a shared context Doc (e.g., a document) and n questions q1, . . . , qn
to answer based on this context. We want to generate answers A = {a1, a2, . . . , an} efficiently.

Standard Approach with Shared Prefix. The baseline processes each query independently, comput-
ing each answer as ai = πLLM(Doc, qi), where πLLM denotes the language model. For every query,
the model performs a prefill pass or reuses part of the cache over the concatenated input (Doc, qi)
and then executes a sequence of incremental decode steps to autoregressively generate the tokens of
ai. Answering n queries requires repeating the computationally expensive generation stage n times,
which dominates overall runtime.
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Figure 2: Methods for efficiently handling multiple prompts with a shared prefix. Shared prefix type
methods, such as Hydragen and Relay Attention, batch together multiple questions and process them
in parallel. Batch prompting type methods put multiple prompts together into one prompt, which
can batch multiple documents together (Batching Batch Prompting).

Batch Prompting Type Methods(SeqBatch) (Cheng et al., 2023; Lin et al., 2024). A straightforward
attempt to avoid redundant computation is to concatenate all queries into a single prompt and let the
model generate a single long sequence containing all answers (see Figure 2, middle). While this
approach amortizes the cost of encoding the shared context Doc, it introduces a prompt interference
problem: due to the autoregressive nature of decoding, the model’s hidden state at step i contains all
previously generated tokens. Consequently, the answer for query i becomes implicitly conditioned
on other questions and earlier answers, and the resulting outputs are no longer independent. This
entanglement often degrades answer quality.

Our Approach (Parallel Prompting). We propose a method that generates all n answers in parallel
while ensuring that each answer remains conditioned only on its own query and the shared context.
The central idea is to apply query-specific attention masks during both the prefill and decoding stages
(see Figure 2, right), thereby isolating each question–answer flow while still enabling extensive
sharing of computation. This yields three key advantages:

1. Shared-context prefill: the computationally intensive encoding of Doc is executed once and
reused for all queries;
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2. Parallel decoding: at every generation step, the model produces multiple next tokens
simultaneously for each query in a single batched forward pass;

3. Independence of answers: attention masking prevents cross-query information leakage,
ensuring that the generation of ai depends solely on (Doc, qi).

Together, these mechanisms substantially reduce computation while preserving the independence and
quality of the generated answers.

Our method integrates seamlessly with the batching technique. By batching texts with multiple unique
documents and corresponding questions, efficiency can be improved further. Parallel generation
with batching provides two distinct advantages: firstly, inference throughput is further amplified by
batching with multiple unique prefix documents; secondly, it enables the balancing of batch size and
sequence length for model input, optimizing overall performance.

3.2 PARALLEL GENERATION WITH PROMPT-WISE INDEPENDENT ENCODING

Our method operates in two stages: Prefill and Parallel Decode.

Prefill Stage. We concatenate all queries into a single input sequence and encode them jointly together
with the shared context). To avoid any form of cross-query interference, we construct a query-specific
attention mask (see Figure 1, right) that ensures each query token attends only to the shared context
and to its own query tokens. This masking scheme is related to prepacking (Zhao et al., 2024), but
here we extend it to support multiple independent decoding streams simultaneously. To preserve
positional consistency, tokens for each query are assigned disjoint position indices immediately
following the shared-context sequence. If the shared context has been previously prefetched, we
directly reuse its KV-cache, thereby avoiding redundant prefill computation.

Parallel Decoding Stage. During autoregressive generation, we replace the standard one-token-per-
query decoding pattern with a fully parallel decoding scheme. The SeqBatch method processes all
documents and questions sequentially within a single batch. In contrast, the parallel generation method
employs efficient matrix operations to process multiple documents and questions simultaneously,
significantly accelerating the generation process by leveraging parallel computation capabilities.
In each forward pass, the model generates n tokens simultaneously (see Figure 1, right). This
transforms attention operations from a sequence of memory-bound matrix–vector products into a
single compute-bound matrix–matrix multiplication, resulting in significantly higher GPU utilization.
The attention masks defined during prefill are reused at every decoding step and expanded following
the same structural pattern, guaranteeing strict separation of decoding streams throughout generation.

