

SHARPER CHARACTERIZATION OF THE GLOBAL MAXIMIZERS IN BILINEAR PROGRAMMING WITH APPLICATIONS TO ASYNCHRONOUS GRADIENT DESCENT

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 We study the bilinear program that arises when tuning the stepsizes in asyn-
 014 chronous gradient descent (AGD). Notably, we prove a necessity theorem: ev-
 015 ery global maximizer lies at an extreme point of the feasible region, strengthen-
 016 ing the classical sufficiency guarantee for linear objectives on compact sets. Ex-
 017 ploiting this structure, we recast the continuous problem as a discrete search over
 018 the vertices of the hyper-cube and design a solver that performs a biased random
 019 walk among them. Over all the tested benchmarks, including the *Cyclic Staircase*
 020 benchmark, our solver reaches global optimality up to $1000\times$ faster than Gurobi
 021 11 while using orders of magnitude fewer evaluations.

022 This structural result allows us to prove near-optimal stepsize scheme for the re-
 023 cently proposed Ringmaster AGD algorithm and a provable factor-2 approxima-
 024 tion on the error to find an ε -stationary point. Together, our results provide both a
 025 sharper theoretical characterization and a practical solver for nonconvex bilinear
 026 programs emerging in distributed learning.

1 INTRODUCTION

031 Efficient optimization lies at the heart of modern AI applications. As neural networks scale toward
 032 trillion-parameter models (Rajbhandari et al., 2020), training must be distributed across hundreds
 033 or even thousands of compute nodes (Llama Team, 2024; Microsoft, 2024; OpenAI, 2024; Gemini
 034 Team, 2025). While Minibatch-SGD (Cotter et al., 2011; Dekel et al., 2012; Takac et al., 2013) is one
 035 of the most commonly used distributed training strategies, it suffers from a fundamental bottleneck:
 036 each worker must wait for the slowest node to finish its computations, leading to significant under-
 037 utilization of resources (Goyal et al., 2017; Bottou et al., 2018).

038 It is therefore not just natural, but practically necessary, to allow workers to proceed asynchronously.
 039 Asynchronous gradient-descent (AGD) methods (Recht et al., 2011) enable workers to read poten-
 040 tially stale model parameters and submit gradients without locks or coordination, dramatically im-
 041 proving resource utilization and throughput. However, this flexibility comes at a price: the presence
 042 of delays and stale updates makes the selection of an appropriate sequence of step sizes both crucial
 043 and challenging. A poorly chosen step-size schedule can easily lead to divergence or drastically slow
 044 convergence, while a carefully designed one can unlock the full potential of large-scale distributed
 045 training. Understanding and addressing this challenge is therefore indispensable for the practical
 046 success of asynchronous optimization in modern AI systems.

047 Like all gradient-descent methods, a crucial design choice in AGD is the stepsize policy, which must
 048 offset the extra variance introduced by delayed gradients. To our surprise, in many works the step-
 049 sizes are engineered based on prior intuitions on the behavior of the optimization method and lack
 050 rigorous justifications. While in general these hand crafted stepsizes does not hurt the convergence
 051 rate, they might lead to suboptimal *hidden constant* which in practice, e.g., when training large
 052 machine learning models, can be detrimental, especially in decentralized and federated learning (Dean
 053 et al., 2012; McMahan et al., 2017; Kairouz et al., 2021). Investigating for optimal stepsizes in AGD
 054 and compare them to known methods is therefore a crucial step, beyond the theoretical convergence
 055 rates, to understand how one algorithm compare to the other in practical scenarios.

054 1.1 OUR CONTRIBUTIONS
055056 The contributions of the present work span from advances in bilinear programming theory and its
057 implications to the design of asynchronous optimization methods, with a particular focus on providing
058 a deeper understanding of the optimal choice of the stepsizes.059 ♠ **An Optimization Problem for Choosing The Stepsizes.** We show that selecting improved
060 stepsizes for asynchronous gradient descent (AGD) can be cast as an optimization problem with a
061 linear objective and bilinear constraints.062 ♣ **A Sharper Characterization of the Global Maximizers.** Starting from our stepsize problem,
063 and beyond the existence of an optimal solution, we provide a sharper characterization of the optimal
064 solutions of a whole family of bilinear programs by establishing a *necessity* theorem: every global
065 maximizer is necessarily extremal, thereby tightening the classical result.066 ♦ **A Simple yet Powerful Heuristic to Solve the Optimization Problem.** Leveraging our ex-
067 tremal guarantee, we show how a simple randomized heuristic, searching over the vertices of the
068 feasible region, can already be very efficient in practice and we empirically compare this heuristic
069 to the general-purpose solver Gurobi.070 Together, these contributions yield both a refined theoretical understanding and a practical heuristic
071 for nonconvex bilinear programs, particularly those with separable or low-dimensional nonconvex
072 components, such as problems with one constraint per coordinate of the ambient space. This frame-
073 work is not limited to AGD, and can be naturally extended to inform the design of other distributed
074 learning methods.075 2 RELATED WORKS[†]
076077 2.1 ASYNCHRONOUS GRADIENT DESCENT (AGD)
078079 Asynchronous optimization can be dated back to the 1970-80s (Baudet, 1978; Tsitsiklis et al., 1986;
080 Bertsekas & Tsitsiklis, 1989) and regains interest with the seminal work of Recht et al. (2011). While
081 subsequent works have focused on the stochastic variant of AGD, i.e., ASGD (Agarwal & Duchi,
082 2011; Chaturapruek et al., 2015; Lian et al., 2015; Feyzmahdavian et al., 2016; Sra et al., 2016; Dutta
083 et al., 2018; Nguyen et al., 2018; Arjevani et al., 2020; Stich & Karimireddy, 2020), it is only recently
084 that tight convergence analysis of ASGD and optimal algorithms have been derived (Koloskova et al.,
085 2022; Mishchenko et al., 2022; Feyzmahdavian & Johansson, 2023) culminating in Ringmaster
086 ASGD (Maranjyan et al., 2025) with provable optimal time complexity. In Zhang et al. (2016);
087 Mishchenko et al. (2022) delay-adaptive stepsizes are used where the learning rate is divided by
088 the delay while Koloskova et al. (2022); Maranjyan et al. (2025) use a threshold to penalize/discard
089 stale gradients. Surprisingly, the delay threshold used in Ringmaster ASGD does not depend on the
090 compute times nor on the delays and it is an open question whether one can improve this threshold.091 2.2 BILINEAR PROGRAM (BLP)
092093 BLPs are a class of nonlinear optimization problems in which the objective function or constraints
094 are bilinear, i.e., involve products of disjoint pairs of variables, leading to intrinsic non-convexity
095 and computational hardness (Al-Khayyal, 1992). Even for seemingly simple linear objectives and
096 bilinear constraints, the feasible region can have complex geometry (Horst & Hoang, 1996). BLPs
097 arise in diverse applications from pooling (Misener & FLOUDAS, 2009) and packing (Locatelli
098 & Raber, 2002) to network design (Davarnia et al., 2017) and economic equilibrium (Mathiesen,
099 1985), motivating a range of algorithmic solutions. Approaches for solving BLPs include convex
100 relaxations such as McCormick envelopes (McCormick, 1976), mixed-integer programming refor-
101 mulations (Adams & Sherali, 1993), and advanced cutting plane or disjunctive algorithms (Saxena
102 et al., 2011; Fampa & Lee, 2021; Rahimian & Mehrotra, 2024) for global solution strategies. Despite
103 these advances, exact solution and efficient computation for large-scale BLPs remain significant re-
104 search challenges (Rahimian & Mehrotra, 2024).105
106 [†] We refer the reader to Appendix B for further references.

108 **3 GLOBAL MAXIMIZERS IN BILINEAR PROGRAMS**
 109

110 In this section, we introduce and study in depth a class of bilinear programs that is essential for our
 111 later analysis of AGD.
 112

113 **3.1 THE OPTIMIZATION PROBLEM**
 114

115 The quadratically constrained program we are interested is the following maximization problem:
 116

$$\begin{aligned}
 117 \quad (\mathcal{P}_d): \quad & \text{maximize } \langle \Lambda \mid \mathbf{a} \rangle = \sum_{k=1}^d a_k \lambda_k \\
 118 \quad & \text{over } (\lambda_1, \dots, \lambda_d) \in [0, 1]^d \\
 119 \quad & \text{subject to } 0 \leq \lambda_i \left(1 + \sum_{j=1}^d M_{i,j} \lambda_j \right) \leq 1 \text{ for } i = 1, 2, \dots, d;
 \end{aligned} \tag{1}$$

123 where $d > 0$ is the dimension, $\Lambda = (\lambda_1, \dots, \lambda_d)^\top$ are the variables of the problem, $\mathbf{a} = (a_1, \dots, a_d)^\top \in \mathbb{R}^d$ is a constant vector such that for all $i \in [d]$, $a_i \neq 0$ and M is a $d \times d$ matrix
 124 with non-negative entries. It is worth noting that the bilinear constraints of (\mathcal{P}_d) can be re-written
 125 in the following “matrix-form” inequality
 126

$$0 \leq \Lambda + \Lambda \odot (M\Lambda) \leq 1, \tag{2}$$

127 where \odot denotes the Hadamard product, i.e., element-wise multiplication¹ and the inequalities
 128 from (2) are considered coordinate-wise. Additionally, notice that problem (\mathcal{P}_d) is scale-invariant
 129 in \mathbf{a} , that is, if we scale the vector \mathbf{a} in the objective function by some positive scalar then the set of
 130 solution is unchanged.
 131

132 Throughout this work, while we mainly focus on the general case where M has non-negative entries,
 133 we also highlight in Appendix F and in the experiments reported in Section 6 an important special
 134 case of problem (1) where M is a strictly upper triangular matrix (with non-negative entries), that
 135 is, $M_{i,j} = 0$ for every $1 \leq j \leq i \leq d$ and $M_{i,j} \geq 0$ for all $1 \leq i, j \leq d$ so that the constraints in (2)
 136 simplify to
 137

$$\lambda_i \left(1 + \sum_{j=i+1}^d M_{i,j} \lambda_j \right) \leq 1, \quad i = 1, 2, \dots, d. \tag{3}$$

138 Observe that in this particular case, the problem reduces to a BLP, as it involves only products of
 139 distinct variables. This scenario naturally arises in the state-of-the-art analysis of asynchronous
 140 gradient descent (AGD) as outlined in Section 5 and more thoroughly in Appendix G.
 141

142 **3.2 GEOMETRY OF THE FEASIBLE REGION**
 143

144 The feasible region. We start by defining the feasible region of (\mathcal{P}_d) .
 145

146 **Definition 3.1.** The feasible region \mathcal{F} of problem (\mathcal{P}_d) is

$$147 \quad \mathcal{F} := \left\{ \Lambda \in [0, 1]^d : 0 \leq \Lambda + \Lambda \odot (M\Lambda) \leq 1 \right\}, \tag{4}$$

148 where M is a $d \times d$ matrix with non-negative entries.
 149

150 In Figure 1 we give visualizations of the feasible region \mathcal{F} for several matrices M in dimension 3.
 151

152 In Appendix D.2 we provide several lemmas to better understand the geometrical properties of \mathcal{F}
 153 and the constraints from (4). In Lemmas D.1 and D.2 we study how the constraints shape the region
 154 \mathcal{F} . Then, in Definitions D.4, D.5 and D.8 we partition \mathcal{F} in different components based on the
 155 which constraints are tight or not and study the properties of these components in Lemmas D.6
 156 and D.7.
 157

158 ¹For two matrices A and B from $\mathbb{R}^{d \times n}$, the Hadamard product of A by B , denoted by $A \odot B$ is the matrix
 159 C whose entry $(i, j) \in [d] \times [n]$ is given by $C_{i,j} = A_{i,j} \times B_{i,j}$.
 160

162 **Some intuitions on the feasible region and problem** (\mathcal{P}_d). To provide additional intuition, beyond
 163 the formal lemmas in the appendix, we give some insights on the geometry of the feasible region \mathcal{F}
 164 and how it enforces that every maximizer of (\mathcal{P}_d) must be an extreme point.

165 First, note that the set \mathcal{F} can be obtained as the unit hypercube $[0, 1]^d$ to which we remove the
 166 *convex* subsets defined by the constraints
 167

$$168 \quad \lambda_i (1 + (M\Lambda)_i) \geq 1, \quad i = 1, 2, \dots, d,$$

169 where $\lambda_1, \dots, \lambda_d \geq 0$. The resulting shape, which is \mathcal{F} , is connected, compact, and its faces are
 170 either “flat” (which happens when one of the $(\lambda_i)_{i \in [d]}$ is zero, and the face is aligned with one of
 171 the axis) or “concave”²: this can be seen in Figure 1: in both figures we have 4 “flat” faces and 2
 172 “concave” faces. These “concave” faces belong to the hypersurface $\lambda_i (1 + (M\Lambda)_i) = 1$ for some
 173 $i \in [d]$, and importantly *none* of these hypersurfaces is an affine hyperplane. Therefore, given a cost
 174 vector $\mathbf{a} \in \mathbb{R}^d$, the levels sets of the objective function $\langle \Lambda | \mathbf{a} \rangle$, which are hyperplanes orthogonal
 175 to \mathbf{a} , never coincide with or are contained in any of the “concave” faces of \mathcal{F} . Additionally, it is
 176 useful geometrically to interpret the maximization of the objective $\langle \Lambda | \mathbf{a} \rangle$ as *sliding a hyperplane,*
 177 *oriented according to \mathbf{a} , in the direction of increasing $\langle \Lambda | \mathbf{a} \rangle$* . With this geometric perspective, the
 178 concavity of the faces of \mathcal{F} ensures that, as the hyperplane is translated in the direction of increase,
 179 whenever it intersects a face F of \mathcal{F} , there is always a portion of the boundary of F that lies above
 180 the hyperplane. Consequently, as long as the intersection with \mathcal{F} is non empty, there is always one
 181 extreme point above this sliding hyperplane. An illustration of such a hyperplane crossing \mathcal{F} is
 182 displayed in Figure 1a. This geometric intuition, which conceals certain subtleties, is precisely what
 183 the necessity theorem formalizes.

184 Moreover, it is worth mentioning that in problem (1), the cost vector $\mathbf{a} \in \mathbb{R}^d$ is assumed to have
 185 non-zero entries. This condition is actually essential and it ensures that none of the “flat” faces of
 186 \mathcal{F} are entirely contained in any of the level set of the objective $\langle \Lambda | \mathbf{a} \rangle$; otherwise, our main result
 187 would not hold.

188 3.3 THE SUFFICIENCY RESULT

190 In this section, we recall a general result which implies that the problem (\mathcal{P}_d) in (1) admits at least
 191 one optimal solution that is an extreme point of the feasible region. Before stating our results, we
 192 recall the two common definitions of an *extreme point* for general (e.g., non-convex) subsets of \mathbb{R}^d .
 193 One (Definition 3.2) is more wide spread in the literature than the other (Definition 3.3). We refer
 194 the reader to Appendix C.2 for further discussions on this point.

195 **Definition 3.2** (Extreme Point). Let $S \subseteq \mathbb{R}^d$ be a non-empty subset, a point $x \in S$ is said to be
 196 an *extreme point* of S if, for any $a, b \in S$ with $a \neq b$, the point x does not lie in the interior of the
 197 segment $[a, b]$, that is, $x \notin (a, b)$. The set of extreme points of S is denoted by $\text{Extr } S$.

198 **Definition 3.3** (Extreme Point: a Relaxed Variant). Let $S \subseteq \mathbb{R}^d$ be a non-empty subset, a point
 199 $x \in S$ is said to be an *extreme point in the “relaxed” sense* of S if, for any $a, b \in S$ with $a \neq b$ such
 200 that $[a, b] \subset S$ the point x does not lie in the interior of the segment $[a, b]$, that is, $x \notin (a, b)$. The set
 201 of extreme points of S in the sense of this relaxed definition is denoted by $\text{Extr}_{\mathcal{R}} S$.

202 Clearly we have $\text{Extr } S \subseteq \text{Extr}_{\mathcal{R}} S$ for any subset $S \subseteq \mathbb{R}^d$. This inclusion can be tight in some
 203 specific cases, for instance, when S is a convex set³ we have $\text{Extr } S = \text{Extr}_{\mathcal{R}} S$.

204 We now consider the general optimization problem:

$$206 \quad (\mathcal{P}_{\text{cpt}}^{\text{lin}}): \quad \begin{aligned} & \text{maximize } \langle \mathbf{x} | \mathbf{c} \rangle \\ & \text{over } \mathbf{x} \in K, \end{aligned} \tag{5}$$

209 where $\mathbf{c} \in \mathbb{R}^d \setminus \{0\}$ is a constant non-zero vector and $K \subseteq \mathbb{R}^d$ a non-empty and compact
 210 subset⁴. Nonetheless we can still say something about some of the global maximizers of prob-

211 ²Roughly speaking, these faces can be intuitively visualized as surface of concave lens.

212 ³So as to make the paper self-contained, we recall some basic notions of convexity (convex sets, convex
 213 functions...) in Appendix C.1.

214 ⁴Here we do not impose anything special on the geometry of the compact set K , e.g., convexity or the fact
 215 that K is described by linear inequalities. So K can be an arbitrary compact and non-empty subset of \mathbb{R}^d ,
 notably K is not necessarily convex.

$$(a) M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } \mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

$$(b) M = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Figure 1: Illustration of the feasible region for two instances of problem (1) in $d = 3$.

lem (5) as stated in the next result and proved in Appendix E.1. For convenience, we denote by $X^* := \arg \max_{\mathbf{x} \in K} f(\mathbf{x}) := \langle \mathbf{x} \mid \mathbf{c} \rangle$ the set of global maximizers of (5).

Theorem 3.4 (Maximization of Linear Forms over Non-empty Compact Sets). *There exists an optimal solution of problem $(\mathcal{P}_{\text{cpt}}^{\text{lin}})$ in (5) which is also an extreme point of K , i.e., $\text{Ext} K \cap X^* \neq \emptyset$.*

Actually Theorem 3.4 above is a special case of Theorem 3.1 from Chen et al. (2021) but since we only focus here on the particular case where the objective is linear, we can prove Theorem 3.4 more directly. We refer the reader to Appendix E.1⁵.

3.4 SOME KEY LEMMAS

In this part, we establish two key results concerning the system of inequalities defined by the d constraints in problem (\mathcal{P}_d) in (1). In the first result (Lemma 3.5), we prove that one can control the value of each coordinate of the column vector $\Lambda + \Lambda \odot (M\Lambda)$. That is, given some weights $\mathbf{w} = (w_1, \dots, w_d)^\top \in [0, 1]^d$, the system of d equations $\Lambda + \Lambda \odot (M\Lambda) = \mathbf{w}$, is always solvable and we prove that this system admits a unique solution $\Lambda^{(\mathbf{w})}$. In the second result (Lemma 3.6) we study the regularity of this unique solution as the weights vector \mathbf{w} varies in $[0, 1]^d$.

Lemma 3.5 (A Linear-Quadratic System; Proof in Appendix E.2). *Let $d \in \mathbb{N}$ be a positive integer, $M \in \mathbb{R}^{d \times d}$ a matrix with non-negative entries and $W = (w_1, \dots, w_d)^\top \in \mathbb{R}^d$ a d -dimensional column vector with non-negative entries. Then, the system*

$$\Lambda + \Lambda \odot (M\Lambda) = W, \quad (6)$$

has a unique solution $\Lambda = (\lambda_1, \dots, \lambda_d)^\top \in \mathbb{R}^d$ with non-negative entries and for any $i \in [d]$ we have $\lambda_i = 0$ if, and only if $w_i = 0$.

The proof of Lemma 3.5 is deferred to Appendix E.2. It uses the notion of P -matrix and crucially relies the *Gale–Nikaidō* theorem. This theorem is a powerful tool which provides a link between P -matrices and the injectivity of functions defined from \mathbb{R}^d to \mathbb{R}^d . The reader can refer to Appendix C.5 for more details about P -matrices.

Counter-examples to the existence and uniqueness of solution(s) to (6) are discussed in Appendix E.2.

Lemma 3.6 (Regularity of the Solution of (6)). *Let $d \in \mathbb{N}$ be a positive integer and $M \in \mathbb{R}^{d \times d}$ a matrix with non-negative entries. For any d -dimensional column vector $\mathbf{w} = (w_1, \dots, w_d)^\top \in \mathbb{R}^d$ with non-negative entries, let $\Lambda^{(\mathbf{w})} = (\lambda_1^{(\mathbf{w})}, \dots, \lambda_d^{(\mathbf{w})})^\top$ be the unique solution of the equation*

$$\Lambda + \Lambda \odot (M\Lambda) = \mathbf{w}, \quad (7)$$

then, the map $\Psi: [0, 1]^d \rightarrow \mathcal{F}$ defined for $\mathbf{w} \in [0, 1]^d$ by

$$\Psi(\mathbf{w}) := \Lambda^{(\mathbf{w})} = (\lambda_1^{(\mathbf{w})}, \dots, \lambda_d^{(\mathbf{w})})^\top,$$

where $\mathcal{F} := \left\{ \Lambda \in [0, 1]^d : 0 \leq \Lambda + \Lambda \odot (M\Lambda) \leq 1 \right\}$, is a \mathcal{C}^∞ -diffeomorphism⁶.

⁵Our argument is inspired by the solution in ([https://math.stackexchange.com/users/232/qiaochu yuan](https://math.stackexchange.com/users/232/qiaochu%20yuan)).

⁶The notion of diffeomorphism is recalled in Definition C.1.

270 **4 MAIN RESULTS**
271272 **4.1 CHARACTERIZING THE EXTREME POINTS OF \mathcal{F}**
273

274 We start this section by studying the extremal points⁷ of the feasible set \mathcal{F} . More precisely, we
275 prove that the set of extreme points of \mathcal{F} can be characterized as the set of vertices $\{0, 1\}^d$ of the
276 hypercube $[0, 1]^d$ mapped by the diffeomorphism Ψ defined in Lemma 3.6.

277 The next two theorems characterize the extreme points of the feasible region \mathcal{F} , either in the general
278 setting (Theorem 4.1) or when the matrix M is assumed to be strictly upper triangular (Theorem 4.2).
279 Their proof can be found respectively in Appendix E.3 and in Appendix F.1.

280 **Theorem 4.1** (Extreme Points of \mathcal{F} in the Relaxed Sense). *For the feasible region \mathcal{F} of problem
281 (\mathcal{P}_d) , we have*

$$282 \text{Extr}_{\mathcal{R}} \mathcal{F} = \left\{ \Psi(w) : w \in \{0, 1\}^d \right\}, \quad (8)$$

284 *that is, the extreme points of \mathcal{F} (in the relaxed sense) are exactly the vertices of the hypercube $[0, 1]^d$
285 mapped by the diffeomorphism Ψ .*

286 In the particular case where the matrix M is strictly upper triangular, we can strengthen this result
287 with the set $\text{Extr } \mathcal{F}$.

289 **Theorem 4.2** (Extreme Points of \mathcal{F} in the Strictly Upper Triangular Case). *For the feasible region
290 \mathcal{F} of the problem (\mathcal{P}_d) in the particular case where the matrix M is strictly upper triangular with
291 non-negative entries, we have*

$$292 \text{Extr } \mathcal{F} = \left\{ \Psi(w) : w \in \{0, 1\}^d \right\}, \quad (9)$$

294 *that is, the extreme points of \mathcal{F} are exactly the vertices of the hypercube $[0, 1]^d$ mapped by the
295 diffeomorphism Ψ .*

296 *Remark 4.3.* As a consequence of the above two theorems, when the matrix M is strictly upper
297 triangular the feasible region \mathcal{F} of problem (\mathcal{P}_d) satisfies $\text{Extr } \mathcal{F} = \text{Extr}_{\mathcal{R}} \mathcal{F}$.
298

299 **4.2 EVERY OPTIMAL SOLUTION IS EXTREMAL**
300

301 We now state our main theorem which complements the ‘‘sufficiency’’ result from Section 3.3 and
302 provides a sharper characterization of the global maximizers of problem (\mathcal{P}_d) . Indeed, while the
303 later Theorem 3.4 asserts that there exists *at least* an extreme point of \mathcal{F} which is an optimal solution
304 to (\mathcal{P}_d) , our result strengthen this claim and states that *every* optimal solution to the problem (\mathcal{P}_d)
305 is necessarily an extreme point of \mathcal{F} and hence, reduces the search space from the whole domain
306 \mathcal{F} to only its extremal points.

307 **Theorem 4.4** (Global Maximizers of Problem (\mathcal{P}_d) ; Proof in Appendix E.4). *The set X^* of the
308 global maximizers of problem (\mathcal{P}_d) as defined in (1) satisfies*

$$309 X^* \subseteq \left\{ \Psi(w) : w \in \{0, 1\}^d \right\},$$

311 *that is, the global maximizers of (\mathcal{P}_d) must be some points p of the feasible region \mathcal{F} which are
312 mapped (through the bijection Ψ^{-1}) to the vertices of the unit hypercube $[0, 1]^d$.
313*

314 More specifically Theorem 4.4 allows us to drastically simplify the original problem (\mathcal{P}_d) by re-
315 stricting the constrained set to a finite set of points. This gives the following reformulation of (\mathcal{P}_d) :

$$316 (\mathcal{P}'_d): \quad \text{maximize } \langle \mathbf{a} | \Psi(w) \rangle \quad (10)$$

$$317 \quad \text{over} \quad w \in \{0, 1\}^d.$$

319 The essence of our result, illustrated in Figure 2, is that the inverse map Ψ^{-1} carries the complicated
320 feasible set \mathcal{F} onto the familiar hypercube $[0, 1]^d$. By Theorems 4.1 and 4.4, every global maximizer
321 of the original problem lies at a vertex of \mathcal{F} . Hence it suffices to evaluate the objective only on the 2^d
322 vertices in $\{0, 1\}^d$ using Ψ to pull them back to the corresponding points in the original space. This

323 ⁷The definition of an extreme point is recalled in Section 3.3.

Figure 2: Flattening the Nonconvex Feasible Set \mathcal{F} via Ψ .

formulation as a discrete optimization problem suggests to use evolutionary algorithms in order to tackle (10). These algorithms are known to be particularly useful in such setting where only function calls are allowed. Based on this observation and on recent results in the field of randomized search algorithms (Lissovoi et al., 2023; Bendahi et al., 2025), we conceive a new randomized heuristic, the *MMAHH Solver*, tailored to problem (\mathcal{P}'_d) and compare it empirically with the well-established and general-purposes *Gurobi* solver (Gurobi Optimization, LLC, 2024) in Section 6.

Notes on the uniqueness of optimal solution(s) to the problem (\mathcal{P}_d) are provided in Appendix I.

5 APPLICATION TO ASYNCHRONOUS GD

We consider the following optimization problem

$$\min_{x \in \mathbb{R}^d} f(x), \quad (11)$$

where $f: \mathbb{R}^d \rightarrow \mathbb{R}$ is the objective to minimize. In the nonconvex setting, the goal is to find an ε -stationary point, i.e., a vector x^* such that $\|\nabla f(x^*)\|^2 \leq \varepsilon$ (Nesterov & Polyak, 2006; Zhang et al., 2020). In practical scenarios, e.g., in machine learning, $f(x)$ denotes the loss of a model with weights x on the training dataset.

5.1 PRESENTATION OF THE METHOD

Let us recall the well-known asynchronous GD (AGD) algorithm (Algorithm 1). For the sake of generality, we allow arbitrary non-negative stepsizes $\{\gamma_k\}_{k \geq 0}$ in the gradient descent step (line 8) contrary to the original version where the stepsizes are assumed to be constant. In the distributed framework under consideration, n machines operate in parallel under the coordination of a central server. At the beginning of Algorithm 1, all workers start computing a stochastic gradient at a common initial point x_0 (line 6). Then the server enters a loop (assumed infinite for simplicity of the exposition and analysis) where it awaits and processes incoming gradient estimates from the workers as they complete their computations. At the beginning of the k^{th} iteration of the **while** loop, a stochastic gradient g_i^k is received from some worker $i \in [n]$ (line 7), and this gradient is applied to the sequence of iterates $\{x^k\}_{k \geq 0}$. We say the gradient g_i^k is “accepted” by the server if $\gamma_k > 0$ otherwise, it is “discarded” ($\gamma_k = 0$) and $x^{k+1} = x^k - \gamma_k g_i^k = x^k$ so we do not move during k^{th} loop. Additionally, in Algorithm 1, the delays $\{\delta^k\}_{k \geq 0}$ represent the total number of gradients the server receives between the time a worker starts computing and the time it sends its result. More precisely, if worker $i \in [n]$ sends a stochastic gradient to the server at iteration $k \geq 0$, then

$$\delta^k := k - \max \{r \in [1..k] : \mathcal{L}_W[r-1] = i\},$$

where \mathcal{L}_W is an ordered list that records the history of gradient submissions by the workers. Specifically, for each iteration $k \geq 0$, the entry $\mathcal{L}_W[k] = i$ indicates that worker i sent a stochastic gradient to the server at iteration k . This list allows us to determine, for any iteration k , when a particular worker i last contributed a gradient, which is crucial for computing the corresponding delay δ^k .

378

379

Algorithm 1: Asynchronous GD

```

1 Initialization:
2    $k \leftarrow 0$ , the iteration counter
3    $x^0 \in \mathbb{R}^d$ , the starting point
4    $\{\gamma_k\}_{k \geq 0}$ , the stepsizes,  $\gamma_k \geq 0$ 
5   Run Procedure 1 in all workers
6   Send to all worker the point  $x^0$ 
7   while true do
8     Wait until receiving  $g_i^k := \nabla f(x^{k-\delta^k})$  from worker  $i$ 
9     // Do one descent step.
10     $x^{k+1} \leftarrow x^k - \gamma_k g_i^k$ 
11    // Reset the delay of worker  $i$ 
12    Send to worker  $i$  the point  $x^{k+1}$ 
13    Update the iteration counter:  $k \leftarrow k + 1$ 

```

390

391

Hence two natural questions arise: (1) what are the optimal “gradient-independent” stepsizes $\{\gamma_k^*\}_{k \geq 0}$ and (2) how do the hand crafted stepsizes compared to them? We investigate these two questions in the deterministic setting (i.e., no stochasticity) and, to the best of our knowledge, prove a first theoretical guarantee in this direction: AGD with constant stepsizes and a tuned threshold⁸ (to discard old gradients) leads to near-optimal theoretical performance.

392

393

394

5.2 CONVERGENCE OF AGD IN THE NONCONVEX SETUP

395

396

We recall below the assumptions satisfied by the function f from (11) and the stochastic gradients; these assumptions are standard in the analysis of SGD-type methods in the nonconvex setting (Ghadimi & Lan, 2013; Bottou et al., 2018).

401

402

Assumption 5.1. Function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable, and its gradients are L -Lipschitz continuous, i.e., $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|$, $\forall x, y \in \mathbb{R}^d$.

403

404

Assumption 5.2. There exist $f^{\inf} \in \mathbb{R}$ such that $f(x) \geq f^{\inf}$ for all $x \in \mathbb{R}^d$.

405

406

Based on Assumption 5.2, we define the initial sub-optimality $\Delta := f(x^0) - f^{\inf}$, where x^0 is the starting point of optimization method.

407

408

Assumption 5.3. The workers can compute *full* gradients, that is, when asked to compute a gradient of f at $x \in \mathbb{R}^d$ they will reply, deterministically, $\nabla f(x)$ after some time.

409

410

411

412

413

414

Main Result We now state the convergence analysis of Algorithm 1: the proof builds on the state-of-the-art analysis of asynchronous methods (Mishchenko et al., 2022; Koloskova et al., 2022; Maranjyan et al., 2025; Tyurin & Sivtsov, 2025). As discussed in a subsequent paragraph, we further refine our analysis in Appendix G.9 and, as a byproduct of our general analysis, we recover with more transparency the convergence rate of Ringmaster ASGD (see Theorem G.14).

415

416

417

Theorem 5.4 (Convergence Analysis of AGD). *Under Assumptions 5.1 to 5.3, for any integer $K \geq 0$ and any choice of non-negative stepsizes $\{\gamma_k\}_{k \geq 0}$ such that there exists $k \in [0..K]$ for which $\gamma_k > 0$, the iterates $\{x^k\}_{k \geq 0}$ of AGD (Algorithm 1) satisfy, with $\Gamma_K := \gamma_0 + \dots + \gamma_K > 0$*

418

419

420

421

422

$$\frac{1}{\Gamma_K} \sum_{k=0}^K \gamma_k \|\nabla f(x^k)\|^2 \leq \frac{2\Delta}{\Gamma_K} + \underbrace{\frac{1}{\Gamma_K} \sum_{k=0}^K R_k \gamma_k \|\nabla f(x^{k-\delta^k})\|^2}_{:= R(K)}, \quad (12)$$

423

424

where $R_k := \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \delta^j - 1$ and $M_k := \{j \in [0..K] : j - \delta^j \leq k \leq j - 1\}$.

425

426

427

Link to the Optimization Problem (\mathcal{P}_d) According to the analysis done in Theorem 5.4, a natural approach to get rid of the $R(K)$ term in (12) is to ensure each $R_k \leq 0$, i.e.,

428

429

430

$$L\gamma_k + 2L^2\gamma_k \sum_{j \in M_k} \gamma_j \delta^j - 1 \leq 0, \quad k = 0, 1, \dots, K \quad (13)$$

431

⁸Such an algorithm is considered in the work of Maranjyan et al. (2025) and the method is called Ringmaster ASGD.

Figure 3: Comparison of solver runtime (left) and number of iterations (right) for Gurobi (blue) vs. MMAHH (orange) on the *Cyclic Staircase Benchmark*. For the MMAHH, means and standard deviations are taken over 10 runs.

and, if we let $M_{i,j} = 2\delta^j \mathbb{I}\{j \in M_i\}$ for all $i, j \in [0 \dots K]$ then as $R(K) \leq 0$ by (13), and minimizing the right-hand side of (12) is equivalent to maximizing $\gamma_0 + \dots + \gamma_K$ over

$$\mathcal{F} = \left\{ \Lambda \in [0, 1]^{K+1} : 0 \leq L\Lambda + (L\Lambda) \odot (M^\delta[L\Lambda]) \leq 1 \right\},$$

where $\Lambda = (\gamma_0, \dots, \gamma_K)$ and $M^\delta = (M_{i,j})_{i,j \in [0 \dots K]}$ is the ‘‘matrix of delays’’ and we recover problem (\mathcal{P}_d) with $\mathbf{a} = (1, \dots, 1)^\top$ and $M = M^\delta$. Hence, optimal stepsizes in Algorithm 1 and satisfying (13) are obtained when solving this specific instance of (\mathcal{P}_d) .

A Small Caveat In Algorithm 1, the delay δ^k stays constant whether the gradient is accepted ($\gamma_k > 0$) or discarded ($\gamma_k = 0$): δ^k is only influenced by the workers’ compute times and not how the gradients are selected. It seems much more natural (e.g., as in Ringmaster ASGD) for the delay to be the total number of *accepted* gradients, i.e., we define the *effective* delay $\tilde{\delta}^k$ as

$$\tilde{\delta}^k := \delta^k - |\{j \in [k - \delta^k \dots k - 1] : \gamma_j = 0\}| \leq \delta^k. \quad (14)$$

While Theorem 5.4 still holds with the delays $\{\tilde{\delta}^k\}_{k \geq 0}$, (14) shows that the constraints (13) needs binary variables to be expressed and the optimization problem then becomes a *mixed-integer* nonlinear program. Nonetheless, we show in Appendix G.10 that we can still apply the main Theorem 4.4 and obtain the next result, proved in Appendix G.11. We refer to Appendix G for more details.

Theorem 5.5 (Near Optimality of Ringmaster AGD). *Under Assumptions 5.1, 5.2 and G.6, for any integer $K \geq 0$ the stepsizes $\{\gamma_k^{(R)}\}_{k \geq 0}$ of Ringmaster AGD (with a threshold⁹ of $R = 1$) satisfy*

$$\sum_{k=0}^K \gamma_k^{(R)} \leq \sum_{k=0}^K \gamma_k^* \leq 2 \sum_{k=0}^K \gamma_k^{(R)},$$

with $\{\gamma_k^*\}_{k \geq 0}$ the optimal stepsizes and $\gamma_k^{(R)} = \frac{1}{L} \mathbb{I}\{\tilde{\delta}^k = 0\}$.

In other word Theorem 5.5 asserts that once AGD, when ran with optimal stepsizes $\{\gamma_k^*\}_{k \geq 0}$, has found a ε -stationary point then Ringmaster AGD has provably found a 2ε -stationary point. This proves that Ringmaster AGD achieve an approximation factor of 2.

6 EXPERIMENTAL RESULTS

The MMAHH Solver. The reformulation (\mathcal{P}'_d) of (\mathcal{P}_d) in (10) reduces the original continuous optimization problem into a discrete one, suggesting the use of evolutionary algorithms. Based on

⁹Following the choice of Maranjyan et al. (2025), when $\sigma^2 = 0$ then $R = 1$.

486 this observation, we propose a new solver based on the recent Markov Move-Acceptance Hyper-
 487 Heuristic (MMAHH; Bendahi et al. (2025)). The MMAHH maintains a vector $x \in \{0, 1\}^d$ and flips
 488 one randomly chosen bit at each iteration to explore new candidates. Moreover, the MMAHH al-
 489 ternates between two search phases: ONLYIMPROVING (OI) where a move is accepted only if it
 490 improves the objective value, and ONLYWORSENING (OW) where a move is accepted only if it
 491 worsens the objective value. Two independent hyper-parameters p and q (the switching probabili-
 492 ties) are used to switch between the operators OI and OW. While there is no theoretically optimal
 493 values for p and q , the choice $p = q = \mathcal{O}(1/(d \log d))$ seems to perform well in practice.

494 **Benchmarking Gurobi vs. MMAHH.** To benchmark its performance against a state-of-the-art
 495 solver, we compare the MMAHH to Gurobi 11 (Gurobi Optimization, LLC, 2024) on two families
 496 of instances: (1) the *Cyclic Staircase Benchmark* which corresponds to the case where workers
 497 periodically send a gradient to the server so that the list of worker’s index \mathcal{L}_W consists in repeating
 498 $[1, 2, \dots, n]$ exactly c times for some integers n and c , e.g., with $n = 4$ and $c = 3$ the instance is
 499 $\mathcal{L}_W = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]$, and (2) the *Stochastic Repetition Benchmark*, which consists of
 500 repeating a uniformly random sequence of length n exactly c times, allowing repetitions of workers.
 501 For $n = 4$ and $c = 3$ an instance can be $\mathcal{L}_W = [3, 4, 5, 4, 10, 3, 4, 5, 4, 10, 3, 4, 5, 4, 10]$. Notice
 502 that for both benchmarks, the dimension of an instance with parameters (n, c) is $d = nc$. Gurobi
 503 can solve the bilinear problem (\mathcal{P}_d) via non-convex branch-and-bound and finds a *provable* global
 504 optima but at the cost of millions of simplex iterations and long runtimes. We run Gurobi once
 505 per instance and the MMAHH 10 independent trials to report the means and standard deviations for
 506 both wall-clock time and bit-flip counts. Across all tested instances (n, c) , MMAHH achieves better
 507 performance, reaching up to a $100\times$ speed-up in runtime while requiring up to $100\times$ less iterations
 508 on the *Cyclic Staircase Benchmark* (Figure 3). On the *Stochastic Repetition Benchmark*, MMAHH
 509 reaches speed-ups up to a $10^5\times$ factor in both runtime and number of iterations (see Appendix H).

510 **Landscape of the Discrete Function.** To give an idea of the landscape of the discrete function
 511 $\varphi(w) := \langle \mathbf{a} \mid \Psi(w) \rangle$ (for $w \in \{0, 1\}^d$) we optimize with the MMAHH solver, we represent φ for
 512 $(n, c) = (5, 4)$ on the *Cyclic Staircase* and on the *Stochastic Repetition* benchmarks. We plot in Ap-
 513 pendix H.3 the value of the 2^{30} bit-strings in $\{0, 1\}^{30}$. We group the points w by their Hamming
 514 distance to the optimum w^* , more precisely, the x -axis corresponds to the quantity $30 - d_H(w, w^*)$,
 515 which is equal to 30 only for $w = w^*$ and to 0 only for $w = (w^*)^c$, where $(w^*)^c$ is the comple-
 516 mentary bit-string of w^* , i.e., $(w^*)_i^c = 1 - w_i$ for all $i \in [d]$. The plots indicate that the discrete
 517 objective we optimize is not “monotonic across the layers” (see the definition in Appendix B.2),
 518 which unfortunately is outside the class of functions for which the theoretical work of Bendahi et al.
 519 (2025) applies. Nonetheless, we show that the MMAHH still achieves strong performance in practice
 520 on all these instances. This highlights a key advantage of hyper-heuristics: even when deployed
 521 outside their ideal theoretical framework (where guarantees hold) they can deliver excellent results,
 522 reflecting their inherently *heuristic* nature.

523 7 CONCLUSION

526 We presented a sharper characterization of the global maximizers in a class of bilinear programs
 527 arising naturally in the analysis of asynchronous gradient descent. Our main theoretical contribution
 528 shows that under general conditions, every global maximizer is extremal, reducing the search space
 529 from a continuous non-convex region to a finite set of structured vertices. This insight allows us
 530 to reformulate the original optimization problem into a discrete one over the vertices of unit hy-
 531 percube, enabling the design of a randomized hyper-heuristic solver based on the recent MMAHH
 532 framework. Our experiments on the challenging *Cyclic Staircase* and *Stochastic Repetition* bench-
 533 marks demonstrate that a simple heuristic can already outperforms the commercial solver Gurobi by
 534 several orders of magnitude in both runtime and iteration count. These results highlight the practi-
 535 cal and theoretical value of exploiting extremality in non-convex optimization and open the door to
 536 future work on applying combinatorial solvers and heuristics in non-convex settings.

540 REFERENCES

542 Warren P Adams and Hanif D Sherali. Mixed-integer bilinear programming problems. *Mathematical*
 543 *Programming*, 59(1):279–305, March 1993.

544 Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In
 545 J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.), *Ad-*
 546 *vances in Neural Information Processing Systems*, volume 24. Curran Associates, Inc.,
 547 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/f0e52b27a7a5d6a1a87373dfffa53dbe5-Paper.pdf.

549 Faiz A. Al-Khayyal. Generalized bilinear programming: Part i. models, applications and linear
 550 programming relaxation. *European Journal of Operational Research*, 60(3):306–314, 1992.
 551 ISSN 0377-2217. doi: [https://doi.org/10.1016/0377-2217\(92\)90082-K](https://doi.org/10.1016/0377-2217(92)90082-K). URL <https://www.sciencedirect.com/science/article/pii/037722179290082K>.

554 Fawaz Alanazi and Per Kristian Lehre. Runtime analysis of selection hyper-heuristics with classical
 555 learning mechanisms. In *Congress on Evolutionary Computation, CEC 2014*, pp. 2515–2523.
 556 IEEE, 2014.

557 Charalambos D. Aliprantis and Kim C. Border. *Measurability*, chapter 5, pp. 127–161. Springer,
 558 Berlin, 3rd edition, 2006. ISBN 978-3-540-29586-0. doi: 10.1007/3-540-29587-9.

560 Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gra-
 561 dient descent with delayed updates. In *Algorithmic Learning Theory*, pp. 111–132. PMLR, 2020.

562 Murad Banaji, Pete Donnell, and Stephen Baigent. P matrix properties, injectivity, and stability in
 563 chemical reaction systems. *SIAM Journal on Applied Mathematics*, 67(6):1523–1547, 2007. doi:
 564 10.1137/060673412. URL <https://doi.org/10.1137/060673412>.

566 Alexander Barvinok. *A course in convexity*, volume 54 of *Graduate Studies in Mathematics*. Amer-
 567 ican Mathematical Society, New York, 2 edition, 2002.

568 Gérard M. Baudet. Asynchronous iterative methods for multiprocessors. *J. ACM*, 25(2):226–244,
 569 April 1978. ISSN 0004-5411. doi: 10.1145/322063.322067. URL <https://doi.org/10.1145/322063.322067>.

572 Heinz H. Bauschke and Patrick L. Combettes. *Convex Functions*, pp. 139–156. Springer Interna-
 573 tional Publishing, Cham, 2017. ISBN 978-3-319-48311-5. doi: 10.1007/978-3-319-48311-5_8.
 574 URL https://doi.org/10.1007/978-3-319-48311-5_8.

575 Hichem Ben-El-Mechaiekh and Yusef A Mechaiekh. An elementary proof of the brouwer’s fixed
 576 point theorem. *Arabian Journal of Mathematics*, 11(2):179–188, August 2022.

578 Abderrahim Bendahia, Benjamin Doerr, Adrien Fradin, and Johannes F. Lutzeyer. Speeding up hyper-
 579 heuristics with markov-chain operator selection and the only-worsening acceptance operator. In
 580 James Kwok (ed.), *Proceedings of the Thirty-Fourth International Joint Conference on Artificial*
 581 *Intelligence, IJCAI-25*, pp. 8850–8857. International Joint Conferences on Artificial Intelligence
 582 Organization, 8 2025. doi: 10.24963/ijcai.2025/984. URL <https://doi.org/10.24963/ijcai.2025/984>. Main Track.

584 Dimitri P. Bertsekas and John N. Tsitsiklis. *Parallel and distributed computation: numerical meth-*
 585 *ods*. Prentice-Hall, Inc., USA, 1989. ISBN 0136487009.

587 Kim C. Border. *Fixed Point Theorems with Applications to Economics and Game Theory*. Cam-
 588 bridge University Press, 1985.

589 Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
 590 learning. *SIAM Review*, 60(2):223–311, 2018. doi: 10.1137/16M1080173. URL <https://doi.org/10.1137/16M1080173>.

593 Haim Brezis. *Functional Analysis, Sobolev Spaces and Partial Differential Equations*. Universitext.
 Springer, New York, 2010. ISBN 9780387709130.

594 L E J Brouwer. Über abbildung von mannigfaltigkeiten. *Mathematische Annalen*, 71(1):97–115,
 595 March 1911.

596

597 Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and Sonia Schulenburg.
 598 *Hyper-Heuristics: An Emerging Direction in Modern Search Technology*, pp. 457–474. Springer
 599 US, Boston, MA, 2003. ISBN 978-0-306-48056-0. doi: 10.1007/0-306-48056-5_16. URL
 600 https://doi.org/10.1007/0-306-48056-5_16.

601 Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender
 602 Özcan, and Rong Qu. Hyper-heuristics: a survey of the state of the art. *Journal of the Operational
 603 Research Society*, 64:1695–1724, 2013.

604 Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and
 605 John R. Woodward. *A Classification of Hyper-Heuristic Approaches: Revisited*, pp. 453–477.
 606 Springer International Publishing, Cham, 2019. ISBN 978-3-319-91086-4. doi: 10.1007/
 607 978-3-319-91086-4_14. URL https://doi.org/10.1007/978-3-319-91086-4_14.

608

609 Konstantin Chakhlevitch and Peter Cowling. Choosing the fittest subset of low level heuristics in
 610 a hyperheuristic framework. In Günther R. Raidl and Jens Gottlieb (eds.), *Evolutionary Com-
 611 putation in Combinatorial Optimization*, pp. 23–33, Berlin, Heidelberg, 2005. Springer Berlin
 612 Heidelberg. ISBN 978-3-540-31996-2.

613

614 Konstantin Chakhlevitch and Peter Cowling. *Hyperheuristics: Recent Developments*, pp. 3–29.
 615 Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-79438-7. doi: 10.1007/
 616 978-3-540-79438-7_1. URL https://doi.org/10.1007/978-3-540-79438-7_1.

617 Sorathan Chaturapruet, John C Duchi, and Christopher Ré. Asynchronous stochastic
 618 convex optimization: the noise is in the noise and sgd don't care. In C. Cortes,
 619 N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural In-
 620 formation Processing Systems*, volume 28. Curran Associates, Inc., 2015. URL
 621 https://proceedings.neurips.cc/paper_files/paper/2015/file/c8c41c4a18675a74e01c8a20e8a0f662-Paper.pdf.

622

623 Xi Chen, Simai He, Bo Jiang, Christopher Thomas Ryan, and Teng Zhang. The discrete moment
 624 problem with nonconvex shape constraints. *Oper. Res.*, 69(1):279–296, January 2021. ISSN 0030-
 625 364X. doi: 10.1287/opre.2020.1990. URL <https://doi.org/10.1287/opre.2020.1990>.

626

627 Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via
 628 accelerated gradient methods. *Advances in Neural Information Processing Systems*, 24, 2011.

629

630 Peter I. Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach to scheduling
 631 a sales summit. In *Practice and Theory of Automated Timetabling, PATAT 2000*, pp. 176–190.
 632 Springer, 2000.

633

634 Danial Davarnia, Jean-Philippe P. Richard, and Mohit Tawarmalani. Simultaneous convexification
 635 of bilinear functions over polytopes with application to network interdiction. *SIAM Journal on
 636 Optimization*, 27(3):1801–1833, 2017. doi: 10.1137/16M1066166. URL <https://doi.org/10.1137/16M1066166>.

637

638 Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’ aurelio
 639 Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
 640 *Advances in Neural Information Processing Systems*, 25, 2012.

641

642 Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction
 643 using mini-batches. *J. Mach. Learn. Res.*, 13(1):165–202, January 2012. ISSN 1532-4435.

644

645 Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the runtime
 646 analysis of selection hyper-heuristics with adaptive learning periods. In *Genetic and Evolutionary
 647 Computation Conference, GECCO 2018*, pp. 1015–1022. ACM, 2018.

648

649 Nelson Dunford and Jacob T. Schwartz. *Linear Operators, Part 1: General Theory*, volume 1 of
 650 *Pure and Applied Mathematics*. Wiley-Interscience, New York, 1988. ISBN 9780471608486.

648 Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar. Slow and
 649 stale gradients can win the race: Error-runtime trade-offs in distributed SGD. In *International
 650 Conference on Artificial Intelligence and Statistics*, pp. 803–812. PMLR, 2018.

651

652 Marcia Fampa and Jon Lee. Convexification of bilinear forms through non-symmetric lifting. *Journal
 653 of Global Optimization*, 80(2):287–305, June 2021.

654 Hamid Reza Feyzmahdavian and Mikael Johansson. Asynchronous iterations in optimization: New
 655 sequence results and sharper algorithmic guarantees. *Journal of Machine Learning Research*, 24
 656 (158):1–75, 2023.

657

658 Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch
 659 algorithm for regularized stochastic optimization. *IEEE Transactions on Automatic Control*, 61
 660 (12):3740–3754, 2016.

661 David Gale and Hukukane Nikaido. The jacobian matrix and global univalence of mappings. *Math-
 662 ematische Annalen*, 159(2):81–93, April 1965.

663

664 Pablo Garrido and Carlos Castro. Stable solving of cvrps using hyperheuristics. In *Proceed-
 665 ings of the 11th Annual Conference on Genetic and Evolutionary Computation*, GECCO ’09,
 666 pp. 255–262, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
 667 9781605583259. doi: 10.1145/1569901.1569938. URL <https://doi.org/10.1145/1569901.1569938>.

668

669 Gemini Team. Gemini: A family of highly capable multimodal models, 2025. URL <https://arxiv.org/abs/2312.11805>.

670

671 Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
 672 tic programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013.

673

674 Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
 675 Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training im-
 676 agenet in 1 hour. *CoRR*, abs/1706.02677, 2017. URL <http://arxiv.org/abs/1706.02677>.

677

678 A. Granas and J. Dugundji. *Fixed Point Theory*. Monographs in Mathematics. Springer, 2003. ISBN
 679 9780387001739. URL https://books.google.com/books?id=4_iJAOlSq3cC.

680

681 Alexandre Grothendieck. *Topological Vector Spaces*. Gordon and Breach Science Publishers, New
 682 York, 1973. ISBN 9780677300207. Translated by Orlando Chaljub.

683

684 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.

685

686 Jun He, Feidun He, and Hongbin Dong. Pure strategy or mixed strategy? In Jin-Kao Hao and
 687 Martin Middendorf (eds.), *Evolutionary Computation in Combinatorial Optimization*, pp. 218–
 688 229, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-29124-1.

689

690 Jun He, Wei Hou, Hongbin Dong, and Feidun He. Mixed strategy may outperform pure strategy:
 691 An initial study. In *2013 IEEE Congress on Evolutionary Computation*, pp. 562–569, 2013. doi:
 692 10.1109/CEC.2013.6557618.

693

694 Songnian He and Hong-Kun Xu. Uniqueness of supporting hyperplanes and an alternative to so-
 695 lutions of variational inequalities. *Journal of Global Optimization*, 57(4):1375–1384, Dec 2013.
 696 ISSN 1573-2916. doi: 10.1007/s10898-012-9995-z. URL <https://doi.org/10.1007/s10898-012-9995-z>.

697

698 R Horst. Deterministic global optimization with partition sets whose feasibility is not known: Ap-
 699 plication to concave minimization, reverse convex constraints, DC-programming, and lipschitzian
 700 optimization. *Journal of Optimization Theory and Applications*, 58(1):11–37, July 1988.

701 Reiner. Horst and Tuy Hoang. *Global optimization : deterministic approaches*. Springer, Berlin ;
 third edition, revised and enlarged. edition, 1996. ISBN 9783662031995.

702 Qiaochu Yuan (https://math.stackexchange.com/users/232/qiaochu_yuan). Does ev-
 703 ery compact (not necessarily convex) set have extreme points? Mathematics
 704 Stack Exchange. URL <https://math.stackexchange.com/q/3952098>.
 705 URL: <https://math.stackexchange.com/q/3952098> (version: 2022-07-15).
 706

707 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 708 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
 709 vances and open problems in federated learning. *Foundations and Trends® in Machine Learning*,
 710 14(1–2):1–210, 2021.

711 V. L. Klee. Extremal structure of convex sets. i. *Archiv der Mathematik*, 8(3):234–240, Aug
 712 1957. ISSN 1420-8938. doi: 10.1007/BF01899998. URL <https://doi.org/10.1007/BF01899998>.
 713

714 V. L. Klee. Extremal structure of convex sets. ii. *Mathematische Zeitschrift*, 69(1):90–104, Dec
 715 1958. ISSN 1432-1823. doi: 10.1007/BF01187394. URL <https://doi.org/10.1007/BF01187394>.
 716

717 Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
 718 Asynchronous SGD for distributed and federated learning. *Advances in Neural Information Pro-
 719 cessing Systems*, 35:17202–17215, 2022.
 720

721 S.G. Krantz and H.R. Parks. *The Implicit Function Theorem: History, Theory, and Applications*.
 722 Modern Birkhäuser classics. Birkhäuser, 2002. ISBN 9780817642853. URL <https://books.google.de/books?id=ya5yy5EPFD0C>.
 723

724 S. Lang. *Differential and Riemannian Manifolds*. Graduate texts in mathematics. Springer-
 725 Verlag, 1995. ISBN 9780387943381. URL <https://books.google.com/books?id=D1LvAAAAMAAJ>.
 726

727 Per Kristian Lehre and Ender Özcan. A runtime analysis of simple hyper-heuristics: to mix or not
 728 to mix operators. In *Foundations of Genetic Algorithms, FOGA 2013*, pp. 97–104. ACM, 2013.
 729

730 Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
 731 for nonconvex optimization. In *Proceedings of the 29th International Conference on Neural
 732 Information Processing Systems - Volume 2*, NIPS’15, pp. 2737–2745, Cambridge, MA, USA,
 733 2015. MIT Press.
 734

735 Andrei Lisssovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the time complexity of algo-
 736 rithm selection hyper-heuristics for multimodal optimisation. In *Conference on Artificial Intelli-
 737 gence, AAAI 2019*, pp. 2322–2329. AAAI Press, 2019.
 738

739 Andrei Lisssovoi, Pietro S. Oliveto, and John Alasdair Warwicker. How the duration of the learning
 740 period affects the performance of random gradient selection hyper-heuristics. In *Conference on
 741 Artificial Intelligence, AAAI 2020*, pp. 2376–2383. AAAI Press, 2020.
 742

743 Andrei Lisssovoi, Pietro S. Oliveto, and John Alasdair Warwicker. When move acceptance selection
 744 hyper-heuristics outperform Metropolis and elitist evolutionary algorithms and when not. *Artifi-
 745 cial Intelligence*, 314:103804, 2023.
 746

747 Llama Team. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
 748

749 Marco Locatelli and Ulrich Raber. Packing equal circles in a square: a deterministic global opti-
 750 mization approach. *Discrete Applied Mathematics*, 122(1):139–166, 2002. ISSN 0166-218X. doi:
 751 [https://doi.org/10.1016/S0166-218X\(01\)00359-6](https://doi.org/10.1016/S0166-218X(01)00359-6). URL <https://www.sciencedirect.com/science/article/pii/S0166218X01003596>.
 752

753 L.H. Loomis and S.Z. Sternberg. *Advanced Calculus (Revised Edition)*. World Scientific Pub-
 754 lishing Company, 2014. ISBN 9789814583954. URL <https://books.google.com.ec/books?id=aDA8DQAAQBAJ>.
 755

756 Arto Maranjyan, Alexander Tyurin, and Peter Richtárik. Ringmaster ASGD: The first asynchronous
 757 SGD with optimal time complexity. In *Forty-second International Conference on Machine Learn-*
 758 *ing*, 2025. URL <https://openreview.net/forum?id=Rkgn9KLHhd>.

759

760 Lars Mathiesen. Computational experience in solving equilibrium models by a sequence of linear
 761 complementarity problems. *Operations Research*, 33(6):1225–1250, 1985. ISSN 0030364X,
 762 15265463. URL <http://www.jstor.org/stable/170635>.

763

764 Garth P McCormick. Computability of global solutions to factorable nonconvex programs: Part I —
 765 convex underestimating problems. *Mathematical Programming*, 10(1):147–175, December 1976.

766

767 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 768 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.

769

770 Microsoft. Phi-4 technical report, 2024. URL <https://arxiv.org/abs/2412.08905>.

771

772 D. Milman. Характеристика экстремальных точек регулярно-выпуклого множества
 773 [Characteristics of extremal points of regularly convex sets]. *Doklady Akademii Nauk SSSR*,
 57:119–122, 1947.

774

775 Ruth Misener and CHRISTODOULOS FLOUDAS. Advances for the pooling problem: Modeling,
 776 global optimization, and computational studies survey. *Applied and Computational Mathematics*,
 8, 01 2009.

777

778 Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous sgd
 779 beats minibatch sgd under arbitrary delays. In *Proceedings of the 36th International Confer-*
 780 *ence on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran
 Associates Inc. ISBN 9781713871088.

781

782 Yurii Nesterov. *Lectures on convex optimization*, volume 137. Springer, 2018.

783

784 Yurii Nesterov and B. T. Polyak. Cubic regularization of newton method and its global perfor-
 785 mance. *Mathematical Programming*, 108(1):177–205, Aug 2006. ISSN 1436-4646. doi: 10.
 1007/s10107-006-0706-8. URL <https://doi.org/10.1007/s10107-006-0706-8>.

786

787 Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtárik, Katya Scheinberg, and Martin
 788 Takáć. SGD and Hogwild! convergence without the bounded gradients assumption. In *Inter-
 789 national Conference on Machine Learning*, pp. 3750–3758. PMLR, 2018.

790

791 Koji Okuguchi. Matrices with dominant diagonal blocks and economic theory. *Journal*
 792 *of Mathematical Economics*, 5(1):43–52, 1978. ISSN 0304-4068. doi: [https://doi.org/10.1016/0304-4068\(78\)90004-6](https://doi.org/10.1016/0304-4068(78)90004-6). URL <https://www.sciencedirect.com/science/article/pii/0304406878900046>.

793

794 OpenAI. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

795

796 Robert R. Phelps. *Introduction. The Krein-Milman theorem as an integral representation theorem*,
 797 pp. 1–8. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN 978-3-540-48719-7. doi:
 10.1007/3-540-48719-0_1. URL https://doi.org/10.1007/3-540-48719-0_1.

798

799 Hamed Rahimian and Sanjay Mehrotra. A disjunctive cutting plane algorithm for bilinear pro-
 800 gramming. *SIAM Journal on Optimization*, 34(4):3286–3313, 2024. doi: 10.1137/22M1515562. URL
 801 <https://doi.org/10.1137/22M1515562>.

802

803 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimiza-
 804 tions toward training trillion parameter models. In *Proceedings of the International Conference for
 805 High Performance Computing, Networking, Storage and Analysis*, SC '20. IEEE Press, 2020.
 ISBN 9781728199986.

806

807 Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
 808 parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
 809 K.Q. Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 24. Cur-
 ran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/218a0aef1d1a4be65601cc6ddc1520e-Paper.pdf.

810 Peter Ross, Sonia Schulenburg, Javier G. Marín-Blázquez, and Emma Hart. Hyper-heuristics: learning
 811 to combine simple heuristics in bin-packing problems. In *Proceedings of the 4th Annual*
 812 *Conference on Genetic and Evolutionary Computation*, GECCO'02, pp. 942–948, San Francisco,
 813 CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1558608788.

814

815 W. Rudin. *Principles of Mathematical Analysis*. International series in pure and applied mathematics.
 816 McGraw-Hill, 1976. ISBN 9780070856134. URL <https://books.google.com/books?id=kwqzPAAACAAJ>.

817

818 Walter Rudin. *Functional Analysis*. McGraw-Hill, New York, 2nd edition, 1991. ISBN
 819 9780070542365.

820

821 Bryan P. Rynne and Martin A. Youngson. *Normed Spaces*, pp. 31–50. Springer London, London,
 822 2008. ISBN 978-1-84800-005-6. doi: 10.1007/978-1-84800-005-6_2. URL https://doi.org/10.1007/978-1-84800-005-6_2.

823

824 Anureet Saxena, Pierre Bonami, and Jon Lee. Convex relaxations of non-convex mixed integer
 825 quadratically constrained programs: projected formulations. *Mathematical Programming*, 130
 826 (2):359–413, December 2011.

827

828 Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed stochastic
 829 optimization. In Arthur Gretton and Christian C. Robert (eds.), *Proceedings of the 19th*
 830 *International Conference on Artificial Intelligence and Statistics*, volume 51 of *Proceedings*
 831 *of Machine Learning Research*, pp. 957–965, Cadiz, Spain, 09–11 May 2016. PMLR. URL
 832 <https://proceedings.mlr.press/v51/sra16.html>.

833

834 Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: SGD with delayed
 835 gradients. *Journal of Machine Learning Research*, 21(237):1–36, 2020.

836

837 Martin Takac, Avleen Bijral, Peter Richtarik, and Nati Srebro. Mini-batch primal and dual methods
 838 for svms. In Sanjoy Dasgupta and David McAllester (eds.), *Proceedings of the 30th International*
 839 *Conference on Machine Learning*, volume 28 of *Proceedings of Machine Learning Research*, pp.
 840 1022–1030, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL <https://proceedings.mlr.press/v28/takac13.html>.

841

842 Angus E. Taylor and David C. Lay. *Introduction to Functional Analysis*. Wiley, New York, 2nd
 843 edition, 1980. ISBN 9780471846468.

844

845 Eli Towle and James Luedtke. Intersection disjunctions for reverse convex sets. *Math. Oper. Res.*,
 846 47(1):297–319, February 2022. ISSN 0364-765X. doi: 10.1287/moor.2021.1132. URL <https://doi.org/10.1287/moor.2021.1132>.

847

848 John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous deterministic and
 849 stochastic gradient optimization algorithms. *IEEE Transactions on Automatic Control*, 31(9):
 850 803–812, 1986.

851

852 Hoang Tuy and Nghia Nguyen Duc. Decomposition algorithm for reverse convex programs. *Vietnam*
 853 *Journal of Mathematics*, 28, 01 2000.

854

855 Alexander Tyurin. Tight time complexities in parallel stochastic optimization with arbitrary computa-
 856 tion dynamics. In *The Thirteenth International Conference on Learning Representations*, 2025.
 857 URL <https://openreview.net/forum?id=cUN81JB4rD>.

858

859 Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
 860 methods under a fixed computation model. *Advances in Neural Information Processing Systems*,
 861 36, 2023.

862

863 Alexander Tyurin and Peter Richtárik. On the optimal time complexities in decentralized stochastic
 864 asynchronous optimization. *Advances in Neural Information Processing Systems*, 37, 2024.

865

866 Alexander Tyurin and Danil Sivtsov. Birch sgd: A tree graph framework for local and asynchronous
 867 sgd methods, 2025. URL <https://arxiv.org/abs/2505.09218>.

864 S Yamada, T Tanino, and M Inuiguchi. Inner approximation method for a reverse convex program-
865 ming problem. *Journal of Optimization Theory and Applications*, 107(2):355–389, November
866 2000.

867 Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, and Ali Jadbabaie. Complexity of
868 finding stationary points of nonconvex nonsmooth functions. In Hal Daumé III and Aarti Singh
869 (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of
870 *Proceedings of Machine Learning Research*, pp. 11173–11182. PMLR, 13–18 Jul 2020. URL
871 <https://proceedings.mlr.press/v119/zhang20p.html>.

872
873 Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-aware async-sgd for distributed
874 deep learning. In *Proceedings of the Twenty-Fifth International Joint Conference on Artificial
875 Intelligence*, IJCAI’16, pp. 2350–2356. AAAI Press, 2016. ISBN 9781577357704.

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918	CONTENTS	
919		
920		
921	1 Introduction	1
922	1.1 Our Contributions	2
923		
924	2 Related Works[†]	2
925	2.1 Asynchronous Gradient Descent (AGD)	2
926	2.2 Bilinear Program (BLP)	2
927		
928		
929	3 Global Maximizers in Bilinear Programs	3
930	3.1 The Optimization Problem	3
931	3.2 Geometry of the Feasible Region	3
932	3.3 The Sufficiency Result	4
933	3.4 Some Key Lemmas	5
934		
935		
936		
937	4 Main Results	6
938	4.1 Characterizing the Extreme Points of \mathcal{F}	6
939	4.2 Every Optimal Solution is Extremal	6
940		
941		
942	5 Application to Asynchronous GD	7
943	5.1 Presentation of the Method	7
944	5.2 Convergence of AGD in the Nonconvex Setup	8
945		
946		
947		
948	6 Experimental Results	9
949		
950	7 Conclusion	10
951		
952		
953	A Notation	20
954		
955	B Additional Related Works	21
956	B.1 Reverse-Convex Programming (RCP)	21
957	B.2 Hyper-Heuristics	21
958		
959		
960	C Preliminaries and Useful Results	22
961	C.1 Diffeomorphisms, Convex Functions and Convex Sets	22
962	C.2 Extreme Points	23
963	C.3 Convex Hulls	23
964	C.4 Support Hyperplanes	25
965	C.5 P -Matrices and Injectivity	26
966	C.6 Fixed-Point Theorems	26
967	C.7 Implicit Functions Theorem	27
968	C.8 Useful Identities and Inequalities	27
969		
970		
971		

972	D Technical Lemmas	30
973	D.1 Preliminary Lemmas	30
974	D.2 The Geometry of the Feasible Region \mathcal{F}	36
975	D.3 Some Technical Lemmas	43
976		
977		
978		
979	E Omitted Proofs	47
980	E.1 Proof of Theorem 3.4	47
981	E.2 Omitted Proofs in Section 3.4	47
982	E.3 Omitted Proofs of Section 4.1	50
983	E.4 Omitted Proofs in Section 4.2	52
984	E.5 Omitted Proofs in Appendix I	56
985		
986		
987		
988	F The Strictly Upper Triangular Case	63
989	F.1 Characterization of the Extreme Points of \mathcal{F}	63
990		
991		
992	G Application to Asynchronous (S)GD	67
993	G.1 A Few Toy Examples	67
994	G.2 Assumptions	68
995	G.2.1 Assumptions From the Nonconvex World	68
996	G.2.2 Additional Assumptions	68
997	G.3 Asynchronous SGD Algorithms	69
998	G.4 A Descent Lemma	70
999	G.5 Residual Estimation (a First Version)	71
1000	G.6 Convergence Analysis of Algorithm 2	73
1001	G.7 Improving the Convergence Analysis	76
1002	G.8 Residual Estimation (a Refined Version)	77
1003	G.9 Convergence Analysis of Algorithm 3	77
1004	G.10 A <i>Mixed-Integer</i> Optimization Problem	80
1005	G.11 A Provable Factor-2 Approximation	85
1006		
1007		
1008		
1009		
1010		
1011		
1012	H Experiments	89
1013	H.1 The Stochastic Repetition Benchmark	89
1014	H.2 The Random Sequences Benchmark	89
1015	H.3 Landscape of the Discrete Function	90
1016		
1017		
1018		
1019	I Notes on the Uniqueness of Optimal Solutions	91
1020		
1021	J Note on the Usage of Large Language Models	92
1022		
1023		
1024		
1025		

1026
1027
1028
1029
A NOTATION

1030	1029	Asymptotic	Meaning
1031		$g = o(f)$ (resp. $g = \omega(f)$)	When $g(n)/f(n) \xrightarrow{n \rightarrow +\infty} 0$ (resp. $+\infty$)
1032		$g = O(f)$	There exists $C > 0$ such that $g(n) \leq Cf(n)$ for n sufficiently large
1033		$g = \Omega(f)$	There exists $c > 0$ such that $g(n) \geq cf(n)$ for n sufficiently large
1034		$g = \Theta(f)$	When both $g = O(f)$ and $g = \Omega(f)$
1035	1035	Sets and intervals	Meaning
1036		\mathbb{N}_0, \mathbb{N}	The set of non-negative (left) and positive (right) integers
1037		$[a..b]$ ($a, b \in \mathbb{N}_0$)	The set $[a, b] = \{a, a + 1, \dots, b - 1, b\}$
1038		$[n]$ ($n \in \mathbb{N}$)	The set $[n] = [1, n] = \{1, 2, \dots, n\}$
1039	1040	Symbol	Meaning
1041		$\mathbb{P}(\cdot), \mathbb{P}(\cdot \cdot)$	Probability and conditional probability
1042		$\mathbb{E}[\cdot], \mathbb{E}[\cdot \cdot]$	Expectation and conditional expectation
1043			

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 **B ADDITIONAL RELATED WORKS**

1082 **B.1 REVERSE-CONVEX PROGRAMMING (RCP)**

1084 RCP addresses global optimization over a convex feasible set with one or more reverse convex
1085 (complement of convex) constraints, resulting in highly nonconvex solution spaces. Classical theory
1086 provides foundational optimality and stability conditions, decomposition algorithms, and reduction
1087 approaches for RCPs Horst (1988); Tuy & Nguyen Duc (2000). Major algorithmic advances include
1088 cut-generating methods, polyhedral annexation, and intersection cut techniques for non-polyhedral
1089 settings (Towle & Luedtke, 2022; Yamada et al., 2000).

1090 **B.2 HYPER-HEURISTICS**

1092 Hyper-heuristics, defined in Burke et al. (2013) as “*a search method or learning mechanism for*
1093 *selecting or generating heuristics to solve computational search problems*”, emerged in early 2000s
1094 and quickly found numerous practical applications (Cowling et al., 2000; Ross et al., 2002; Chakhlevitch &
1095 Cowling, 2005; Garrido & Castro, 2009) notably to tackle NP-hard optimization tasks like
1096 scheduling, packing or routing problems (see the surveys Burke et al. (2003); Chakhlevitch & Cowling
1097 (2008); Burke et al. (2013; 2019)). While rigorous mathematical analysis of hyper-heuristics
1098 started only a decade ago (Lehre & Özcan, 2013), they have revealed intriguing results about their
1099 ability to solve optimization problems, notably on pseudo-Boolean functions $f: \{0, 1\}^n \rightarrow \mathbb{R}$.
1100 Among them, selection hyper-heuristics (He et al., 2012; 2013; Alanazi & Lehre, 2014; Doerr et al.,
1101 2018; Lissovoi et al., 2019; 2020) and more recently the Move-Acceptance Hyper-Heuristic (MAHH)
1102 have gained attention for their remarkable efficiency in escaping local optima.

1103 Based on this success, Bendahi et al. (2025) proposed an enhanced version of the MAHH: the Markov
1104 Move-Acceptance Hyper-Heuristic (MMAHH) with two enhancements that significantly improve the
1105 performance of the original MAHH across a broad range of functions. These two enhancements
1106 yields a significant runtime improvement and the authors derived a bound of $\mathcal{O}(n^{k+1} \log(n))$ on a
1107 wide class of functions: SEQOPT_k .

1108 We recall the next definitions from Bendahi et al. (2025) for clarity concerning the experiments.

1109 **Definition B.1** (k -th Layer). Let $k \in [0..d]$ and $f: \{0, 1\}^d \rightarrow \mathbb{R}$ such that f admits a unique
1110 maximizer $x^* \in \{0, 1\}^d$. The k -th layer \mathcal{L}_k of f is defined as:

1111
$$\mathcal{L}_k := \{x \in \{0, 1\}^n \mid d_H(x, x^*) = n - \|x\|_1 = k\}, \quad (15)$$

1113 where we used $d_H(\cdot, \cdot)$ to denote the Hamming distance between two bit-strings. In other words,
1114 \mathcal{L}_k is the set of all bit-strings at distance k from the global maximum x^* where the numbering starts
1115 at the global optimum, e.g., $\mathcal{L}_0 = \{x^*\}$, \mathcal{L}_1 are all bit-strings at Hamming distance 1 from x^* , etc.

1116 **Definition B.2** (Monotonicity across layers). Let $h \in [0..d-1]$ and $f: \{0, 1\}^d \rightarrow \mathbb{R}$. We say that
1117 f is increasing (resp. decreasing) between layers \mathcal{L}_{h+1} and \mathcal{L}_h if for any $y \in \mathcal{L}_{h+1}$ and any $x \in \mathcal{L}_h$
1118 we have

1119
$$f(y) < f(x) \text{ (resp. } f(y) > f(x)).$$

1120 We denote this by $\mathcal{L}_{h+1} \xleftarrow{f} \mathcal{L}_h$ (resp. $\mathcal{L}_{h+1} \xrightarrow{f} \mathcal{L}_h$).

1122 **Definition B.3** (The SEQOPT benchmark). Let $d \geq 2$ be an integer and $k \in [0..d-2]$. Let
1123 $d = d_0 > d_1 > d_2 > \dots > d_k > d_{k+1} = 0$ be integers. We define $\text{SEQOPT}_k(d_1, \dots, d_k)$ to be
1124 the set of all functions $f: \{0, 1\}^d \rightarrow \mathbb{R}$ such that f has admits a unique maximizer $x^* \in \{0, 1\}^d$
1125 and for any $\ell \in [0..d]$,

1127 1. if $k - \ell$ is even then f is increasing across $\mathcal{L}_{d_\ell}, \dots, \mathcal{L}_{d_{\ell+1}}$, i.e., $\mathcal{L}_{d_\ell} \xleftarrow{f} \dots \xleftarrow{f} \mathcal{L}_{d_{\ell+1}}$,
1128 2. if $k - \ell$ is odd, f is decreasing, i.e., it satisfies $\mathcal{L}_{d_\ell} \xrightarrow{f} \dots \xrightarrow{f} \mathcal{L}_{d_{\ell+1}}$.

1131 The union of these classes of functions, for fixed k , will be denoted by

1132
$$\text{SEQOPT}_k := \bigcup_{d > d_1 > \dots > d_k > 0} \text{SEQOPT}_k(d_1, \dots, d_k).$$
1133

1134 **C PRELIMINARIES AND USEFUL RESULTS**
 1135

1136 **C.1 DIFFEOMORPHISMS, CONVEX FUNCTIONS AND CONVEX SETS**
 1137

1138 **Definition C.1** (\mathcal{C}^k -Diffeomorphism). Let $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^n$ be non-empty open sets. A map
 1139 $f: U \rightarrow V$ is called a \mathcal{C}^k -diffeomorphism for integer $k > 0$ or $k = +\infty$ if

1140

 1141 1. f is bijective,
 1142 2. f is of class \mathcal{C}^k on U ,
 1143 3. the inverse map $f^{-1}: V \rightarrow U$ and is \mathcal{C}^k on V .

1144 Equivalently, f is a \mathcal{C}^k -diffeomorphism if f is a bijection and both f and f^{-1} are \mathcal{C}^k maps on their
 1145 respective domains.

1146 **Definition C.2** (Convex and Strictly Convex Function; Definitions 8.1 and 8.7 in Bauschke & Combettes
 1147 (2017)). Let C be a convex subset of \mathbb{R}^d , then the function $f: C \rightarrow \mathbb{R}$ is

1148 • *convex* on C if its epigraph

1149
$$\text{epi}(f) := \{(x, t) \in \mathbb{R}^d \times \mathbb{R} : t \geq f(x)\},$$

1150 is a convex subset of $\mathbb{R}^d \times \mathbb{R}$.

1151 • *strictly convex*¹⁰ on C if for any $x, y \in C$ such that $x \neq y$ and for any $\lambda \in (0, 1)$ we have

1152
$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

1153 **Lemma C.3** (Proposition 8.4 of Bauschke & Combettes (2017)). *Let C be a convex subset of \mathbb{R}^d ,
 1154 then the function $f: C \rightarrow \mathbb{R}$ is convex on C if for any $x, y \in C$ and any $\lambda \in (0, 1)$ we have*

1155
$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$$

1156 **Lemma C.4** (Composition of a Convex and a Linear Function). *Let C be a convex subset of \mathbb{R}^d ,
 1157 $h: C \rightarrow \mathbb{R}$ be a linear function, $I \subseteq \mathbb{R}$ an open interval containing $h(C) \subseteq \mathbb{R}$ and let $g: I \rightarrow \mathbb{R}$ be
 1158 a convex function then the map $f = g \circ h$ is convex on C .*

1159 *Proof.* Note that the map $f = g \circ h: C \rightarrow \mathbb{R}$ is well-defined. Now, let $x, y \in C$ and let $\lambda \in (0, 1)$
 1160 then since g is convex, by Lemma C.3 and by linearity of h we have

1161
$$\begin{aligned} f(\lambda x + (1 - \lambda)y) &= (g \circ h)(\lambda x + (1 - \lambda)y) \\ &\stackrel{(a)}{=} g(\lambda h(x) + (1 - \lambda)h(y)) \\ &\stackrel{\text{Def. C.2}}{\leq} \lambda g(h(x)) + (1 - \lambda)g(h(y)) \\ &= \lambda f(x) + (1 - \lambda)f(y), \end{aligned}$$

1162 hence, f is convex according to Lemma C.3. □

1163 Given any two points $a, b \in \mathbb{R}^d$, we denote by

1164
$$[a, b] := \{ta + (1 - t)b : t \in [0, 1]\}, \tag{16}$$

1165 the closed segment joining a to b and by

1166
$$(a, b) := [a, b] \setminus \{a, b\} = \{tx + (1 - t)y : t \in (0, 1)\} \setminus \{a, b\}, \tag{17}$$

1167 the *interior* of the segment $[a, b]$ or *open segment* from a to b . Note that when $a = b$ we have both
 1168 $[a, b] = \{a\}$ and $(a, b) = \emptyset$. More generally from (16) and (17) it follows

1169
$$[a, b] \setminus (a, b) = \{a, b\}. \tag{18}$$

1170 ¹⁰To clarify, here the functions we consider always have a non-empty domain and they never take the value
 1171 $\pm\infty$ hence, they are automatically *proper*. That is why we do not precise this in our definition, contrary
 1172 to Bauschke & Combettes (2017).

1188 C.2 EXTREME POINTS
1189

1190 The notion of *extreme point* is often studied along with convex sets and convexity. Nonetheless, we
1191 can still extend the definition of extreme point from convex sets to, more generally, any subset of a
1192 linear space. In what follows we consider S to be a non-empty subset of \mathbb{R}^d .

1193 To the best of our knowledge, there are two ways to do this generalization and these approaches
1194 end up giving a slightly different meaning for what an “extreme point” is (actually, one definition is
1195 narrower than the other). In the literature, the most common approach is to define the concept of an
1196 *extremal set* of S which we recall in Definition C.5. Besides, another option consists in defining a
1197 *support variety* of S as stated in Definition C.6.

1198 **Definition C.5** (Extremal Set; See Taylor & Lay (1980); Dunford & Schwartz (1988); Rudin (1991);
1199 Brezis (2010)). Let S be a subset of a \mathbb{R}^d . A non-empty set $K \subseteq S$ is called an *extreme set* of S if
1200 for any $x, y \in S$ and $t \in (0, 1)$ then $tx + (1 - t)y \in K$ if, and only if $x \in K$ and $y \in K$.

1201 Then following Definition C.5 an *extremal point* is defined as an extremal set which consists in just
1202 a single point.

1203 **Definition C.6** (Support Variety; See Grothendieck (1973)). Let S be a subset of a \mathbb{R}^d . A linear
1204 sub-variety A (i.e., an affine subspace) of \mathbb{R}^d is a *support variety* if $S \cap A \neq \emptyset$ and for every open
1205 segment $I \subseteq S$ whose interior meets A then $I \subseteq A$.

1206 Then, based on Definition C.5, an *extremal point* is defined as a (linear) support variety of dimension
1207 0 (which is a single point).

1208 We can see that the constraints which ensure a point $x \in S$ is extremal are more restrictive in Definition
1209 C.6 than in Definition C.5. More precisely, for a point $x \in S$ to be an extreme point, it must not be in the interior of any segment $[a, b] \subseteq S$ while in Definition C.5 it is only required that the
1210 endpoints a and b to be in S and not whole segment $[a, b]$ anymore. Since it seems that the Definition
1211 C.5 has been more widely accepted and used in the literature, we then define *extreme points*
1212 following this definition.

1213 Below we recall for clarity what we mean by an “extreme point” of a non-empty subset $S \subseteq \mathbb{R}^d$.
1214 This is the definition used throughout this paper, unless otherwise specified.

1215 **Definition 3.2** (Extreme Point; Following Definition C.5). Let $S \subseteq \mathbb{R}^d$ be a non-empty subset, a
1216 point $x \in S$ is said to be an *extreme point* of S if, for any $a, b \in S$ with $a \neq b$, the point x does not
1217 lie in the interior of the segment $[a, b]$, that is, $x \notin (a, b)$.

1218 The set of extreme points of S is denoted by $\text{Extr } S$.

1219 **Lemma C.7.** *The Definitions 3.2 and C.5 are equivalent.*

1220 *Proof.* Let $S \subseteq \mathbb{R}^d$. Assume first $p \in S$ is an extreme point in the sense of Definition C.5. Given
1221 $x, y \in S$ we suppose for the sake of contradiction that $p \in (x, y)$, then necessarily $x \neq y$ (otherwise,
1222 if $x = y$ then $(x, y) = [x, x] \setminus x = \emptyset$ which is not possible) and by (17), there must exist $t \in (0, 1)$
1223 such that $tx + (1 - t)y = p$ but then, since p is an extreme point we must have $x = y = p$ which is
1224 a contradiction. Hence, we must have $p \notin (x, y)$.

1225 Now, for the converse direction, let $p \in S$ to be an extreme point in the sense of Definition 3.2.
1226 Given $x, y \in S$ and any $t \in (0, 1)$, if $x = y = p$ then $tx + (1 - t)y = x = y = p$. For the other
1227 direction, if $tx + (1 - t)y = p$ then $p \in [x, y]$ and since p is an extreme point, we have $p \notin (x, y)$ so

$$1228 p \in [x, y] \setminus (x, y) \stackrel{(18)}{=} \{x, y\}.$$

1229 Then, it remains to distinguish the cases $p = x$ or $p = y$. Without loss of generality, assume $p = x$
1230 then from $tx + (1 - t)y = p$ we obtain $(1 - t)y = (1 - t)p$ thus $p = y$. Hence, $p = x = y$ which
1231 proves the equivalence of Definition C.5. \square

1232 C.3 CONVEX HULLS
1233

1234 Below, we recall both the definition of the convex hull and closed convex hull of a subset $S \subseteq \mathbb{R}^d$.