The full algorithmic description is provided in Algorithm 1.

Since all questions are independent conditioned on the shared context, their answer distributions can
be computed simultaneously. To support this, we allow the model to generate N next-token logits in
a single forward pass, which corresponds to constructing a query matrix Q of shape N × d in the
attention module.

During decoding, our method generates tokens for all questions in parallel. In each forward step, the
model extends the sequence with N new tokens—one per question. To maintain positional correctness,
we track the final prefix position of each stream and increment the corresponding positional index
before appending new tokens. After each step, the newly generated tokens are inserted into their
respective query streams, and the attention masks are updated according to the fixed pattern defined
during prefill. Because the mask structure is predetermined, only lightweight incremental updates are
required.

3.3 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of the parallel prompting method, focusing on
its efficiency gains in LLM inference. We begin by discussing the implications of Amdahl’s Law
in the context of parallel algorithms, followed by an examination of the speedup and throughput
improvements achieved through our approach.
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Algorithm 1 Parallel Batch Prompting: Parallel Prompt Generation with Shared-Prefix Cache

Require: Shared prefix Doc, unique suffix set Q all, batch size N, parallel size P, language model
πLLM

Ensure: List of generated answers
1: Optional: cache← PRECOMPUTE(πLLM, Doc) ▷ Prefill KV-cache for shared prefix
2: i← 0
3: N p← N / P ▷ Samples per parallel group
4: while i < |Q all| do
5: Q n← Q all[i : i + N]
6: Q np← PARALLIZEINTERLEAVE(Q n, P)
7: prompts← PREPAREINPUT(Doc, Q np, N p)
8: masks← PREPAREMASK(prompts)
9: answers, output mask← PARALLELGENERATE(πLLM, prompts, masks, P, cache)

10: for n = 1 to N p do
11: for p = 1 to P do
12: final answer.append(DECODE(answers[n, p], output mask[n, p]))
13: end for
14: end for
15: i← i + N
16: end while
17: return final answer
18:
19: function PARALLELGENERATE(πLLM, prompts, masks, P, cache)
20: finished← False
21: input ids← TOKENIZE(prompts)
22: while not finished do
23: outputs← πLLM.FORWARD(input ids, masks, cache)
24: logits← outputs[:, -P:] ▷ Outputs P logits on sequence dimension
25: next tokens← SAMPLE(logits)
26: input ids← CONCAT(input ids, next tokens)
27: if STOPPINGCRITERIA(input ids) then
28: finished← True
29: else
30: masks← UPDATEPARALLELMASK(input ids, P)
31: end if
32: end while
33: return input ids, masks
34: end function
35:
36: function PRECOMPUTE(πLLM, Doc)
37: kv cache← πLLM.FORWARD(Doc)
38: return kv cache
39: end function

Amdahl’s Law provides a theoretical framework for understanding the potential speedup of a task
when a portion of it is parallelized. It is defined as:

S(N) =
1

(1− p) + p
N

(2)

where S(N) is the speedup with N processors, p is the fraction of the task that can be parallelized,
1 − p is the fraction that remains serial. This law highlights that the overall speedup is limited by
the serial portion of the task. As N increases, the speedup approaches 1

1−p , indicating diminishing
returns if p is not close to 1.

In the context of LLM inference, traditional methods process each query sequentially, leading to
inefficiencies due to the serial nature of prompt processing. Our proposed method introduces parallel
prompting, allowing multiple queries to be processed simultaneously. This approach effectively
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maximizes throughput and reduces the time of the LLM’s inference task. We measure throughput as
queries (prompts) processed (a full output completion is generated) per unit time.

Theorem 1 (Amdahl’s Law for Inference Throughput Improvement). The throughput improvement
∆ (tasks processed per unit time above baseline) from using N -way parallel inference is:

∆ =
N · S(N)− 1

Tseq
(3)

See proofs and further details in Equation A.1.