1242
1243 **Definition C.8** (Convex Hull and Closed Convex Hull). Let $S \subseteq \mathbb{R}^d$ then, the *convex hull* of S ,
1244 denoted by $\text{Conv } S$ is defined as the smallest convex subset of \mathbb{R}^d which contains S , alternatively,
1245

$$\text{Conv } S := \bigcap_{\substack{C \subseteq \mathbb{R}^d, \text{ convex} \\ S \subseteq C}} C.$$

1246 The *closed convex hull* of S , denoted by $\overline{\text{Conv } S}$ is defined as the smallest closed convex subset of
1247 \mathbb{R}^d which contains S , alternatively,
1248

$$\overline{\text{Conv } S} := \bigcap_{\substack{C \subseteq \mathbb{R}^d, \text{ closed and convex} \\ S \subseteq C}} C.$$

1249 **Lemma C.9** (Closure of the Convex Hull of a Compact Set; Theorem 5.35 from Aliprantis & Border
1250 (2006)). Let $S \subset \mathbb{R}^d$ be a compact set then, the closed convex hull of S , denoted by $\overline{\text{Conv } S}$ is also
1251 a compact subset of \mathbb{R}^d .
1252

1253 The next result is a special case of a partial ‘‘converse’’ of the Krein-Milman theorem formulated
1254 by Milman (1947). A general statement can be found in Phelps (2001) and in earlier works of Klee
1255 (1957; 1958). We state below the particular case of a compact subset of \mathbb{R}^d .
1256

1257 **Lemma C.10** (Lemma 3.4 of Chen et al. (2021)). Let S be a compact subset of \mathbb{R}^d then
1258

$$\text{Ext} \text{r } (\overline{\text{Conv } S}) \subseteq \text{Ext} \text{r } S.$$

1259 **Lemma C.11** (Extreme Points Always Exists on Non-empty Compact Sets). Let S be a non-empty
1260 compact subset of \mathbb{R}^d then $\text{Ext} \text{r } S \neq \emptyset$.
1261

1262 *Proof.* Let $S \subseteq \mathbb{R}^d$ be a non-empty and compact set, consider the function $\|\cdot\|^2 : S \rightarrow \mathbb{R}$ then, as it
1263 is continuous over the compact S , the function $\|\cdot\|^2$ is bounded and it reaches its global maximum
1264 $M \in \mathbb{R}_+$, say, at some point $p \in S$. We now show that p must be an extreme point of S . To do
1265 so, assume for the sake of contradiction that is it not the case so there exists $x, y \in S$ such that
1266 $p \in (x, y)$. Moreover, as $\|\cdot\|^2$ attains its global maximum at p we must have $\|p\|^2 \geq \|x\|^2$ and
1267 $\|p\|^2 \geq \|y\|^2$. but, since $p \in (x, y)$ then, by definition (16) we have $p \neq x$ and $p \neq y$ and since the
1268 points p, x and y are aligned, there exists some vector $v \in \mathbb{R}^d \setminus \{0\}$ and scalars $t_x, t_y \in \mathbb{R}^*$ such
1269 that $t_x t_y < 0$ ¹¹ and
1270

$$x = p + t_x v \text{ and } y = p + t_y v.$$

1271 Now, we distinguish two cases:
1272

- 1273 • if $\langle p | v \rangle = 0$ then expanding $\|x\|^2$ we obtain
1274

$$\begin{aligned} \|x\|^2 &= \|p + t_x v\|^2 \\ &= \|p\|^2 + 2t_x \langle p | v \rangle + t_x^2 \|v\|^2 \\ &= \|p\|^2 + t_x^2 \|v\|^2 \\ &> \|p\|^2, \end{aligned} \tag{19}$$

1275 since by assumption we have $v \neq 0$ and the scalar $t_x \neq 0$ (because $p \neq 0$). We see that the
1276 inequality (19) is contradictory about the maximality of $\|\cdot\|^2$ on S .
1277

- 1278 • if $\langle p | v \rangle \neq 0$ then, without loss of generality we may assume $\langle p | v \rangle > 0$ and since
1279 $t_x t_y < 0$ then, one of them must be positive, say without loss of generality it is $t_x > 0$ and,
1280 expanding $\|x\|^2$ again gives
1281

$$\|x\|^2 = \|p\|^2 + 2t_x \langle p | v \rangle + t_x^2 \|v\|^2 > \|p\|^2, \tag{20}$$

1282 because both quantities $2t_x \langle p | v \rangle$ and $t_x^2 \|v\|^2$ are positive. This is again a contradiction.
1283

1284
1285 ¹¹Both scalars t_x and t_y are non-zero since $p \neq x$ and $p \neq y$. Moreover, they must have opposite sign since
1286 p lies in the interior of the segment $[x, y]$, that is, x and y are on the opposite side of p on the line $[x, y]$.
1287

1296 Thus we conclude that the point p cannot lie in the interior of the segment $[x, y]$, and this holds
 1297 true for any points $x, y \in S$ so according to Definition 3.2 p must be an extreme point of S , i.e.,
 1298 $p \in \text{Ext} S \neq \emptyset$. \square
 1299

1300 **C.4 SUPPORT HYPERPLANES**
 1301

1302 We now recall some results concerning the support hyperplanes of a convex subset C of \mathbb{R}^d .
 1303

1304 **Definition C.12** (Supporting Hyperplane). Let $C \subseteq \mathbb{R}^d$ be a convex subset. We say that an (affine)
 1305 hyperplane H is a *supporting hyperplane* of C at point $p \in \partial C$ if, and only if there exists some
 1306 vector $a \in \mathbb{R}^d \setminus \{(0, \dots, 0)\}$ such that

$$1306 \quad H = \{x \in \mathbb{R}^d : \langle a | x \rangle = \langle a | p \rangle\}$$

1307 and $\langle a | x \rangle \geq \langle a | p \rangle$ for all $x \in C$.
 1308

1309 In other word, there exists an affine hyperplane which meets p and for which the convex set C is
 1310 included in one of its two closed half-spaces:

$$1311 \quad H^+ := \{x \in \mathbb{R}^d : \langle a | x \rangle \geq \langle a | p \rangle\}, \quad (21)$$

1312 or

$$1313 \quad H^- := \{x \in \mathbb{R}^d : \langle a | x \rangle \leq \langle a | p \rangle\}. \quad (22)$$

1314 **Lemma C.13** (Supporting Hyperplane Theorem). *For any non-empty convex subset $C \subseteq \mathbb{R}^d$ and
 1315 any $p \in \partial C$ there exists a supporting hyperplane of C at point p .*
 1316

1317 A refined version of the supporting hyperplane theorem above, for the case of convex subsets which
 1318 are level-sets of convex functions, is provided below. Notably, it provides the uniqueness of the
 1319 supporting hyperplane.

1320 **Lemma C.14** (Theorem 3.1 of He & Xu (2013); Case of $H = \mathbb{R}^d$). *Let $\varphi: \mathbb{R}^d \rightarrow \mathbb{R}$ be a real-
 1321 valued, continuous and convex function which is differentiable¹² on \mathbb{R}^d , then the level set*

$$1322 \quad C := \{x \in \mathbb{R}^d : \varphi(x) \leq 0\},$$

1323 *is convex and for each point $p \in \partial C$ there exists a unique supporting hyperplane of C at p . More-
 1324 over, this supporting hyperplane is given by*

$$1325 \quad H = \{x \in \mathbb{R}^d : \langle \nabla \varphi(p) | x - p \rangle = 0\}.$$

1326 **Lemma C.15** (Intersection of a Family of Affine Hyperplanes). *Let $k \in [d]$ be an integer,
 1327 $v_1, \dots, v_k \in \mathbb{R}^d$ be vectors, $a_1, \dots, a_k \in \mathbb{R}$ some scalars and H_1, \dots, H_k be the k affine hy-
 1328 perplanes of \mathbb{R}^d associated to the linear forms $(\langle v_i | \cdot \rangle)_{i \in [k]}$, that is, for any $i \in [k]$*

$$1329 \quad H_i := \{x \in \mathbb{R}^d : \langle v_i | x \rangle = a_i\}.$$

1330 *If $A := \bigcap_{i \in [k]} H_i \neq \emptyset$ then, $\dim A \geq d - k$.*
 1331

1332 *Proof.* By assumption $\bigcap_{i \in [k]} H_i \neq \emptyset$ hence, the system

$$1333 \quad \langle v_i | x \rangle = a_i, \quad i = 1, 2, \dots, k, \quad (23)$$

1334 *consisting of k equation has a solution $x_0 \in \mathbb{R}^d$. Then for all $i \in [k]$, if we subtract $\langle v_i | x_0 \rangle$ in the
 1335 i^{th} equation from the system (23), we obtain the equivalent system*

$$1336 \quad \langle v_i | x - x_0 \rangle = 0, \quad i = 1, 2, \dots, k,$$

1337 *hence $(x - x_0) \in \{v_1, \dots, v_k\}^\perp$ so $x - x_0$ belongs to the subspace of \mathbb{R}^d orthogonal to each $(v_i)_{i \in [k]}$.
 1338 Hence, we deduce that*

$$1339 \quad A := \bigcap_{i \in [k]} H_i = x_0 + \{v_1, \dots, v_k\}^\perp,$$

1340 *which is a subspace of \mathbb{R}^d whose dimension is*

$$1341 \quad \dim A = \dim (\{v_1, \dots, v_k\}^\perp) \geq d - k,$$

1342 *since the rank of the family (v_1, \dots, v_k) is at most k . This concludes the proof of the lemma. \square*
 1343

1344 ¹²More precisely, *Gateaux differentiable* which means that φ has a gradient at all point $x \in \mathbb{R}^d$.
 1345

1350 C.5 *P*-MATRICES AND INJECTIVITY
1351

1352 In this section, we present a very practical sufficient condition of injectivity of functions f defined
1353 from \mathbb{R}^d to \mathbb{R}^d . This condition is captured by the celebrated *Gale–Nikaidô theorem*, a cornerstone
1354 of global analysis and mathematical economics. Detailed proofs and broader context for this result
1355 can be found in Gale & Nikaido (1965) and Okuguchi (1978), as well as in later expositions within
1356 applied mathematics and dynamical systems (Banaji et al., 2007).

1357 We start with some fundamental definitions commonly referenced in linear algebra and matrix the-
1358 ory:

1359 **Definition C.16** (Minors and Principal Minors of a Matrix). A *minor* of a matrix $A \in \mathbb{R}^{d \times d}$ is
1360 the determinant of some square sub-matrix of A obtained by removing one or more of its rows and
1361 columns. If I and J are (ordered) subsets of $[d]$ with k elements (where $1 \leq k \leq d$), then we denote
1362 by $[A]_{I,J}$ the $k \times k$ minor of A that corresponds to the intersection of the rows and columns of A
1363 whose indices are taken in I and in J respectively.

1364 When $I = J$, the minor $[A]_{I,I}$ is called a *principal minor*.

1365 **Definition C.17** ((Positive) Dominant Diagonal). Let A be a $\mathbb{R}^{d \times d}$ matrix, then A has a *dominant*
1366 *diagonal* if, and only if there exists d positive real numbers $\alpha_1, \dots, \alpha_d > 0$ such that for all $i \in [n]$
1367 the inequality

$$1368 \quad \alpha_i |A_{i,i}| > \sum_{\substack{j=1 \\ j \neq i}}^d \alpha_j |A_{i,j}|, \quad (24)$$

1373 holds.

1375 Additionally, if for all $i \in [n]$ we have $A_{i,i} > 0$, i.e., A has positive diagonal entries then A has a
1376 *positive dominant diagonal*.

1377 **Definition C.18** (*P*-matrix). A real matrix $A \in \mathbb{R}^d$ is said to be a *P-matrix* if, and only if, all its
1378 principal minors are positive.

1379 **Definition C.19** (Region and Closed Rectangular Region). A *region* is an connected set in \mathbb{R}^d , either
1380 without its boundary or together with its boundary.

1382 A closed *rectangular region* is a subset of \mathbb{R}^d of the form

$$1384 \quad \{x \in \mathbb{R}^d : \forall i \in [d], p_i \leq x_i \leq q_i\},$$

1385 where $-\infty \leq p_i < q_i \leq +\infty$ are numbers (possibly $\pm\infty$).

1387 A key property relevant to our context is the following classical result:

1388 **Lemma C.20** (Positive Dominant Diagonal Implies *P*-Matrix). *Let A be a matrix in $\mathbb{R}^{d \times d}$ such that*
1389 *A has a positive dominant diagonal, then A is a *P*-matrix.*

1391 The foundational theorem that links *P*-matrices to injectivity is as follows:

1392 **Theorem C.21** (Gale–Nikaidô). *Let Ω be a closed rectangular region of \mathbb{R}^d . If $F: \Omega \rightarrow \mathbb{R}^d$ is a*
1393 *differentiable function such that its Jacobian matrix $\nabla F(x)$ is a *P*-matrix for all $x \in \Omega$, then F is*
1394 *injective on Ω , i.e., if $a, b \in \Omega$ are such that $F(a) = F(b)$ then necessarily, $a = b$.*

1396 These results, originally developed in the seminal paper by Gale & Nikaido (1965), have exten-
1397 sive applications in nonlinear analysis, mathematical economics, chemical reaction networks, and
1398 beyond.

1400 C.6 FIXED-POINT THEOREMS
1401

1402 Fixed-point theorems are foundational tools in nonlinear analysis, optimization, game theory, and
1403 mathematical economics. These theorems assert that, under certain topological or algebraic con-
ditions, a mapping admits a point that is mapped to itself. In particular, we focus here on the

1404 classical *Brouwer* fixed-point theorem, which forms the backbone of many existence proofs in high-
 1405 dimensional non-convex settings. Comprehensive treatments of this result can be found in standard
 1406 texts such as *Brouwer* (1911); *Border* (1985); *Granas & Dugundji* (2003).

1407 We state the central result in finite-dimensional topological fixed-point theory:

1409 **Theorem C.22** (Brouwer Fixed-Point Theorem). *Let $D \subset \mathbb{R}^d$ be a non-empty, compact, convex
 1410 subset. Then any continuous function $f : D \rightarrow D$ has at least one fixed-point in D , i.e., there exists
 1411 $x^* \in D$ such that $f(x^*) = x^*$.*

1412 **C.7 IMPLICIT FUNCTIONS THEOREM**

1415 The Implicit Function Theorem (IFT) is a cornerstone result in multivariable calculus and nonlinear
 1416 analysis. It gives conditions under which a system of equations implicitly defines one set of vari-
 1417 ables as functions of another. The theorem ensures local solvability and differentiability of these
 1418 implicit functions under mild regularity conditions. This result underpins much of optimization the-
 1419 ory, differential equations, and dynamical systems. For formal treatments, see *Rudin* (1976); *Lang*
 1420 (1995); *Krantz & Parks* (2002).

1421 **Theorem C.23** (Implicit Functions Theorem). *Let $F : \mathbb{R}^{n+m} \rightarrow \mathbb{R}^m$ be a continuously differen-
 1422 tiable on an open set $U \subset \mathbb{R}^{n+m}$, and let $(x_0, y_0) \in U$ such that $F(x_0, y_0) = 0$. Suppose the
 1423 Jacobian matrix $\nabla_y F(x_0, y_0) \in \mathbb{R}^{m \times m}$ is invertible. Then there exist open neighborhoods $V \subset \mathbb{R}^n$
 1424 of x_0 and $W \subset \mathbb{R}^m$ of y_0 , and a unique continuously differentiable function $g : V \rightarrow W$ such that:*

$$F(x, g(x)) = 0 \quad \text{for all } x \in V. \quad (25)$$

1427 In essence, the theorem guarantees the local solvability of the system $F(x, y) = 0$ for y in terms of
 1428 x , assuming local nonsingularity of the Jacobian with respect to y .

1429 *Remark C.24.* When F is infinitely differentiable, i.e., \mathcal{C}^∞ , then the function g in the previous
 1430 theorem inherits the same regularity property.

1432 **C.8 USEFUL IDENTITIES AND INEQUALITIES**

1434 For any vectors $x, y \in \mathbb{R}^d$, we have

$$2 \langle x \mid y \rangle = \|x\|^2 + \|y\|^2 - \|x - y\|^2. \quad (26)$$

1437 **Lemma C.25** (*L*-Lipchitz Gradients Implies *L*-Smoothness (Nesterov, 2018, Lemma 1.2.3, p. 25)).
 1438 Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be continuously differentiable such that f has *L*-Lipchitz gradients then, for any
 1439 $x, y \in \mathbb{R}^d$

$$-L \|x - y\|^2 \leq 2D_f(x, y) \leq L \|x - y\|^2,$$

1442 where $D_f(x, y) := f(x) - f(y) - \langle \nabla f(y) \mid x - y \rangle$ is the Bregman divergence of f at x and y .

1443 **Lemma C.26** (Variance Decomposition). *For any random vector $X \in \mathbb{R}^d$ and any non-random
 1444 vector $c \in \mathbb{R}^d$ we have*

$$\mathbb{E} \left[\|X - c\|^2 \right] = \mathbb{E} \left[\|X - \mathbb{E}[X]\|^2 \right] + \|\mathbb{E}[X] - c\|^2.$$

1448 **Lemma C.27** (Tower Property of the Expectation). *For any random variables $X \in \mathbb{R}^d$ and
 1449 Y_1, \dots, Y_n we have*

$$\mathbb{E} [\mathbb{E}[X \mid Y_1, \dots, Y_n]] = \mathbb{E}[X].$$

1452 **Lemma C.28** (Cauchy Schwarz's Inequality). *For any vectors $a, b \in \mathbb{R}^d$ we have*

$$\langle a \mid b \rangle \leq |\langle a \mid b \rangle| \leq \|a\| \|b\|.$$

1455 **Lemma C.29** (Young's inequality (Norm Form)). *For any vectors $a, b \in \mathbb{R}^d$ and any scalar $\alpha > 0$
 1456 we have*

$$\|a + b\|^2 \leq (1 + \alpha) \|x\|^2 + \left(1 + \frac{1}{\alpha}\right) \|y\|^2.$$

1458
 1459 **Lemma C.30** (Bounded Variance of Pairwise Independent Stochastic Gradients). *Under Assumption G.5, let $x_1, \dots, x_n \in \mathbb{R}^d$ be non-random vectors and $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ be scalars then for any pairwise independent random variables $\xi_1, \dots, \xi_n \sim \mathcal{D}$ we have*

$$1461 \quad \mathbb{E} \left[\left\| \sum_{i=1}^n \alpha_i (\nabla f(x_i, \xi_i) - \nabla f(x_i)) \right\|^2 \right] = \sum_{i=1}^n \alpha_i^2 \mathbb{E} \left[\|\nabla f(x_i, \xi_i) - \nabla f(x_i)\|^2 \right] \leq \sigma^2 \sum_{i=1}^n \alpha_i^2. \quad (27)$$

1466 *Proof.* Expanding the squared norm in left-hand side of (27) (for now, without taking the expectation in account) we get

$$1469 \quad \left\| \sum_{i=1}^n \alpha_i (\nabla f(x_i; \xi_i) - \nabla f(x_i)) \right\|^2 \\ 1470 = \sum_{i=1}^n \alpha_i^2 \|\nabla f(x_i, \xi_i) - \nabla f(x_i)\|^2 \\ 1471 + \sum_{\substack{1 \leq i, j \leq n \\ i \neq j}} \alpha_i \alpha_j \langle \nabla f(x_i, \xi_i) - \nabla f(x_i) | \nabla f(x_j, \xi_j) - \nabla f(x_j) \rangle, \quad (28)$$

1477 and for any $1 \leq i, j \leq n$ such that $i \neq j$ we have

$$1478 \quad \mathbb{E} [\langle \nabla f(x_i; \xi_i) - \nabla f(x_i) | \nabla f(x_j; \xi_j) - \nabla f(x_j) \rangle] \\ 1479 \stackrel{(a)}{=} \langle \mathbb{E} [f(x_i, \xi_i) - \nabla f(x_i)] | \mathbb{E} [\nabla f(x_j, \xi_j) - \nabla f(x_j)] \rangle \\ 1480 \stackrel{\text{Ass. G.6}}{=} 0,$$

1482 where in (a) we use the pairwise independence of the stochastic gradients while in the second equality we rely on the unbiasedness of the stochastic gradients (Assumption G.5) to get rid of the above 1483 cross-product. Hence, taking the expectation in (28) gives 1484

$$1486 \quad \mathbb{E} \left[\left\| \sum_{i=1}^n \alpha_i (\nabla f(x_i, \xi_i) - \nabla f(x_i)) \right\|^2 \right] = \sum_{i=1}^n \alpha_i^2 \mathbb{E} \left[\|\nabla f(x_i, \xi_i) - \nabla f(x_i)\|^2 \right] \stackrel{\text{Ass. G.5}}{\leq} \sigma^2 \sum_{i=1}^n \alpha_i^2,$$

1489 as desired. \square

1490 **Lemma C.31** (Jensen's Inequality). *Let $f: \mathbb{R}^d \rightarrow \mathbb{R}$ be a convex function then*

1492 1. (probabilistic form) for any random vector $X \in \mathbb{R}^d$ we have

$$1493 \quad \mathbb{E} [f(X)] \geq f(\mathbb{E} [X]).$$

1495 2. (deterministic form) for any vectors $v_1, \dots, v_n \in \mathbb{R}^d$ and scalars $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ we have

$$1496 \quad \sum_{i=1}^n \lambda_i f(v_i) \geq f \left(\sum_{i=1}^n \lambda_i v_i \right),$$

1499 provided $\lambda_i \geq 0$ for all $i \in [n]$ and $\sum_{i=1}^n \lambda_i = 1$.

1501 **Lemma C.32.** *For any vectors $v_1, \dots, v_n \in \mathbb{R}^d$ we have*

$$1503 \quad \left\| \sum_{i=1}^n v_i \right\|^2 \leq n \sum_{i=1}^n \|v_i\|^2.$$

1506 *Proof.* The function $\|\cdot\|^2: \mathbb{R}^d \rightarrow \mathbb{R}$ is μ -strongly convex with $\mu = 2$ so is convex thus applying 1507 Jensen's inequality (Lemma C.31) with $\lambda_1 = \dots = \lambda_n = \frac{1}{n}$ gives 1508

$$1509 \quad \left\| \sum_{i=1}^n \frac{v_i}{n} \right\|^2 \leq \frac{1}{n} \sum_{i=1}^n \|v_i\|^2,$$

1511 and multiplying both sides by n^2 gives the desired result. \square

1512 *Remark C.33.* Note that we can obtain the following improved upper bound from Lemma C.32; for
 1513 any vectors $v_1, \dots, v_n \in \mathbb{R}^d$, let $\mathbf{v} = (v_1, \dots, v_n)$ then, we have
 1514

$$1515 \quad \left\| \sum_{i=1}^n v_i \right\|^2 \leq |\text{supp } \mathbf{v}| \cdot \sum_{i=1}^n \|v_i\|^2, \quad (29)$$

1518 where $\text{supp } \mathbf{v} := \{i \in [n] : v_i \neq 0\}$ is the set of non-zero vectors among v_1, \dots, v_n .
 1519

1520 **Lemma C.34** (Switching Two Nested Sums). *Let S be a finite set (possibly empty¹³) and for every
 1521 $k \in S$, let $S(k)$ be another, eventually empty, finite set. For any $k \in S$ and any $j \in S(k)$ let $C_{k,j}$ be
 1522 a real number then*

$$1523 \quad \sum_{k \in S} \sum_{j \in S(k)} C_{k,j} = \sum_{j \in S'} \sum_{k \in S'(j)} C_{k,j}, \quad (30)$$

1524 where S' is a finite set such $\bigcup_{k \in S} S(k) \subseteq S'$ and

$$1525 \quad S'(j) := \{k \in S : j \in S(k)\}.$$

1528 *Proof.* First, note that since S is finite and since each $S(k)$ for $k \in S$ is finite then $\bigcup_{k \in S} S(k)$ is
 1529 also finite and a finite set S' containing the union of the $\{S(k)\}_{k \in S}$ exists. Moreover, if there exists
 1530 $j \in S' \setminus \bigcup_{k \in S} S(k)$ then by definition
 1531

$$1533 \quad S'(j) := \{k \in S : j \in S(k)\} = \emptyset,$$

1535 so taking a bigger S' doesn't affect the right-hand side of (30) hence, without loss of generality
 1536 assume

$$1537 \quad S' = \bigcup_{k \in S} S(k).$$

1539 Now let us define the sets

$$1540 \quad E := \{(k, j) : k \in S, j \in S(k)\},$$

1541 and

$$1542 \quad E' := \{(j, k) : j \in S', k \in S'(j)\}$$

1543 then the map $\phi: E \rightarrow E'$ is well-defined since for any $(k, j) \in E$ we have $j \in S(k) \subseteq S'$ and
 1544 because $k \in S$ and $j \in S(k)$ then by definition of $S'(j)$ we also have $k \in S'(j)$ thus $(j, k) \in E'$.
 1545 Moreover, the map ϕ is injective because, if $(j, k) = \phi(k, j) = \phi(k', j') = (j', k')$ for some
 1546 $(k, j), (k', j') \in E$ then $j = j'$ and $k = k'$. Also, ϕ is surjective since, given $(j, k) \in E'$ we have
 1547 $j \in S'$ and $k \in S'(j)$ by definition of E' , then as $k \in S'(j)$ we deduce that $k \in S$ and $j \in S(k)$ so
 1548 $(k, j) \in E$ and $\phi(k, j) = (j, k)$ so (j, k) admits an antecedent by ϕ in E . This shows that the map
 1549 ϕ is bijective hence

$$1550 \quad \sum_{(k,j) \in E} C_{k,j} = \sum_{(j,k) \in \phi(E)} C_{k,j} = \sum_{(j,k) \in E'} C_{k,j},$$

1552 thus, since

$$1553 \quad \sum_{k \in S} \sum_{j \in S(k)} C_{k,j} = \sum_{(k,j) \in E} C_{k,j},$$

1555 and

$$1556 \quad \sum_{j \in S'} \sum_{k \in S'(j)} C_{k,j} = \sum_{(j,k) \in E'} C_{k,j},$$

1558 we deduce that equality (30) holds. □

1559

1560

1561

1562

1563

1564

1565

¹³By convention any sum $\sum_{k \in \emptyset} \cdot$ over the empty set is equals to zero.

1566 **D TECHNICAL LEMMAS**
15671568 **D.1 PRELIMINARY LEMMAS**
15691570 **Lemma D.1** (A Convex Function on \mathbb{R}^d). *Let d be a positive integer, $\alpha = \{\alpha_j\}_{1 \leq j \leq d}$ be d
1571 non-negative real numbers and $C = \mathcal{H}_\alpha^+$ be the open half-space above the hyperplane $\mathcal{H}_\alpha :=$
1572 $\{\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d : \langle \mathbf{x} | \alpha \rangle = -1\}$ so that C is defined as*

1573
$$1574 C := \left\{ (x_1, \dots, x_d) \in \mathbb{R}^d : \sum_{j=1}^d \alpha_j x_j > -1 \right\}. \quad (31)$$

1575
1576

1577 *Then C is a convex subset of \mathbb{R}^d and the function $f: C \rightarrow \mathbb{R}_+^d$ defined as*
1578

1579
$$1580 f: (x_1, \dots, x_d) \mapsto \left(1 + \sum_{j=1}^d \alpha_j x_j \right)^{-1}, \quad (32)$$

1581
1582

1583 *is smooth, i.e., $f \in \mathcal{C}^\infty(C, \mathbb{R}_+^d)$ ¹⁴ and convex¹⁵ on C .*
15841585 *Proof of Lemma D.1.* We first show that C is an open convex subset of \mathbb{R}^d . Note that for any $x, y \in$
1586 C and any $t \in [0, 1]$, we have

1587
$$\langle tx + (1-t)y | \alpha \rangle = t \langle x | \alpha \rangle + (1-t) \langle y | \alpha \rangle > -1,$$

1588 since both $\langle x | \alpha \rangle - 1$ and $\langle y | \alpha \rangle > -1$ and because $\max\{t, 1-t\} \geq \frac{1}{2} > 0$ so none of the two
1589 terms can simultaneously vanish due to the variable t ; this proves that the closed segment $[x, y] \subseteq C$
1590 hence C is convex. Moreover, to prove C is an open subset of \mathbb{R}^d , let $x \in C$ so we can define the
1591 positive real number

1592
$$\varepsilon := \sum_{j=1}^d \alpha_j x_j + 1 > 0,$$

1593
1594

1595 Now, we argue that the open ball $B(x, r)$ where $r = \frac{\varepsilon}{(1+\|\alpha\|_\infty)d} > 0$ is included in C . Here, we
1596 consider \mathbb{R}^d equipped with its usual euclidean norm $\|\cdot\|_2$ and we denote by $\|\cdot\|_\infty$ the supremum
1597 norm, that is, for any $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ we have $\|x\|_\infty = \sup_{i \in [d]} |x_i|$. To do so, let $y =$
1598 $(y_1, \dots, y_d) \in B(x, r)$ and define $v = (v_1, \dots, v_d) := y - x \in B(0, r)$ then
1599

1600
$$\begin{aligned} 1601 \sum_{j=1}^d \alpha_j y_j &= \sum_{j=1}^d \alpha_j (x_j + v_j) \\ 1602 &= \sum_{j=1}^d \alpha_j x_j + \sum_{j=1}^d \alpha_j v_j \\ 1603 &\stackrel{(a)}{\geq} \sum_{j=1}^d \alpha_j x_j - \|\alpha\|_\infty \sum_{j=1}^d |v_j| \\ 1604 &\stackrel{(b)}{\geq} \sum_{j=1}^d \alpha_j x_j - d\|\alpha\|_\infty \|v\|_\infty \\ 1605 &= -1 + \varepsilon - d\|\alpha\|_\infty \|v\|_\infty, \end{aligned} \quad (33)$$

1606
1607
1608
1609
1610
1611
1612

1613 where in (a) we lower bound the right sum as
1614

1615
$$\sum_{j=1}^d \alpha_j v_j \geq - \sum_{j=1}^d |\alpha_j| |v_j|,$$

1616
1617

1618 ¹⁴By this we mean that the function f defined from $C \rightarrow \mathbb{R}_+^d$ is infinitely differentiable.
16191620 ¹⁵For the sake of clarity and completeness, we included a definition of convexity in the appendix (see Definition C.2 along with the usual inequality characterizing convex functions $f: \mathbb{R}^d \rightarrow \mathbb{R}$ in Lemma C.3).

1620 and then we lower bound again using the inequality $\|\alpha\|_\infty \geq |\alpha_j|$ for all $j \in [d]$. In (b) we use the
 1621 inequality $\|v\|_\infty \geq |v_j|$ for all $j \in [d]$ to lower bound the sum by $d\|v\|_\infty$. Now, since $v \in B(0, r)$
 1622 we have

$$1623 \quad 1624 \quad 1625 \quad \|v\|_2 = \sqrt{\sum_{j=1}^d |v_j|^2} \geq \|v\|_\infty,$$

1626 hence

$$1627 \quad \varepsilon - d\|\alpha\|_\infty\|v\|_\infty \geq \varepsilon - d\|\alpha\|_\infty\|v\|_2 \\ 1628 \quad \geq \varepsilon - \frac{\varepsilon}{(1 + \|\alpha\|_\infty)d} \cdot d\|\alpha\|_\infty \\ 1629 \quad = \varepsilon \left(1 - \frac{\|\alpha\|_\infty}{1 + \|\alpha\|_\infty}\right) > 0,$$

1630 because $\|\alpha\|_\infty \geq 0$ and thus the quantity in (33) is lower bounded by

$$1631 \quad 1632 \quad 1633 \quad \sum_{j=1}^d \alpha_j y_j \geq -1 + \varepsilon \left(1 - \frac{\|\alpha\|_\infty}{1 + \|\alpha\|_\infty}\right) > -1,$$

1634 which implies that $y \in C$ and since this holds for any $y \in B(x, r)$ then $B(x, r) \subseteq C$ as desired.

1635 Now, for the other part of the lemma, note that the function $f: C \rightarrow \mathbb{R}_+$ is well-defined and smooth,
 1636 that is, \mathcal{C}^∞ on its domain. Note that for any $(x_1, \dots, x_d) \in C$, the function f can be rewritten as

$$1637 \quad f(x_1, \dots, x_d) = g(h(x_1, \dots, x_d)),$$

1638 where $g: \mathbb{R}_+^* \rightarrow \mathbb{R}_+^*$ is the inverse function, that is, $g: x \mapsto \frac{1}{x}$ and $h: C \rightarrow (0, +\infty)$ is the linear
 1639 functional

$$1640 \quad 1641 \quad 1642 \quad h: (x_1, \dots, x_d) \mapsto 1 + \sum_{j=1}^d \alpha_j x_j. \quad (34)$$

1643 Using this, for any $(x_1, \dots, x_d) \in C$ and thanks to the non-negativity of the coefficients $\{\alpha_j\}_{1 \leq j \leq d}$
 1644 and the definition of C , the following inequality holds:

$$1645 \quad 1646 \quad 1647 \quad h(x_1, \dots, x_d) = 1 + \sum_{j=1}^d \alpha_j x_j > 0,$$

1648 hence f is well-defined on its domain since h takes its values in $(0, +\infty)$. Moreover as the function
 1649 g is strictly decreasing over \mathbb{R}_+^* , we obtain $0 < f(x_1, \dots, x_d) < +\infty$ ¹⁶. Additionally, because
 1650 both h and g are \mathcal{C}^∞ functions respectively from $C \rightarrow (0, +\infty)$ and from $\mathbb{R}_+^* \rightarrow \mathbb{R}_+^*$ then their
 1651 composition $f = g \circ h$ is also a \mathcal{C}^∞ function from $C \rightarrow \mathbb{R}_+^*$.

1652 Now, we show that f is convex on its domain. From (34), we see that h is linear in x_1, \dots, x_d from
 1653 $C \rightarrow (0, +\infty)$, and since $g: x \mapsto \frac{1}{x}$ is strictly convex¹⁷ on $(0, +\infty)$ then it is convex and we can
 1654 conclude using Lemma C.4 that the composition

$$1655 \quad 1656 \quad 1657 \quad f = g \circ h,$$

1658 is a convex function from $C \rightarrow (0, +\infty)$.

1659 This completes the proof of the lemma. □

1660 ¹⁶Thus f is a proper function (f never takes the value $+\infty$ on its domain).

1661 ¹⁷It suffice to compute the first and second derivative of g . Since $g: x \mapsto \frac{1}{x}$ is \mathcal{C}^∞ these derivatives are
 1662 well-defined and for any real number $x > 0$

$$1663 \quad 1664 \quad 1665 \quad g'(x) = -\frac{1}{x^2} \quad \text{and} \quad g''(x) = \frac{2}{x^3},$$

1666 thus $g'(x) < 0$ and $g''(x) > 0$ on $(0, +\infty)$ thus g is strictly decreasing and strictly convex over its domain.

In particular Lemma D.1 above shows that the epigraph of f is convex. We give further properties of f in the next Lemma D.2 where we provide some results about its epigraph and on the hypersurface \mathcal{S} induced by the graph of f .

Lemma D.2 (Properties of the Hypersurface \mathcal{S} and the Epigraph $\text{epi } f$). *Let C as defined in (31) be the domain of the function f defined in (32) and let $\alpha = (\alpha_1, \dots, \alpha_d)$ be non-negative real numbers. Assume $\alpha_k = 0$ and let $g_k: C_k \rightarrow (0, +\infty)$ be the function*

$$g_k: \tilde{x}^{(k)} := (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_d) \mapsto \left(1 + \sum_{j \in [1..K] \setminus \{k\}} \alpha_j x_j\right)^{-1},$$

where $C_k := \left\{ \tilde{x}^{(k)} \in \mathbb{R}^{d-1} : \sum_{j \in [1..K] \setminus \{k\}} \alpha_j x_j > -1 \right\}$. Then

1. $\text{epi } g_k$ is a d -dimensional closed convex subset of \mathbb{R}^d where

$$\text{epi } g_k := \left\{ (x_1, \dots, x_n) \in C : x_k \geq \left(1 + \sum_{j=1}^d \alpha_j x_j\right)^{-1} \right\},$$

2. given $x \in \mathcal{S}_k := \partial(\text{epi } g_k)^{18}$ then, for any vector $v = (v_1, \dots, v_d) \in \mathbb{R}^d \setminus \{(0, \dots, 0)\}$ such that

$$v_k = 0 \text{ and } \sum_{j=1}^d \alpha_j v_j = \langle \alpha^\top \mid v \rangle = 0, \quad (35)$$

the parametric line $(\ell): x + tv$ belongs to \mathcal{S}_k . Conversely, if for some $\varepsilon > 0$ and vector $v \in \mathbb{R}^d \setminus \{(0, \dots, 0)\}$ the segment $[x - \varepsilon v, x + \varepsilon v]$ is included in \mathcal{S}_k then the whole line $(\ell): x + tv$ for $t \in \mathbb{R}$ is also included in \mathcal{S}_k and v is of the form (35),

3. let $J := \{j \in [d] : j \neq k \text{ and } \alpha_j = 0\}$, then

- either $J = [d] \setminus \{k\}$, that is, all the coefficients α_j for $j \in [d] \setminus \{k\}$ are zero, in which case \mathcal{S}_k is the $(d-1)$ -dimensional affine hyperplane A defined as

$$A = \{(x_1, \dots, x_d) \in \mathbb{R}^d : x_k = 1\},$$

- otherwise, there exists at least one $j \in [d]$ with $j \neq k$ such that $\alpha_j \neq 0$, and for every $p \in \mathcal{S}_k$ there exists a unique affine subspace A of \mathbb{R}^d of dimension $d-2$ which meets p and is included in the hypersurface \mathcal{S}_k , that is, such that $p \in A$ and $A \subseteq \mathcal{S}_k$.

Moreover, if we decompose the affine subspace A as $A = p + E$ where E is parallel to A and pass through the origin, then the canonical basis vectors $(e_j)_{j \in J}$ all belong to E ,

4. for any point $p \in \mathcal{S}_k := \partial(\text{epi } g_k)$, there exists a unique supporting hyperplane $H_k(p)$ of $\text{epi } g_k$ at p and this affine hyperplane $H_k(p)$ contains the affine subspace A described above (property 3).

Proof of Lemma D.2. We establish these claims one after the other.

1. First, note that since $\alpha_k = 0$ then the function g_k is well-defined since its value does not depend on x_k . Then, up to a permutation of the coordinates, we see that we can apply Lemma D.1 to g_k hence, the function $g_k: C_k \rightarrow (0, +\infty)$ is convex. According

¹⁸It should be understand here that the hypersurface \mathcal{S}_k is the set

$$\mathcal{S}_k := \left\{ (x_1, \dots, x_d) \in C : x_k = \left(1 + \sum_{j=1}^d \alpha_j x_j\right)^{-1} \right\}.$$

1728 to Definition C.2 this means that the epigraph of g_k is a convex subset of \mathbb{R}^d . Moreover,
 1729 this epigraph is
 1730

$$1731 \quad \text{epi } g_k = \left\{ (x_1, \dots, x_n) \in C : x_k \geq \left(1 + \sum_{j=1}^d \alpha_j x_j \right)^{-1} \right\},$$

1735 which is a closed subset of \mathbb{R}^d . Effectively, if $((x_i^{(\ell)})_{i \in [d]})_{\ell \geq 0}$ is a sequence of points of
 1736 $\text{epi } g_k$ which converges (say, in ℓ_2 -norm) to the point $(x_i^{(\infty)})_{i \in [d]} \in \mathbb{R}^d$ then, for any integer
 1737 $\ell \geq 0$
 1738

$$1740 \quad x_k^{(\ell)} \geq \left(1 + \sum_{j=1}^d \alpha_j x_j^{(\ell)} \right)^{-1},$$

1743 and taking the limits $\ell \rightarrow +\infty$ leads to
 1744

$$1746 \quad x_k^{(\infty)} \geq \left(1 + \sum_{j=1}^d \alpha_j x_j^{(\infty)} \right)^{-1},$$

1750 since the inverse function is continuous on \mathbb{R}_+^* . Hence $(x_i^{(\infty)})_{i \in [d]} \in \text{epi } g_k$ so is closed.
 1751

1752 To show that $\text{epi } g_k$ is a d -dimensional convex subset of \mathbb{R}^d it suffices to show that
 1753 it contains an non-empty open-ball (say, for the ℓ_2 -norm). First, note that the function
 1754 g_k is continuous over C_k and since C_k is an open convex subset of \mathbb{R}^d as proved
 1755 in Lemma D.1 then (since \mathbb{R}^d is a *metric space*), there exists some $r > 0$ and some
 1756 point $\tilde{x}^{(k)} = (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_d) \in C_k$ such that the (non-empty) *closed* ball
 1757 $\overline{B}(\tilde{x}^{(k)}, r) \subseteq C_k$. Now, since we are in a finite dimensional space, the we can apply Riesz
 1758 theorem (Rynne & Youngson, 2008) so that the closed ball $\overline{B}(\tilde{x}^{(k)}, r)$ is a compact subset
 1759 of C_k . As the function g_k is continuous then, it is upper bounded on the ball $\overline{B}(\tilde{x}^{(k)}, r)$ by
 1760 some constant $M \geq 0$. Then, let $x_k \geq M + r$, we deduce that the open ball
 1761

$$1762 \quad B(x, r) \subseteq \text{epi } g_k,$$

1763 where $x = (x_1, \dots, x_k)$. Effectively, for any $y = (y_1, \dots, y_d) \in B(x, r)$, we have $\tilde{y}^{(k)} \in$
 1764 $\overline{B}(\tilde{x}^{(k)}, r)$ and
 1765

$$1768 \quad y_k > x_k - r \geq M \geq \max_{z \in \overline{B}(\tilde{x}^{(k)}, r)} g_k(z) \geq \left(1 + \sum_{j=1}^d \alpha_j y_j \right)^{-1},$$

1771 which proves the desired result.
 1772

1773 2. We will first prove the second part of the statement (the “converse” direction) namely,
 1774 that every vector $v \in \mathbb{R}^d \setminus \{(0, \dots, 0)\}$ for which $x + tv \in \mathcal{S}_k$ for all $t \in (-\varepsilon, \varepsilon)$
 1775 where $\varepsilon > 0$ is fixed is of the form (35) and, in this case, the whole line for $t \in \mathbb{R}$ is
 1776 included in the hypersurface \mathcal{S}_k . Hence, let $x \in \mathcal{S}_k$ and assume there exists some non-zero
 1777 $v = (v_1, \dots, v_d) \in \mathbb{R}^d$ and $\varepsilon > 0$ such that for every $t \in (-\varepsilon, \varepsilon)$ we have $x + tv \in \mathcal{S}_k$.
 1778 This means
 1779

$$1780 \quad x_k + tv_k = \left(1 + \sum_{j=1}^d \alpha_j (x_j + tv_j) \right)^{-1},$$

1782 that is

$$\begin{aligned}
 & (x_k + tv_k) \left(1 + \sum_{j=1}^d \alpha_j (x_j + tv_j) \right) \\
 &= x_k \left(1 + \sum_{j=1}^d \alpha_j x_j \right) + t \left[v_k \left(1 + \sum_{j=1}^d \alpha_j x_j \right) + x_k \sum_{j=1}^d \alpha_j v_j \right] + t^2 v_k \sum_{j=1}^d \alpha_j v_j \\
 &\stackrel{(a)}{=} 1 + t \left[v_k \left(1 + \sum_{j=1}^d \alpha_j x_j \right) + x_k \sum_{j=1}^d \alpha_j v_j \right] + t^2 v_k \sum_{j=1}^d \alpha_j v_j \\
 &= 1,
 \end{aligned}$$

1795 where in (a) we use the fact that $x \in \mathcal{S}_k$, in particular, $x_k > 0$. Hence, simplifying the
1796 above computation gives

$$t \left[v_k \left(1 + \sum_{j=1}^d \alpha_j x_j \right) + x_k \sum_{j=1}^d \alpha_j v_j + tv_k \sum_{j=1}^d \alpha_j v_j \right] = 0, \quad (36)$$

1801 and since this equality holds for all $t \in (-\varepsilon, \varepsilon)$ hence, the right factor in (36) vanishes
1802 infinitely many times in $(-\varepsilon, \varepsilon) \setminus \{0\} \neq \emptyset$ hence, it must vanish everywhere thus, its
1803 coefficients must be zero, i.e.

$$v_k \left(1 + \sum_{j=1}^d \alpha_j x_j \right) + x_k \sum_{j=1}^d \alpha_j v_j = 0,$$

1807 and

$$v_k \sum_{j=1}^d \alpha_j v_j = 0.$$

1811 Thus, either $v_0 = 0$ which implies

$$x_k \sum_{j=1}^d \alpha_j v_j = 0,$$

1816 but since $x \in \mathcal{S}_k$ then $x_k > 0$ hence $\sum_{j=1}^d \alpha_j v_j = 0$. Otherwise, if $\sum_{j=1}^d \alpha_j v_j = 0$ then
1817

$$v_k(1+0) + 0 = v_k = 0,$$

1820 thus we obtain the claimed conditions

$$v_k = 0 \text{ and } \sum_{j=1}^d \alpha_j v_j = 0.$$

1825 Conversely, let $x \in \mathcal{S}_k$ and let $v = (v_1, \dots, v_d) \in \mathbb{R}^d \setminus \{(0, \dots, 0)\}$ such that

$$v_k = 0 \text{ and } \sum_{j=1}^d \alpha_j v_j = 0,$$

1829 then, for any $t \in \mathbb{R}$, we have

$$x_k + tv_k = x_k = \left(1 + \sum_{j=1}^d \alpha_j x_j \right)^{-1} = \left(1 + \sum_{j=1}^d \alpha_j (x_j + tv_j) \right),$$

1835 hence, the whole parametric line $(\ell): x + tv$ belongs to the hypersurface \mathcal{S}_k and this achieves the proof of the statement.

1836 3. Recall the definition of the set $J := \{j \in [d] : j \neq k \text{ and } \alpha_j = 0\}$, we distinguish two
 1837 cases:

1838 • if $J = [d] \setminus \{k\}$ then $\alpha = (0, \dots, 0) \in \mathbb{R}^d$ thus the function $g_k: C_k \rightarrow (0, +\infty)$ is
 1839 constant equal to one thus, the hypersurface $\mathcal{S}_k = \partial(\text{epi } g_k)$ is by definition the set
 1840

1841
$$\mathcal{S}_k := \{(x_1, \dots, x_d) \in \mathbb{R}^d : x_k = 1\},$$

 1842

1843 which is a non-trivial hyperplane of \mathbb{R}^d . This proves the first claim,

1844 • otherwise, assume there exists some $j \neq k$ in $[d]$ such that $\alpha_j \neq 0$ and let
 1845 $p \in \mathcal{S}_k$. First, any affine subspace A of \mathbb{R}^d which meets p is of the form $A =$
 1846 $p + \text{Vect}_{\mathbb{R}}((v^{(1)}, \dots, v^{(\ell)}))$ for some integer $\ell \geq 1$ and (possibly zero) vectors
 1847 $(v_1, \dots, v_\ell) \in \mathbb{R}^d$. Then, note that according to the previous statement (property
 1848 2), if A is included in \mathcal{S}_k then the lines $(\ell_i): p + tv^{(i)}$ for any $i \in [\ell]$ should be
 1849 included in \mathcal{S}_k hence, are of the form (35), that is

1850
$$v_k^{(i)} = 0 \text{ and } \langle \alpha^\top | v^{(i)} \rangle = 0,$$

 1851

1852 hence $v^{(i)} \in \{\alpha^\top\}^\perp$, the orthogonal subspace to the line $\text{Vect}_{\mathbb{R}}(\alpha^\top)$. Moreover,
 1853 since $\alpha \neq (0, \dots, 0)$ and $\alpha_k = 0$ then $\{\alpha^\top\}^\perp$ is a subspace of \mathbb{R}^d of dimension $d - 1$
 1854 containing e_k , the k -th basis vector. Hence, we deduce that
 1855

1856
$$v^{(i)} \in \{\alpha^\top\}^\perp \cap \{e_k\}^\perp,$$

 1857

1858 which is a subspace of dimension $d - 2$ of \mathbb{R}^d because $\alpha_k = 0$ hence the family (α, e_k)
 1859 has rank 2. Hence, any affine subspace which meets p and is included in \mathcal{S}_k satisfies
 1860

1861
$$A \subseteq p + \{\alpha^\top\}^\perp \cap \{e_k\}^\perp.$$

 1862

1863 Conversely, the affine subspace $p + \{\alpha^\top\}^\perp \cap \{e_k\}^\perp$ meets p and is also included in
 1864 \mathcal{S}_k since for any $v = (v_1, \dots, v_d) \in \{\alpha^\top\}^\perp \cap \{e_k\}^\perp$ we have
 1865

1866
$$\langle v | e_k \rangle = v_k = 0 \text{ and } \langle \alpha^\top | v \rangle = 0,$$

 1867

1868 thus by property 2 above, the line $(\ell): p + tv$, $t \in \mathbb{R}$ belongs to \mathcal{S}_k .
 1869

1870 This proves that there exists a unique maximal affine subspace A which meets p and
 1871 which is included in \mathcal{S}_k . This affine subspace is $A = p + \{\alpha^\top, e_k\}^\perp$ and has dimension
 1872 $d - 2$. Additionally, for any $j \in J$, both $j \neq k$ and $\alpha_j = 0$ thus, since $\langle e_j | e_k \rangle = 0$
 1873 and $\langle \alpha^\top | e_j \rangle = 0$ thus

1874
$$e_j \in \{\alpha^\top\}^\perp \cap \{e_k\}^\perp,$$

 1875

1876 which shows that $e_j \in (A - p)$ hence, the basis vector $(e_j)_{j \in J}$ all belong to $(A - p)$
 1877 and the claim follows.

1878 4. Note, by definition of $\text{epi } g_k$ we have

1879
$$\text{epi } g_k = \left\{ (x_1, \dots, x_k) \in \mathbb{R}^d : 0 \geq -x_k + \left(1 + \sum_{j=1}^d \alpha_j x_j\right)^{-1} \right\},$$

1880 and let

1881
$$\varphi(x_1, \dots, x_n) := -x_k + \left(1 + \sum_{j=1}^d \alpha_j x_j\right)^{-1},$$

 1882

1883 then $\text{epi } g_k$ is a level set of $\varphi: \mathbb{R}^d \rightarrow \mathbb{R}$ and, since φ is real-valued, continuous and differentiable over \mathbb{R}^d , applying Lemma C.14 gives, for any point $p = (p_1, \dots, p_k) \in \mathcal{S}_k$ there exists a unique supporting hyperplane $H_k(p)$ of $\text{epi } g_k$ at point p . Moreover, we know that this supporting hyperplane is defined as

1884
$$H_k(p) := \{x \in \mathbb{R}^d : \langle \nabla \varphi(p) | x \rangle = \langle \nabla \varphi(p) | p \rangle\},$$

 1885

1886 hence, based on the previous property (and notably the set J), we distinguish two cases:
 1887

1890 • if $J = [d] \setminus \{k\}$ then we proved that \mathcal{S}_k is the affine hyperplane
 1891

$$1892 \quad \mathcal{S}_k = \{(x_1, \dots, x_d) \in \mathbb{R}^d : x_k = 1\},$$

1893 and in this case, the affine subspace A and the supporting hyperplane $H_k(p)$ are the
 1894 same, for any $p \in \mathcal{S}_k$, which follows from the fact that we have $\varphi: (x_1, \dots, x_d) \mapsto$
 1895 $1 - x_k$ so $\nabla \varphi(p) = -e_k$ and hence, for any $x \in \mathbb{R}^d$, $\langle \nabla \varphi(p) | x \rangle = \langle \nabla \varphi(p) | p \rangle$ is,
 1896 and only if
 1897

$$1898 \quad x_k = p_k = 1.$$

1899 • now, assume J contains some $j \neq k$ such that $\alpha_j \neq 0$. Recall that we proved the
 1900 largest affine subspace A which meets p and which is included in \mathcal{S}_k to be
 1901

$$1902 \quad A = p + \{\boldsymbol{\alpha}^\top, e_k\}^\perp,$$

1903 and, since

$$1904 \quad \nabla \varphi(p) = \begin{pmatrix} \alpha_1/C(p) \\ \vdots \\ \alpha_{k-1}/C(p) \\ -1 \\ \alpha_{k+1}/C(p) \\ \vdots \\ \alpha_d/C(p) \end{pmatrix} = \frac{1}{C(p)} \boldsymbol{\alpha} - e_k,$$

1912 where $C(p) := \left(1 + \sum_{j=1}^d \alpha_j p_j\right)^2$ then, for any vector $v \in \{\boldsymbol{\alpha}^\top, e_k\}^\perp$ we have both
 1913

$$1914 \quad \langle \boldsymbol{\alpha}^\top | v \rangle = 0 \text{ and } \langle e_k | v \rangle,$$

1915 which gives, by linearity of the cross-product
 1916

$$1917 \quad \langle \nabla \varphi(p) | v \rangle = \frac{1}{C(p)} \langle \boldsymbol{\alpha}^\top | v \rangle - \langle e_k | v \rangle = 0,$$

1918 thus $v \in H_k(p)$. This shows that $A \subseteq H_k(p)$ but these affine subspaces are not equal
 1919 since $\dim A = d - 2 < d - 1 = \dim H_k(p)$.
 1920

1921 This achieves the proof of property 4.
 1922

1923 \square

1924 D.2 THE GEOMETRY OF THE FEASIBLE REGION \mathcal{F}

1925 Now, let us study the geometrical aspects of the feasible region \mathcal{F} whose definition is recalled below
 1926 for clarity.

1927 **Definition D.3.** The feasible region \mathcal{F} of problem (\mathcal{P}_d) is the set
 1928

$$1929 \quad \mathcal{F} := \left\{ \Lambda \in [0, 1]^d : 0 \leq \Lambda + \Lambda \odot (M\Lambda) \leq 1 \text{ for all } k \in [d] \right\}, \quad (37)$$

1930 where M is a $d \times d$ matrix with non-negative entries.
 1931

1932 Moreover, so as to handle the expression appearing in the above definition, we define, for any $\boldsymbol{\lambda} =$
 1933 $(\lambda_1, \dots, \lambda_d) \in [0, 1]^d$ and any $k \in [d]$ the quadratic function associated to the k -th constraint,
 1934

$$1935 \quad \rho_k(\boldsymbol{\lambda}) := \lambda_k \left(1 + \sum_{j=1}^d M_{k,j} \lambda_j\right).$$

1936 We now start to study the geometrical aspect of the feasible region \mathcal{F} .
 1937

1944

1945 **Definition D.4** (Components of the Region \mathcal{F}). For any element $I = (i_1, \dots, i_d) \in \{-1, 0, 1\}^d$, we define

1946

1947

$$\mathcal{C}_I := \left\{ \boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_d) \in \mathcal{F} : \text{for all } k \in [d], \begin{cases} \text{if } i_k \in \{0, 1\}, & \text{then } \rho_k(\boldsymbol{\lambda}) = i_k \\ \text{if } i_k = -1, & \text{then } 0 < \rho_k(\boldsymbol{\lambda}) < 1 \end{cases} \right\},$$

1949

1950 the *component* of \mathcal{F} associated to the *constraints index* I .

1951

1952

1953 **Definition D.5** (Interior Region, Extreme Points, Edges and Faces of \mathcal{F}). For the feasible re-
1954 gion (37), given $I = (i_1, \dots, i_d) \in \{-1, 0, 1\}^d$ then,

1955

1956

1957

1958

1959

- if $I = (-1, \dots, -1)$, we call the component $R_{\mathcal{F}} := \mathcal{C}_{(-1, \dots, -1)}$ the *interior region* of \mathcal{F} ,

- if $I \in \{0, 1\}^d$, the component $\mathcal{E}_I := \mathcal{C}_I$ is called an *extreme point*¹⁹ of the domain \mathcal{F} ,

- if there exists a unique $k \in [d]$ such that $i_k = -1$ then the component $E_I := \mathcal{C}_I$ is called an *edge* of \mathcal{F} . The set of all $I \in \{-1, 0, 1\}^d$ such that \mathcal{C}_I is an edge of \mathcal{F} is denoted by $E_{\mathcal{F}}$, that is

1960

1961

1962

$$E_{\mathcal{F}} := \left\{ (i_1, \dots, i_d) \in \{-1, 0, 1\}^d : \text{there exists a unique } k \in [d], \text{ such that } i_k = -1 \right\}.$$

1963

1964

1965

- otherwise, if there exists $1 \leq k, \ell \leq d$ with $k \neq \ell$ such that $i_k = -1$ and $i_{\ell} \in \{0, 1\}$ then the component $F_I := \mathcal{C}_I$ is called a *face* of \mathcal{F} . The set of all $I \in \{-1, 0, 1\}^d$ such that \mathcal{C}_I is a face of \mathcal{F} is denoted by $F_{\mathcal{F}}$, that is

1966

1967

1968

$$F_{\mathcal{F}} := \{-1, 0, 1\}^d \setminus \left(\{-1\}^d \cup \{0, 1\}^d \cup E_{\mathcal{F}} \right).$$

1969

1970

Let $k \in [d]$, recall that the constraint of the feasible region \mathcal{F} associated to λ_k as defined in (37) is given by

1971

1972

1973

$$0 \leq \lambda_k \left(1 + \sum_{j=1}^d M_{k,j} \lambda_j \right) \leq 1,$$

1974

1975

1976

that is, $(\lambda_1, \dots, \lambda_d)$ belongs to the quadrant \mathbb{R}_+^d of non-negative real numbers, intersected with the *hypograph* of the function $g_k: \mathbb{R}_+^{d-1} \rightarrow \mathbb{R}$ defined as

1977

1978

1979

1980

$$g_k: \tilde{x}^{(k)} := (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_d) \mapsto \left(1 + \sum_{j=1}^d M_{k,j} x_j \right)^{-1}, \quad (38)$$

1981

i.e.,

1982

1983

$$(\lambda_1, \dots, \lambda_d) \in \mathbb{R}_+^d \cap \left\{ (x_1, \dots, x_d) \in \mathbb{R}^d : x_k \leq g_k(\tilde{x}^{(k)}) \right\}.$$

1984

1985

1986

These are the same functions as introduced and studied in Lemma D.2 but specialized with the coefficients of the strictly upper triangular matrix \mathcal{M} . Moreover, so as to ease the statement of future results, we introduce the very similar function

1987

1988

1989

1990

$$g_k^{\varepsilon}: \tilde{x}^{(k)} := (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_d) \mapsto \varepsilon \left(1 + \sum_{j=1}^d M_{k,j} x_j \right)^{-1}, \quad (39)$$

1991

1992

1993

1994

1995

1996

1997

where $\varepsilon \in \{0, 1\}$. Again, the function g_k^{ε} is still convex and its epigraph is thus a d -dimensional convex subset of \mathbb{R}^d according to Lemma D.2 (property 1). Additionally, if $\varepsilon = 0$ then $\partial(\text{epi } g_k^{\varepsilon})$ is simply the hyperplane orthogonal to basis vector e_k .

¹⁹It is not clear at this moment if the nomenclature of “extreme point” for these objects is meaningful. The definition of extreme point is provided in Definition 3.2 and it is shown in Lemma E.4 that indeed, the $(e_I)_{I \in \{0, 1\}^d}$ are extreme points of the feasible region \mathcal{F} .

1998 For clarity, we recall below the *epigraph* and *hypograph* of the function g_k^ε which are defined as
 1999

$$\text{epi } g_k^\varepsilon := \left\{ (x_1, \dots, x_d) \in \mathbb{R}^d : x_k \geq g_k^\varepsilon(\tilde{x}^{(k)}) \right\},$$

2000 and
 2001

$$\text{hypo } g_k^\varepsilon := \left\{ (x_1, \dots, x_d) \in \mathbb{R}^d : x_k \leq g_k^\varepsilon(\tilde{x}^{(k)}) \right\}.$$

2002 Moreover, their *exterior* are the respective sets
 2003

$$\text{ext}(\text{epi } g_k^\varepsilon) := \left\{ (x_1, \dots, x_d) \in \mathbb{R}^d : x_k < g_k^\varepsilon(\tilde{x}^{(k)}) \right\},$$

2004 and
 2005

$$\text{ext}(\text{hypo } g_k^\varepsilon) := \left\{ (x_1, \dots, x_d) \in \mathbb{R}^d : x_k > g_k^\varepsilon(\tilde{x}^{(k)}) \right\}.$$

2006 Additionally, we define the closed half-space induced by the supporting hyperplane $H_k^\varepsilon(p)$ of
 2007 $\text{epi } g_k^\varepsilon$ ²⁰ at point $p \in \partial(\text{epi } g_k^\varepsilon)$ and directed toward the feasible region \mathcal{F} as
 2008

$$H_k^{\varepsilon,+}(p) := \left\{ x = (x_1, \dots, x_d) \in \mathbb{R}^d : \begin{cases} x_k \geq 0, & \text{if } \varepsilon = 0, \\ \langle \nabla \varphi_k(p) | x - p \rangle \geq 0, & \text{if } \varepsilon = 1. \end{cases} \right\}, \quad (40)$$

2009 where $\varphi_k: C \rightarrow \mathbb{R}$ is defined as
 2010

$$\varphi_k: (x_1, \dots, x_d) \mapsto -x_k + \left(1 + \sum_{j=1}^d \alpha_j x_j \right)^{-1},$$

2011 and C is the convex set defined in Lemma D.1, i.e., in (31) (for the special case $\alpha_k = 0$). Notably, $(\text{epi } g_k^1)$ is convex (see Lemma D.2, property 1) and $(\text{hypo } g_k^0)$ is also convex since its the
 2012 hypersurface $x = g_k^0(\tilde{x}^{(k)})$ is an hyperplane of \mathbb{R}^d so, the convexity of these two sets implies both
 2013

$$H_k^{1,+}(p) \cap \text{int}(\text{epi } g_k^1) = \emptyset,$$

2014 and
 2015

$$H_k^{0,+}(p) \cap \text{int}(\text{hypo } g_k^0) = H_k^{0,+}(p) \cap \text{ext}(\text{epi } g_k^0) = \emptyset. \quad (41)$$

2016 **Lemma D.6** (Properties of the feasible region \mathcal{F}). *The feasible region \mathcal{F} as defined in definition 3.1*

- 2017 1. is diffeomorphic to the unit hypercube $[0, 1]^d$,
- 2018 2. is a compact (closed and bounded subset of \mathbb{R}^d) and non-empty subset of $[0, 1]^d$. Moreover,
 2019 it contains the zero vector $(0, \dots, 0)^\top \in \mathcal{F}$,
- 2020 3. has a non-empty interior,
- 2021 4. is convex if, and only if $M_{k,j} = 0$ for all $1 \leq k, j \leq d$ iff $(1, \dots, 1)^\top \in \mathcal{F}$.

2022 *Proof.* We establish these claims one after the other.

- 2023 1. According to lemma 3.6, we know there exists a \mathcal{C}^∞ -diffeomorphism $\Psi: [0, 1]^d \rightarrow \mathcal{F}$
 2024 hence the feasible region \mathcal{F} is diffeomorphic to the unit hypercube $[0, 1]^d$.

- 2025 2. By definition of the feasible region \mathcal{F} , we know that $\mathcal{F} \subseteq [0, 1]^d$ so \mathcal{F} is bounded.
 2026 Moreover, the zero vector $(0, \dots, 0)^\top$ is in \mathcal{F} since putting $\lambda_0 = \dots = \lambda_d = 0$ leads to
 2027

$$0 \leq 0 = \lambda_k \left(1 + \sum_{j=k+1}^d M_{k,j} \lambda_j \right) \leq 1,$$

2028 for all $k \in [d]$ and all constraints are satisfied so $\mathcal{F} \neq \emptyset$. Finally, \mathcal{F} is also a closed
 2029 subset of \mathbb{R}^d because it is diffeomorphic to the unit (closed) hypercube $[0, 1]^d$ and since
 2030 diffeomorphisms preserve open and closed sets then \mathcal{F} is also closed thus, it is a compact
 2031 subset of \mathbb{R}^d .

2032 ²⁰Note that $\partial(\text{epi } g_k^\varepsilon) = \partial(\text{hypo } g_k^\varepsilon)$ so the boundary does not change if we take the epigraph of the hypo-
 2033 graph of g_k^ε .

2052 3. Here, as the map $\Psi: [0, 1]^d \rightarrow \mathcal{F}$ is a homeomorphism (notably, Ψ^{-1} is continuous), we
 2053 have, where $\text{int } A$ denotes the interior of a set A ,

2054
$$\text{int } \mathcal{F} = \text{int } \Psi([0, 1]^d) = \Psi(\text{int } [0, 1]^d) = \Psi((0, 1)^d) \neq \emptyset, \quad (42)$$

2055 since $(0, 1)^d \neq \emptyset$. Hence, the feasible region \mathcal{F} has non-empty interior (and its interior is
 2056 even diffeomorphic to the open unit hypercube $(0, 1)^d$).

2057 4. We first show the second equivalence, that is, $M_{k,j} = 0$ for all $1 \leq k, j \leq d$ iff
 2058 $(1, \dots, 1)^\top \in \mathcal{F}$. Assume first that $M_{k,j} = 0$ for all $1 \leq k, j \leq d$ then, the inequality
 2059 constraints in problem (1) reduce to

2060
$$0 \leq \lambda_k \leq 1, \quad (43)$$

2061 for all $k \in [d]$ thus $0 \leq \lambda_k \leq 1$ and since there is now no inter-dependency anymore
 2062 between the stepsizes $\{\lambda_k\}_{k \in [d]}$ we deduce that the feasible region is simply $\mathcal{F} = [0, 1]^d$
 2063 so it is convex and contains the vector $(1, \dots, 1)^\top$. Conversely, if \mathcal{F} contains the vector
 2064 $(1, \dots, 1)^\top$ then, it means this point satisfies all the constraints thus

2065
$$0 \leq \left(1 + \sum_{j=k+1}^d M_{k,j}\right) = 1 + \sum_{j=k+1}^d M_{k,j} \leq 1,$$

2066 which is impossible, except in the case where $M_{k,j} = 0$ for all $j \in [k+1..d]$ that is, the
 2067 upper triangular matrix $M = 0$ is the zero matrix.

2068 Now, for the first equivalence, we already proved the converse, that is, if M is the zero
 2069 matrix then $\mathcal{F} = [0, 1]^d$ so the feasible region is convex. So, let us assume \mathcal{F} is convex
 2070 and, for the sake of contradiction, suppose the strictly upper triangular matrix M is non-
 2071 zero, hence, there exists an integer $0 \leq k < j_0 \leq d$ such that $M_{k,j_0} \neq 0$. Necessarily, $k <$
 2072 d since M is strictly upper triangular so without loss of generality, let us take $k \in [d-1]$
 2073 to be the largest integer such that for some $j \in [k+1..d]$ the coefficient $M_{k,j} \neq 0$. Then,
 2074 for all $k' \in [k+1..d]$ we must have $M_{k',j} = 0$ for all $j \in [k'+1..d]$ so the variables
 2075 $\lambda_{k+1}, \dots, \lambda_d$ all satisfy inequalities (43), i.e., we have the freedom to choose them inside
 2076 $[0, 1]$ and then we can always find values for the other variables $\lambda_1, \dots, \lambda_k$ (notably, zero
 2077 as it is always possible to choose this value) so as to ensure the point $(\lambda_0, \dots, \lambda_d)$ is still
 2078 feasible. That being said, note that the two points

2079
$$\{0\}^k \times \left\{ \frac{1}{1+s_k} \right\} \times \{1\}^{d-k} \in \mathcal{F} \text{ and } \{0\}^k \times \{1\} \times \{0\}^{d-k} \in \mathcal{F},$$

2080 where $s_k := \sum_{j=k+1}^d M_{k,j} > 0$ since $M_{k,j_0} > 0$ by assumption. Effectively, for both points
 2081 we only need to check the constraint associated to stepsize γ_k which for the first one gives

2082
$$0 \leq \frac{1}{1+s_k} \left(1 + \sum_{j=k+1}^d M_{k,j}\right) = \frac{1}{1+s_k} (1+s_k) = 1 \leq 1,$$

2083 while for the second one we have

2084
$$0 \leq (1+0) = 1 \leq 1.$$

2085 Note that the above two points are not *ill-defined* since $d - k > 0$. Now, as \mathcal{F} is assumed
 2086 convex then for any $t \in [0, 1]$ we must have

2087
$$\begin{aligned} t \left(\{0\}^k \times \left\{ \frac{1}{1+s_k} \right\} \times \{1\}^{d-k} \right) + (1-t) (\{0\}^k \times \{1\} \times \{0\}^{d-k}) \\ = \{0\}^k \times \left\{ \frac{t}{1+s_k} + (1-t) \right\} \times \{t\}^{d-k} \in \mathcal{F}. \end{aligned}$$

2106 Then, this implies that the points $\left\{ \{0\}^k \times \left\{ \frac{t}{1+s_k} + (1-t) \right\} \times \{t\}^{d-k} \right\}_{t \in [0,1]}$ all lie in
 2107 the feasible region so, in particular, they satisfy the constraint associated to γ_k that is
 2108

$$2109 \quad 0 \leq L \cdot \left[\frac{t}{1+s_k} + (1-t) \right] \left(1 + \sum_{j=k+1}^d t M_{k,j} \right) = \left[\frac{t}{1+s_k} + 1 - t \right] \left(1 + t \sum_{j=k+1}^d M_{k,j} \right) \leq 1, \\ 2110 \quad 2111 \quad 2112 \quad 2113 \quad (44)$$

2114 and, rewriting the left inequality in (44) using $s_k := \sum_{j=k+1}^d M_{k,j} > 0$ gives
 2115
 2116

$$2117 \quad \frac{t}{1+s_k} + \frac{t^2 s_k}{1+s_k} + 1 - t + t(1-t)s_k \leq 1, \\ 2118 \quad 2119$$

2120 i.e.,

$$2121 \quad 0 \geq \frac{t}{1+s_k} + \frac{t^2 s_k}{1+s_k} - t + t(1-t)s_k \\ 2122 \quad = t \left(\frac{1}{1+s_k} + \frac{t s_k}{1+s_k} - 1 + (1-t)s_k \right) \\ 2123 \quad = t \left(\frac{1}{1+s_k} + t - \frac{t}{1+s_k} - 1 + (1-t)s_k \right) \\ 2124 \quad \stackrel{(a)}{=} t(1-t) \left(\frac{1}{1+s_k} - 1 + s_k \right) \\ 2125 \quad = t(1-t) \frac{1 - (1+s_k) + s_k(1+s_k)}{1+s_k} \\ 2126 \quad = t(1-t) \frac{s_k^2}{1+s_k} \\ 2127 \quad > 0, \\ 2128 \quad 2129 \quad 2130 \quad 2131 \quad 2132 \quad 2133 \quad 2134 \quad 2135 \quad (45)$$

2136 for any choice of $t \in (0, 1)$ since $s_k > 0$. In the above, in (a) we split $\frac{ts_k}{1+s_k}$ as
 2137

$$2138 \quad \frac{ts_k}{1+s_k} = \frac{t(1+s_k-1)}{1+s_k} = t - \frac{t}{1+s_k}, \\ 2139 \quad 2140$$

2141 while in (b) we factor out by $(1-t)$. But positivity in (45) violates the aforementioned
 2142 constraint associated to λ_k hence, we conclude that all entries of the upper triangular matrix
 2143 M are zero. This achieves the desired equivalence.

2144 \square
 2145

2146 We now give some properties satisfied by the components of the feasible set \mathcal{F} .
 2147

2148 **Lemma D.7** (A partition of \mathcal{F}). *The components $(\mathcal{C}_I)_{I \in \{-1, 0, 1\}^d}$ of the feasible region \mathcal{F} satisfy*

- 2149 1. *they form a partition of \mathcal{F} , i.e., they are all non-empty and their union is \mathcal{F} ,*
- 2150 2. *for any $I \in \{0, 1\}^d$, the extreme point \mathcal{E}_I contains only a single feasible point,*
- 2151 3. *the interior region $R_{\mathcal{F}}$ is exactly the interior of \mathcal{F} , that is $R_{\mathcal{F}} = \text{int } \mathcal{F}$.*
- 2152 4. *for any $I = (i_1, \dots, i_d) \in \{-1, 0, 1\}^d$, we have*

$$2153 \quad \mathcal{C}_I \subseteq \mathbb{R}_+^d \cap \left(\bigcap_{\substack{j=1 \\ i_j \in \{0, 1\}}}^d \partial(\text{epi } g_j^{i_j}) \right) \cap \left(\bigcap_{\substack{j=1 \\ i_j = -1}}^d [\text{ext(epi } g_j^1) \cap \text{ext(hypo } g_j^0)] \right).$$

2160 5. each component \mathcal{C}_I for $I = (i_1, \dots, i_d) \in \{-1, 0, 1\}^d$ is a bounded sub-manifold of \mathbb{R}^d of
 2161 dimension

$$2162 \dim(\mathcal{C}_I) = |\{k \in [d] : i_k = -1\}|,$$

2163 e.g., if $d = 3$ then the faces of \mathcal{F} are either 2-dimensional surfaces and the edges are
 2164 1-dimensional curves.

2166 *Proof of Lemma D.7.* We establish these claims one after the other.

2168 1. Let $I = (i_1, \dots, i_d) \in \{-1, 0, 1\}^d$, we define the weights vector $\mathbf{w} = (w_1, \dots, w_d) \in$
 2169 $[0, 1]^d$ as follows, for any $k \in [d]$

$$2171 w_k = \begin{cases} i_k, & \text{if } i_k \in \{0, 1\}; \\ 2172 \frac{1}{2}, & \text{if } i_k = -1; \end{cases}$$

2173 then, according to lemma 3.5, the system of equations

$$2175 \lambda_k \left(1 + \sum_{j=k+1}^d M_{k,j} \lambda_j \right) = w_k,$$

2179 for all $k \in [d]$ admits a unique solution $\Lambda^{(\mathbf{w})} = (\lambda_1^{(\mathbf{w})}, \dots, \lambda_d^{(\mathbf{w})})$ and this solution is such
 2180 that for any $k \in [d]$

$$2182 \rho_k(\Lambda^{(\mathbf{w})}) = \begin{cases} i_k, & \text{if } w_k = i_k \in \{0, 1\}; \\ 2183 \frac{1}{2}, & \text{if } i_k = -1; \end{cases}$$

2184 thus $\Lambda^{(\mathbf{w})} \in \mathcal{C}_I \neq \emptyset$. More precisely, with the same $I = (i_1, \dots, i_d)$ as above, we define
 2185 for any $k \in [d]$ the set

$$2186 S_k^{(I)} = \begin{cases} \{i_k\}, & \text{if } i_k \in \{0, 1\}; \\ 2187 (0, 1), & \text{if } i_k = -1; \end{cases}$$

2189 then, according to the definition D.4 of the component \mathcal{C}_I , we have by construction that
 2190 $S^{(I)} := S_1^{(I)} \times \dots \times S_d^{(I)} \neq \emptyset$ and

$$2191 \mathcal{C}_I = \Psi \left(S_1^{(I)} \times \dots \times S_d^{(I)} \right),$$

2193 where the map $\Psi: [0, 1]^d \rightarrow \mathcal{F}$ has been defined in lemma 3.6. Additionally, note that
 2194 the sets $\{0\}$, $(0, 1)$ and $\{1\}$ are pairwise disjoint hence, for any two distinct $I \neq I'$ in
 2195 $\{-1, 0, 1\}^d$ the elements I and I' differ at least by one coordinate thus

$$2197 S^{(I)} \cap S^{(I')} = \emptyset,$$

2198 hence the sets $\{S^{(I)}\}_{I \in \{-1, 0, 1\}^d}$ are pairwise disjoint and non-empty. Moreover, their
 2199 disjoint union is

$$2201 \bigsqcup_{I \in \{-1, 0, 1\}^d} S^{(I)} = \prod_{i=1}^d (\{0\} \cup (0, 1) \cup \{1\}) = [0, 1]^d,$$

2204 thus the sets $\{S^{(I)}\}_{I \in \{-1, 0, 1\}^d}$ constitute a partition of the closed unit cube $[0, 1]^d$ and
 2205 transferring them through the bijective map $\Psi: [0, 1]^d \rightarrow \mathcal{F}$ (the bijectivity being proved
 2206 in lemma 3.5) leads to the fact the set sets $\{\mathcal{C}_I\}_{I \in \{-1, 0, 1\}^d}$ are pairwise disjoint (and even
 2207 non-empty) and moreover,

$$2210 \mathcal{F} = \Psi([0, 1]^d) = \Psi \left(\bigsqcup_{I \in \{-1, 0, 1\}^d} S^{(I)} \right) \stackrel{(a)}{=} \bigsqcup_{I \in \{-1, 0, 1\}^d} \Psi(S^{(I)}) = \bigsqcup_{I \in \{-1, 0, 1\}^d} \mathcal{C}_I,$$

2213 which shows that the $\{\mathcal{C}_I\}_{I \in \{-1, 0, 1\}^d}$ form a partition of the feasible region \mathcal{F} . Note that
 in (a) we use the fact that Ψ is injective so that it preserves the disjoint union property.

2214 2. Assume $I = (i_1, \dots, i_d) \in \{0, 1\}^d$ then, for any $\lambda \in \mathcal{C}_I$, since the value of each of
 2215 the expressions $\{\rho_k(\lambda)\}_{k \in [d]}$ have been fixed (to either 0 or 1) then using lemma 3.5 we
 2216 conclude that there exists a unique solution to the system of equations
 2217

2218
$$\lambda_k \left(1 + \sum_{j=k+1}^d M_{k,j} \lambda_j \right) = i_k,$$

 2219
 2220

2221 for all $k \in [d]$. Hence, the set \mathcal{C}_I is reduce to a single point, as claimed.
 2222

2223 3. Using lemma 3.5 and what we have done in the first paragraph above, since the interior
 2224 region is defined as $R_{\mathcal{F}} := C_{(-1, \dots, -1)}$ then, we have
 2225

2226
$$R_{\mathcal{F}} = \Psi((0, 1)^d),$$

2227 and, using what we have proved from lemma D.6, more particularly from equation (42)
 2228 gives
 2229

2230
$$R_{\mathcal{F}} = \Psi((0, 1)^d) = \text{int } \mathcal{F},$$

2231 as desired.
 2232

2233 4. Let $I \in \{-1, 0, 1\}^d$ then by definition D.4 we know that $\mathcal{C}_i \subseteq \mathbb{R}_+^d$. Now, let $k \in [d]$ then
 2234 we distinguish two cases
 2235

- 2236 • if $i_k = -1$ then for any $\lambda = (\lambda_1, \dots, \lambda_d) \in \mathcal{C}_I$, we know that $0 < \rho_k(\lambda) < 1$ so
 notably

2237
$$\lambda_k \left(1 + \sum_{j=1}^d M_{k,j} \lambda_j \right) < 1,$$

 2238
 2239

2240 hence $\lambda \in \text{ext}(\text{epi } g_k^1)$ and by the way
 2241

2242
$$0 < \lambda_k \left(1 + \sum_{j=1}^d M_{k,j} \lambda_j \right),$$

 2243
 2244

2245 thus $\lambda \in \text{ext}(\text{hypo } g_k^0)$,
 2246

- 2247 • if $i_k \in \{0, 1\}$ this means that for any $\lambda = (\lambda_1, \dots, \lambda_d) \in \mathcal{C}_I$ we have $\rho_k(\lambda) \in \{0, 1\}$
 2248 hence: if $i_k = 1$ we should have $\rho_k(\lambda) = 1$ thus $\lambda \in \partial(\text{epi } g_k^1)$, otherwise if $i_k = 0$
 2249 then we must have $\lambda_k = 0$ so $\lambda \in \partial(\text{epi } g_k^0) = \{(x_1, \dots, x_d) \in \mathbb{R}^d : x_k = 0\}$.

2250 Thus, it follows that we have the inclusion
 2251

2252
$$\mathcal{C}_I \subseteq \mathbb{R}_+^d \cap \left(\bigcap_{\substack{j=1 \\ i_j \in \{0, 1\}}}^d \partial(\text{epi } g_j^{i_j}) \right) \cap \left(\bigcap_{\substack{j=1 \\ i_j = -1}}^d [\text{ext}(\text{epi } g_j^1) \cap \text{ext}(\text{hypo } g_j^0)] \right),$$

 2253
 2254
 2255

2256 as desired.
 2257

2258 5. Notice from lemma 3.6 that the component \mathcal{C}_I where $I = (i_1, \dots, i_d) \in \{-1, 0, 1\}^d$ is
 2259 diffeomorphic (via Ψ) to the cartesian product
 2260

2261
$$S^{(I)} := S_1^{(I)} \times \dots \times S_d^{(I)},$$

2262 where for any $k \in [d]$, we defined $S_k^{(I)} := \begin{cases} \{i_k\}, & \text{if } i_k \in \{0, 1\}, \\ (0, 1), & \text{if } i_k = -1. \end{cases}$ and, since $S^{(I)}$ is a
 2263
 2264

2265 bounded sub-manifold of \mathbb{R}^d of dimension $\ell = |\{k \in [d] : i_k = -1\}|$, we deduce that \mathcal{C}_I
 2266 is also a bounded sub-manifold of \mathbb{R}^d of dimension ℓ which proves the desired assertion
 2267

□

2268 **Definition D.8** (Degrees of Freedom of a Component). Given $I = (i_1, \dots, i_d) \in \{-1, 0, 1\}^d$, the
 2269 degrees of freedom of component \mathcal{C}_I is denoted by
 2270

$$2271 \quad \deg(I) := \{j \in [d] : i_j = -1\}.$$

2272 According to Lemma D.7, given a constraint index $I \in \{-1, 0, 1\}^d$, we have
 2273

$$2274 \quad |\deg(I)| = \dim(\mathcal{C}_I),$$

2275 hence, faces are components of dimension at least 2 (with two degree of freedom), while edges are
 2276 those of dimension 1 and have only one degree of freedom and extreme points have dimension 0 and
 2277 degree 0.