Proposition 2. Consider inference on N independent queries using (a) standard batch processing
and (b) parallel prompting (packing all queries as independent subsequences in a single sequence
with attention masking).

Let Tbatch = Tsetup + N · TMV be the wall-time for a batch (with matrix-vector attention), and
Tparallel = Tsetup + TMM for parallel prompting (with matrix-matrix attention). Then, the respective
throughput values are:

Throughputbatch =
N

Tbatch
, Throughputparallel =

N

Tparallel
(4)

and

Throughputparallel

Throughputbatch
=

Tbatch

Tparallel
=

Tsetup +NTMV

Tsetup + TMM
(5)

where TMV is per-query wall-time for the matrix-vector attentions, and TMM is wall-time for the
matrix-matrix product in the attention.

In practical settings, due to the efficiency of matrix multiplications on a GPU, TMM ≈ TMV. If
Tsetup ≪ TMM, then Throughputparallel is up to N× that of standard batching.

While the theoretical analysis suggests significant improvements, practical factors such as com-
munication overhead, memory bandwidth constraints, and synchronization costs can impact actual
performance. It is essential to consider these factors when implementing parallel prompting to ensure
that the theoretical gains translate into real-world efficiency.

3.4 THROUGHPUT MAXIMIZATION BY BALANCING ATTENTION PARALLELISM AND BATCH
SIZE

The use of batching is a crucial technique to enhance throughput in LLM inference. Through
batched decoding, each forward pass of the model processes the latest token from multiple sequences
concurrently rather than just one. This approach amplifies the arithmetic intensity of transformer
components, such as the multilayer perceptron (MLP) blocks, and facilitates the use of hardware-
friendly matrix multiplications.

However, the computation intensity of attention does not inherently benefit from batching, as each
sequence possesses its distinct key and value matrix. Consequently, while other model components
can leverage tensor cores during batched decoding, attention is required to be computed using
numerous independent matrix-vector products. Our parallel generation technique aims to address this
by enhancing the computation intensity of attention.

Proposition 3 (Throughput Maximization). Let P be the parallel size (number of independent queries
packed into a sequence for matrix-matrix attention), B the batch size (number of such sequences
processed in parallel), and P ·B ≤ S∗ a hardware resource constraint (e.g., total token capacity).

Let Tattn(P ) denote the attention computation cost (function of P ), and Tmlp(B) denote the
MLP/other backend (function of B).

Then, the throughput (queries per unit time) satisfies:

Throughput(P,B) =
P ·B

Tattn(P ) + Tmlp(B)
(6)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and maximal throughput is achieved at

(P ∗, B∗) = argmax
P ·B≤S∗

P ·B
Tattn(P ) + Tmlp(B)

(7)

where Tattn(P ) generally improves with P up to a hardware limit (then degrades), and Tmlp(B)
improves with B up to a limit.

The maximizing pair (P ∗, B∗) is found by balancing optimal matrix-matrix utilization for attention
and optimal batch size for MLP efficiency. The throughput function is quasi-concave in (P,B) under
natural hardware scaling assumptions for transformer kernels. The theoretical maximum exists at an
interior point determined by hardware and model specifics, and is not achieved by maximizing either
P or B alone.

4 EXPERIMENTS

We evaluate our method through two complementary sets of experiments: (1) controlled scaling
studies on small and medium-sized models using synthetic data, and (2) a downstream task evaluation
on reading comprehension datasets using Llama 3–8B. This combination enables both fine-grained
analysis of computational behavior and validation on a realistic application. All experiments are
conducted on a single NVIDIA A100-80GB GPU using PyTorch implementations built on the
HuggingFace architecture (Wolf et al., 2020). Additional implementation details are provided in
Appendix B.

4.1 SCALING EXPERIMENTS

Setup. Following Juravsky et al. (2024), we construct synthetic datasets with varying document
lengths, numbers of unique documents, and numbers of queries. Document content is drawn from a
subset of War and Peace (Tolstoy, 1869), with procedurally generated sentences added for greater
length diversity. We perform all scaling studies on CodeLlama-7B-Instruct (Rozière et al., 2024),
Sheared-LLaMA-1.3B (Xia et al., 2024), and LLaMA-160M (Miao et al., 2023) to enable controlled
analysis under constrained compute.

Memory Constraints and Throughput Under Increasing Context Length. We first examine
memory usage and throughput as the number of queries and the shared-context length increase. Fig-
ure 3 summarizes the results. Several baselines (e.g., HuggingFace with DynamicCache, Hydragen)
encounter out-of-memory failures at high query counts, whereas our method remains stable. As
shown in the right panel of Figure 3, throughput decreases with longer prefixes for all methods, but
our parallel prompting consistently achieves higher throughput without sacrificing generation quality.
A full breakdown of memory measurements across all conditions appears in Table 6 and Table 5 in
the Appendix.

Figure 3: Left: Memory usage for multiple prefix-sharing methods under increasing numbers
of queries with CodeLlama-7B-Instruct on an A100 GPU. Right: Throughput comparison for
CodeLlama-7B-Instruct on an A100 GPU as the shared-context length increases. We fix 256 total
queries, 8 unique documents, a query length of 12, and generate 5 tokens per query.
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Figure 4: Left: Throughput (tokens/sec) as a function of prefix and output lengths with CodeLlama-
7B-Instruct on an A100 GPU; lines correspond to different output lengths, markers denote the number
of queries. Right: GPU memory usage with varying prefix and output lengths. Results shown for 4
documents and 32 queries.

Scaling with Output Length. To further isolate computational factors, we study performance as a
function of generated output length. Figure 4 reports both throughput and GPU memory usage across
varying prefix and output lengths. Longer prefixes and outputs impose higher computational load, but
our method maintains efficiency and stable scaling.
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Figure 5: Comparison of generation time versus output tokens for our method, vLLM and SGlang
with CodeLlama-7B-Instruct on an A100 GPU. As the number of output tokens increases, both
methods require more time; however, our method consistently achieves lower generation time for
shorter outputs and remains competitive as the output length grows. The blue line represents our
method, while the light green line represents vLLM and the orange line represents SGLang, both
evaluated with 4 documents and 32 questions per batch.

We also conduct experiments varying output length up to 300 tokens. Results on our syntactic
dataset in Figure 5 show that Parallel Prompting consistently delivers throughput gains over the
vLLM method up to approximately 200 output tokens per question. As an example, for four unique
documents with 4 × 32 questions, our method required 7,295 milliseconds (throughput ≈ 3,500
tokens/sec), while the vLLM method takes 7,605 milliseconds (throughput ≈ 3,360 tokens/sec).
When the output length exceeds 200 tokens, vLLM may offer a greater advantage.

Batch Size vs. Parallel Size. We next analyze how throughput depends jointly on batch size and
parallel size. Intuitively, increasing parallel size improves efficiency up to a point, after which larger
batch sizes provide better arithmetic intensity. Figure 6 (left and middle) illustrates that the optimal
throughput is achieved by balancing these two factors. Our preliminary results suggest that longer
prefixes prefer larger parallel size, as also visible in Figure 6 (Left). A detailed numerical comparison
for 1B and 7B models appears in Table 4 in the Appendix. However, due to limited resources, we
were unable to perform a comprehensive sweep across many model sizes and hardware settings.
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Figure 6: Left: Throughput comparison for 1024 queries across multiple document settings with
CodeLlama-7B-Instruct on an A100 GPU. The X-axis represents the logarithm of the ratio between
the parallel size and the batch size. This metric is used to show that these two parameters must be
balanced to achieve maximum inference throughput. Middle: GPU memory usage for the same
settings. Right: Throughput under long-context inference. Notation such as 8 × 64 means there are 8
unique documents, and each document has 64 associated questions (total = 512 questions).

4.2 CASE STUDY: QUESTION ANSWERING PERFORMANCE

We evaluate our method on downstream reading comprehension tasks to assess end-to-end impact
on both quality and generation speed. We use Llama 3–8B (Grattafiori et al., 2024) and measure
F1 scores (standard for QA) on SQuAD (Rajpurkar et al., 2016), QuAC (Choi et al., 2018), and
DROP (Dua et al., 2019).