2278 **Lemma D.9** (Characterizing the Feasible Region \mathcal{F}). *We have*

$$2279 \quad \mathcal{F} = \mathbb{R}_+^d \setminus \bigcup_{i=1}^d \text{int}(\text{epi } g_i^1),$$

2282 where for any $i \in [d]$, $\text{int}(\text{epi } g_i^1)$ represents the interior of the epigraph of g_i .
 2283

2284 *Proof.* Note that for any $i \in [d]$, if we let $\mathbf{x} := (x, \dots, x_d)$ and $\boldsymbol{\lambda} := (\lambda_1, \dots, \lambda_d)$ then we have
 2285

$$2286 \quad \text{int}(\text{epi } g_i) = \left\{ \mathbf{x} \in \mathbb{R}^d : x_i > \left(1 + \sum_{j=k+1}^d M_{i,j} x_j \right)^{-1} \right\}.$$

2289 Hence, by definition of \mathcal{F} from (37) it follows
 2290

$$2291 \quad \mathcal{F} \stackrel{(37)}{=} \left\{ \boldsymbol{\lambda} \in [0, 1]^d : 0 \leq \lambda_i \left(1 + \sum_{j=i+1}^d M_{i,j} \lambda_j \right) \leq 1 \text{ for all } i \in [d] \right\}$$

$$2292 \stackrel{(a)}{=} \bigcap_{i=1}^d \left\{ \boldsymbol{\lambda} \in \mathbb{R}_+^d : \lambda_i \leq \left(1 + \sum_{j=i+1}^d M_{i,j} \lambda_j \right)^{-1} \right\}$$

$$2293 = \mathbb{R}_+^d \setminus \bigcup_{i=1}^d \left\{ \boldsymbol{\lambda} \in \mathbb{R}_+^d : \lambda_i > \left(1 + \sum_{j=i+1}^d M_{i,j} \lambda_j \right)^{-1} \right\}$$

$$2294 = \mathbb{R}_+^d \setminus \bigcup_{i=1}^d \text{int}(\text{epi } g_i).$$

2304 This proves the desired equality. Note that in (a) we use the non-negativity of the entries of the
 2305 matrix \mathcal{M} and that each of the $\lambda_1, \dots, \lambda_d$ is also non-negative, which implies
 2306

$$2307 \quad 0 \leq \lambda_i \left(1 + \sum_{j=i+1}^d M_{i,j} \lambda_j \right),$$

2310 for all $i \in [d]$, i.e., there is no need to force the $(\lambda_i)_{i \in [d]}$ to be less than one since the constraints
 2311 already imply this inequality thanks to the non-negativity of the entries of the matrix \mathcal{M} and of the
 2312 $(\lambda_i)_{i \in [d]}$. \square
 2313

2314 D.3 SOME TECHNICAL LEMMAS

2315 **Lemma D.10.** *For any $p \in \mathcal{F}$, let $w = (w_1, \dots, w_d) = \Psi^{-1}(p) \in [0, 1]^d$ and for $i \in [d]$, let
 2316 $H_i^{w_i}(p)$ be the supporting hyperplane of $\text{epi } g_i^{w_i}$ at p , then*

$$2318 \quad A = \bigcap_{\substack{i=1 \\ w_i \in \{0,1\}}}^d H_i^{w_i}(p),$$

2319 is an affine subspace of \mathbb{R}^d of dimension $\dim A \geq d - |\{i \in [d] : w_i \in \{0, 1\}\}|$.
 2320
 2321

2322 *Proof.* By definition of supporting hyperplane from Definition C.12, we know that
 2323

$$2324 \quad p \in \bigcap_{\substack{i=1 \\ w_i \in \{0,1\}}}^d H_i^{w_i}(p) \neq \emptyset,$$

$$2326$$

2327 hence, applying Lemma C.15 we have that the dimension of the intersection of all these $k =$
 2328 $|\{i \in [d] : w_i \in \{0,1\}\}|$ affine hyperplanes $H_i^{w_i}(p)$ for $i \in [d]$ with $w_i \in \{0,1\}$ is at least
 2329 $d - k = |\{i \in [d] : w_i = -1\}| = \deg(w)$ as claimed. \square
 2330

2331 **Lemma D.11** (No Large Affine Subspaces Except Flat Ones). *Let $I = (i_1, \dots, i_d) \in \{-1, 0, 1\}^d$ and denote by $S := \{j \in [d] : i_j = -1\} \subseteq [d]$. Assume there exists some affine subspace A of \mathbb{R}^d of dimension $|S| = \deg(I)$ (the degrees of freedom of \mathcal{C}_I) such that*

$$2334 \quad A \subseteq \bigcap_{\substack{i=1 \\ w_i \in \{0,1\}}}^d \partial(\text{epi } g_i^{w_i}), \quad (46)$$

$$2335$$

$$2336$$

$$2337$$

2338 then, $A = p + \text{Vect}_{\mathbb{R}}((e_i)_{i \in S})$ ²¹ for any point $p \in A$.
 2339

2340 *Proof.* Recall from Lemma D.7 that the components of \mathcal{F} are all non-empty so is the component
 2341 \mathcal{C}_I where I is constraint index defined in the statement. We distinguish two cases:
 2342

- 2343 • if $\deg(I) = 0$ then A is an affine subspace of \mathbb{R}^d of dimension 0 so is just a single point
 2344 $p \in \mathbb{R}^d$ and as $S = \emptyset$ then $A = \{p\}$ and the claims follows,
- 2346 • now assume $\deg(I) > 0$ then the intersection in (46) is non-empty. Let $v = (v_1, \dots, v_d) \in$
 2347 $(A - p)$ be a non-zero vector, where $p \in A$ then using Lemma D.2 (property 2) since the
 2348 line $\text{Vect}_{\mathbb{R}}(v)$ is included in A so in every $\partial(\text{epi } g_i^{w_i})$ for $i \in [d]$ with $w_i \in \{0, 1\}$ then we
 2349 must have

$$2350 \quad v_i = 0 \text{ and } \langle M_{i, \cdot}^\top | v \rangle = 0,$$

2351 for all $i \in [d] \setminus S$ such that $w_i = 1$. Otherwise, those $i \in [d] \setminus S$ for which $w_i = 0$,
 2352 since $\partial(\text{epi } g_i^{w_i})$ is the hyperplane $\{(x_1, \dots, x_d) \in \mathbb{R}^d : x_i = 0\} = \{e_i\}^\perp$ and the line
 2353 $\text{Vect}_{\mathbb{R}}(v)$ belongs to this hyperplane then $\langle v | e_i \rangle = 0$, i.e., $v_i = 0$ too. Hence,

$$2354 \quad v \in \{(e_i)_{i \in [d] \setminus S}\}^\perp = \text{Vect}_{\mathbb{R}}((e_i)_{i \in S}),$$

$$2355$$

2356 thus $v \in \text{Vect}_{\mathbb{R}}((e_i)_{i \in S})$ so $(A - p) \subseteq \text{Vect}_{\mathbb{R}}((e_i)_{i \in S})$ and because $\dim A = |S| =$
 2357 $\dim(\text{Vect}_{\mathbb{R}}((e_i)_{i \in S}))$ then we must have equality in the previous inclusion that is
 2358

$$2359 \quad A = p + \text{Vect}_{\mathbb{R}}((e_i)_{i \in S}),$$

$$2360$$

2361 and the assertion follows.
 2362

\square

2364 **Lemma D.12** (A Technical Lemma). *For the feasible region of problem (\mathcal{P}_d) , for any $w =$
 2365 $(w_1, \dots, w_d) \in [0, 1]^d \setminus \{0, 1\}^d$ (w is not a vertex of the unit hypercube) let $x = \Psi(w) \in \mathcal{F}$,
 2366 there exists $\rho > 0$ such that for any $y \in B(x, \rho)$, if*

$$2368 \quad y \in \bigcap_{\substack{i=1 \\ w_i \in \{0,1\}}}^d H_i^{w_i, +}(x),$$

$$2369$$

$$2370$$

$$2371$$

2372 then $y \in \mathcal{F}$. Moreover, we can choose the radius $\rho > 0$ so that if $y \in \mathcal{C}_I$ for some $I = (i_1, \dots, i_d) \in$
 2373 $\{-1, 0, 1\}^d$ we have for all $j \in [d]$, if $0 < w_j < 1$ then $i_j = -1$.

2374
 2375 ²¹Here, (e_1, \dots, e_d) denotes the canonical basis of \mathbb{R}^d with $e_i = (0, \dots, 0, 1, 0, \dots, 0)^\top$ containing a 1 in
 its i -th coordinate and 0 elsewhere.

2376 *Proof.* Assume for the sake of contradiction that the property does not hold then, there must exists
 2377 some $w = (w_1, \dots, w_d) \in [0, 1]^d$ and $x = \Psi(w) \in \mathcal{F}$ such that for all radius $\rho > 0$, there exists
 2378 some $y_\rho \in B(x, \rho)$ such that
 2379

$$2380 \quad y_\rho \in \bigcap_{\substack{i=1 \\ w_i \in \{0,1\}}}^d H_i^{w_i,+}(x) \text{ but } y_\rho \notin \mathcal{F}.$$

2383 First, let us show that for $\rho > 0$ small enough, we have $y_\rho \in \mathbb{R}_+^d$. Let $i \in [d]$, we distinguish three
 2384 cases based on the value of x_i :

- 2387 • if $x_i = 0$ and since $1 + \sum_{j=1}^d M_{i,j} x_j > 0$ then we must have $w_i = 0$ ²² and the corresponding
 2388 closed half-space is $H_i^{w_i,+}(x) = \{(z_1, \dots, z_d) \in \mathbb{R}^d : z_i \geq 0\}$ so as $y_\rho \in H_i^{w_i,+}(x)$ then
 2389 $[y_\rho]_i \geq 0$ and taking $\rho < 1$ is enough to ensure $[y_\rho]_i \leq 1$.
- 2391 • otherwise, if $x_i > 0$ then take $m := \min_{\substack{i \in [d] \\ x_i > 0}} x_i$ then, it is enough to choose the radius
 2392 $0 < \rho < \frac{m}{2}$ so as to ensure that the $y_\rho \in B(x, \rho)$ will be such that $[y_\rho]_i > x_i - \rho > 0$ for
 2393 all $i \in [d]$ with $x_i > 0$.

2395 Hence, for all ρ small enough we have $y_\rho \in \mathbb{R}^d$.

2396 Then using Lemma D.9 since

$$2399 \quad \mathcal{F} = \mathbb{R}_+^d \setminus \bigcup_{i=1}^d \text{int}(\text{epi } g_i^1),$$

2400 and $y_\rho \notin \mathcal{F}$, but $y_\rho \in \mathbb{R}_+^d$ by the above paragraph, then we must have $y_\rho \in \bigcup_{i=1}^d \text{int}(\text{epi } g_i^1)$.

2401 Now, since y_ρ belongs to the intersection of the closed half-spaces $\bigcap_{\substack{i=1 \\ w_i \in \{0,1\}}}^d H_i^{w_i,+}(x)$ (the half-
 2402 spaces containing \mathcal{F} , not the convex epigraph) and since by (41) we have $H_i^{w_i,+}(p) \cap \text{int}(\text{epi } g_i^{w_i}) =$
 2403 \emptyset for all $i \in [d]$ such that $w_i = 1$ so $y_\rho \notin \text{int}(\text{epi } g_i^1)$ for all $i \in [d]$ such that $w_i = 1$. Moreover,
 2404 for all $i \in [d]$ such that $w_i = 0$ we know by Lemma D.7 (property 4)

$$2410 \quad x \in \partial(\text{epi } g_i^0) = \{(z_1, \dots, z_d) \in \mathbb{R}^d : z_i = 0\},$$

2411 so $x_i = 0$. Additionally, as the epigraph of g_i^1 is

$$2413 \quad \text{epi } g_i^1 = \left\{ (z_1, \dots, z_d) \in \mathbb{R}^d : z_i \geq \left(1 + \sum_{j=1}^d M_{i,j} z_j\right)^{-1} \right\},$$

2414 and the function $z \mapsto \left(1 + \sum_{j=1}^d M_{i,j} z_j\right)^{-1}$ being continuous and positive all over the compact set
 2415 $[0, 2]^d$ then it must reach its global minimum somewhere on the unit hypercube, hence, there exists
 2416 some $m_i > 0$ such that for all $(z_1, \dots, z_d) \in [0, 2]^d$ we have

$$2422 \quad \left(1 + \sum_{j=1}^d M_{i,j} z_j\right)^{-1} \geq m_i > 0.$$

2426 ²²Because by definition of w and $x = \Psi(w)$, we have

$$2427 \quad w_i = x_i \left(1 + \sum_{j=1}^d M_{i,j} x_j\right),$$

2428 so if $x_i = 0$ then immediately we obtain $w_i = 0$.

2430 By consequence, for all radius $\rho > 0$ small enough (say for instance $\rho \leq \min_{i \in [d]} \frac{m_i}{2}$ and $\rho < 1$)
 2431 then the open ball $B(x, \rho)$ intersected with non-negative quadrant \mathbb{R}_+^d is disjoint with the epigraph
 2432 $\text{epi } g_i^1$ for all $i \in [d]$ such that $w_i = 0$, because since $x \in [0, 1]^d$ then $B(x, \rho) \cap \mathbb{R}_+^d \subseteq [0, 2]^d$ (as
 2433 we take $\rho < 1$) thus,

$$2435 \quad \underbrace{(\mathbb{R}_+^d \cap B(x, \rho))}_{\neq \emptyset} \cap \left(\bigcup_{\substack{i \in [d] \\ w_i = 0}} (\text{epi } g_i^1) \right) = \emptyset,$$

2439 hence, for all radius $\rho > 0$ such that $\rho \leq \min_{i \in [d]} \frac{m_i}{2}$ and $\rho < 1$, as $y_\rho \in B(x, \rho) \cap \mathbb{R}_+^d$ then
 2440

$$2441 \quad y_\rho \notin \bigcup_{\substack{i \in [d] \\ w_i = 0}} (\text{epi } g_i^1) \text{ thus } y_\rho \notin \bigcup_{\substack{i \in [d] \\ w_i = 0}} \text{int}(\text{epi } g_i^1).$$

2444 From the above two paragraphs, we deduced that $y_\rho \notin \bigcup_{\substack{i=1 \\ w_i \in \{0, 1\}}}^d \text{int}(\text{epi } g_i^1)$ so we must have
 2445

$$2448 \quad y_\rho \in \bigcup_{\substack{i=1 \\ 0 < w_i < 1}}^d \text{int}(\text{epi } g_i^1),$$

2451 for all small enough radius $0 < \rho < \rho_0$.

2453 Next, as asserted in the statement, the set $S = \{i \in [d] : 0 < w_i < 1\}$ is non-empty then, since the
 2454 set $(0, \rho_0)$ has infinite cardinality but $1 \leq |S| < +\infty$ we deduce that there must exists a $i_0 \in S$ and
 2455 some sequences $(\rho_k)_{k \geq 1}$ such that for all $k \geq 1$, we have

$$2456 \quad 0 < \rho_k < \rho_0 \text{ and } \rho_k \xrightarrow[k \rightarrow +\infty]{} 0 \text{ and } y_{\rho_k} \in \text{int}(\text{epi } g_{i_0}^1).$$

2458 Since the sequence of radius $(\rho_k)_{k \geq 1}$ converges to 0 then $y_{\rho_k} \xrightarrow[k \rightarrow +\infty]{} x$ thus
 2459

$$2460 \quad x \in (\text{epi } g_{i_0}) \cap \mathcal{F},$$

2461 hence by Lemma D.9 we obtain $x \in \partial(\text{epi } g_{i_0})$ but this is a contradiction since $w_{i_0} \in (0, 1)$, i.e.,
 2462

$$2463 \quad x_{i_0} < \left(1 + \sum_{j=1}^d M_{i_0, j} x_j \right)^{-1}.$$

2467 Finally, this proves that there must exists some radius $\rho > 0$ such that for any $y \in B(x, \rho)$, if
 2468

$$2469 \quad y \in \bigcap_{\substack{i=1 \\ w_i \in \{0, 1\}}}^d H_i^{w_i, +}(x),$$

2472 then $y \in \mathcal{F}$. Moreover, using the set S defined earlier, let $\varepsilon := \min_{i \in S} \{w_i, 1 - w_i\} > 0$. The
 2473 quantity ε is positive by definition and using the diffeomorphism Ψ then $\Psi([0, 1]^d \cap B(w, \frac{\varepsilon}{2}))$ is an
 2474 open subset of \mathcal{F} so there exists some radius $r > 0$, and without loss of generality we may take
 2475 $r < \rho$, such that

$$2476 \quad B(x, r) \cap \mathcal{F} \subseteq \Psi \left([0, 1]^d \cap B \left(w, \frac{\varepsilon}{2} \right) \right),$$

2478 so for any $y \in B(x, r) \cap \mathcal{F}$, then $w' = (w'_1, \dots, w'_d) = \Psi^{-1}(y) \in B(w, \frac{\varepsilon}{2})$ thus for any $i \in S$,
 2479

$$2480 \quad 0 < w_i - \frac{\varepsilon}{2} \leq w'_i \leq w_i + \frac{\varepsilon}{2} < 1.$$

2482 hence the point $y \in \mathcal{F}$ keeps at least the same degrees of freedom than the point x had.

2483 This completes the proof of the lemma. □

2484 E OMITTED PROOFS
24852486 E.1 PROOF OF THEOREM 3.4
24872488 For completeness, we recall below the problem $(\mathcal{P}_{\text{cpt}}^{\text{lin}})$ as defined in the main paper in (5):
2489

2490
$$(\mathcal{P}_{\text{cpt}}^{\text{lin}}): \begin{aligned} & \text{maximize } \langle \mathbf{x} \mid \mathbf{c} \rangle \\ & \text{over } \mathbf{x} \in K. \end{aligned} \quad (47)$$

2491

2492 **Theorem 3.4** (Maximization of a Linear Form over a Non-empty Compact Sets). *There exists an*
2493 *optimal solution of problem $(\mathcal{P}_{\text{cpt}}^{\text{lin}})$ in (47) which is also an extreme point of K , i.e.,*

2494
$$\text{Extr } K \cap X^* \neq \emptyset.$$

2495

2496 *Proof.* Let $K \subseteq \mathbb{R}^d$ be a non-empty and compact set and $f: \mathbb{R}^d \rightarrow \mathbb{R}$ be a linear form. Note that
2497 when $d = 0$, the space \mathbb{R}^0 is reduced to the single point $\{0\}$ and since $K \neq \emptyset$ then $K = \{0\}$ which
2500 is an extreme point according to Definition 3.2 (the set K does not contain non-trivial segment).
2501 Thus we deduce that $\arg \max_{\mathbf{x} \in K} f(\mathbf{x}) = K = \{0\}$ for any linear form f and the main claim
2502 follows.2503 Now, assume $d \geq 1$ then, either f is constant, i.e., f is always zero then $X^* = \mathbb{R}^d$ and since
2504 $\text{Extr } K \neq \emptyset$ according to Lemma C.11 we obtain that $\text{Extr } K \cap X^* = \text{Extr } K \neq \emptyset$. Otherwise,
2505 when f is a non-zero linear form, as we are in a finite dimensional space the linear form f is
2506 continuous over the compact K so we know that f is bounded and that it reaches its global maxi-
2507 mum $M \in \mathbb{R}$ somewhere over K . Moreover, since f is non-constant then $H_{d-1} := f^{-1}(M)$ is a
2508 hyperplane of \mathbb{R}^d and the set $K' := f^{-1}(M) \cap K$ is a compact subset of H_{d-1} which is $(d-1)$ -
2509 dimensional subspace of \mathbb{R}^k . Hence, up to a (linear) change of coordinates to transform linearly
2510 H_{d-1} into \mathbb{R}^{d-1} (and this preserves the alignments), we can apply Lemma C.11 to the compact
2511 subset K' of H_{d-1} and this show that $\text{Extr } K' \neq \emptyset$. So let $p \in \text{Extr } K' \subseteq K$ be such an extreme
2512 point, we now show that p is also an extreme point of K . For the sake of contradiction, assume
2513 $p \notin \text{Extr } K$ so there exists $x, y \in K$ such that $p \in (x, y)$ hence $x \neq y$ and there exists some scalar
2514 $t \in (0, 1)$ such that $p = tx + (1 - t)y$. Moreover, since $p \in f^{-1}(M)$ this means that $f(p) = M$
2515 so f attains its global maximum on K at least at p from where $f(p) \geq f(x)$ and $f(p) \geq f(y)$, and
2516 since f is linear

2517
$$f(p) = tf(x) + (1 - t)f(y) \stackrel{(a)}{\leq} \max \{f(x), f(y)\} \stackrel{(b)}{\leq} f(p), \quad (48)$$

2518 where (a) follows from both non-negativity of t and inequalities $f(p) \geq f(x)$ and $f(p) \geq f(y)$.
2519 Looking at the sequence of inequalities (48) we must have equality everywhere, notably in (a), that
2520 is to say, we must have $M = f(p) = f(x) = f(y)$ since otherwise as $t \in (0, 1)$, if $f(x) \neq f(y)$ or
2521 $\max \{f(x), f(y)\} < f(p)$ we cannot have equality in (a) for the former and in (b) for the later. This
2522 shows that $x, y \in f^{-1}(M) \cap K = K'$ thus we would have $p \in (x, y)$ in K' too which means that
2523 p would not be an extreme point of K' , but this is a contradiction. Hence p must also be an extreme
2524 point of K thus

2525
$$\text{Extr } K \cap X^* = \text{Extr } K \cap (f^{-1}(M) \cap K) \neq \emptyset,$$

2526 and we are done. \square 2527 *Remark E.1.* We note that Theorem 3.2 (sufficiency) is a classical result: it can also be proved using
2528 the compactness of the feasible set together with standard results, e.g., Barvinok (2002).
25292530 E.2 OMITTED PROOFS IN SECTION 3.4
25312532 **Lemma 3.5** (A Linear-Quadratic System). *Let $d \in \mathbb{N}$ be a positive integer, $M \in \mathbb{R}^{d \times d}$ a matrix
2533 with non-negative entries and $W = (w_1, \dots, w_d)^\top \in \mathbb{R}^d$ a d -dimensional column vector with
2534 non-negative entries. Then, the system*

2535
$$\Lambda + \Lambda \odot (M\Lambda) = W, \quad (49)$$

2536

2537 *has a unique solution $\Lambda = (\lambda_1, \dots, \lambda_d)^\top \in \mathbb{R}^d$ with non-negative entries and for any $i \in [d]$ we
2538 have $\lambda_i = 0$ if, and only if $w_i = 0$.*

2538 *Proof.* First, we prove the existence of a solution for the system (49). Notice that $\Lambda \in \mathbb{R}_+^d$ is solution
 2539 to our linear quadratic system (49) if and only if
 2540

$$2541 \quad \forall i \in [d], \lambda_i = \frac{w_i}{1 + (M\Lambda)_i}, \quad (50)$$

2542 which can be written as follows:

$$2543 \quad G_W(\Lambda) = \Lambda, \quad (51)$$

2544 i.e., Λ is a fixed point of G_W , where $G_W : \mathbb{R}_+^d \rightarrow \mathbb{R}_+^d$ is defined by $G_W(\Lambda)_i := \frac{w_i}{1 + (M\Lambda)_i}$. Since
 2545 we search for solutions $\Lambda \in \mathbb{R}_+^d$ (i.e., with non-negative entries), and M has non-negative entries,
 2546 we have from Equation (50) that if Λ is a solution of the system, then necessarily $\lambda_i \leq w_i$ for all
 2547 $i \in [d]$. Hence if $\Lambda \in \mathbb{R}_+^d$ is solution of (49), then $\Lambda \in K := [0, w_1] \times \cdots \times [0, w_d]$. Besides,
 2548 G_W has only values in this set $K = [0, w_1] \times \cdots \times [0, w_d]$. Since $G_W : K \rightarrow K$ is continuous and
 2549 $K = [0, w_1] \times \cdots \times [0, w_d]$ is a non-empty compact convex subset of \mathbb{R}^d , then the *Brouwer's fixed
 2550 point theorem*²³ gives the existence of a fixed point of G_W , and hence the existence of a solution to
 2551 (49).

2552 Now, to prove the uniqueness of the solution on \mathbb{R}_+^d , we will prove that the function $h : \mathbb{R}_+^d \rightarrow \mathbb{R}^d$
 2553 by:

$$2554 \quad h : x \mapsto (h_i(x) := x_i (1 + (Mx)_i))_{i \in [d]}, \quad (52)$$

2555 is injective on \mathbb{R}_+^d . This implies the uniqueness of the solution, since $\Lambda \in \mathbb{R}_+^d$ is solution of (49) if
 2556 and only if $h(\Lambda) = W$.
 2557

2558 h is a differentiable map from the *closed rectangular region*²⁴ \mathbb{R}_+^d to \mathbb{R}^d , and its Jacobian is given
 2559 by:

$$2560 \quad \nabla h(x)_{i,j} = \frac{\partial h_i}{\partial x_j}(x) = \begin{cases} M_{i,j}x_i, & \text{if } j \neq i \\ 1 + 2M_{i,i}x_i + \sum_{k \neq i} M_{i,k}x_k, & \text{if } j = i \end{cases}, \quad (53)$$

2563 for all $i, j \in [d]$ and $x \in \mathbb{R}_+^d$.

2565 Let $x \in \mathbb{R}_+^d$. We have for all $i \in [d]$:

$$2566 \quad \nabla h(x)_{i,i} = 1 + 2M_{i,i}x_i + \sum_{k \neq i} M_{i,k}x_k > 0, \quad (54)$$

2568 so $\nabla h(x)$ has positive diagonal entries. We will use Lemma C.20 to prove that $\nabla h(x)$ is a P -matrix.
 2569 To do so, we need to construct positive numbers $a_1, \dots, a_d > 0$ such that for all $i \in [d]$:

$$2571 \quad a_i |\nabla h(x)_{i,i}| > \sum_{\substack{j=1 \\ j \neq i}}^d a_j |\nabla h(x)_{i,j}|, \quad (55)$$

2574 which is equivalent, since x and M have non-negative coefficients, to:

$$2575 \quad a_i \left(1 + 2M_{i,i}x_i + \sum_{j \neq i} M_{i,j}x_j \right) > \sum_{j \neq i} M_{i,j}a_jx_i,$$

2578 that is

$$2579 \quad g_x^i(a) := a_i + 2M_{i,i}a_i + \sum_{j \neq i} M_{i,j}(a_jx_j - a_ix_i) > 0, \quad (56)$$

2581 where a denotes the vector $(a_1, \dots, a_d)^\top$.

2583 We prove that there exists $\varepsilon > 0$ such that the choice $a_i^\varepsilon := x_i + \varepsilon > 0$ satisfies the condition (56).
 2584 With this choice, we have:

$$2585 \quad g_x^i(a^\varepsilon) = (x_i + \varepsilon)(1 + 2M_{i,i}x_i) + \sum_{j \neq i} M_{i,j}[(x_i + \varepsilon)x_j - (x_j + \varepsilon)x_i] \\ 2586 \\ 2587 \\ 2588 \\ 2589 \\ 2590 \quad = (x_i + \varepsilon)(1 + 2M_{i,i}x_i) + \varepsilon \left(\sum_{j \neq i} M_{i,j}(x_j - x_i) \right). \quad (57)$$

²³See Ben-El-Mechaiekh & Mechaiek (2022) for an elementary proof.

²⁴A definition can be found in Appendix C.5.

2592 If $x_i = 0$, we have
 2593

$$2594 \quad g_x^i(a^\varepsilon) = \varepsilon \left(1 + 2M_{i,i}x_i + \sum_{j \neq i} M_{i,j}x_j \right) > 0,$$

2595 for any $\varepsilon > 0$. Otherwise, $x_i > 0$ and we have
 2596

$$2597 \quad g_x^i(a^\varepsilon) = (x_i + \varepsilon)(1 + 2M_{i,i}x_i) + \varepsilon \left(\sum_{j \neq i} M_{i,j}(x_j - x_i) \right) \xrightarrow{\varepsilon \rightarrow 0} x_i(1 + 2M_{i,i}x_i) > 0, \quad (58)$$

2601 since this limit is positive, there exists some $\varepsilon_i > 0$ such that for any $0 < \varepsilon < \varepsilon_i$, $g_x^i(a^\varepsilon) > 0$.
 2602 Define $\varepsilon_0 := \min \{1, \min \{\varepsilon_i : i \text{ such that } x_i > 0\}\}$. Hence, the vector a^{ε_0} satisfies $g_x^i(a^{\varepsilon_0}) > 0$
 2603 for all $i \in [d]$. In other words, $\nabla h(x)$ is *positive dominant diagonal* and hence it is a *P-matrix*
 2604 by Lemma C.20. Since this holds for every $x \in \mathbb{R}_+^d$, Theorem C.21 gives that h is an injective map,
 2605 which implies the uniqueness of the solution to (49). This concludes our proof. \square
 2606

2607 **On Some Counter-examples when M has Negative Entries:** in the following two remarks, we
 2608 provide counter-examples to the existence and uniqueness of solutions to (49) when the matrix M
 2609 has negative entries.

2610 *Remark E.2.* The assumption on the non-negativity of the entries of the matrix M in Lemma 3.5
 2611 cannot be relaxed, i.e., we cannot simply assume M to be matrix in $\mathbb{R}^{d \times d}$. A simple counter-example
 2612 can be constructed even when $d = 2$. For instance, consider the matrix M and the vector \mathbf{w} given
 2613 by

$$2614 \quad M = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad (59)$$

2616 in which case the system $\Lambda + \Lambda \odot (M\Lambda) = \mathbf{w}$ can be written as
 2617

$$2618 \quad \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} + \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \odot \begin{pmatrix} -\lambda_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad (60)$$

2620 which is equivalent to
 2621

$$2622 \quad \begin{cases} \lambda_1 - \lambda_1 \lambda_2 = 1 \\ \lambda_2 = 1 \end{cases}, \quad (61)$$

2624 but the system (61) clearly does not admit any solution since the first equation reduces to $0 = 1$,
 2625 which is absurd.

2626 *Remark E.3.* We can also construct another counter-example to the uniqueness of the solutions to
 2627 the system in \mathbb{R}_+^d when we authorize the matrix M to have negative entries, even with $d = 2$. For
 2628 that, consider the matrix M and the vector \mathbf{w} given by

$$2629 \quad M = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad (62)$$

2632 in which case, the system is equivalent to:
 2633

$$2634 \quad \begin{cases} \lambda_1(1 - \lambda_1 + \lambda_2) = 2 \\ \lambda_2 = 1 \end{cases}, \quad (63)$$

2637 and the first equation becomes $\lambda_1^2 - 3\lambda_1 + 2 = 0$ which has two solutions, namely 1 and 2, hence
 2638 the system two solutions in \mathbb{R}_+^d :

$$2639 \quad \Lambda_1^* = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ and } \Lambda_2^* = \begin{pmatrix} 2 \\ 2 \end{pmatrix}. \quad (64)$$

2642 **Lemma 3.6** (Regularity of the Solution of (6)). *Let $d \in \mathbb{N}$ be a positive integer and $M \in \mathbb{R}^{d \times d}$ a
 2643 matrix with non-negative entries. For any d -dimensional column vector $\mathbf{w} = (w_1, \dots, w_d)^\top \in \mathbb{R}^d$
 2644 with non-negative entries, let $\Lambda^{(\mathbf{w})} = (\lambda_1^{(\mathbf{w})}, \dots, \lambda_d^{(\mathbf{w})})^\top$ be the unique solution of the equation*
 2645

$$2646 \quad \Lambda + \Lambda \odot (M\Lambda) = \mathbf{w}, \quad (65)$$

2646 then, the map $\Psi: [0, 1]^d \rightarrow \mathcal{F}$ defined for $\mathbf{w} \in [0, 1]^d$ by
 2647

$$2648 \quad \Psi(\mathbf{w}) := \Lambda^{(\mathbf{w})} = \left(\lambda_1^{(\mathbf{w})}, \dots, \lambda_d^{(\mathbf{w})} \right)^\top, \\ 2649$$

2650 where

$$2651 \quad \mathcal{F} := \left\{ \Lambda \in [0, 1]^d : 0 \leq \Lambda + \Lambda \odot (M\Lambda) \leq 1 \right\}, \quad (66) \\ 2652$$

2653 is a \mathcal{C}^∞ -diffeomorphism.

2654 *Proof of Lemma 3.6.* Note that the set \mathcal{F} corresponds to all *feasible* points, that is, all points $\Lambda =$
 2655 $(\lambda_1, \dots, \lambda_d) \in [0, 1]^d$ such that the inequalities
 2656

$$2657 \quad 0 \leq \lambda_k \left(1 + \sum_{j=k+1}^d M_{k,j} \lambda_j \right) \leq 1, \quad (67) \\ 2658 \\ 2659 \\ 2660$$

2661 hold for any $k \in [d]$. Hence, by Lemma 3.5 uniqueness of the solution $\Lambda^{(\mathbf{w})}$ for provided weights
 2662 $\mathbf{w} \in [0, 1]^d$ implies that the map $\Psi: [0, 1]^d \rightarrow \mathcal{F}$ is bijective.
 2663

2664 We consider the function $F: \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ defined by:

$$2665 \quad F: (\mathbf{w}, \Lambda) \mapsto \Lambda + \Lambda \odot (M\Lambda) - \mathbf{w}. \quad (68) \\ 2666$$

2667 F is clearly \mathcal{C}^∞ on \mathbb{R}^d (all its components are polynomial in the entries). Now, consider an arbitrary
 2668 $\mathbf{w}_0 \in [0, 1]^d$, and let $\Lambda^{(\mathbf{w}_0)}$ be the unique solution to the system for that \mathbf{w}_0 . We consider the point
 2669 $(\mathbf{w}_0, \Lambda^{(\mathbf{w}_0)}) \in \mathbb{R}^d \times \mathbb{R}^d$. We have:

$$2670 \quad \nabla_\Lambda F(\mathbf{w}_0, \Lambda^{(\mathbf{w}_0)}) = \nabla h(\Lambda^{(\mathbf{w}_0)}), \quad (69) \\ 2671$$

2672 where h is defined as in the proof of Lemma 3.5. We already proved that for every $x \in \mathbb{R}_+^d$, $\nabla h(x)$ is
 2673 a P -matrix and hence it is invertible. Using the *implicit function theorem* (Theorem 11.4 in Loomis
 2674 & Sternberg (2014)), there exists an open set $U \subset \mathbb{R}^d$ containing \mathbf{w}_0 such that there exists a unique
 2675 function $g: U \rightarrow \mathbb{R}^d$ in $\mathcal{C}^\infty(\mathbb{R}^d, \mathbb{R}^d)$ such that $g(\mathbf{w}_0) = \Lambda^{(\mathbf{w}_0)}$ and $F(\mathbf{w}, g(\mathbf{w})) = 0$, for all
 2676 $\mathbf{w} \in \mathbb{R}^d$. Note that $F(\mathbf{w}, g(\mathbf{w})) = 0$ if and only if

$$2677 \quad g(\mathbf{w}) + g(\mathbf{w}) \odot (Mg(\mathbf{w})) = \mathbf{w}, \quad (70) \\ 2678$$

2679 that is, if and only if $g(\mathbf{w})$ is a solution of the system (65). By the uniqueness of the solution to the
 2680 system for $\mathbf{w} \in [0, 1]^d$, we have $\Psi = g$ on $U \cap [0, 1]^d$. Since g is \mathcal{C}^∞ on $U \cap [0, 1]^d$, then Ψ is \mathcal{C}^∞
 2681 on this intersection, and given that $\mathbf{w}_0 \in U \cap [0, 1]^d$, we conclude that Ψ is \mathcal{C}^∞ in \mathbf{w}_0 .

2682 It only remains to prove that Ψ^{-1} is \mathcal{C}^∞ on \mathcal{F} , but given that $\Psi^{-1} = h$ (which was defined previ-
 2683 ously) and h has all its components polynomial in the entries, it follows that it (and thus Ψ^{-1}) is \mathcal{C}^∞
 2684 on \mathcal{F} . This concludes the proof. \square
 2685

2686 E.3 OMITTED PROOFS OF SECTION 4.1

2687 **Theorem 4.1** (Extreme points of \mathcal{F} in the Relaxed Sense). *For the feasible region \mathcal{F} of problem
 2689 (\mathcal{P}_d) , we have*

$$2690 \quad \text{Extr}_{\mathcal{R}} \mathcal{F} = \left\{ \Psi(\mathbf{w}) : \mathbf{w} \in \{0, 1\}^d \right\}, \quad (71) \\ 2691$$

2692 that is, the extreme points of \mathcal{F} (in the relaxed sense) are exactly the vertices of the hypercube $[0, 1]^d$
 2693 mapped by the diffeomorphism Ψ .
 2694

2695 *Proof of Theorem 4.1.* In order to prove the above Theorem 4.2, we first prove the next two lemmas.
 2696

2697 **Lemma E.4.** *Given the feasible region \mathcal{F} , we have the inclusion*

$$2698 \quad \left\{ \Psi(\mathbf{w}) : \mathbf{w} \in \{0, 1\}^d \right\} \subseteq \text{Extr}_{\mathcal{R}} \mathcal{F}. \quad (72) \\ 2699$$

2700 *Proof of Lemma E.4.* Let $w = (w_1, \dots, w_d) \in \{0, 1\}^d$ be a vertex of the hypercube $[0, 1]^d$, and
 2701 assume, to reach a contradiction, that $\Psi(w) \in \mathcal{F}$ is not an extreme point (in the relaxed sense), i.e.,
 2702 $\Psi(w) \notin \text{Extr}_{\mathcal{R}} \mathcal{F}$. Then there exists x and y in \mathcal{F} such that $x \neq y$, $[x, y] \subset \mathcal{F}$ and $p := \Psi(w) \in$
 2703 (x, y) , i.e., there exists $0 < \theta < 1$ such that $p = \theta x + (1 - \theta)y$. Setting $d := x - y \neq 0$, we have
 2704 $p \pm td \in \mathcal{F}$ for every $t \in [0, \varepsilon_0]$, for some $\varepsilon_0 > 0$.

2705 We define the following sets of indices:
 2706

$$S := \{i \in [d] : w_i = 1\}, \quad (73)$$

$$Z := \{i \in [d] : w_i = 0\} = [d] \setminus S. \quad (74)$$

2709 By definition of Ψ , we have for all $i \in [d]$:

$$p_i (1 + (Mp)_i) = w_i, \quad (75)$$

2713 hence

$$\begin{cases} p_i = 0 & \forall i \in Z \\ p_i (1 + (Mp)_i) = 1 & \forall i \in S \end{cases}. \quad (76)$$

2716 Let $h_i(x) = x_i(1 + (Mx)_i)$. Note that $h_i \in C^\infty$ because it's a polynomial of x . Define $\tilde{h}_i : (-\varepsilon_0, \varepsilon_0) \rightarrow \mathbb{R}$ as $\tilde{h}_i(t) = h_i(p + td)$, which is also C^∞ . Since $p + td \in \mathcal{F}$, the range of \tilde{h}_i is a
 2717 subset of $[0, 1]$, i.e., $\tilde{h}_i(t) \in [0, 1]$ for all $t \in (-\varepsilon_0, \varepsilon_0)$. Observe that \tilde{h}_i has either a minimum or a
 2718 maximum at $t = 0$: $\tilde{h}_i(0) = 0$ if $i \in Z$ and $\tilde{h}_i(0) = 1$ if $i \in S$. Thus, $\tilde{h}'_i(0) = \nabla \tilde{h}_i(p) \cdot d = 0$. It
 2719 means that the jacobian of $h(x) = (h_1(d), \dots, h_d(x)) = x + x \odot (Mx)$ satisfies $\nabla h(p) \cdot d = 0$.
 2720 Since $\nabla h(p)$ is a P -matrix and hence invertible, we have $d = 0$, contradicting $x \neq y$. Therefore no
 2721 such distinct x, y exist, and by definition p is an extreme point of \mathcal{F} in the relaxed sense.
 2722

2723 \square

2725 The next lemma proves the second inclusion.

2727 **Lemma E.5.** *Given the feasible region \mathcal{F} , for any $w \in [0, 1]^d \setminus \{0, 1\}^d$ we have $\Psi(w) \notin \text{Extr}_{\mathcal{R}} \mathcal{F}$.*

2729 *Proof.* Let $w = (w_1, \dots, w_d) \in [0, 1]^d \setminus \{0, 1\}^d$ be a non-vertex point of the hypercube $[0, 1]^d$,
 2730 and let $\Lambda := \Psi(w)$ be the image of w by the map Ψ . Denote by \mathcal{A} the set of indices corresponding
 2731 to the active constraints for Λ , i.e.,

$$\mathcal{A} := \underbrace{\{k \in [d] : \lambda_k = 0\}}_{:= \mathcal{A}_1} \cup \underbrace{\{k \in [d] : \lambda_k (1 + (M\Lambda)_k) = 1\}}_{:= \mathcal{A}_2}. \quad (77)$$

2736 Define the following functions:
 2737

$$f_k(x) := \begin{cases} \phi_k^1(x) := -x_k, & \text{if } k \in \mathcal{A}_1 \\ \phi_k^2(x) := x_k (1 + (Mx)_k) - 1, & \text{if } k \in \mathcal{A}_2 \end{cases}, \quad (78)$$

2740 for every $k \in \mathcal{A}$ (with ϕ_k^1 and ϕ_k^2 are defined in a similar way for every $k \in [d]$), in such a way that
 2741 the feasible region \mathcal{F} can be re-written as follows:

$$\mathcal{F} = \{x \in \mathbb{R}^d : \phi_k^1(x) \leq 0, \phi_k^2(x) \leq 0 \text{ for all } k \in [d]\}. \quad (79)$$

2743 The functions $(f_k)_{k \in \mathcal{A}}$ are differentiable and we have:
 2744

$$\nabla f_k(x) := \begin{cases} -e_k, & \text{if } k \in \mathcal{A}_1 \\ (1 + (Mx)_k)e_k + \lambda_k M_{k, \cdot} & \text{if } k \in \mathcal{A}_2 \end{cases}, \quad (80)$$

2749 where $(e_k)_{k \in [d]}$ denotes the canonical basis of the \mathbb{R}^d , i.e., e_k is the vector with the k -th entry equals
 2750 1 and all other entries equal 0, and $M_{k, \cdot}$ denotes the column vector of \mathbb{R}^d whose i -th entry is $M_{k,i}$.
 2751 Notice that since $w \notin \{0, 1\}^d$, then there exists at least one index $i_0 \in [d]$ such that $i_0 \notin \mathcal{A}$. Hence
 2752 the vector space $E := \text{Span}(\{\nabla f_k(\Lambda)\}_{k \in \mathcal{A}})$ has dimension less or equal than $d - 1$, then there
 2753 exists a non-zero vector $v \neq 0$ in the orthogonal complement of the to this subspace, i.e., $v \in E$.