Figure 7: Comparison of generation time and F1 performance across prompting methods using Llama
3–8B on an A100 GPU. Reported results are averaged over five runs.

As shown in Figure 7, our parallel prompting achieves substantially lower latency compared to stan-
dard prompting, sequential batching, Hydragen, SGLang, vLLM (with and without relay attention),
while maintaining equivalent answer quality across all datasets.

5 RELATED WORK

Recent advancements in language modeling have delved into the prediction of multiple tokens
simultaneously to enhance both efficiency and performance. Notable works such as (Miao et al.,
2024; Leviathan et al., 2023; Wu et al., 2024) focus on speculative decoding methods, where potential
future sequences are built and verified to expedite inference. Similarly, (Gloeckle et al., 2024) and
(Cai et al., 2024) propose predicting multiple future tokens using different output heads, thereby
speeding up the inference process. Efforts to increase throughput in LLM inference have led to
various innovative techniques aimed at optimizing GPU utilization and improving throughput. (Dao
et al., 2022) and (Sheng et al., 2023) aim to improve memory usage efficiency, enabling higher
throughput in generative inference tasks. (Jin et al., 2023) schedules prompts based on estimated
output sequence lengths to optimize GPU usage. (Gim et al., 2024) proposes reusing precomputed
caches in a predefined schema to reduce latency. (Sun et al., 2024) applies dynamic sparse KV
caching in decoding to accelerate long sequence generation. Efficient prompting techniques could
also increase the throughput of LLM.(Cheng et al., 2023) groups multiple questions in a single prompt,

9
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though it will lead to performance degradation when the number of questions increases. (Zhao et al.,
2024) enhances throughput during the prefilling stage by prepacking data. (Ning et al., 2024) uses
the skeleton of the answer to batch-generate the final answer. To avoid the KV cache duplication,
existing work (Kwon et al., 2023) vLLM uses its PagedAttention and paged memory management
to point multiple identical input prompts to only one physical block across multiple queries. Also,
(Juravsky et al., 2024) proposes a decomposition of attention computation of shared prefixes and
unique suffixes. (Lu et al., 2024) increases efficiency by sharing cache in the encoder-decoder model
for decomposable tasks. Compared with the above methods, our work introduces a novel inference
technique that allows LLMs to leverage GPU parallel capacity to improve inference throughput and
memory utilization without degrading reasoning performance.

6 CONCLUSION

We introduce an efficient parallel prompting method for decoding prompt queries in parallel. We
conduct experiments with multiple downstream datasets, constructed synthetic data, and show our
method achieves improvements in throughput and computational resource management, offering a
robust solution for different tasks in LLMs.

LIMITATIONS

Skewed Generation Lengths Our method achieves the highest throughput gains when suffix
lengths are similar, and performance may degrade when generation lengths are highly skewed during
decoding. To mitigate this, we propose several practical strategies: In cases where generation lengths
become highly unbalanced, the system can fall back to standard inference. In real-world applications,
expected output length can often be heuristically estimated based on properties such as question and
context length. This enables grouping questions with similar expected output lengths, minimizing
skew. More advanced solutions, such as dynamic batching (e.g., as introduced in Verl), could be
adopted to support streaming scenarios and further optimize batching efficiency.

Prompt-Agnostic Batching Our method’s gains are largest when there is a clear shared-prefix
structure and output lengths are short to moderate. As the length of unique suffixes increases, the
benefit of parallel generation diminishes, since more computation must be performed individually for
each query. For very long outputs, prompt-agnostic batching (such as vLLM’s default scheduling)
may outperform our approach. We recommend a hybrid scheduling policy in production, using
Parallel Prompting for workloads with substantial shared context and prompt-agnostic batching for
others. This method is designed to complement, not replace, existing batching strategies.

REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate reproducibility. Assumptions and proofs for all theoretical
claims are provided in Appendix [A], which states all conditions under which the results hold.
Experimental settings—including datasets, preprocessing, model configurations, training schedules,
hyperparameters, and evaluation protocols in Section Experiments. An anonymized, self-contained
supplementary .zip archive includes source code and scripts to reproduce the main tables/figures and
ablations. Known limitations, potential failure modes, and scope of applicability are discussed in
Section Limitations. Any deviations from the default procedures or additional implementation notes
are included in Appendix [B].
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A APPENDIX

A.1 PROOF OF THEOREM 1.

Amdahl’s Law for Inference Throughput Improvement The throughput improvement ∆ (tasks
processed per unit time above baseline) from using N -way parallel inference is:

∆ =
N · S(N)− 1

Tseq
(8)

Assumptions:

• Each inference computation can be split into a parallelizable fraction and a sequential
fraction.

• There are N independent queries, each requiring Tseq execution time if performed sequen-
tially.

• There is no communication, scheduling, or parallelization overhead. Negligible coordination
or resource contention.

• N processors are available, and the parallel workload is divided equally among them. In
parallel, independent N queries are processed in time Tpar(N) = Tseq/S(N), where S(N)
is given by Amdahl’s law Equation 2

Proof of Theorem 1. The sequential throughput is 1
Tseq

. With parallel prompting, the time to process

N queries is Tpar(N), so the parallel throughput is N
Tpar(N) . The improvement is:

∆ =
N

Tpar(N)
− 1

Tseq

Assuming Tpar(N) =
Tseq

S(N) , we substitute to get:

∆ =
N
Tseq

S(N)

− 1

Tseq
=

N · S(N)

Tseq
− 1

Tseq
=

N · S(N)− 1

Tseq

A.2 ASSUMPTIONS OF PROPOSITION 2

Let Tbatch = Tsetup + N · TMV be the wall-time for a batch (with matrix-vector attention), and
Tparallel = Tsetup + TMM for parallel prompting (with matrix-matrix attention). Then, the respective
throughput values are:

Throughputbatch =
N

Tbatch
, Throughputparallel =

N

Tparallel
(9)

and

Throughputparallel

Throughputbatch
=

Tbatch

Tparallel
=

Tsetup +NTMV

Tsetup + TMM
(10)

where TMV is per-query wall-time for the matrix-vector attentions, and TMM is wall-time for the
matrix-matrix product in the attention.
Assumptions:

• The model and hardware support this masking and packing; TMV and TMM are measured
compatibly.

• Time for setup is equal for standard batch processing and parallel prompting,

• N is small enough to avoid exceeding hardware or memory limits for both methods.
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A.3 ASSUMPTIONS OF PROPOSITION 3

Throughput Maximization Let P be the parallel size (number of independent queries packed into
a sequence for matrix-matrix attention), B the batch size (number of such sequences processed in
parallel), and P ·B ≤ S∗ a hardware resource constraint (e.g., total token capacity).

Let Tattn(P ) denote the attention computation cost (function of P ), and Tmlp(B) denote the
MLP/other backend (function of B).

Then, the throughput (queries per unit time) satisfies:

Throughput(P,B) =
P ·B

Tattn(P ) + Tmlp(B)
(11)

and maximal throughput is achieved at

(P ∗, B∗) = argmax
P ·B≤S∗

P ·B
Tattn(P ) + Tmlp(B)

(12)

where Tattn(P ) generally improves with P up to a hardware limit (then degrades), and Tmlp(B)
improves with B up to a limit.

Assumptions:

• P queries packed per prompt, B prompts in a batch, PB ≤ S∗ (resource or hardware
constraint).

• Model/hardware supports this arrangement; Tattn(P ) and Tmlp(B) are the attention/MLP
module wall times.

• Tattn(P ), Tmlp(B) are nonincreasing (improve) up to hardware limits, then nonmonotone.

B TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

The decision to use different models and datasets for the analytical and ablation studies, as compared
to the main downstream task evaluations, is motivated by both practical and scientific considerations.
Large models like Llama 3-8B are computationally intensive, making it challenging to run extensive
ablation and scaling experiments across a wide range of parameters. By using smaller models and
synthetic datasets for these studies, we are able to systematically vary key factors (such as batch
size, prefix length, and number of queries) and isolate the effects of our method in a controlled
environment. This approach enables us to provide deeper insights into the scaling laws, bottlenecks,
and generalization of our method, while reserving the large-scale, real-world benchmarks for the
main results. We believe this combination offers a comprehensive and rigorous evaluation of our
approach.

Table 1: Comparison of generation time and performance for downstream tasks with different methods
on average of five times with Llama 3 8B model on A100-80G. Std denotes the across-run standard
deviation of the time. F1 is computed as the harmonic mean of precision and recall in extractive QA.

Method SQuAD QuAC DROP
Times(s) Std F1(%) Time(s) Std F1(%) Time(s) Std F1(%)

Standard 1277 0.08 87.2 3512 0.06 34.0 1330 0.08 58.1
SeqBatch 566 0.21 84.2 386 0.10 29.1 1007 0.41 42.5
Hydragen 1651 20.9 87.1 1230 6.74 34.0 471 3.85 58.2
SGLang 337 0.49 87.4 854 0.17 32.7 377 0.56 58.5
vLLM 369 0.46 87.4 889 0.57 32.8 413 0.44 58.5
vLLM-RA 365 0.21 87.3 469 0.15 32.8 179 0.51 58.5
Parallel 167 0.16 87.2 243 0.32 33.9 110 0.09 58.1

Memory Usage The observed increase in memory usage for the Parallel method on datasets results
from dynamically maximizing batch sizes during inference. Our approach allows processing more
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examples in a fixed memory footprint, improving throughput. To validate this, we reduced the
maximum allowed batch size during inference on QuAC and observed a significant drop in memory
usage, while still demonstrating substantial speedup over the baseline with the maximum possible
batch size. For transparency, Table 3 lists the results across different batch size settings with our
method. This demonstrates that our method flexibly trades off memory and throughput by adjusting
batch size, and can achieve substantial speedup even at lower memory footprints.

Table 2: Comparison of memory usage with different methods with Llama 3 8B model on A100-80G.

Dataset Method Time(s) Memory(GB)

SQuAD
Standard 590 55.7
Parallel 168 48.6

QuAC
Standard 1799 55.0
Parallel 352 33.1

DROP Standard 654 54.3
Parallel 111 36.1

Table 3: QuAC: Inference Time and Memory Usage for Different Batch Sizes (Parallel Method)

Batch Size Inference Time (s) Memory (GB)
Baseline 1799 55.0
8 872 16.9
16 677 19.8
32 420 24.7
64 352 33.1
128 342 54.0

Effect of the Number of Questions. We sweep over the number of queries for fixed document and
query lengths. Table 4 shows that throughput improves as the number of parallel queries increases,
particularly for larger models. At small batch sizes, non-attention operations dominate, but at large
query counts, attention over long prefixes becomes the bottleneck—precisely where our parallel
decoding provides the largest gains.

Table 4: Throughput (tokens/sec) under different batch sizes for parallel generation with CodeLlama-
1B and CodeLlama-7B when doc len = 512, q len = 12, and ans len = 5.

Num Questions Batch Size Throughput-1B Throughput-7B

128

1 4283 1931
2 4625 1843
4 3654 1468
8 2850 1018

256

1 5911 2115
2 6384 2250
4 5748 2071
8 4959 1615

512

1 5419 1850
2 6845 2214
4 7725 2382
8 7181 2146

Sequence Length vs. Computation Gains Trade-off. Both theory and empirical results confirm
that throughput increases with batch/parallel size up to a point—after which the computational
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overhead of longer input sequences (from packed prompts) outweighs the matrix-matrix compute
advantage. For example, on A100s, parallel sizes between 32 and 64 are optimal for typical workloads.