2754 We prove that for sufficiently small t , $\Lambda \pm tv \in \mathcal{F}$. Let $k \in \mathcal{A}_1$. We have:

$$2755 \quad 2756 \quad \phi_k^1(\Lambda \pm tv) = -(\lambda_k \pm tv_k), \quad (81)$$

2757 and since $v \in E$, we have $\nabla f_k(\Lambda) \cdot v = 0$, which yields $v_k = 0$ using (80), and since $k \in \mathcal{A}_1$ we
2758 have $\lambda_k = 0$. This gives: $\phi_k^1(\Lambda \pm tv) = 0$, in particular:

$$2760 \quad \forall t > 0, \quad \phi_k^1(\Lambda \pm tv) \leq 0. \quad (82)$$

2761 Besides, since $\phi_k^2(\Lambda) = -1 < 0$ and the map ϕ_k^2 is continuous on \mathbb{R}^d , there exists $\varepsilon_1^k > 0$ such that:

$$2763 \quad \forall t \in (0, \varepsilon_1^k), \quad \phi_k^2(\Lambda \pm tv) \leq 0. \quad (83)$$

2764 Now, fix $k \in \mathcal{A}_2$. We have:

$$2766 \quad \phi_k^2(\Lambda \pm tv) = (\lambda_k \pm tv_k)(1 + (M\Lambda)_k \pm t(Mv)_k) - 1. \quad (84)$$

2767 Since this is a polynomial function of degree at most 2, we can identify the first two coefficients
2768 using *Taylor's theorem* as follows:

$$2770 \quad \phi_k^2(\Lambda \pm tv) = f_k(\Lambda) \pm t\nabla f_k(\Lambda) \cdot v + t^2 v_k(Mv)_k. \quad (85)$$

2771 We have $f_k(\Lambda) = 0$ and by construction of the vector v , $\nabla f_k(\Lambda) \cdot v = 0$. Hence, $\phi_k^2(\Lambda \pm tv) =$
2772 $t^2 v_k(Mv)_k$. Using again (80), the condition $\nabla f_k(\Lambda) \cdot v = 0$ becomes:

$$2774 \quad (1 + (M\Lambda)_k)v_k + \lambda_k(Mv)_k = 0, \quad (86)$$

2775 and since $k \in \mathcal{A}_2$, $\lambda_k > 0$ and $1 + (M\Lambda)_k > 0$, hence:

$$2777 \quad 2778 \quad v_k(Mv)_k = -\frac{\lambda_k}{1 + (M\Lambda)_k} (Mv)_k^2 \leq 0. \quad (87)$$

2779 Also, since $\phi_k^1(\Lambda) < 0$ and the map ϕ_k^1 is continuous on \mathbb{R}^d , there exists $\varepsilon_2^k > 0$ such that:

$$2781 \quad \forall t \in (0, \varepsilon_2^k), \quad \phi_k^1(\Lambda \pm tv) \leq 0. \quad (88)$$

2783 And finally, consider an index $k \in [d] \setminus \mathcal{A}$. By definition of \mathcal{A} , $\phi_k^1(\Lambda) < 0$ and $\phi_k^2(\Lambda) < 0$, so by
2784 the continuity of ϕ_k^1 and ϕ_k^2 , there exists $\varepsilon_3^k > 0$ such that:

$$2785 \quad \forall t \in (0, \varepsilon_3^k), \quad \phi_k^1(\Lambda) \leq 0 \text{ and } \phi_k^2(\Lambda) \leq 0. \quad (89)$$

2787 Combining all the previous results we have:

$$2788 \quad 2789 \quad \forall t \in (0, \varepsilon), \quad \phi_k^1(\Lambda) \leq 0 \text{ and } \phi_k^2(\Lambda) \leq 0, \quad (90)$$

2790 where

$$2791 \quad 2792 \quad \varepsilon := \min \left(\min_{k \in \mathcal{A}_1} \varepsilon_1^k, \min_{k \in \mathcal{A}_2} \varepsilon_2^k, \min_{k \in [d] \setminus \mathcal{A}} \varepsilon_3^k \right) > 0.$$

2793 Using Equation (79), this implies:

$$2795 \quad \forall t \in (0, \varepsilon), \quad \Lambda \pm tv \in \mathcal{F}. \quad (91)$$

2796 Writing $\Lambda = \frac{(\Lambda + \varepsilon/2v) + (\Lambda - \varepsilon/2v)}{2}$, we conclude that $\Lambda \notin \text{Extr}_{\mathcal{R}} \mathcal{F}$. This achieves the proof. \square

2800 E.4 OMITTED PROOFS IN SECTION 4.2

2802 We start with a first lemma to show that the global maximizers of problem (\mathcal{P}_d) from (37) cannot
2803 be in the interior region of \mathcal{F} .

2804 **Lemma E.6** (Sub-optimality in the interior region $R_{\mathcal{F}}$ of \mathcal{F}). *For any point $p \in R_{\mathcal{F}}$, there exists
2805 $q \in R_{\mathcal{F}}$ such that*

$$2806 \quad \langle p \mid \mathbf{a} \rangle < \langle q \mid \mathbf{a} \rangle,$$

2807 *that is, the global maximizers of problem (\mathcal{P}_d) do not lie in the interior region $R_{\mathcal{F}}$ of \mathcal{F} .*

2808 *Proof of Lemma E.6.* Let $p \in R_{\mathcal{F}}$ be some feasible point in the interior region of \mathcal{F} . Recall that
 2809 according to Lemma D.7 (property 3), the interior region $R_{\mathcal{F}}$ is exactly the (topological) interior of
 2810 \mathcal{F} , that is, $R_{\mathcal{F}} = \text{int } \mathcal{F}$. Hence, as $p \in \text{int } \mathcal{F}$ there exists some positive radius $r > 0$ such that the
 2811 open ball $B(p, r) \subseteq \mathcal{F}$ ²⁵ is still included in the feasible region. Then, take $q = p + \frac{r}{2} \cdot \frac{\mathbf{a}}{\|\mathbf{a}\|_2}$ so that
 2812 $\|p - q\|_2 < r$ thus $q \in \mathcal{F}$ is still a feasible point and moreover
 2813

$$2814 \langle q | \mathbf{a} \rangle = \left\langle p + \frac{r}{2\|\mathbf{a}\|_2} \mathbf{a} | \mathbf{a} \right\rangle = \langle p | \mathbf{a} \rangle + \underbrace{\frac{r\|\mathbf{a}\|_2}{2}}_{>0} > \langle p | \mathbf{a} \rangle,$$

$$2815$$

$$2816$$

2817 as desired since $r > 0$ and $\|\mathbf{a}\|_2 > 0$. Thus, the point p cannot be a global maximizer of problem
 2818 (\mathcal{P}_d). This achieves the proof of this lemma. \square
 2819

2820 Now we give the proof of the main result.
 2821

2822 **Theorem 4.4** (Global Maximizers of Problem (\mathcal{P}_d)). *The set X^* of the global maximizers of prob-
 2823 lem (\mathcal{P}_d) as defined in (1) satisfies*

$$2824 X^* \subseteq \left\{ \Psi(w) : w \in \{0, 1\}^d \right\}, \quad (92)$$

$$2825$$

2826 *that is, the global maximizers of (\mathcal{P}_d) must be some points p of the feasible region \mathcal{F} which are
 2827 mapped (through the bijection Ψ^{-1}) to the vertices of the unit hypercube $[0, 1]^d$.*

2828 So as to give a high-level overview of the proof, we start by a brief proof sketch.
 2829

2830 *Proof (Sketch).* The proof of (92) is the culmination of several intermediate technical results (Lem-
 2831 mas D.10 to D.12) combined with previous results on the geometry of the feasible regions (Defini-
 2832 tions D.4, D.5 and D.8 and Lemmas D.6 and D.7) and is based on an induction on “the number of
 2833 tight constraints” in problem (1).
 2834

2835 The proofs starts by Lemma E.6 showing that any points $p \in R_{\mathcal{F}}$, the *interior region* of \mathcal{F} (see Def-
 2836 inition D.5) is necessarily sub-optimal. This establishes the base case. Then, for the inductive step,
 2837 starting at some point $p \in \mathcal{F}$ with at least one degree of freedom (see Definition D.8), we show
 2838 thanks to Lemma D.12 that there exists some point $p' \in \mathcal{F}$ having at least one more degree of
 2839 freedom than p and such that, either

- 2840 • p' has the same objective value as p , i.e., $\langle \mathbf{a} | p \rangle = \langle \mathbf{a} | p' \rangle$,
 2841
- 2842 • or we have $\langle \mathbf{a} | p \rangle < \langle \mathbf{a} | p' \rangle$ establishing the sub-optimality of p regarding the objective
 2843 value.

2844 In the former case, we can apply the inductive hypothesis to conclude. Overall, our proof strategy
 2845 can be summarized as follows: given $p \in \mathcal{F}$ with at least one degree of freedom, we construct a
 2846 sequence $p = p_0, \dots, p_\ell$ of feasible points such that
 2847

$$\langle \mathbf{a} | p_0 \rangle = \dots = \langle \mathbf{a} | p_{\ell-1} \rangle < \langle \mathbf{a} | p_\ell \rangle.$$

2848 We provide below a picture (Figure 4) explaining the construction of this sequence. This construc-
 2849 tion is permitted thanks to the technical lemma Lemma D.12. Given a point $p \in \mathcal{F}$ with at least
 2850 one degree of freedom (e.g., being in the middle of one of the curved edges of \mathcal{F} as in Figure 4),
 2851 we can find a closed ball $\overline{B}(p, \rho)$ with $\rho > 0$ such that its intersection with the intersection of all
 2852 closed halfspaces associated to each of the tight constraints and “directed towards the region \mathcal{F} ” is
 2853 non-empty and included in the feasible set.
 2854

2855
 2856
 2857
 2858
 2859
 2860
 2861 ²⁵The distance used here is the standard euclidean distance, induced by the 2-norm which we denote by
 $\|\cdot\|_2$.

Figure 4: The technical result: Lemma D.12.

Moreover, if we consider the affine hyperplane induced by the objective function which goes through point p , i.e.,

$$H := \{x \in \mathbb{R}^d : \langle \mathbf{a} | x \rangle = \langle \mathbf{a} | p \rangle\},$$

then to prove the sub-optimality of p , it remains to find some direction $v \in \mathbb{R}^d$ such that $(p+v) \in \mathcal{F}$ while $\langle \mathbf{a} | v \rangle > 0$. This can be done thanks to Lemmas D.2 and D.11. For instance, a quick inspection of Figure 4 shows that following the red segment inside the ball $\overline{B}(p, \rho)$ is enough to prove the sub-optimality of p . \square

Proof of Theorem 4.4. Let X^* be the set of the global maximizers of problem (\mathcal{P}_d) and let v^* be the optimal value of this problem. To show the above theorem, we proceed by strong backward induction on the number of degree of freedom of the components of \mathcal{F} . More precisely, we show that the hypothesis (H_k) : “for all $I \in \{-1, 0, 1\}^d$ with $|\deg(I)| = k$ then $\mathcal{C}_I \cap X^* = \emptyset$, i.e., for any $p \in \mathcal{C}_I$, we have $\langle p | \mathbf{a} \rangle < v^*$ (so that p is a sub-optimal feasible point)” holds for all $k \in [d] = \{1, 2, \dots, d\}$.

For the base case $k = d$, we know that there is a unique component of \mathcal{F} which has exactly d degrees of freedom and this component is the *interior region* $R_{\mathcal{F}}$ of \mathcal{F} for which $I = (-1, \dots, -1) \in \mathbb{R}^d$. Moreover, using Lemma E.6 we know that any point $p \in R_{\mathcal{F}}$ there exists another feasible point $q \in R_{\mathcal{F}}$ such that $\langle p | \mathbf{a} \rangle < \langle q | \mathbf{a} \rangle$ and since q is feasible we obtain $\langle q | \mathbf{a} \rangle \leq v^*$ so

$$\langle p | \mathbf{a} \rangle < v^*, \quad (93)$$

which means the point p is sub-optimal. As inequality (93) holds for any feasible point p in the interior region $C_{(-1, \dots, -1)}$ of \mathcal{F} , we deduce that the hypothesis (H_d) holds for the unique component of degree d of \mathcal{F} .

Now, assume the hypothesis (H_ℓ) holds for all $\ell \in [k+1..d]$, that is, for any such integer ℓ and any $I \in \{-1, 0, 1\}^d$ of degree ℓ , the component \mathcal{C}_I only contains sub-optimal points. For the inductive step, let $I = (i_1, \dots, i_d) \in \{-1, 0, 1\}^d$ be a constraint index such that $|\deg(I)| = k$, we define

$$I_{\text{free}} := \{\ell \in [d] : i_\ell = -1\},$$

and

$$J := \{j \in [d] : i_j \neq -1\} = [d] \setminus I_{\text{free}}.$$

Then let $p \in \mathcal{C}_I$, since this point has at least one degree of freedom, we can apply Lemma D.12 thus, there exists some positive radius $\rho > 0$ such that for any point $y \in B(p, \rho)$, if

$$y \in \bigcap_{\substack{\ell=1 \\ i_\ell \in \{0, 1\}}}^d H_\ell^{i_\ell, +}(p),$$

then $y \in \mathcal{F}$ and moreover, y has at least the same degrees of freedom p has. In particular, this implies that the intersection of the affine supporting hyperplanes $H_\ell^{i_\ell,+}(p)$ for all $\ell \in J$, which is non-empty as it contains p satisfies

$$B(p, \rho) \cap \left(\bigcap_{\ell \in J} H_\ell^{i_\ell}(p) \right) \subseteq \mathcal{F}.$$

Moreover, by Lemma D.10 if we denote

$$A := \bigcap_{\ell \in J} H_\ell^{i_\ell}(p),$$

this affine subspace of \mathbb{R}^d then $p \in A$ and $\dim A \geq d - |J| = |\deg(I)|$. Hence, we can extract from A another affine subspace, say B , whose dimension is exactly $|\deg(I)|$. Additionally, since $p \in B$ and p is the center of the non-empty open ball $B(p, \rho)$ then let $\mathcal{C} := B \cap B(p, \rho) \subseteq \mathcal{F}$ be the intersection between this affine subspace and the open ball. Notice that up to a invertible linear transformation (i.e., change of basis) \mathcal{C} is a open disk of dimension $|\deg(I)|^{26}$. Besides, let us consider the affine hyperplane $H_{\mathbf{a}}^\perp(p)$ orthogonal to the vector \mathbf{a} which goes through point p , that is,

$$H_{\mathbf{a}}^\perp(p) := \{x \in \mathbb{R}^d : \langle x | \mathbf{a} \rangle = \langle p | \mathbf{a} \rangle\}.$$

Note that the points $x \in H_{\mathbf{a}}^\perp(p) \cap \mathcal{F}$ are all feasible and all have the same objective value than p (which is $\langle p | \mathbf{a} \rangle$). Now, we distinguish two cases:

- if the affine subspace B is not included in $H_{\mathbf{a}}^\perp(p)$ this means that we can find some non-zero vector $v \in (B - p)$ such that the line $(\ell) : p + tv$ for $t \in \mathbb{R}$ only intersects $H_{\mathbf{a}}^\perp(p)$ at point p , that is, $\langle v | \mathbf{a} \rangle \neq 0$. Hence, since $\mathcal{C} \cap (\ell) = (\ell) \cap B(p, \rho)$ is a diameter of the open ball $B(p, \rho)$ then there exists some $\varepsilon > 0$ such that the closed segment $[p - \varepsilon v, p + \varepsilon v] \subseteq \mathcal{C} \cap (\ell)$ hence, without loss of generality, we may assume $\langle v | \mathbf{a} \rangle > 0$ thus, since $p + \varepsilon v$ is both included in $B(p, \rho)$ and in the affine subspace B so it is a feasible point and its objective value is

$$\langle p + \varepsilon v | \mathbf{a} \rangle = \langle p | \mathbf{a} \rangle + \varepsilon \langle v | \mathbf{a} \rangle > \langle p | \mathbf{a} \rangle,$$

which implies that the point p is sub-optimal.

- Otherwise, if the affine subspace B is totally included in $H_{\mathbf{a}}^\perp(p)$ then it is also the case for \mathcal{C} and again, we distinguish two cases

- if there exists some point $y \in \mathcal{C}$ such that $y \notin \bigcap_{j \in J} \partial(\text{epi } g_j^{i_j})$ then, if we denote by $I' = (i'_1, \dots, i'_d)$ the constraint index of y , we know by Lemma D.12 and since $y \in B(p, \rho) \cap \mathcal{F}$ that y has at least the same degrees of freedom that p so

$$I_{\text{free}} \subseteq I'_{\text{free}} := \{j \in [d] : i'_j = -1\},$$

and, if we have $I_{\text{free}} = I'_{\text{free}}$ then we would have $J' := \{j \in [d] : i'_j \in \{0, 1\}\} = J$ hence by Lemma D.7 (property 4)

$$y \in \bigcap_{j \in J} \partial(\text{epi } g_j^{i_j}),$$

which is not possible. Thus, necessarily, the point y must have at least one more degree of freedom than p , i.e., $|\deg(I')| > |\deg(I)|$. Next, as y and p belong to the same affine hyperplane $H_{\mathbf{a}}^\perp(p)$ we have $\langle y | \mathbf{a} \rangle = \langle p | \mathbf{a} \rangle$ and, using the induction hypothesis we conclude that

$$\langle p | \mathbf{a} \rangle = \langle y | \mathbf{a} \rangle < v^*,$$

so p is again, sub-optimal.

²⁶For examples, if $|\deg(I)| = 1$ then \mathcal{C} would be a diameter of $B(p, \rho)$, if $|\deg(I)| = 2$ then \mathcal{C} would be a 2-dimensional (open) disk included in $B(p, \rho)$ and so on...

2970 – Otherwise, assume the intersection of B with the open ball $B(p, \rho)$ is included in
 2971 $\bigcap_{j \in J} \partial(\text{epi } g_j^{i_j})$. Then we first show that the affine subspace B satisfies
 2972

$$2974 \quad B \subseteq \bigcap_{j \in J} \partial(\text{epi } g_j^{i_j}).$$

2976 To do so, for any vector $v \in (B - p)$ there exists some $\varepsilon > 0$ such that the point
 2977 $(p + \varepsilon v) \in \mathcal{C} = B(p, \rho) \cap B$ and due to the symmetry of the open ball we deduce
 2978 that we also have $(p - \varepsilon v) \in \mathcal{C}$. Hence the segment $[p - \varepsilon v, p + \varepsilon v]$ is included in
 2979 $B(p, \rho) \cap B$ (it is a portion of a diameter of $B(p, \rho)$) so it is included in every $\partial(\text{epi } g_j^{i_j})$
 2980 for $j \in J$ by assumption thus, according to Lemma D.2 (property 2, “converse” part)
 2981 we deduce that the whole line $(\ell_v): p + tv, t \in \mathbb{R}$ is included in every hypersurface
 2982 $\partial(\text{epi } g_j^{i_j})$ for $j \in J$ and because this holds for all vector $v \in (B - p)$, we obtain the
 2983 desired inclusion, $B \subseteq \bigcap_{j \in J} \partial(\text{epi } g_j^{i_j})$.
 2984

2985 From here, we now use Lemma D.11 since $J = \{j \in [d] : i_j \in \{0, 1\}\}$ and $\dim B =$
 2986 $|\text{deg}(I)| = |I_{\text{free}}|$. Hence, we obtain that $B = p + \text{Vect}_{\mathbb{R}}((e_i)_{i \in I_{\text{free}}})$ and $I_{\text{free}} \neq \emptyset$
 2987 but, as we assume in this case and the previous one that we have $B \subseteq H_{\mathbf{a}}^{\perp}(p)$ then
 2988 $H_{\mathbf{a}}^{\perp}(p) - p$ contains the basis vector $(e_i)_{i \in I_{\text{free}}}$ so by definition we obtain for any
 2989 $i \in I_{\text{free}}$

$$2990 \quad \langle e_i | \mathbf{a} \rangle = a_i = 0,$$

2991 which is absurd since all the coordinates of the vector \mathbf{a} are non-zero (see for instance
 2992 the definition of the optimization problem (\mathcal{P}_d) in (1)). Therefore, we conclude that
 2993 this case is not possible hence, the intersection of B with the open ball $B(p, \rho)$, that
 2994 is the open disk \mathcal{C} , cannot be fully included in $\bigcap_{j \in J} \partial(\text{epi } g_j^{i_j})$. Thus only the previous
 2995 case can happen and we have showed that the point p was sub-optimal.
 2996

2997 Thus in all the cases, when some point $p \in \mathcal{F}$ belongs to a component of the feasible region with
 2998 exactly k degrees of freedom, we have shown that it is always sub-optimal. Hence, the hypothesis
 2999 (H_k) holds and by strong backward induction, we conclude that the hypothesis (H_k) holds for all
 3000 integer $k \in [1 \dots d]$. Thus, all points $p \in \mathcal{F}$ having one or more degree of freedom are sub-optimal
 3001 which shows that the set of the global maximizers X^* of problem (\mathcal{P}_d) must be included in the set
 3002 of feasible points which have no degree of freedom, that is to say,

$$3003 \quad X^* \subseteq \left\{ \mathcal{E}_I : I \in \{0, 1\}^d \right\}.$$

3005 This achieves the proof of the theorem. \square

3006 E.5 OMITTED PROOFS IN APPENDIX I

3008 **Lemma I.1.** *For any positive integer $d \geq 2$, there exists a strictly upper triangular $\mathbb{R}^{d \times d}$ matrix M
 3009 with non-negative entries and a vector $\mathbf{a} \in \mathbb{R}_+^d$ such that problem (\mathcal{P}_d) admits at least two solutions
 3010 in \mathbb{R}_+^d .*

3012 *Proof of Lemma I.1.* Fix $d \geq 0$. We construct a counter-example to the uniqueness of the global
 3013 maximizers to the problem (\mathcal{P}_d) . For that, we consider the instance of the problem (1) given by the
 3014 matrix M and the vector \mathbf{a} defined as follows:

$$3016 \quad M = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \end{pmatrix} \in \mathbb{R}^{d \times d} \quad (94)$$

$$3020 \quad \text{and } \mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^d. \quad (95)$$

3024 In this case, the problem (\mathcal{P}_d) becomes equivalent to:
 3025

$$3026 \quad (\mathcal{P}_d): \quad \text{maximize } F(\Lambda) := 2\lambda_1 + \lambda_2 + \cdots + \lambda_d$$

$$3027 \quad \text{subject to} \quad \begin{cases} 0 \leq \lambda_1 (1 + \lambda_d) \leq 1 \\ 0 \leq \lambda_2 \leq 1 \\ \vdots \\ 0 \leq \lambda_d \leq 1 \end{cases} \quad (96)$$

3032 First, we prove that the optimal value of this problem is d . For that, notice that the first bilinear
 3033 constraint implies that $\lambda_1 \leq \frac{1}{1+\lambda_d}$, which implies that for all feasible point $\Lambda \in \mathcal{F}$, we have:
 3034

$$3035 \quad F(\Lambda) \leq \frac{2}{1+\lambda_d} + \lambda_d + \lambda_2 + \cdots + \lambda_{d-1} \quad (97)$$

$$3036 \quad \leq \underbrace{\frac{2}{1+\lambda_d} + \lambda_d}_{:= f(\lambda_d)} + (d-2), \quad (98)$$

3041 where the last inequality follows from the constraints $\lambda_i \leq 1$ for $i \in [2..d-1]$. Notice that:
 3042

$$3043 \quad f'(\lambda_d) = 1 - \frac{2}{(1+\lambda_d)^2} \quad (99)$$

$$3044 \quad f''(\lambda_d) = \frac{4}{(1+\lambda_d)^3} \geq 0, \quad (100)$$

3047 which implies that f is strictly convex on $[0, 1]$ and hence it can only attain its maximum in one of
 3048 the extreme points of the segment $[0, 1]$. Since $f(0) = f(1) = 2$, it follows that $f(\lambda_d) \leq 2$ and
 3049 hence $F(\Lambda) \leq d$. Furthermore, notice that

$$3050 \quad F(\Lambda_1^*) = F(\Lambda_2^*) = d, \quad (101)$$

3052 where

$$3053 \quad \Lambda_1^* := \begin{pmatrix} 1/2 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \quad \text{and} \quad \Lambda_2^* := \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 0 \end{pmatrix},$$

3057 are both feasible points of the problem (\mathcal{P}_d) . Hence both points are global maximizers. This
 3058 achieves the proof. \square

3059 **Lemma I.2.** *For any 2×2 strictly upper triangular matrix M with non-negative entries, if $\mathbf{a} =$
 3060 $(1, 1)^\top$ then the problem (\mathcal{P}_2) admits a unique global maximizer.*

3062 *Proof of Lemma I.2.* Let M be a 2×2 strictly upper triangular matrix with non-negative entries,
 3063 then there exists some real number $m \geq 0$ such that

$$3064 \quad M = \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix}. \quad (102)$$

3067 In this case where $\mathbf{a} = (1, 1)^\top$, the problem (\mathcal{P}_2) can be written as:
 3068

$$3069 \quad (\mathcal{P}_2): \quad \text{maximize } F(\Lambda) := \lambda_1 + \lambda_2$$

$$3070 \quad \text{subject to} \quad \begin{cases} 0 \leq \lambda_1 (1 + m\lambda_2) \leq 1 \\ 0 \leq \lambda_2 \leq 1 \end{cases} \quad (103)$$

3073 In the case where $m = 0$, it is clear that the problem (\mathcal{P}_2) admits one unique global maximizer,
 3074 which is given by $(\lambda_1, \lambda_2) = (1, 1)$. Now suppose that $m > 0$.

3075 It follows from the first bilinear constraint that for all Λ in the feasible region \mathcal{F} , we have:
 3076

$$3077 \quad F(\Lambda) \leq f(\lambda_2) := \lambda_2 + \frac{1}{1 + m\lambda_2}. \quad (104)$$

3078 We compute the two first derivatives of f :

$$3080 \quad f'(\lambda_2) = 1 - \frac{m}{(1 + m\lambda_2)^2} \quad (105)$$

$$3082 \quad f''(\lambda_2) = \frac{m^2}{(1 + m\lambda_2)^3}. \quad (106)$$

3084 Since $f''(\lambda_2) > 0$ for every $\lambda_2 \in [0, 1]$, it follows that f is a strictly convex function on $[0, 1]$ and
3085 hence it can only achieve its maximum in the extreme points of the interval $[0, 1]$, i.e., 0 and 1. We
3086 have:

$$3088 \quad f(0) = 1, \quad f(1) = 1 + \frac{1}{1 + m}. \quad (107)$$

3089 Since $f(0) < f(1)$, the function f admits a unique maximizer given by $\lambda_2 = 1$.

3091 Now, notice that $(\frac{1}{1+m}, 1)$ is a feasible point and

$$3093 \quad F\left(\left(\frac{1}{1+m}, 1\right)\right) = 1 + \frac{1}{1 + m}. \quad (108)$$

3096 Besides, if Λ is a feasible point such that $\lambda_2 < \frac{1}{1+m}$, then $F(\Lambda) \leq f(\lambda_2) < 1 + \frac{1}{1+m}$, so Λ is
3097 not a maximizer of (\mathcal{P}_2) . And if Λ is a feasible point such that $\lambda_1 < 1$ and $\lambda_2 = \frac{1}{1+m}$, then
3098 $F(\Lambda) < 1 + \frac{1}{1+m}$.

3100 Hence, the only global maximizer of (\mathcal{P}_2) is $(\frac{1}{1+m}, 1)$. \square

3102 Now, we prove the correctness of the claim made in Appendix I, that is to say, the instance of (\mathcal{P}_3)
3103 given by:

$$3104 \quad M = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } \mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad (109)$$

3107 has the following two maximizers:

$$3109 \quad \Lambda_1^* = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ and } \Lambda_2^* = \begin{pmatrix} 1/2 \\ 1/2 \\ 1 \end{pmatrix}. \quad (110)$$

3113 In this case, the problem (\mathcal{P}_3) becomes equivalent to:

$$3114 \quad (\mathcal{P}_3): \quad \text{maximize } F(\Lambda) := \lambda_1 + \lambda_2 + \lambda_3$$

$$3116 \quad \text{subject to } \begin{cases} 0 \leq \lambda_1(1 + 2\lambda_2) \leq 1 \\ 0 \leq \lambda_2(1 + \lambda_3) \leq 1 \\ 0 \leq \lambda_3 \leq 1 \end{cases}. \quad (111)$$

3120 From the first bilinear constraint, it follows that for all feasible $\Lambda \in \mathcal{F}$, $\lambda_1 \leq \frac{1}{1+2\lambda_2}$. Hence, for all
3121 $\Lambda \in \mathcal{F}$,

$$3123 \quad F(\Lambda) \leq \underbrace{\frac{1}{1+2\lambda_2}}_{:=g(\lambda_2)} + \lambda_2 + \lambda_3. \quad (112)$$

3126 We have:

$$3128 \quad g'(\lambda_2) = 1 - \frac{2}{(1 + 2\lambda_2)^2} \quad (113)$$

$$3130 \quad g''(\lambda_2) = \frac{8}{(1 + 2\lambda_2)^3} \geq 0, \quad (114)$$

hence g is strictly convex on $[0, \frac{1}{1+\lambda_3}]$, so it can attain its maximum only in an extreme point of $[0, \frac{1}{1+\lambda_3}]$. We have:

$$g(0) = 1, \quad g\left(\frac{1}{1+\lambda_3}\right) = \frac{1}{1+\frac{2}{1+\lambda_3}} + \frac{1}{1+\lambda_3} \quad (115)$$

$$= \frac{1+\lambda_3}{3+\lambda_3} + \frac{1}{1+\lambda_3} \quad (116)$$

$$= 1 - \frac{2}{3+\lambda_3} + \frac{1}{1+\lambda_3}. \quad (117)$$

Hence

$$g(0) + \lambda_3 = 1 + \lambda_3 \leq 2 \quad (118)$$

$$(119)$$

and

$$g\left(\frac{1}{1+\lambda_3}\right) + \lambda_3 = \underbrace{1 - \frac{2}{3+\lambda_3} + \frac{1}{1+\lambda_3}}_{:=h(\lambda_3)} + \lambda_3. \quad (120)$$

We have:

$$h'(\lambda_3) = \frac{2}{(3+\lambda_3)^2} - \frac{1}{(1+\lambda_3)^2} + 1 \quad (121)$$

$$h''(\lambda_3) = -\frac{4}{(3+\lambda_3)^3} + \frac{2}{(1+\lambda_3)^3}. \quad (122)$$

We have for all $\lambda_3 \in [0, 1]$,

$$\frac{2}{(1+\lambda_3)^3} \geq \frac{4}{(3+\lambda_3)^3} \quad (123)$$

$$\iff (3+\lambda_3)^3 \geq 2(1+\lambda_3)^3 \quad (124)$$

$$\iff \left(\frac{3+\lambda_3}{1+\lambda_3}\right)^3 \geq 2 \quad (125)$$

$$\iff \left(1 + \frac{2}{1+\lambda_3}\right)^3 \geq 2, \quad (126)$$

which clearly holds since for all λ_3 , $1 + \frac{2}{1+\lambda_3} \geq 2$, so $\left(1 + \frac{2}{1+\lambda_3}\right)^3 \geq 8 \geq 2$. This implies that h is strictly convex on $[0, 1]$, and given that $h(0) = \frac{1}{3}$ and $h(1) = 2$, it follows that:

$$g\left(\frac{1}{1+\lambda_3}\right) + \lambda_3 \leq 2. \quad (127)$$

Thus, for all feasible $\Lambda \in \mathcal{F}$, we have $F(\Lambda) \leq 2$. Furthermore, it is clear that Λ_1^* and Λ_2^* defined by:

$$\Lambda_1^* := \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ and } \Lambda_2^* := \begin{pmatrix} 1/2 \\ 1/2 \\ 1 \end{pmatrix} \quad (128)$$

are both feasible points of (\mathcal{P}_3) and are such that:

$$F(\Lambda_1^*) = F(\Lambda_2^*) = 2, \quad (129)$$

hence 2 is the maximal value of (\mathcal{P}_3) and both Λ_1^* and Λ_2^* are global maximizers. This concludes the proof of the claim.

3186 **Theorem I.3** (A Sufficient Condition for Uniqueness). *For any positive integer d , if the matrix M
 3187 is strictly upper triangular with non-negative entries and satisfies, for all $k \in [d]$*

$$3188 \quad \sum_{\substack{i=1 \\ i < k}}^d M_{i,k} < 1, \quad (130)$$

3192 *then with the vector $\mathbf{a} = (1, \dots, 1)^\top \in \mathbb{R}^d$ the problem (\mathcal{P}_d) admits a unique global maximizer.*

3194 *Proof.* When \mathbf{a} has only one entries, the objective function to maximize is $F(\Lambda) := \sum_{i=1}^d \lambda_i$.

3196 We start by stating and proving the next lemma that an optimal solution has necessarily tight in-
 3197 equalities from the right side for all the bilinear constraints.

3198 **Lemma E.7.** *Let Λ be any feasible solution to (\mathcal{P}_d) such that $\lambda_k(1 + (M\Lambda)_k) < 1$ for some
 3199 $k \in [d]$, then, under the assumptions of Theorem I.3, there exists another feasible point $\tilde{\Lambda}$ such that
 3200 $F(\tilde{\Lambda}) > F(\Lambda)$, i.e., Λ cannot be a global maximizer of the problem (\mathcal{P}_d) .*

3202 *Proof.* Fix a feasible Λ and an index $k \in [d]$ such that $\lambda_k(1 + (M\Lambda)_k) < 1$, i.e.,

$$3204 \quad \lambda_k < \frac{1}{1 + \sum_{j>k} M_{j,k} \lambda_j}, \quad (131)$$

3207 and set:

$$3208 \quad \varepsilon := \min \left(\frac{1}{1 + \sum_{j>k} M_{k,j} \lambda_j} - \lambda_k, \frac{1}{2 \left(1 + \sum_{i<k} M_{i,k} \right)} \right). \quad (132)$$

3213 By assumption we have $\varepsilon > 0$. We construct the new point $\tilde{\Lambda}$ as follows:

$$3214 \quad \tilde{\lambda}_i := \begin{cases} \frac{\lambda_i}{1 + M_{i,k} \varepsilon}, & \text{if } i < k \\ \lambda_k + \varepsilon, & \text{if } i = k \\ \lambda_i, & \text{if } i > k \end{cases}. \quad (133)$$

3218 First, we prove that $\tilde{\Lambda}$ is also a feasible solution to (\mathcal{P}_d) . It is clear that $\tilde{\lambda}_i \geq 0$ for every $i \in [d]$
 3219 (because Λ is a feasible point and $\varepsilon > 0$). The (bilinear) constraints corresponding to indices i with
 3220 $i > k$ are clearly satisfied by the new point since $\tilde{\lambda}_i = \lambda_i$ for any $j > i$. For the k -th constraint, we
 3221 have:

$$3222 \quad h_k(\tilde{\Lambda}) := \tilde{\lambda}_k \left(1 + \sum_{j>k} M_{k,j} \tilde{\lambda}_j \right) \quad (134)$$

$$3226 \quad = (\lambda_k + \varepsilon) \left(1 + \sum_{j>k} M_{k,j} \lambda_j \right) \quad (135)$$

$$3230 \quad \leq \frac{1}{1 + \sum_{j>k} M_{k,j} \lambda_j} \left(1 + \sum_{j>k} M_{k,j} \lambda_j \right) \quad (136)$$

$$3232 \quad = 1, \quad (137)$$

3234 where the inequality follows from the definition of ε as a minimum, yielding

$$3235 \quad \varepsilon \leq \frac{1}{1 + \sum_{j>k} M_{k,j} \lambda_j} - \lambda_k.$$

3238 Besides, since Λ is a feasible point, $\lambda_i \geq 0$ for every $i \in [d]$, which implies that $h_k(\tilde{\Lambda}) \geq 0$, hence
 3239 $\tilde{\Lambda}$ satisfies the k -th constraint.

3240 Now fix $i < k$. We have:

$$3241 \quad 1 + \sum_{j>i} M_{i,j} \tilde{\lambda}_j = 1 + M_{i,k} \tilde{\lambda}_k + \sum_{j>i, j \neq k} M_{i,j} \tilde{\lambda}_j \quad (138)$$

$$3242 \quad = \underbrace{1 + \sum_{j>i} M_{i,j} \lambda_j}_{:= S_i \geq 1} + M_{i,k} \varepsilon + \sum_{i < j < k} M_{i,j} \left(\frac{\lambda_j}{1 + M_{j,k} \varepsilon} - \lambda_j \right) \quad (139)$$

$$3243 \quad = S_i + M_{i,k} \varepsilon - \sum_{i < j < k} \frac{M_{i,j} \lambda_j M_{j,k} \varepsilon}{1 + M_{j,k} \varepsilon} \quad (140)$$

$$3244 \quad \leq S_i + M_{i,k} \varepsilon, \quad (141)$$

3245 where the last inequality follows from the non-positivity of the last term in (140). Now multiply by
3246 $\tilde{\lambda}_i = \lambda_i / (1 + M_{i,k} \varepsilon)$ (which is non-negative):

$$3247 \quad h_i(\tilde{\Lambda}) = \tilde{\lambda}_i \left(1 + \sum_{j>i} M_{i,j} \tilde{\lambda}_j \right) \quad (142)$$

$$3248 \quad \leq \frac{\lambda_i (S_i + M_{i,k} \varepsilon)}{1 + M_{i,k} \varepsilon} \quad (143)$$

$$3249 \quad \leq \lambda_i S_i \quad (144)$$

$$3250 \quad \leq 1, \quad (145)$$

3251 where the second inequality holds because $S_i \geq 0$, and the last inequality follows from the feasibility
3252 of Λ . Hence the point $\tilde{\Lambda}$ verifies the i -th bilinear constraint. We conclude that $\tilde{\Lambda}$ is a feasible solution
3253 to (\mathcal{P}_d) .

3254 Finally, we prove that $\tilde{\Lambda}$ has a (strictly) greater objective value than Λ , i.e.,

$$3255 \quad F(\tilde{\Lambda}) - F(\Lambda) = \sum_{i \in [d]} (\tilde{\lambda}_i - \lambda_i) > 0.$$

3256 The gain at coordinate k is:

$$3257 \quad \tilde{\lambda}_k - \lambda_k = \varepsilon. \quad (146)$$

3258 The maximum loss we can get at coordinate i with $i < k$ is:

$$3259 \quad \lambda_i - \tilde{\lambda}_i = \lambda_i \left(1 - \frac{1}{1 + M_{i,k} \varepsilon} \right) \quad (147)$$

$$3260 \quad = \frac{\lambda_i M_{i,k} \varepsilon}{1 + M_{i,k} \varepsilon} \quad (148)$$

$$3261 \quad \leq \lambda_i M_{i,k} \varepsilon. \quad (149)$$

3262 We sum the losses over $i < k$:

$$3263 \quad \sum_{i < k} (\lambda_i - \tilde{\lambda}_i) \leq \varepsilon \sum_{i < k} M_{i,k} \lambda_i \leq \varepsilon \sum_{i < k} M_{i,k}. \quad (150)$$

$$3264 \quad (151)$$

3265 Hence,

$$3266 \quad F(\tilde{\Lambda}) - F(\Lambda) = \sum_{i \in [d]} (\tilde{\lambda}_i - \lambda_i) \geq \varepsilon \left(1 - \sum_{i < k} M_{i,k} \right) > 0, \quad (152)$$

3267 where the last inequality follows from the assumption of Theorem I.3. \square

3268 Now, using Lemma E.7 implies that any optimal solution Λ^* of (\mathcal{P}_d) must verify:

$$3269 \quad \forall k \in [d], \quad \lambda_k^* \left(1 + \sum_{j=k+1}^d M_{k,j} \lambda_j^* \right) = 1. \quad (153)$$

3294 Hence (\mathcal{P}_d) admits a unique maximizer Λ^* which can be constructed by backward induction as
 3295 follows:

$$3296 \quad \lambda_d^* = 1, \quad (154)$$

3297 and for all $k < d$

$$3298 \quad \lambda_k^* = \frac{1}{1 + \sum_{j=k+1}^d M_{k,j} \lambda_j^*}. \quad (155)$$

3300 This achieves the proof of our sufficient condition for uniqueness. \square

3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347

3348 **F THE STRICTLY UPPER TRIANGULAR CASE**
 3349

3350 **F.1 CHARACTERIZATION OF THE EXTREME POINTS OF \mathcal{F}**
 3351

3352 **Theorem 4.2** (Extreme points of \mathcal{F} in the Strictly Upper Triangular Case). *For the feasible region*
 3353 *\mathcal{F} of the problem (\mathcal{P}_d) in the particular case where the matrix M is strictly upper triangular with*
 3354 *non-negative entries, we have*

3355
$$\text{Extr } \mathcal{F} = \left\{ \Psi(w) : w \in \{0, 1\}^d \right\}, \quad (156)$$

 3356

3357 *that is, the extreme points of \mathcal{F} are exactly the vertices of the hypercube $[0, 1]^d$ mapped by the*
 3358 *diffeomorphism Ψ .*

3360 *Proof of Theorem 4.2.* We first prove the first inclusion:

3362 **Lemma F.1.** *Given the feasible region \mathcal{F} , we have the inclusion*

3364
$$\left\{ \Psi(w) : w \in \{0, 1\}^d \right\} \subseteq \text{Extr } \mathcal{F}.$$

 3365

3366 *Proof of Lemma F.1.* Let $w = (w_1, \dots, w_d) \in \{0, 1\}^d$ be a vertex of the hypercube $[0, 1]^d$ and
 3367 assume, for the sake of contradiction that $\Psi(w) \in \mathcal{F}$ is not an extreme point, i.e., $\Psi(w) \notin \text{Extr } \mathcal{F}$.
 3368 Then, following Definition 3.2, there must exist $x, y \in \mathcal{F}$ with $x \neq y$ such that $p := \Psi(w) \in (x, y)$.
 3369 Since p lies in the interior of the closed segment $[x, y]$, there exists some vector $v = (v_1, \dots, v_d) \in$
 3370 $\mathbb{R}^d \setminus \{0\}$ and scalars $t_x, t_y \in \mathbb{R}^*$ such that $t_x t_y < 0$ (because x and y are on both side of p) and
 3371

3372
$$x = p + t_x v \quad \text{and} \quad y = p + t_y v. \quad (157)$$

 3373

3374 Without loss of generality, we assume $t_x > 0$ so $t_y < 0$.

3375 We first prove the following lemma.

3377 **Lemma F.2.** *If for some $i \in [d]$ we have $w_i = 0$ then $p_i = 0$ and $x_i = 0 = y_i$.*

3379 *Proof of Lemma F.2.* If $w_i = 0$ for some $i \in [d]$, we show that $v_i = 0$ and this will imply that both
 3380 $x_i = 0 = y_i$ since, as defined in (157), both $x = p + t_x v$ and $y = p + t_y v$. So assume for the sake
 3381 of contradiction that $v_i \neq 0$, and without loss of generality, we may assume $v_i > 0$. Since $t_x > 0$
 3382 and $t_x t_y < 0$, we deduce that $t_y < 0$ so $t_y v_i < 0$ thus

3383
$$y_i = p_i + t_y v_i < p_i.$$

 3384

3385 But, recall that $w_i = 0$ and since $p = \Psi(w)$, the i -th coordinate of p reads (following the definition
 3386 of Ψ from (3.6)),

3387
$$p_i \left(1 + \sum_{j=i+1}^d M_{i,j} p_j \right) = w_i = 0,$$

 3388

3389 so $p_i = 0$ since $p \in \mathcal{F} \subseteq \mathbb{R}_+^d$ and

3392
$$1 + \sum_{j=i+1}^d M_{i,j} p_j \geq 1.$$

 3393

3394 Hence, we found that $y_i < 0$ which is a contradiction since $y \in \mathcal{F}$. Finally, we conclude that we
 3395 must have $p_i = 0$ and $v_i = 0$ so $x_i = 0 = y_i$ as claimed. \square
 3396

3398 Besides, recall that $p = \Psi(w)$ thus, by definition of Ψ

3400
$$p_i \left(1 + \sum_{j=i+1}^d M_{i,j} p_j \right) = w_i,$$

 3401

3402 for all $i \in [d]$. Hence, p lies at the boundary of all the hypersurface $\partial(\text{epi } g_i^w)$, i.e.
 3403

$$3404 \quad 3405 \quad \{p\} = \bigcap_{i=1}^d \partial(\text{epi } g_i^w), \\ 3406$$

3407 where for all $i \in [d]$, the hypersurface $\partial(\text{epi } g_i^w)$ is
 3408

$$3409 \quad 3410 \quad 3411 \quad \partial(\text{epi } g_i^w) = \left\{ (x_1, \dots, x_d) : x_i = w_i \left(1 + \sum_{j=i+1}^d M_{i,j} x_j \right)^{-1} \right\}. \quad (158)$$

3412 We now proceed by strong backward induction on $i \in [d]$ to show that $x_i = p_i = y_i$ and $v_i = 0$.
 3413 For the base case $i = d$, since
 3414

$$3415 \quad \partial(\text{epi } g_d^w) = \{(x_1, \dots, x_d) : x_d = w_d\},$$

3416 then $p_d = w_d \in \{0, 1\}$. If $w_d = 0$ then using Lemma F.2 we would have directly $x_d = 0 = y_d$.
 3417 Now, if $w_d = 1$, we assume for the sake of contradiction that $v_d \neq 0$, and without loss of generality,
 3418 we may suppose $v_d > 0$. Then, since $t_x > 0$ we obtain
 3419

$$3420 \quad x_d = p_d + t_x v_d = w_d + t_x v_d = 1 + t_x v_d > 1,$$

3421 which is impossible since x would lie outside of the closed unit hypercube $[0, 1]^d$. Thus, we deduce
 3422 that $x_d = p_d = y_d$ and $v_d = 0$.
 3423

Next, suppose the hypothesis holds for all $i \in \{k+1, \dots, d\}$ for some integer $k \in [d-1]$ that is,
 $x_i = p_i = y_i$ and $v_i = 0$ for all $i \in [k+1..d]$. Then for the k -coordinate, either $w_k = 0$ in which
 3424 case Lemma F.2 allows us to conclude that $x_k = 0 = y_k$. Otherwise, if $w_k = 1$ then p belongs to
 3425

$$3426 \quad 3427 \quad 3428 \quad 3429 \quad \partial(\text{epi } g_k^w) = \left\{ (x_1, \dots, x_d) : x_k = w_k \left(1 + \sum_{j=k+1}^d M_{k,j} x_j \right)^{-1} \right\},$$

3430 Assume for the sake of contradiction that $v_k \neq 0$, and without loss of generality, we still suppose
 3431 $v_k > 0$. Then, we obtain (recall here $w_k = 1$):
 3432

$$3433 \quad x_k = p_k + t_x v_k \\ 3434 \quad = \left(1 + \sum_{j=k+1}^d M_{k,j} p_j \right)^{-1} + t_x v_k \\ 3435 \quad \stackrel{(a)}{=} w_k \left(1 + \sum_{j=k+1}^d M_{k,j} x_j \right)^{-1} + t_x v_k \\ 3436 \quad \stackrel{(b)}{>} \left(1 + \sum_{j=k+1}^d M_{k,j} p_j \right)^{-1},$$

3444 where in (a) we use the fact that $x_j = p_j$ for all $j \in [k+1..d]$ by the induction hypothesis while
 3445 in (b) we use the inequality $t_x v_k > 0$. Hence, we deduce that
 3446

$$3447 \quad 3448 \quad 3449 \quad x_k > w_k \left(1 + \sum_{j=k+1}^d M_{k,j} x_j \right)^{-1},$$

3450 from where $x \in \text{int}(\text{epi } g_k^w)$ which is not possible since by Lemma D.9 we have
 3451

$$3452 \quad 3453 \quad 3454 \quad \mathcal{F} = [0, 1]^d \setminus \bigcup_{i=1}^d \text{int}(\text{epi } g_i^1),$$

3455 and as $w_k = 1$ then $\text{epi } g_k^w = \text{epi } g_k^1$. Thus, we must have $v_k = 0$ from where $x_k = p_k = y_k$ and
 this completes the inductive step and the proof of the lemma. \square

3456 The next lemma states the second inclusion:
 3457

3458 **Lemma F.3.** *Given the feasible region \mathcal{F} , for any $w \in [0, 1]^d \setminus \{0, 1\}^d$ we have $\Psi(w) \notin \text{Extr } \mathcal{F}$.*
 3459

3460 *Proof of Lemma F.3.* Let $w = (w_1, \dots, w_d) \in [0, 1]^d \setminus \{0, 1\}^d$ then there exists some $i \in [d]$ such
 3461 that $w_i \in (0, 1)$. Our goal is to construct w^1 and w^2 in $[0, 1]^d$ such that $w^1 \neq w^2$ and $\Psi(w) \in$
 3462 $(\Psi(w^1), \Psi(w^2))$. Notice that this implies that $\Psi(w) \notin \text{Extr } \mathcal{F}$ since $\Psi(w^1), \Psi(w^2) \in \mathcal{F}$. To
 3463 simplify the notations, we introduce the three vectors $p := \Psi(w)$, $p^1 := \Psi(w^1)$ and $p^2 := \Psi(w^2)$.
 3464 More precisely, we construct w^1 and w^2 such that the following holds
 3465

$$3466 \quad p_k = (1 - w_i)p_k^1 + w_i p_k^2, \quad \text{for every } k \in [d]. \quad (159)$$

3467 For every $k > i$, we take $w_k^1 = w_k^2 = w_k \in [0, 1]$. By strong backward induction on $k \in [i+1..d]$,
 3468 we show that $p_k = p_k^1 = p_k^2$. Besides, recall that $p = \Psi(w)$ thus, by definition of Ψ
 3469

$$3470 \quad p_i \left(1 + \sum_{j=i+1}^d M_{i,j} p_j \right) = w_i, \quad (160)$$

3471 for all $i \in [d]$.
 3472

3473 For the base case $k = d$, we have $p_d = w_d$, $p_d^1 = w_d^1$ and $p_d^2 = w_d^2$. Hence, $p_d = p_d^1 = p_d^2$. Next,
 3474 suppose the hypothesis holds for all $k \in [\ell+1..d]$ for some $\ell > i$. We have
 3475

$$3476 \quad p_\ell = w_\ell \left(1 + \sum_{j=\ell+1}^d M_{\ell,j} p_j \right)^{-1} \quad (161)$$

$$3477 \quad = \begin{cases} w_\ell^1 \left(1 + \sum_{j=\ell+1}^d M_{\ell,j} p_j^1 \right)^{-1} \\ w_\ell^2 \left(1 + \sum_{j=\ell+1}^d M_{\ell,j} p_j^2 \right)^{-1} \end{cases} \quad (162)$$

$$3478 \quad = \begin{cases} p_\ell^1 \\ p_\ell^2 \end{cases}, \quad (163)$$

3479 where the second equality uses the induction hypothesis and the fact that $w_\ell^1 = w_\ell^2 = w_\ell$. This
 3480 completes the inductive step. This result ensures that
 3481

$$3482 \quad p_k = (1 - w_i)p_k^1 + w_i p_k^2, \quad \text{for every } k \in [i+1..d]. \quad (164)$$

3483 We complete the construction of the remaining coordinates of w^1 and w^2 by a backward induction.
 3484 For $k = i$, we choose
 3485

$$3486 \quad w_i^1 = 0 \quad \text{and} \quad w_i^2 = 1. \quad (165)$$

3487 Using Equation (160), we conclude that
 3488

$$3489 \quad p_i^1 = 0 \quad \text{and} \quad p_i^2 = \left(1 + \sum_{j=i+1}^d M_{i,j} p_j \right)^{-1}, \quad (166)$$

3490 and furthermore,
 3491

$$3492 \quad p_i = w_i \left(1 + \sum_{j=i+1}^d M_{i,j} p_j \right)^{-1}. \quad (167)$$

3493 This yields that our aimed property holds for $k = i$, i.e.,
 3494

$$3495 \quad p_i = (1 - w^i)p_i^1 + w^i p_i^2. \quad (168)$$

Now, suppose that $w_i^1, w_{i-1}^1, \dots, w_k^1$ and $w_i^2, w_{i-1}^2, \dots, w_k^2$ are constructed (in $[0, 1]$) for some $k > 1$. We construct the $k-1$ -th coordinates such that $w_{k-1}^1 = w_{k-1}^2$ and $p_{k-1} = (1-w_i)p_{k-1}^1 + w_i p_{k-1}^2$. This property is equivalent to

$$w_{k-1} \left(1 + \sum_{j=k}^d M_{i,j} p_j \right)^{-1} = \frac{(1-w_i)w_{k-1}^1}{\left(1 + \sum_{j=k}^d M_{i,j} p_j^1 \right)} + \frac{w_i w_{k-1}^2}{\left(1 + \sum_{j=k}^d M_{i,j} p_j^2 \right)}, \quad (169)$$

it is sufficient to take

$$w_{k-1}^1 = w_{k-1}^2 = \frac{w_{k-1} \left(1 + \sum_{j=k}^d M_{i,j} p_j \right)^{-1}}{\frac{(1-w_i)}{\left(1 + \sum_{j=k}^d M_{i,j} p_j^1 \right)} + \frac{w_i}{\left(1 + \sum_{j=k}^d M_{i,j} p_j^2 \right)}}, \quad (170)$$

Using the backward induction hypothesis we have

$$\left(1 + \sum_{j=k}^d M_{i,j} p_j \right)^{-1} = \left((1-w_i) \left[1 + \sum_{j=k}^d M_{i,j} p_j^1 \right] + w_i \left[1 + \sum_{j=k}^d M_{i,j} p_j^2 \right] \right)^{-1}. \quad (171)$$

Then, using Jensen's inequality (Lemma C.31) on the convex function $f: x \mapsto \frac{1}{x}$ using weights $(1-w_i, w_i)$ we obtain

$$\left(1 + \sum_{j=k}^d M_{i,j} p_j \right)^{-1} \stackrel{(171)}{=} \left((1-w_i) \left[1 + \sum_{j=k}^d M_{i,j} p_j^1 \right] + w_i \left[1 + \sum_{j=k}^d M_{i,j} p_j^2 \right] \right)^{-1} \quad (172)$$

$$\stackrel{\text{Lem. C.31}}{\leq} (1-w_i) \left(1 + \sum_{j=k}^d M_{i,j} p_j^1 \right)^{-1} + w_i \left(1 + \sum_{j=k}^d M_{i,j} p_j^2 \right)^{-1}, \quad (173)$$

besides $0 \leq w_{k-1} \leq 1$, thus $0 \leq w_{k-1}^1 = w_{k-1}^2 \leq w_{k-1} \leq 1$ and since $p^1 \neq p^2$ ($p_i^1 = 0$ and $p_i^2 \neq 0$), this concludes the proof. \square

Combining Lemmas F.1 and F.3, this achieves the proof of the theorem. \square

$$\begin{array}{c}
3564 \\
3565 \quad \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 4 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 2 & 3 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 0 \end{pmatrix} \\
3566 \quad \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 4 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 2 & 3 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 2 & 3 & 4 & 4 \end{pmatrix} \\
3567 \quad \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 4 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 3 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 3 & 4 & 4 \end{pmatrix} \\
3568 \quad \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 4 & 4 \end{pmatrix} \\
3569 \quad \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\end{array}$$

3570 (a) Case of a fast and a slow worker.
3571

(b) Case of equally fast workers.

3572 Figure 5: The matrices M_3^δ (left) and M_5^δ (right).
35733574

G APPLICATION TO ASYNCHRONOUS (S)GD

3575 In this part, we start by providing some examples of the “matrix of delays” as introduced in Section 5.2 and which arises during the convergence analysis of asynchronous gradient descent (AGD).
3576 This matrix, which we denote by M^δ , consists of all the coefficients $M_{i,j}$ where²⁷ for $i, j \in [0..K]$
3577 we have

3578
$$M_{i,j} = \begin{cases} 0, & \text{if } j \notin M_i, \\ \delta^j, & \text{if } j \in M_i, \end{cases}$$

3579 with, as we recall, the set M_i is defined as

3580
$$M_i := \{j \in [0..K] : j - \delta^j \leq i \leq j - 1\},$$

3581 and $\{\delta^j\}_{j \geq 0}$ is the sequence of delays while K is the last iterations of AGD.
35823583 Then, for completeness, we not only provide the convergence analysis of AGD (Algorithm 1) but
3584 also of its stochastic counterpart, that is, asynchronous stochastic gradient descent ASGD (Algorithm 2)
3585 which will be enough to prove Theorem 5.4. The proof follows the analysis performed
3586 in Mishchenko et al. (2022); Koloskova et al. (2022); Maranjyan et al. (2025) while we make it more
3587 general by allowing arbitrary non-negative stepsizes $\{\gamma_k\}_{k \geq 0}$ in the gradient descent step (contrary
3588 to the original version where the stepsizes are assumed to be constant). Next, we refine the choice of
3589 the $\{\gamma_k\}_{k \geq 0}$ to the best possible choice. In addition to Algorithm 2 we also recall in Algorithm 3 the
3590 pseudo-code of the recently proposed Ringmaster ASGD algorithm (Maranjyan et al., 2025) which
3591 is the first asynchronous SGD method with provably optimal *time complexity*²⁸. This new algorithm
3592 introduces a tunable threshold $R > 0$ on top of the original asynchronous SGD so as to discard the
3593 stale stochastic gradients which can be harmful for the global convergence of the method.
35943595

G.1 A FEW TOY EXAMPLES

3596 In the examples below, we provide a few *realistic* scenarios for the sequence of delays along with
3597 the associated matrix of delays M^δ for small value of K (last iteration count). The examples mentioned
3598 below are relevant in real-world scenarios as they reflect on one hand, heterogeneity among
3599 the workers (different computation time, which is often witnessed in federated learning) but also,
3600 similarity among them to account for settings where the workers are equally fast.3601 *Example G.1 (One Fast and One Slow Worker).* Here we assume to have only $n = 2$ workers, one
3602 being very fast (say worker 1) while the other (worker 2) is slow. For instance, say worker 1 sent
3603 to the server the first 4 stochastic gradients while worker 2 sent the fifth one, then worker 1 sent the
3604 four next stochastic gradients and so on. This gives rise to the Table 1 below
36053606 Table 1: Illustration of which worker sends a gradient.
3607

Iteration number	0	1	2	3	4	5	6	7	8	9
Worker index	1	1	1	1	2	1	1	1	1	2

3612 ²⁷To align with the notation of Lemmas G.9 and G.10 and theorem G.11 and not to confuse the reader, we
3613 purposely tweak the indices of this matrix to start at 0 instead of 1.
36143615 ²⁸We do not expand on the time complexity framework (Tyurin & Richtárik, 2023; Tyurin & Richtárik,
3616 2024; Tyurin, 2025) here, this framework will be slightly discussed in a subsequent paragraph.
3617

3618 which can be written concisely in the form $\mathcal{L}_W := [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2]$ after dropping the iteration
 3619 number. Based on this we can construct the associated sequence of delays
 3620

$$\mathcal{L}_\delta := [0, 0, 0, 0, 4, 1, 0, 0, 0, 4],$$

3622 since, by definition, if worker i sends a stochastic gradient to the server at iteration $k \geq 0$ then, the
 3623 delay associated to its worker in Algorithm 2 will be
 3624

$$\delta^k := k - \max \{r \in [1..k] : \mathcal{L}_W[r-1] = i\},$$

3626 where we implicitly assume here that $\max \emptyset = 0$ (the lowest non-negative integer) in order to have
 3627 $\delta^0 = 0$. We display above in Figure 5a the two matrices of delays M_3^δ and M_5^δ corresponding²⁹ to
 3628 \mathcal{L}_δ for $K = 3$ and $K = 5$.

3629 *Example G.2 (Equally Fast Workers).* In this paragraph, we assume to have $n = 5$ workers capable
 3630 of working equally fast, i.e., the workers send their stochastic gradient one after the other in a
 3631 periodic fashion (say, first worker 1, then worker 2, then worker 3, then 4, 5 and next worker 1 again
 3632 and so on). We can represent this scenario as the list $\mathcal{L}_W := [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]$ where we store
 3633 the workers' index and the corresponding sequence of delays is

$$\mathcal{L}_\delta := [0, 1, 2, 3, 4, 4, 4, 4, 4, 4].$$

3636 The matrices M_3^δ and M_5^δ corresponding to \mathcal{L}_δ for $K = 3$ and $K = 5$ are given in Figure 5b.
 3637

3638 G.2 ASSUMPTIONS

3639 G.2.1 ASSUMPTIONS FROM THE NONCONVEX WORLD

3641 We recall below the assumptions satisfied by the function f in the minimization problem (11) and the
 3642 stochastic gradients $\nabla f(x, \xi)$; these assumptions are standard in the analysis of SGD-type methods
 3643 in the nonconvex setting (Ghadimi & Lan, 2013; Bottou et al., 2018).

3644 **Assumption G.3.** Function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable, and its gradients are L -Lipschitz continuous,
 3645 i.e.,

$$\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|, \forall x, y \in \mathbb{R}^d.$$

3647 **Assumption G.4.** There exist $f^{\inf} \in \mathbb{R}$ such that $f(x) \geq f^{\inf}$ for all $x \in \mathbb{R}^d$.
 3648

3649 Based on Assumption 5.2, we define the initial sub-optimality $\Delta := f(x^0) - f^{\inf}$, where x^0 is the
 3650 starting point of optimization method.

3651 **Assumption G.5.** The stochastic gradients $\nabla f(x; \xi)$ are unbiased and have bounded variance $\sigma^2 \geq$
 3652 0. Specifically,

$$\begin{aligned} \mathbb{E}_\xi [\nabla f(x; \xi)] &= \nabla f(x), \forall x \in \mathbb{R}^d, \\ \mathbb{E}_\xi [\|\nabla f(x; \xi) - \nabla f(x)\|^2] &\leq \sigma^2, \forall x \in \mathbb{R}^d. \end{aligned}$$

3658 The following assumption is also standard in the literature but rarely explicitly stated.

3659 **Assumption G.6.** Let $x \in \mathbb{R}^d$ be a (possibly random) vector then, conditionally on x the randomness
 3660 ξ in the stochastic gradient $\nabla f(x, \xi)$ is independent from all the past.

3662 G.2.2 ADDITIONAL ASSUMPTIONS

3663 Throughout this part we consider the *universal computation model* introduced in Tyurin (2025). In
 3664 this model, each worker can have arbitrary computation dynamic and such dynamic is characterized
 3665 by a *computational power* function, as we recall below.

3666 **Assumption G.7.** For any worker $i \in [n]$, its computational power function $v_i: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is
 3667 non-negative and continuous almost everywhere.
 3668

3669
 3670
 3671

²⁹Note that the last iteration count is K but the total number of iterations is $K + 1$.

Even though we do not derive time complexities (Tyurin & Richtárik, 2023; Tyurin, 2025; Maranjyan et al., 2025) in our convergence analysis, the universal computation model is important to keep in mind since it influences directly the sequence of delays $\{\delta^k\}_{k \geq 0}$.

Following Tyurin (2025), the number of stochastic gradients received by the server from worker $i \in [n]$ on some interval of time $[T_0, T_1]$ (with $0 \leq T_0 < T_1$) is either

$$\left[\int_{T_0}^{T_1} v_i(t) dt \right] \text{ or } 1 + \left[\int_{T_0}^{T_1} v_i(t) dt \right],$$

depending on if client i was already computing a stochastic gradient before T_0 or not.

Additionally, so as to ensure our algorithms will never end prematurely due to the lack of computational power, e.g., for instance all workers crash suddenly and never get repaired, we also assume the following assumptions:

Assumption G.8. For any time $t \geq 0$, there exists some $i \in [n]$ and some $t' \geq t$ such that

$$\left[\int_t^{t'} v_i(\tau) d\tau \right] \geq 1,$$

that is, if not stop the server will receive infinitely many stochastic gradients from the workers.

G.3 ASYNCHRONOUS SGD ALGORITHMS

We consider asynchronous SGD (ASGD) whose pseudo-code is recalled below. We allow arbitrary non-negative stepsizes $\{\gamma_k\}_{k \geq 0}$ as of now. These stepsizes will be refined during the convergence analysis in Theorems G.11 and G.13.

In the three pseudo-codes below, Algorithm 2 and Procedure 2 have already been stated in Section 5 while Algorithm 3 is the pseudo-code of Ringmaster ASGD which will be discussed and analyzed in Appendices G.7 to G.9. While its convergence analysis is very similar to Algorithm 2, we show that actually Algorithm 3 is nothing else than a special case of Algorithm 2. Notably, Algorithm 3 relies on the sequence of *effective* delays $\{\delta^k\}_{k \geq 0}$ which will play an important role as it allows to obtain refined convergence analysis of Algorithm 2, established in Theorem G.13. For clarity, we recall the definition of the *effective* delays $\{\delta^k\}_{k \geq 0}$:

$$\tilde{\delta}^k := \delta^k - |\{j \in [k - \delta^k .. k - 1] : \gamma_j = 0\}|.$$

Algorithm 2: Asynchronous SGD

1 **Initialization:**
2 $k \leftarrow 0$, the iteration counter
3 $x^0 \in \mathbb{R}^d$, the starting point
4 $\{\gamma_k\}_{k \geq 0}$, the stepsizes, $\gamma_k \geq 0$
5 **Run Procedure 2** in all workers
6 Send to all workers the point x^0
7 **while** true **do**
8 Wait until receiving $g_i^k := \nabla f(x^{k-\delta^k}; \xi_i^{k-\delta^k})$ from worker i
9 $x^{k+1} \leftarrow x^k - \gamma_k g_i^k$
10 // Reset the delay of worker i
11 Send to worker i the point x^{k+1}
11 Update the iteration counter: $k \leftarrow k + 1$

Procedure 2: Workers' (infinite) loop

1 **while** true **do**
2 Wait until receiving $x^k \in \mathbb{R}^d$ from the server
3 // May take some time.
4 Compute a (stochastic) gradient $g \leftarrow \nabla f(x^k, \xi)$ where $\xi \sim \mathcal{D}$
4 Send g to the server

3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741

Algorithm 3: Ringmaster ASGD

1 **Initialization:**
 2 $k \leftarrow 0$, the iteration counter
 3 $\ell \leftarrow 0$, the loop counter
 4 $x^0 \in \mathbb{R}^d$, the starting point
 5 $\gamma > 0$, the stepsize
 6 $R > 0$, the delay threshold (to discard old gradients)
 7 **Run Procedure 1** in all workers
 8 Send to all workers the point x^0
 9 **while** true **do**
 10 // Wait for some time...
 11 Receive $g_i^\ell := \nabla f(x^{\ell-\delta^\ell}; \xi_i^{\ell-\delta^\ell})$ from worker i
 12 // If the gradient is not too old.
 13 **if** $\tilde{\delta}^\ell < R$ **then**
 14 // Do one descent step.
 15 $x^{k+1} \leftarrow x^k - \gamma g_i^\ell$
 16 Update the iteration counter: $k \leftarrow k + 1$
 17 **else**
 18 Ignore the stochastic gradient g_i^ℓ
 19 // Reset the delay of worker i
 20 Send to worker i the point x^k
 21 Update the loop counter: $\ell \leftarrow \ell + 1$

3742 Let us show how Ringmaster ASGD (Algorithm 3) can be seen a a special case of the general Al-
 3743 gorithm 2. In Ringmaster ASGD the stochastic gradients whose *effective* delays $\tilde{\delta}^\ell$ are smaller than
 3744 the threshold R are accepted and contribute to the optimization process, in other word, during the
 3745 ℓ^{th} loop, the stepsize $\gamma_\ell^{(R)}$ used by Ringmaster ASGD is

$$\gamma_\ell^{(R)} := \gamma \mathbb{I}\{\tilde{\delta}^\ell < R\},$$

3746 where $\gamma := \min\left\{\frac{1}{2LR}, \frac{\varepsilon}{4L\sigma^2}\right\}$ is provided in Maranjyan et al. (2025, Theorem 4.1). Here $\mathbb{I}\{\cdot\}$
 3747 denotes the indicator function. Hence, a tight analysis of the general asynchronous SGD algorithm
 3748 provided in Algorithm 2 would allow one to recover the convergence rate of Ringmaster SGD; this
 3749 is what we show in Theorem G.14.

3753 G.4 A DESCENT LEMMA

3754 The next descent lemma is adapted from (Maranjyan et al., 2025, Lemma C.1).

3755 **Lemma G.9** (A Descent Lemma). *Under Assumptions G.3, G.5 and G.8³⁰, for any choice of non-
 3756 negative stepsizes $\{\gamma_k\}_{k \geq 0}$ in ASGD (Algorithm 2), the inequality*

$$\begin{aligned} \mathbb{E}_{k+1}[f(x^{k+1})] &\leq f(x^k) - \frac{\gamma_k}{2} \|\nabla f(x^k)\|^2 \\ &\quad - \frac{\gamma_k}{2} (1 - \gamma_k L) \|\nabla f(x^{k-\delta^k})\|^2 \\ &\quad + \frac{\gamma_k L^2}{2} \|x^k - x^{k-\delta^k}\|^2 + \frac{\gamma_k^2 L}{2} \sigma^2, \end{aligned}$$

3765 holds, where $\mathbb{E}_{k+1}[\cdot]$ represents the expectation conditioned on all randomness up to iteration k .

3766
 3767 *Proof.* Assume, that we get a stochastic gradient from the worker with index i_k when calculating
 3768 x^{k+1} . Since the function f has L -Lipchitz gradients according to Assumption 5.1, it is L -smooth
 3769 and we have (Nesterov, 2018):

$$\begin{aligned} \mathbb{E}_{k+1}[f(x^{k+1})] &\stackrel{\text{Lem. C.25}}{\leq} f(x^k) - \gamma_k \underbrace{\mathbb{E}_{k+1}\left[\langle \nabla f(x^k) | \nabla f(x^{k-\delta^k}, \xi_{i_k}^{k-\delta^k}) \rangle\right]}_{=: t_1} \\ &\quad + \underbrace{\frac{L}{2} \gamma_k^2 \mathbb{E}_{k+1}\left[\|\nabla f(x^{k-\delta^k}, \xi_{i_k}^{k-\delta^k})\|^2\right]}_{=: t_2}, \end{aligned}$$

³⁰This assumption serves only to ensure that the $(k + 1)$ -th iteration is well-defined and the iterate x^{k+1} exists. Assumption G.8 is enough to ensure this property, so that the iterate x^k always exists for any $k \geq 0$.

which comes from upper bounding the Bregman divergence of f at $x^{k+1} = x^k - \gamma_k \nabla f(x^{k-\delta^k}, \xi_{i_k}^{k-\delta^k})$ and x^k . Then, using the unbiasedness of the stochastic gradients from Assumption G.5, we estimate the first term t_1 as

$$\begin{aligned} t_1 &\stackrel{\text{Ass. G.5}}{=} \langle \nabla f(x^k), \nabla f(x^{k-\delta^k}) \rangle \\ &\stackrel{(26)}{=} \frac{1}{2} \left(\|\nabla f(x^k)\|^2 + \|\nabla f(x^{k-\delta^k})\|^2 - \|\nabla f(x^k) - \nabla f(x^{k-\delta^k})\|^2 \right), \end{aligned} \quad (174)$$

and for the second term t_2 , we use the variance decomposition (Lemma C.26) and Assumption G.5, we get

$$\begin{aligned} t_2 &\stackrel{\text{Lem. C.26}}{=} \mathbb{E}_{k+1} \left[\|\nabla f(x^{k-\delta^k}, \xi_{i_k}^{k-\delta^k}) - \nabla f(x^{k-\delta^k})\|^2 \right] + \|\nabla f(x^{k-\delta^k})\|^2 \\ &\stackrel{\text{Ass. G.5}}{\leq} \sigma^2 + \|\nabla f(x^{k-\delta^k})\|^2. \end{aligned} \quad (175)$$

Now, combining the results for both terms t_1 and t_2 , and using the L -Lipchitz gradients property of f to bound the squared norm $\|\nabla f(x^k) - \nabla f(x^{k-\delta^k})\|^2$, we obtain the inequality

$$\begin{aligned} \mathbb{E}_{k+1} [f(x^{k+1})] &\stackrel{(174)+(175)}{\leq} f(x^k) - \frac{\gamma_k}{2} \|\nabla f(x^k)\|^2 \\ &\quad - \frac{\gamma_k}{2} (1 - \gamma_k L) \|\nabla f(x^{k-\delta^k})\|^2 \\ &\quad + \frac{\gamma_k L^2}{2} \|x^k - x^{k-\delta^k}\|^2 + \frac{\gamma_k^2 L}{2} \sigma^2, \end{aligned}$$

which is what we wanted to prove. \square

G.5 RESIDUAL ESTIMATION (A FIRST VERSION)

Lemma G.10 (Residual Estimation). *Under Assumptions G.3, G.5, G.6 and G.8, for any integer $k \geq 0$ and any choice of non-negative stepsizes $\{\gamma_j\}_{j \geq 0}$, the iterates $\{x^j\}_{j \geq 0}$ of ASGD (algorithm 2) satisfy*

$$\mathbb{E} \left[\|x^k - x^{k-\delta^k}\|^2 \right] \leq 2\delta^k \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \mathbb{E} \left[\|\nabla f(x^{j-\delta^j})\|^2 \right] + 2\sigma^2 \sum_{j=k-\delta^k}^{k-1} \gamma_j^2.$$

Proof. Assume that for any $j \in [0..k]$, we receive a stochastic gradient from the worker with index $i_j \in [n]$ when calculating x^j . Then, to upper bound the residual $x^k - x^{k-\delta^k}$, we begin by expanding the difference between the two points to obtain³¹

$$x^k - x^{k-\delta^k} = \sum_{j=k-\delta^k}^{k-1} \gamma_j \nabla f(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j}), \quad (176)$$

and now, according to the tower property of expectation (Lemma C.27) and Assumption G.5 we have

$$\mathbb{E} \left[\sum_{j=k-\delta^k}^{k-1} \gamma_j \nabla f(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j}) \right] \stackrel{\text{Lem. C.27}}{=} \sum_{j=k-\delta^k}^{k-1} \gamma_j \mathbb{E} \left[\mathbb{E} \left[\nabla f(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j}) \mid x^{j-\delta^j} \right] \right] \quad (177)$$

$$\stackrel{\text{Ass. G.5}}{=} \mathbb{E} \left[\sum_{j=k-\delta^k}^{k-1} \gamma_j \nabla f(x^{j-\delta^j}) \right]. \quad (178)$$

Now, as noticed in Mishchenko et al. (2022), we cannot apply directly the variance decomposition (Lemma C.26) as the asynchronicity causes certain stochastic gradients to depend on each other.

³¹See, for instance **lemma 1** of Mishchenko et al. (2022).

3834 Instead, we first apply Young's inequality (Lemma C.29) to the sum of random variables in (176)
 3835 which gives

$$\begin{aligned}
 3837 \mathbb{E} \left[\left\| x^k - x^{k-\delta^k} \right\|^2 \right] &\stackrel{(176)}{=} \mathbb{E} \left[\left\| \sum_{j=k-\delta^k}^{k-1} \gamma_j \nabla f \left(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j} \right) \right\|^2 \right] \\
 3840 &\stackrel{\text{Lem. C.26}}{=} \mathbb{E} \left[\left\| \sum_{j=k-\delta^k}^{k-1} \gamma_j \left[\nabla f \left(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j} \right) - \nabla f \left(x^{j-\delta^j} \right) \right] + \sum_{j=k-\delta^k}^{k-1} \gamma_j \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \right] \\
 3844 &\stackrel{\text{Lem. C.29}}{\leq} 2 \mathbb{E} \left[\left\| \sum_{j=k-\delta^k}^{k-1} \gamma_j \left[\nabla f \left(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j} \right) - \nabla f \left(x^{j-\delta^j} \right) \right] \right\|^2 \right] \\
 3848 &\quad + 2 \mathbb{E} \left[\left\| \sum_{j=k-\delta^k}^{k-1} \gamma_j \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \right] \tag{179}
 \end{aligned}$$

3852 Moreover, thanks to Assumption G.6 and unbiasedness from Assumption G.5, when conditioned on
 3853 the random points x^0, \dots, x^k the stochastic gradients

$$\nabla f \left(x^{j-\delta^j}; \xi_{i_j}^{j-\delta^j} \right),$$

3854 for $k - \delta^k \leq j \leq k - 1$ are pairwise independent and we can apply Lemma C.30 in the first
 3855 term of (179) with the conditional expectation over x^0, \dots, x^k . First, we apply the tower property
 3856 (Lemma C.27) to get

$$\begin{aligned}
 3859 2 \mathbb{E} \left[\left\| \sum_{j=k-\delta^k}^{k-1} \gamma_j \left[\nabla f \left(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j} \right) - \nabla f \left(x^{j-\delta^j} \right) \right] \right\|^2 \right] \\
 3860 &\stackrel{\text{Lem. C.27}}{=} 2 \mathbb{E} \left[\mathbb{E} \left[\left\| \sum_{j=k-\delta^k}^{k-1} \gamma_j \left[\nabla f \left(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j} \right) - \nabla f \left(x^{j-\delta^j} \right) \right] \right\|^2 \middle| x^0, \dots, x^k \right] \right] \tag{180} \\
 3863 &\stackrel{\text{Lem. C.30}}{=} 2 \mathbb{E} \left[\sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \mathbb{E} \left[\left\| \nabla f \left(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j} \right) - \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \middle| x^0, \dots, x^k \right] \right] \\
 3867 &= 2 \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \mathbb{E} \left[\left\| \nabla f \left(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j} \right) - \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \right],
 \end{aligned}$$

3873 and since all the stochastic gradient considered are σ^2 -variance bounded by Assumption G.5 then
 3874 we can further upper bound the sum (180) by

$$3875 2 \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \mathbb{E} \left[\left\| \nabla f \left(x^{j-\delta^j}, \xi_{i_j}^{j-\delta^j} \right) - \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \right] \stackrel{\text{Ass. G.5}}{\leq} 2\sigma^2 \sum_{j=k-\delta^k}^{k-1} \gamma_j^2. \tag{181}$$

3878 Then to deal with the second term of (179), we apply Jensen's inequality in the form of Lemma C.32
 3879 to obtain

$$3880 \left\| \sum_{j=k-\delta^k}^{k-1} \gamma_j \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \stackrel{\text{Lem. C.32}}{\leq} \delta^k \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \left\| \nabla f \left(x^{j-\delta^j} \right) \right\|^2, \tag{182}$$

3884 and finally, taking expectation inside the inequality (182) and, combining the upper bounds (181)
 3885 and (182) on both terms of (179) respectively gives

$$3886 \mathbb{E} \left[\left\| x^k - x^{k-\delta^k} \right\|^2 \right] \stackrel{(180)+(182)}{\leq} 2\sigma^2 \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 + 2\delta^k \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \mathbb{E} \left[\left\| \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \right],$$

3888 which achieves the proof of this lemma. \square
 3889

3890
 3891 **G.6 CONVERGENCE ANALYSIS OF ALGORITHM 2**

3892
 3893 **Theorem G.11** (Convergence Analysis of Algorithm 2). *Under Assumptions G.3 to G.6 and G.8,
 3894 for any integer $K \geq 0$ and any choice of non-negative stepsizes $\{\gamma_k\}_{k \geq 0}$ such that there exists
 3895 $k \in [0..K]$ for which $\gamma_k > 0$, the iterates $\{x^k\}_{k \geq 0}$ of ASGD (Algorithm 2) satisfy, with $\Gamma_K :=$
 3896 $\gamma_0 + \dots + \gamma_K > 0$*

3897
 3898
$$\frac{1}{\Gamma_K} \sum_{k=0}^K \gamma_k \mathbb{E} \left[\|\nabla f(x^k)\|^2 \right] \leq \frac{2\Delta}{\Gamma_K} + R(K) + \frac{L\sigma^2}{\Gamma_K} \sum_{k=0}^K \gamma_k^2 \left(1 + 2L \sum_{j \in M_k} \gamma_j \right), \quad (183)$$

 3899

3900
 3901 where $R(K) := \frac{1}{\Gamma_K} \sum_{k=0}^K R_k \gamma_k \mathbb{E} \left[\|\nabla f(x^{k-\delta^k})\|^2 \right]$,
 3902

3903
 3904
$$R_k := \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \delta^j - 1,$$

 3905

3906
 3907 and the sets M_k for $k \in [0..K]$ are defined as
 3908

3909
 3910
$$M_k := \{j \in [0..K] : j - \delta^j \leq k \leq j - 1\}. \quad (184)$$

 3911

3912 *Proof.* According to Lemma G.9, under the above assumptions for any $k \in [0..K]$ we have
 3913

3914
 3915
$$\mathbb{E}_{k+1} [f(x^{k+1})] \stackrel{\text{Lem. G.9}}{\leq} f(x^k) - \frac{\gamma_k}{2} \|\nabla f(x^k)\|^2$$

 3916
 3917
$$- \frac{\gamma_k}{2} (1 - \gamma_k L) \|\nabla f(x^{k-\delta^k})\|^2$$

 3918
 3919
$$+ \frac{\gamma_k L^2}{2} \|x^k - x^{k-\delta^k}\|^2 + \frac{\gamma_k^2 L}{2} \sigma^2,$$

 3920

3921 hence, taking expectation on both sides and using the tower property gives
 3922

3923
$$\mathbb{E} [\mathbb{E}_{k+1} [f(x^{k+1})]] \stackrel{\text{Lem. C.27}}{=} \mathbb{E} [f(x^{k+1})] \quad (185)$$

 3924

3925
$$\leq \mathbb{E} [f(x^k)] - \frac{\gamma_k}{2} \mathbb{E} [\|\nabla f(x^k)\|^2] \quad (186)$$

 3926
 3927
 3928
 3929
 3930

3931 and reshuffling the above inequality yields
 3932

$$- \frac{\gamma_k}{2} (1 - \gamma_k L) \mathbb{E} [\|\nabla f(x^{k-\delta^k})\|^2]$$

$$+ \frac{\gamma_k L^2}{2} \mathbb{E} [\|x^k - x^{k-\delta^k}\|^2] + \frac{\gamma_k^2 L}{2} \sigma^2, \quad (188)$$

3933
 3934
$$\frac{\gamma_k}{2} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \underbrace{(\mathbb{E} [f(x^k)] - \mathbb{E} [f(x^{k+1})])}_{:= A_k^{(1)}} \quad (187)$$

 3935
 3936

3937
 3938
$$- \frac{\gamma_k}{2} (1 - \gamma_k L) \mathbb{E} [\|\nabla f(x^{k-\delta^k})\|^2] \quad (188)$$

 3939
 3940

3941
$$+ \underbrace{\frac{\gamma_k L^2}{2} \mathbb{E} [\|x^k - x^{k-\delta^k}\|^2] + \frac{\gamma_k^2 L}{2} \sigma^2}_{:= A_k^{(2)}}. \quad (189)$$

3942 Now, if we sum the above inequality (189) over all $k \in [0..K]$, the sum of all $A_k^{(1)}$ terms can be
 3943 telescoped, i.e.,
 3944

$$\begin{aligned} 3946 \quad \sum_{k=0}^K A_k^{(1)} &= \sum_{k=0}^K (\mathbb{E}[f(x^k)] - \mathbb{E}[f(x^{k+1})]) \\ 3947 &= \mathbb{E}[f(x^0) - f(x^{K+1})] \\ 3948 &\stackrel{\text{Ass. 5.2}}{\leq} \mathbb{E}[f(x^0) - f^{\inf}] \\ 3949 &= \Delta, \\ 3950 \\ 3951 \end{aligned}$$

3952 while for the residual term $A_k^{(2)}$ we upper bound it using Lemma G.10 since for any $k \in [0..K]$ the
 3953 quantity $\gamma_k L^2/2$ is non-negative. This gives the upper bound
 3954

$$\begin{aligned} 3955 \quad \sum_{k=0}^K A_k^{(2)} &= \sum_{k=0}^K \frac{\gamma_k L^2}{2} \mathbb{E} \left[\|x^k - x^{k-\delta^k}\|^2 \right] \\ 3956 &\stackrel{\text{Lem. G.10}}{\leq} \sum_{k=0}^K \frac{\gamma_k L^2}{2} \left[2\delta^k \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \mathbb{E} \left[\|\nabla f(x^{j-\delta^j})\|^2 \right] + 2\sigma^2 \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \right] \\ 3957 &\stackrel{(a)}{=} L^2 \underbrace{\sum_{k=0}^K \sum_{j=k-\delta^k}^{k-1} \gamma_k \delta^k \gamma_j^2 \mathbb{E} \left[\|\nabla f(x^{j-\delta^j})\|^2 \right]}_{:= B_1} + L^2 \sigma^2 \underbrace{\sum_{k=0}^K \sum_{j=k-\delta^k}^{k-1} \gamma_k \gamma_j^2}_{:= B_2}, \\ 3958 \\ 3959 \end{aligned}$$

3960 where in (a) we expand the outer sum.
 3961

3962 Then, we reshuffle both sums B_1 and B_2 by exchanging the indices k and j of the two nested
 3963 sums. To do so, we use Lemma C.34 with $S = [0..K]$ and for any $k \in S$, we have $S(k) =$
 3964 $[k - \delta^k .. k - 1] \subseteq [0..K]$ so we choose $S' = [0..K]$ so that it contains every $S(k)$ and now for
 3965 every $j \in S'$ we have
 3966

$$\begin{aligned} 3967 \quad S'(j) &\stackrel{\text{Lem. C.34}}{=} \{k \in [0..K] : j \in S(k)\} \\ 3968 &= \{k \in [0..K] : k - \delta^k \leq j \leq k - 1\} \\ 3969 &\stackrel{(184)}{=} M_j, \\ 3970 \\ 3971 \end{aligned}$$

3972 thus we can rewrite the term B_1 as
 3973

$$3974 \quad B_1 = \sum_{j=0}^K \sum_{k \in M_j} \gamma_k \delta^k \gamma_j^2 \mathbb{E} \left[\|\nabla f(x^{j-\delta^j})\|^2 \right], \quad (190)$$

3975 and the term B_2 can we rewritten as
 3976

$$3977 \quad B_2 = \sum_{j=0}^K \sum_{k \in M_j} \gamma_k \gamma_j^2. \quad (191)$$

3996 Now, plugging both (190) and (191) in inequality (189) after summing over $k \in [0..K]$ leads to
 3997

$$\begin{aligned}
 3998 \quad & \frac{1}{2} \sum_{k=0}^K \gamma_k \mathbb{E} \left[\|\nabla f(x^k)\|^2 \right] \\
 3999 \quad & \leq \Delta - \frac{1}{2} \sum_{k=0}^K \gamma_k (1 - \gamma_k L) \mathbb{E} \left[\|\nabla f(x^{k-\delta^k})\|^2 \right] + L^2 \sum_{j=0}^K \sum_{k \in M_j} \gamma_k \delta^k \gamma_j^2 \mathbb{E} \left[\|\nabla f(x^{j-\delta^j})\|^2 \right] \\
 4000 \quad & + L^2 \sigma^2 \sum_{j=0}^K \sum_{k \in M_j} \gamma_k \gamma_j^2 + \frac{L\sigma^2}{2} \sum_{k=0}^K \gamma_k^2 \\
 4001 \quad & \stackrel{(a)}{=} \Delta - \frac{1}{2} \sum_{k=0}^K \gamma_k (1 - \gamma_k L) \mathbb{E} \left[\|\nabla f(x^{k-\delta^k})\|^2 \right] + L^2 \sum_{k=0}^K \sum_{j \in M_k} \gamma_j \delta^j \gamma_k^2 \mathbb{E} \left[\|\nabla f(x^{k-\delta^k})\|^2 \right] \\
 4002 \quad & + L^2 \sigma^2 \sum_{k=0}^K \sum_{j \in M_k} \gamma_j \gamma_k^2 + \frac{L\sigma^2}{2} \sum_{k=0}^K \gamma_k^2 \\
 4003 \quad & \stackrel{(b)}{=} \Delta + \frac{1}{2} \sum_{k=0}^K \gamma_k \mathbb{E} \left[\|\nabla f(x^{k-\delta^k})\|^2 \right] \left[L\gamma_k \left(1 + 2L \sum_{j \in M_k} \gamma_j \delta^j \right) - 1 \right] \\
 4004 \quad & + \frac{L\sigma^2}{2} \sum_{k=0}^K \gamma_k^2 \left(1 + 2L \sum_{j \in M_k} \gamma_j \gamma_k^2 \right)
 \end{aligned} \tag{192}$$

4020 where in (a) we permute the labels of the indices of the second and third sum (those involving the
 4021 sets $\{M_j\}_{j \in [0..K]}$), i.e. $j \leftrightarrow k$, while in (b) we merge the first two sums involving the gradients
 4022 $\nabla f(\cdot)$ and the last two sums involving the stochastic term in σ^2 . More precisely, for the “gradient
 4023 terms”, the resulting k -th term for $k \in [0..K]$ reads

$$4024 \quad -\gamma_k (1 - \gamma_k L) + 2\gamma_k^2 L^2 \left(\sum_{j \in M_k} \gamma_j \delta^j \right) \tag{193}$$

$$4025 \quad = \gamma_k \left[\gamma_k L + 2\gamma_k L^2 \left(\sum_{j \in M_k} \gamma_j \delta^j \right) - 1 \right] \tag{194}$$

$$4026 \quad = \gamma_k \left[L\gamma_k \left(1 + 2L \sum_{j \in M_k} \gamma_j \delta^j \right) - 1 \right], \tag{195}$$

4034 while for the “stochastic terms”, the k - term reads
 4035

$$4036 \quad 2\gamma_k^2 L^2 \left(\sum_{j \in M_k} \gamma_j \right) + \gamma_k^2 L = \gamma_k^2 L \left(1 + 2L \sum_{j \in M_k} \gamma_j \right).$$

4040 Now, multiplying (192) by two and dividing both sides of the inequality by $\gamma_0 + \gamma_1 + \dots + \gamma_K > 0$ ³²
 4041 leads to

$$\begin{aligned}
 4042 \quad & \frac{1}{\sum_{k=0}^K \gamma_k} \sum_{k=0}^K \gamma_k \mathbb{E} \left[\|\nabla f(x^k)\|^2 \right] \leq \frac{2\Delta}{\sum_{k=0}^K \gamma_k} + R(K) + L\sigma^2 \frac{\sum_{k=0}^K \gamma_k^2 \left(1 + 2L \sum_{j \in M_k} \gamma_j \right)}{\sum_{k=0}^K \gamma_k},
 \end{aligned}$$

4048
 4049 ³²Recall that in statement of Theorem G.11 where we assume there exists $k \in [0..K]$ such that $\gamma_k > 0$
 ensuring the division to be legal.