Compatibility with Speculative Decoding. Parallel Prompting (fanning out multiple suffixes at
lock-step) is designed for simultaneous multi-query generation, while speculative decoding focuses on
verifying a single sequence. These are distinct but potentially complementary: speculative decoding
could be performed within each branch created by Parallel Prompting, or adapted to verify multiple
shared-prefix continuations in parallel.

Developer Overhead and Practical Adoption. In many production stacks, the shared-prefix bound-
ary is already explicit: for example, retrieval-augmented generation (RAG) pipelines concatenate
retrieved context (prefix) with a question (suffix), and batched APIs naturally group queries under a
common header or instruction. In these settings, enabling Parallel Prompting requires only providing:
(1) the token span (or delimiter) for the shared prefix, and (2) a list of per-query suffixes. This makes
practical adoption straightforward in most modern LLM serving pipelines.

Memory Scaling Experiments To systematically study memory and throughput scaling, we
conducted experiments varying shared prefix length (128, 256, 512, 1024 tokens), output length (5
vs 100 tokens), number of unique prefixes (num doc: 4 vs 8), and number of questions per prefix
(num q: 32, 64, 128). Our results reveal several key patterns: (1) Output length is the dominant
driver of memory usage, followed by num doc and context length, with num q having a smaller but
non-negligible effect. (2) Long outputs dominate memory via KV cache growth across all decode
steps. (3) num doc has a much larger impact when output is long, as a longer context is carried
through every generated token. (4) Longer shared prefixes add memory, but the effect is modest
compared to output length and num doc, consistent with effective prefix sharing across the batch.

Table 5: Memory Usage (MB) and Throughput (tokens/s) for Output Length 100

Prefix num doc num q Memory (MB) Throughput (tok/s)
128 4 32 7031 4490
128 8 32 15814 5286
128 4 64 20104 4825
128 8 64 28617 2868
128 4 128 37509 3704
128 8 128 54429 2810
256 4 32 7131 4540
256 8 32 16109 5231
256 4 64 20399 4624
256 8 64 28927 2834
256 4 128 37829 3705
256 8 128 54761 2780
512 4 32 7333 4462
512 8 32 16689 4852
512 4 64 20968 4627
512 8 64 29545 2752
512 4 128 38472 3692
512 8 128 55433 2747

1024 4 32 7766 4289
1024 8 32 17932 4217
1024 4 64 22174 4262
1024 8 64 30787 2639
1024 4 128 39751 3792
1024 8 128 56787 2559

Effect of Model Size The performance of LLM’s generation can be affected by various factors such
as number of queries, batch size and the length of prefixes. We also run experiments with various
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Table 6: Memory Usage (MB) and Throughput (tokens/s) for Output Length 5 tokens

Prefix Length Num Documents Num Questions Memory (MB) Throughput (tok/s)
128 4 32 3187 2144
128 8 32 4324 6794
128 4 64 4798 7412
128 8 64 5767 9700
128 4 128 6735 9060
128 8 128 8724 9602
256 4 32 3290 1875
256 8 32 4622 5605
256 4 64 5095 7264
256 8 64 6073 8928
256 4 128 7039 8627
256 8 128 9041 9304
512 4 32 3512 1976
512 8 32 5260 5098
512 4 64 5687 6479
512 8 64 6684 7472
512 4 128 7671 7831
512 8 128 9727 8520
1024 4 32 4143 1573
1024 8 32 6906 3601
1024 4 64 7135 4882
1024 8 64 8426 5404
1024 4 128 9261 6282
1024 8 128 11751 6689

configurations with CodeLlama-7b-Inst (Rozière et al., 2024) and Sheared-LLaMA-1.3B (Xia et al.,
2024) since different model sizes could also affect generation performance. See Table 7 for results.

Table 7: Comparing the throughput using parallel Batching with 7B and 1B Llama model with
different lengths of doc length when q len = 12∥q num = 128∥ans len = 5 and the number
of unique doc content equals 8. As the content length increases, the degradation of throughput
performance becomes severe.

doc len Throughput(1B)(tokens/second) Throughput(7B)(tokens/second)
256 9512 2750
512 8199 2430
1024 6591 1924
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