4050 where we define

$$4052 \quad R(K) := \frac{1}{\sum_{k=0}^K \gamma_k} \sum_{k=0}^K \gamma_k \mathbb{E} \left[\left\| \nabla f(x^{k-\delta^k}) \right\|^2 \right] \left[\gamma_k L \left(1 + 2L \sum_{j \in M_k} \gamma_j \delta^j \right) - 1 \right],$$

4056 which achieves the proof of the theorem. \square

4059 In the case where $\sigma^2 = 0$, we recover Assumption 5.3 and Theorem G.11 reduces to Theorem 5.4
4060 which we recall here for completeness.

4061 **Theorem 5.4.** *Under Assumptions 5.1 to 5.3, for any integer $K \geq 0$ and any choice of non-negative
4062 stepsizes $\{\gamma_k\}_{k \geq 0}$ the iterates $\{x^k\}_{k \geq 0}$ of AGD (Algorithm 1) satisfy, with $\Gamma_K := \gamma_0 + \dots + \gamma_K$*

$$4064 \quad \frac{1}{\Gamma_K} \sum_{k=0}^K \gamma_k \mathbb{E} \left[\left\| \nabla f(x^k) \right\|^2 \right] \leq \frac{2\Delta}{\Gamma_K} + R(K), \quad (196)$$

$$4068 \quad \text{where } R(K) := \frac{1}{\Gamma_K} \sum_{k=0}^K R_k \gamma_k \mathbb{E} \left[\left\| \nabla f(x^{k-\delta^k}) \right\|^2 \right],$$

$$4071 \quad R_k := \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \delta^j - 1,$$

4073 and $M_k := \{r \in [0..K] : r - \delta^r \leq k \leq r - 1\}$.

4076 *Proof.* Setting $\sigma^2 = 0$ in the left-hand side of (183) immediately gives (196), as desired. \square

4078 G.7 IMPROVING THE CONVERGENCE ANALYSIS

4080 As observed in Section 5.2, the sequence of delays $\{\delta^k\}_{k \geq 0}$ is not influenced at all by how we
4081 choose the stepsizes $\{\gamma_k\}_{k \geq 0}$ which is unreasonable since only the accepted gradients (corresponding
4082 to a positive stepsize) contribute to the optimization process. So the discarded gradients should
4083 not impact the choice of the stepsizes but, considering the matrix of delay M^δ and the associated op-
4084 timization problem (\mathcal{P}_d) , this is not the case since the delays δ^k corresponding to a stepsize $\gamma_k > 0$
4085 also counts some of the discarded gradients. This may result in smaller stepsizes when solving the
4086 corresponding optimization problem.

4087 Hence naturally, (e.g., as in Ringmaster ASGD) it seems much more relevant for the delay δ^k to
4088 account for the total number of *accepted* gradients. To this end, we introduce a new sequence of
4089 delays $\{\tilde{\delta}^k\}_{k \geq 0}$ where which will count, among all stochastic gradients received by the server on
4090 some interval, precisely those which have been accepted. This result in the following definition: for
4091 any integer $k \geq 0$

$$4092 \quad \tilde{\delta}^k := \delta^k - |\{j \in [k - \delta^k .. k - 1] : \gamma_j = 0\}|, \quad (197)$$

4094 where we assume that $\max \emptyset = 0$ (so that $\tilde{\delta}^0 = 0$). Notably, we have $\tilde{\delta}^\ell \leq \delta^\ell$ for all integer $\ell \geq 0$.

4095 In the next two parts (Appendices G.8 and G.9) we improve the residual estimation using the se-
4096 quence $\{\tilde{\delta}^\ell\}_{\ell \geq 0}$ and state the new convergence rate obtained. As a byproduct of our general anal-
4097 ysis, we also recover the convergence rate of Ringmaster ASGD (Marjanian et al., 2025) in The-
4098 orem G.14. The improvement stems from the application of Jensen’s inequality (Lemma C.31)
4099 in (182). Following most state-of-the-art analysis of asynchronous methods, we also apply Jensen’s
4100 inequality to bound the staleness error. While these analysis rely on the special case stated
4101 in Lemma C.32, so as to tighten our bounds we apply the “refined” inequality in Remark C.33:
4102 since some of the stepsizes can be zero, we can apply the inequality Lemma C.32 only on the pos-
4103 itive terms rather than all of them. This strengthening is crucial to recover the rate of Ringmaster
ASGD (see Theorem G.14).

4104 G.8 RESIDUAL ESTIMATION (A REFINED VERSION)
41054106 While the descent lemma proved in Appendix G.4 is still the same, the residual estimation in Ap-
4107 pendix G.5 can be improved using the new sequence of delays $\{\tilde{\delta}^\ell\}_{\ell \geq 0}$ which is the purpose of the
4108 following lemma.4109 **Lemma G.12** (Residual Estimation: A Refined Version). *Under Assumptions G.3, G.5, G.6
4110 and G.8, for any integer $k \geq 0$ and any choice of non-negative stepsizes $\{\gamma_j\}_{j \geq 0}$, the iterates
4111 $\{x^j\}_{j \geq 0}$ of ASGD (Algorithm 2) satisfy*

4113
$$\mathbb{E} \left[\left\| x^k - x^{k-\delta^k} \right\|^2 \right] \leq 2\tilde{\delta}^k \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \mathbb{E} \left[\left\| \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \right] + 2\sigma^2 \sum_{j=k-\delta^k}^{k-1} \gamma_j^2.$$
 4114
4115

4116 where the sequence $\{\tilde{\delta}^k\}_{k \geq 0}$ is defined in (197).
41174119 *Proof.* We follows exactly the same steps as in the proof of Lemma G.10 with the sole exception
4120 that in (182) instead of using Jensen's inequality in the form of Lemma C.32, we use Remark C.33
4121 to obtain the upper bound
4122

4123
$$\left\| \sum_{j=k-\delta^k}^{k-1} \gamma_j \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \stackrel{\text{Rem. C.33}}{\leq} \tilde{\delta}^k \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \left\| \nabla f \left(x^{j-\delta^j} \right) \right\|^2, \quad (198)$$
 4124
4125
4126

4127 for all integer $k \geq 0$. We then combine the tighter upper bound (198) with the other bound in (181)
4128 to obtain that, for any $k \geq 0$ we have
4129

4130
$$\mathbb{E} \left[\left\| x^k - x^{k-\delta^k} \right\|^2 \right] \leq 2\tilde{\delta}^k \sum_{j=k-\delta^k}^{k-1} \gamma_j^2 \mathbb{E} \left[\left\| \nabla f \left(x^{j-\delta^j} \right) \right\|^2 \right] + 2\sigma^2 \sum_{j=k-\delta^k}^{k-1} \gamma_j^2,$$
 4131
4132

4133 which achieves the proof of the lemma. \square
41344135 G.9 CONVERGENCE ANALYSIS OF ALGORITHM 3
41364137 **Improving the Convergence Analysis.** Equipped with the improved residual estimation
4138 in Lemma G.12, we can now state our main result for the convergence analysis of ASGD in full
4139 generality.4140 **Theorem G.13.** *Under Assumptions G.3 to G.6 and G.8, for any integer $K \geq 0$ and any choice
4141 of non-negative stepsizes $\{\gamma_k\}_{k \geq 0}$ such that there exists $k \in [0..K]$ for which $\gamma_k > 0$, the iterates
4142 $\{x^k\}_{k \geq 0}$ of ASGD (Algorithm 2) satisfy, with $\Gamma_K := \gamma_0 + \dots + \gamma_K > 0$*

4143
$$\frac{1}{\Gamma_K} \sum_{k=0}^K \gamma_k \mathbb{E} \left[\left\| \nabla f \left(x^k \right) \right\|^2 \right] \leq \frac{2\Delta}{\Gamma_K} + \tilde{R}(K) + \frac{L\sigma^2}{\Gamma_K} \sum_{k=0}^K \gamma_k^2 \left(1 + 2L \sum_{j \in M_k} \gamma_j \right), \quad (199)$$
 4144
4145
4146

4147 where $\tilde{R}(K) := \frac{1}{\Gamma_K} \sum_{k=0}^K \tilde{R}_k \gamma_k \mathbb{E} \left[\left\| \nabla f \left(x^{k-\delta^k} \right) \right\|^2 \right]$, with
4148

4149
$$\tilde{R}_k := \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \tilde{\delta}^j - 1,$$
 4150
4151
4152

4153 and the sets M_k and delays $\tilde{\delta}^k$ are defined in (184) and (197).
41544155 *Proof.* The proof is a straightforward adaption of the previous proof of Theorem G.11 where instead
4156 of the residual estimation from Lemma G.10 we use the its sharper version Lemma G.12. \square
4157

4158 **Recovering the convergence rate of Ringmaster ASGD.** Now using the improved upper bound
 4159 from Theorem G.13, we can recover the same rate as in the paper Maranjyan et al. (2025), which is
 4160 the purpose of the next theorem. Moreover, our proof is more transparent than the one in Maranjyan
 4161 et al. (2025) as in our proof we capture all stochastic gradients received by the server and not just
 4162 the gradients which are accepted.

4163 **Theorem G.14** (Recovering Ringmaster ASGD Convergence Rate). *Let $R \geq 1$ be the delay thresh-
 4164 old of Ringmaster ASGD (Maranjyan et al., 2025) then, under Assumptions G.3 to G.6 and G.8, if
 4165 we let the stepsizes of ASGD (Algorithm 3) be*

$$4167 \quad \gamma_k = \gamma \mathbb{I}\{\tilde{\delta}^k < R\}, \quad \text{with } \gamma = \min\left\{\frac{1}{2RL}, \frac{\varepsilon}{4L\sigma^2}\right\}, \quad (200)$$

4169 for all integer $k \geq 0$ then we have

$$4171 \quad \frac{1}{\Gamma_K} \sum_{k=0}^K \gamma_k \mathbb{E} \left[\|\nabla f(x^k)\|^2 \right] \leq \varepsilon, \quad (201)$$

4174 with $\Gamma_K := \gamma_0 + \gamma_1 + \dots + \gamma_K$, as long as

$$4175 \quad |S| \geq \frac{4\Delta}{\varepsilon\gamma} = \max\left\{\frac{8RL\Delta}{\varepsilon}, \frac{16L\Delta\sigma^2}{\varepsilon^2}\right\},$$

4178 where $S := \{k \in [0..K] : \tilde{\delta}^k < R\}$.

4180 *Remark G.15.* Note that the set S in Theorem G.14 corresponds to the loop numbers where a positive
 4181 stepsize is applied to the stochastic gradient received. Hence, $|S|$ exactly counts the number of
 4182 iterative updates which was denoted by K in the analysis of Ringmaster ASGD.

4183 *Proof.* Let the stepsizes of Ringmaster ASGD $\{\gamma_k\}_{k \geq 0}$ be as in (200) then

$$4185 \quad \sum_{k=0}^K \gamma_k = \gamma \sum_{k=0}^K \mathbb{I}\{\tilde{\delta}^k < R\} = \gamma |S|, \quad (202)$$

4189 where we defined the set $S := \{k \in [0..K] : \tilde{\delta}^k < R\}$. Now, we need to check that the constraints

$$4191 \quad \gamma_k L \left(1 + 2L \sum_{j \in M_k} \gamma_j \tilde{\delta}^j \right) \leq 1, \quad k = 0, 1, 2, \dots, K, \quad (203)$$

4194 where $M_k := \{j \in [0..K] : j - \delta^j \leq k \leq j - 1\}$, are all fulfilled. Given $k \in [0..K]$, we distin-
 4195 guish two cases:

- 4197 • if $\tilde{\delta}^k \geq R$ then $\gamma_k = 0$ and k -th constraint from (203) is (clearly) satisfied,
- 4198 • otherwise, if $\tilde{\delta}^k < R$ then $\gamma_k = \gamma > 0$ and we have

$$4201 \quad \begin{aligned} \gamma_k L \left(1 + 2L \sum_{j \in M_k} \gamma_j \tilde{\delta}^j \right) \\ 4202 \quad & \stackrel{(a)}{=} \gamma L \left(1 + 2L\gamma \sum_{j \in M_k \cap S} \tilde{\delta}^j \right) \\ 4203 \quad & \stackrel{(b)}{\leq} \gamma L (1 + 2L\gamma(R-1) |M_k \cap S|) \\ 4204 \quad & = \gamma L + 2(\gamma L)^2 (R-1) |M_k \cap S|, \end{aligned} \quad (204)$$

4211 where in (a) we use the definition of S , that is, for any $j \in [0..K]$ the stepsize $\gamma_j > 0$ if,
 and only if $j \in S$ in which case $\gamma_j = \gamma$. In (b) we use the fact that for any $j \in M_k \cap S \subseteq S$

4212 the delay $\tilde{\delta}^k < R$ and since it is an integer, $\tilde{\delta}^k \leq R - 1$. Now it remains to upper bound
 4213 the cardinal of the set $M_k \cap S$; we show that
 4214

$$4215 \quad |M_k \cap S| \leq R - 1. \quad (205)$$

4216 To do so, we distinguish two cases: either the set is empty in which case inequality (205)
 4217 holds. Otherwise, if $M_k \cap S \neq \emptyset$ then, let $m = |M_k \cap S|$ denotes the cardinal of the
 4218 set and $j_1 < j_2 < \dots < j_m$ its elements. By definition of S and since all j_1, \dots, j_m are
 4219 in S , all the stepsizes $\gamma_{j_1}, \dots, \gamma_{j_m}$ are positive as $\tilde{\delta}^{j_1} < R, \dots, \tilde{\delta}^{j_m} < R$. Moreover, by
 4220 definition of M_k we have, for all $i \in [m]$

$$4221 \quad j_i - \delta^{j_i} \leq k \leq j_i - 1,$$

4223 hence notably $j_m - \delta^{j_m} \leq k < k + 1 \leq j_1 < j_2 < \dots < j_m$ thus for any $i \in [m - 1]$

$$4224 \quad j_i \in \{r \in [j_m - \delta^{j_m} \dots j_m - 1] : \gamma_r > 0\},$$

4225 and $k \in \{r \in [j_m - \delta^{j_m} \dots j_m - 1] : \gamma_r > 0\}$. Moreover by definition of $\tilde{\delta}^{j_m}$ we have

$$4226 \quad \tilde{\delta}^{j_m} = |\{r \in [j_m - \delta^{j_m} \dots j_m - 1] : \gamma_r > 0\}| \geq m,$$

4227 since it contains $k, j_i, j_2, \dots, j_{m-1}$. Hence, as $j_m \in S$ then $\tilde{\delta}^{j_m} \leq R - 1$ thus we obtain
 4228 $m \leq R - 1$ as desired.

4229 Now, if we continue to upper bound quantity from (204), we have

$$4230 \quad \begin{aligned} \gamma L + 2(\gamma L)^2(R - 1)|M_k \cap S| &\stackrel{(205)}{\leq} \gamma L + 2(\gamma L(R - 1))^2 \\ 4231 &\stackrel{(a)}{\leq} \frac{1}{2R} + \frac{1}{2} \\ 4232 &\stackrel{(b)}{\leq} \frac{1}{2} + \frac{1}{2} \\ 4233 &= 1, \end{aligned}$$

4234 where in (a) we use both the fact that the $\gamma \leq \frac{1}{2R}$ so that

$$4235 \quad \gamma L \leq \frac{1}{2R} \text{ and } 2\gamma^2 L^2(R - 1)^2 \leq \frac{2(R - 1)^2}{4R^2} < \frac{1}{2},$$

4236 while in (b) we use the fact that $R \geq 1$.

4237 Hence, all the constraints are fulfilled. Therefor, it remains to further upper bound the quantity (199)
 4238 from Theorem G.13 without the $\tilde{R}(K)$ residual term. The first term in (199) is equal to

$$4239 \quad \frac{2\Delta}{\sum_{k=0}^K \gamma_k} \stackrel{(202)}{=} \frac{2\Delta}{\gamma |S|},$$

4240 while for the stochastic term, the numerator can be upper bounded as

$$4241 \quad \begin{aligned} L\sigma^2 \sum_{k=0}^K \gamma_k^2 \left(1 + 2L \sum_{j \in M_k} \gamma_j\right) &\stackrel{(a)}{=} L\sigma^2 \gamma^2 \sum_{k \in S} (1 + 2\gamma L |M_k \cap S|) \\ 4242 &\stackrel{(205)}{\leq} L\sigma^2 \gamma^2 |S| (1 + 2\gamma LR), \end{aligned}$$

4243 hence, when dividing by $\sum_{k=0}^K \gamma_k$ it gives

$$4244 \quad L\sigma^2 \frac{\sum_{k=0}^K \gamma_k^2 \left(1 + 2L \sum_{j \in M_k} \gamma_j\right)}{\sum_{k=0}^K \gamma_k} \leq L\sigma^2 \frac{\gamma^2 |S| (1 + 2\gamma LR)}{\gamma |S|} = L\sigma^2 \gamma (1 + 2\gamma LR).$$

4266 Thus, to obtain the inequality (201) it is enough to have
4267

$$4268 \frac{2\Delta}{\gamma |S|} \leq \frac{\varepsilon}{2} \text{ and } L\sigma^2\gamma(1 + 2\gamma LR) \leq \frac{\varepsilon}{2},$$

4270 and, for the later inequality, it is enough to ensure $\gamma LR \leq \frac{1}{2}$ along with $L\sigma^2\gamma \leq \frac{\varepsilon}{4}$ and we recover
4271 the stepsize given in the statement, i.e., $\gamma = \min\left\{\frac{1}{2RL}, \frac{\varepsilon}{4L\sigma^2}\right\}$. Now, for the other inequality, we
4272 need to have

$$4273 \frac{4\Delta}{\varepsilon\gamma} \leq |S|,$$

4275 which, after plugging the expression of γ given before leads to the desired lower bound of
4276

$$4277 |S| \geq \max\left\{\frac{8RL\Delta}{\varepsilon}, \frac{16L\Delta\sigma^2}{\varepsilon^2}\right\}.$$

4279 \square

4281 G.10 A Mixed-Integer OPTIMIZATION PROBLEM

4283 We review here the different optimization problems derived with our analysis of ASGD and AGD.

4285 **The General Optimization Problem:** According to the analysis done in Theorem G.13, a natural
4286 approach to get rid of the $\tilde{R}(K)$ term appearing in (12) is to ensure each individual factor R_k to be
4287 nonpositive, i.e.,

$$4289 R_k := \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \tilde{\delta}^j - 1 \leq 0, \quad k = 0, 1, \dots, K \quad (206)$$

4291 and, if we let

$$4292 M_{i,j} = \begin{cases} 0, & \text{if } j \notin M_i, \\ \tilde{\delta}^j, & \text{if } j \in M_i, \end{cases} \quad (207)$$

4295 for all $i, j \in [0..K]$ then as $R(K) \leq 0$ by (206), finding theoretically optimal stepsizes $\{\gamma_k^*\}_{k \geq 0}$ is
4296 equivalent to minimize the left-hand side of (12) over the constrained region

$$4297 \mathcal{F} = \left\{ \Lambda \in [0, 1]^{K+1} : 0 \leq L\Lambda + (L\Lambda) \odot (M^\delta[L\Lambda]) \leq 1 \right\},$$

4299 where $\Lambda = (\gamma_0, \dots, \gamma_K)$ and $M^\delta = (M_{i,j})_{i,j \in [0..K]}$ is the ‘‘matrix of delays’’ defined in (207). The
4300 resulting optimization problem to solve for the optimal stepsizes $\{\gamma_k^*\}_{k \geq 0}$ can be stated as follows:

$$4302 \begin{aligned} (\widetilde{\mathcal{P}}_K^{\sigma^2}): \quad & \text{minimize } \frac{1}{\gamma_0 + \dots + \gamma_K} \left[2\Delta + L\sigma^2 \sum_{k=0}^K \gamma_k^2 \left(1 + 2L \sum_{j \in M_k} \gamma_j \right) \right], \\ 4304 & \text{over } (\gamma_0, \dots, \gamma_K) \in [0, \frac{1}{L}]^{K+1}, \\ 4305 & \text{subject to } 0 \leq \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \tilde{\delta}^j \leq 1 \quad \text{for } k = 0, 1, 2, \dots, K. \end{aligned} \quad (208)$$

4309 *Remark G.16.* Notice that, in the special case where all delays are 0, in the case of synchronous
4310 SGD for instance, then all $M_k = \emptyset$ and the constraints in (208) reduces to $0 \leq \gamma_k L \leq 1$, and to
4311 minimize the quantity

$$4312 \frac{1}{\gamma_0 + \dots + \gamma_K} \left[2\Delta + L\sigma^2 \sum_{k=0}^K \gamma_k^2 \right],$$

4314 it’s enough, due to the symmetry, to assume $\gamma_0 = \dots = \gamma_K = \gamma$ which gives $\gamma = \min\left\{\frac{1}{L}, \sqrt{\frac{2\Delta}{KL\sigma^2}}\right\}$. then, taking $K \geq \frac{2L\Delta\sigma^2}{\varepsilon^2}$ ensures an ε -stationary point is found which leads to

$$4317 \gamma = \min\left\{\frac{1}{L}, \frac{\varepsilon}{L\sigma^2}\right\},$$

4319 an improvement over the stepsizes of Ringmaster ASGD with a factor $\times 2$ to $\times 4$.

4320 The “matrix of delay” defined in (207) has some interesting properties as stated in the next result.
 4321 Examples of the matrix of delays will be provided in a subsequent paragraph.

4322 **Lemma G.17** (Properties of the matrix of delays). *For the matrix of delays M^δ introduced in (207),
 4323 we have*

4325 1. *the matrix M^δ is strictly upper triangular, that is, $M_{i,j}^\delta = 0$ for any $0 \leq j \leq i \leq K$,*
 4326
 4327 2. *for any $j \in [0..K]$ we have $M_{j-1,j} = M_{j-2,j} = \dots = M_{j-\delta^j,j} = \tilde{\delta}^j$.*
 4328

4329 *Proof.* For the first claim, let $0 \leq i, j \leq K$ such that $j \leq i$ then clearly we can’t have $i \leq j - 1$
 4330 hence necessarily $j \notin M_i := \{j' \in [0..K] : j' - \delta^{j'} \leq i \leq j' - 1\}$. Consequently, we deduce
 4331 that $M_{i,j}^\delta = 0$, i.e., the matrix M^δ is strictly upper triangular.

4332 For the second statement, we use again the definition of the sets $\{M_i\}_{0 \leq i \leq K}$. Let $j \in [0..K]$ from (184) then for any integer i between $j - \delta^j$ and $j - 1$ we have $j \in M_i$, because $j - \delta^j \leq i \leq j - 1$. Hence, we deduce that $j \in M_{j-1}, j \in M_{j-2}, \dots, j \in M_{j-\delta^j}$ that is to say $M_{j-1,j} = M_{j-2,j} = \dots = M_{j-\delta^j,j} = \tilde{\delta}^j$, as desired. Note that the quantity $M_{j-\delta^j,j}$ is well-defined since $0 \leq \delta^j \leq j$. \square

4333
 4334 Observe that the optimization problem (208) is a nonlinear mixed-integer program which in practice
 4335 is hard to solve, notably the objective function is even nonlinear. This “mixed-integer” characteristic
 4336 comes from the effective delays $\{\tilde{\delta}^k\}_{k \geq 0}$ which intrinsically depends on the binary variables
 4337

4338
$$b_k := \mathbb{I}\{\gamma_k = 0\}.$$

4339 A part of the “hardness” of problem $(\widetilde{\mathcal{P}}_K^2)$ arises from the presence of the stochastic term in σ^2 .
 4340 For now on, we focus on the simpler case where $\sigma^2 = 0$, i.e., the machines compute *full* gradients
 4341 instead of noisy ones in the sense that when asked to compute a gradient of f at $x \in \mathbb{R}^d$ they will
 4342 reply, deterministically, $\nabla f(x)$ after some time. Assuming $\sigma^2 = 0$ we can rewrite the minimization
 4343 problem (208) as a maximization problem:
 4344

4345
$$(\widetilde{\mathcal{P}}_K): \begin{aligned} & \text{maximize } \gamma_0 + \gamma_1 + \dots + \gamma_K, \\ & \text{over } (\gamma_0, \dots, \gamma_K) \in [0, \frac{1}{L}]^{K+1}, \\ & \text{subject to } 0 \leq \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \tilde{\delta}^j \leq 1 \quad \text{for } k = 0, 1, 2, \dots, K. \end{aligned} \tag{209}$$

4345 This simpler problem seems much more tractable at first glance since now it has a linear objective
 4346 in the variables $(\gamma_0, \dots, \gamma_K)$ and we can use general-purpose solvers like Gurobi 11 (Gurobi
 4347 Optimization, LLC, 2024) to attempt solving it. Gurobi approach to solve optimization problems of the
 4348 form of (\mathcal{P}_K) uses branch-and-bound to systematically partition the feasible space into subprob-
 4349 lems and constructs relaxations at each node. The algorithm provides mathematically guaranteed
 4350 global optimality by maintaining upper and lower bounds across all active nodes until the optimality
 4351 gap closes. However, this approach can demand millions of simplex iterations on some instances.
 4352

4353 **A Bilinear Program:** While it is tractable to solve problem (209) numerically, the presence of the
 4354 *effective* delays $\{\tilde{\delta}^k\}_{k \geq 0}$ makes it difficult to study directly the theoretical properties of the optimal
 4355 solutions. To further simplify $(\widetilde{\mathcal{P}}_K)$ we consider the following problem:

4356
$$(\mathcal{P}_K): \begin{aligned} & \text{maximize } \gamma_0 + \gamma_1 + \dots + \gamma_K, \\ & \text{over } (\gamma_0, \dots, \gamma_K) \in [0, \frac{1}{L}]^{K+1}, \\ & \text{subject to } 0 \leq \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \delta^j \leq 1 \quad \text{for } k = 0, 1, 2, \dots, K. \end{aligned} \tag{210}$$

4357 where, instead of the effective delays, we directly use $\{\delta^k\}_{k \geq 0}$ which are simply constants in our
 4358 problem. Of course, the optimal solutions of this new maximization problem are, in general, looser
 4359 than those provided by the mixed-integer problem $(\widetilde{\mathcal{P}}_K)$ (in term of objective function value); this

can be seen by taking a feasible solution $\{\gamma_k\}_{k \geq 0}$ of (\mathcal{P}_K) and using the inequality $\tilde{\delta}^k \leq \delta^k$, this gives

$$0 \leq \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \tilde{\delta}^j \leq 0 \leq \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \delta^j \stackrel{(a)}{\leq} 1,$$

where (a) follows by the feasibility of $\{\gamma_k\}_{k \geq 0}$. So, $\{\gamma_k\}_{k \geq 0}$ is still a feasible solution for $(\widetilde{\mathcal{P}}_K)$, showing that the optimal value of problem (209) is always at least as large as the one of (210).

The new optimization problem $(\widetilde{\mathcal{P}}_K)$ belongs to the family of *bilinear programs* (and also to the class of *reverse-convex programs*). Surprisingly, with a little more effort, we can also extend our main Theorem 4.4 (characterization of the optimal solution(s) of problem (\mathcal{P}_K) in (210)) to our original mixed-integer problem (\mathcal{P}_K) .

Reformulating Problem $(\widetilde{\mathcal{P}}_K)$: We now reformulate problem $(\widetilde{\mathcal{P}}_K)$ in a more friendly way using binary variables. This gives rises to the optimization problem $(\mathcal{P}_K^{\text{mi}})$ where “*mi*” stands for *mixed-integer*. First, let us recall the constraints of the mixed-integer problem (\mathcal{P}_d) , i.e.,

$$0 \leq \gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \gamma_j \tilde{\delta}^j - 1 \leq 0, \quad (211)$$

for all integer $k \in [0..K]$. Since $\tilde{\delta}^k$ depends on whether some of the stepsizes γ_j for $j \in [k - \delta^k .. k - 1]$ are positive or zero, we introduce *binary* variables

$$b_k := \mathbb{I}\{\gamma_k = 0\} \in \{0, 1\}, \quad (212)$$

where $k \in [0..K]$. So, by the definition of $\tilde{\delta}^k$ from (14) we can rewrite it as

$$\tilde{\delta}^k \stackrel{(14)}{=} \delta^k - |\{j \in [k - \delta^k .. k - 1] : \gamma_j = 0\}| \stackrel{(212)}{=} \delta^k - \sum_{p=k-\delta^k}^{k-1} b_p, \quad (213)$$

and since

$$\delta^j - \sum_{p=j-\delta^j}^{j-1} b_p = \sum_{p=j-\delta^j}^{j-1} (1 - b_p),$$

then, plugging (213) back in (211) gives for all $k \in [0..K]$

$$\gamma_k L + 2\gamma_k L^2 \sum_{j \in M_k} \sum_{p=j-\delta^j}^{j-1} \gamma_j (1 - b_p) - 1 \leq 0. \quad (214)$$

The above reformulation is more compact for practical implementation and lead to the following mixed-integer nonlinear program

$$\begin{aligned} (\mathcal{P}_K^{\text{mi}}): \quad & \text{maximize } \gamma_0 + \gamma_1 + \dots + \gamma_K \\ & \text{over } (\gamma_0, \dots, \gamma_K) \in [0, \frac{1}{L}]^{K+1} \\ & \text{subject to } 0 \leq \gamma_k L \left(1 + 2L \sum_{j \in M_k} \sum_{p=j-\delta^j}^{j-1} \gamma_j (1 - b_p) \right) \leq 1 \quad \text{for } k = 0, 1, \dots, K; \\ & \text{and } b_p = \mathbb{I}\{\gamma_p = 0\}, \text{ for } p = 0, 1, \dots, K. \end{aligned} \quad (215)$$

Even though (215) is not anymore a bilinear program, we can still implement it in Gurobi 11 using the *Big-M method*. We further expand on implementation details concerning problem $(\mathcal{P}_K^{\text{mi}})$ in a subsequent paragraph.

Extending Theorem 4.4. In this paragraph, we will extend our main result (Theorem 4.4) to optimization problems of the form of $(\mathcal{P}_K^{\text{mi}})$, which is formalized in the next result:

Theorem G.18. For any positive real number $L > 0$, any integer $K \geq 0$ and any sequence of integers $\{\delta^k\}_{k \geq 0}$ such that $0 \leq \delta^k \leq k$ for all $k \geq 0$ then, any global maximizers $\{\gamma_k^*\}_{k \geq 0}$ of problem $(\mathcal{P}_K^{\text{mi}})$ satisfies, for all $k \in [0..K]$

$$\gamma_k^* = 0 \text{ or } \gamma_k^* L \left(1 + 2L \sum_{j \in M_k} \sum_{p=j-\delta^j}^{j-1} \gamma_j^* (1 - b_p^*) \right) = 1, \quad (216)$$

where $b_k^* = \mathbb{I}\{\gamma_k^* = 0\}$.

Proof. Up to a scaling factor of L in the optimal solutions, let us assume without loss of generality that $L = 1$. First, let us recall that for all $k \in [0..K]$ we have

$$\tilde{\delta}^k := \delta^k - |\{j \in [k - \delta^k .. k - 1] : \gamma_j = 0\}|. \quad (217)$$

Additionally, observe that the sets M_k for $k \in [0..K]$ does only depends on the delays $\{\delta^j\}_{j \geq 0}$ with Now let us suppose, for the sake of contradiction, that there exists an optimal solution $\{\gamma_k^*\}_{k \geq 0}$ for which (216) does not hold, that is, there exists $k_0 \in [0..K]$ such that

$$0 < \gamma_{k_0}^* \left(1 + 2 \sum_{j \in M_{k_0}} \sum_{p=j-\delta^j}^{j-1} \gamma_j^* (1 - b_p^*) \right) < 1. \quad (218)$$

For now on, let us fix $S_0 = \{i \in [0..K] : \gamma_i^* = 0\}$ and $T_0 = [0..K] \setminus S_0$, notably by (218) we have $k_0 \in T_0$. Then, observe that $\{\gamma_k^*\}_{k \in T_0}$ is a feasible solution for the optimization problem

$$\begin{aligned} (\mathcal{P}_K^*): \quad & \text{maximize} \sum_{k \in T_0} \gamma_k \\ & \text{over} \quad \{\gamma_k\}_{k \in T_0} \in [0, 1]^{|T_0|} \\ & \text{subject to} \quad 0 \leq \gamma_k \left(1 + 2 \sum_{j \in M_k \cap T_0} \bar{\delta}^j \gamma_j \right) \leq 1 \\ & \quad \text{for } k \in T_0; \end{aligned} \quad (219)$$

where we just kept the indices $k \in [0..K]$ for which $\gamma_k^* > 0$ since the other indices (for which the corresponding variable γ_k^* is zero) do neither impact the objective value nor the variables γ_k for $k \in T_0$. Additionally, we defined in (219)

$$\bar{\delta}^k := \delta^k - |\{j \in [k - \delta^k .. k - 1] : \gamma_j^* = 0\}| \geq 0. \quad (220)$$

Note that in problem (\mathcal{P}_K^*) the “delays” $\{\bar{\delta}^k\}_{k \geq 0}$ are fixed contrary to $(\mathcal{P}_K^{\text{mi}})$. It is important to observe that the coefficient $\bar{\delta}^k$ is simply $\tilde{\delta}^k$ when in (217) we use the tuple $\{\gamma_k^*\}_{k \geq 0}$. We can now apply Theorem 4.4 on the optimization problem (219), notably, using (218) which is equivalent to

$$0 < \gamma_k^* \left(1 + 2 \sum_{j \in M_k \cap T_0} \bar{\delta}^j \gamma_j^* \right) < 1,$$

we obtain that the feasible solution $\{\gamma_k^*\}_{k \in T_0}$ of (\mathcal{P}_K^*) is not extremal and thus is not optimal. Hence, let us denote by $\{\bar{\gamma}_k\}_{k \in T_0}$ an optimal solution of (\mathcal{P}_K^*) (which by Theorem 4.4 is extremal too) so

$$\sum_{k \in T_0} \gamma_k^* < \sum_{k \in T_0} \bar{\gamma}_k. \quad (221)$$

Next, let us complete $\{\bar{\gamma}_k\}_{k \in T_0}$ into a tuple $\{\bar{\gamma}_k\}_{k \geq 0}$ where $\bar{\gamma}_k = 0$ for all integer $k \notin T_0$. First, by construction of the optimization problem (\mathcal{P}_K^*) and the optimal solution $\{\bar{\gamma}_k\}_{k \geq 0}$, for any $k \in S_0$ we have $\bar{\gamma}_k = 0$ hence, for all $k \in [0..K]$

$$\begin{aligned} \bar{\delta}^k &\stackrel{(220)}{=} \delta^k - |\{j \in [k - \delta^k .. k - 1] : \gamma_j^* = 0\}| \\ &\geq \delta^k - |\{j \in [k - \delta^k .. k - 1] : \bar{\gamma}_j = 0\}|, \end{aligned} \quad (222)$$

4482 so since all $\{\bar{\gamma}_k\}_{k \geq 0}$ are non-negative then for $k \in [0..K]$
 4483

$$4484 \quad 0 \leq \bar{\gamma}_k \left(1 + 2 \sum_{j \in M_k} \sum_{p=j-\delta^j}^{j-1} \bar{\gamma}_j (1 - \bar{b}_p) \right), \quad (223)$$

4487 where $\bar{b}_p := \mathbb{I}\{\bar{\gamma}_p = 0\}$ with $p \in [0..K]$. Using (213) and (222) we obtain
 4488

$$\begin{aligned} 4489 \quad & \sum_{p=j-\delta^j}^{j-1} \bar{\gamma}_j (1 - \bar{b}_p) \\ 4490 \quad & \stackrel{(213)}{=} \bar{\gamma}_j (\delta^j - |\{j \in [k - \delta^k .. k - 1] : \bar{\gamma}_j = 0\}|) \\ 4491 \quad & \stackrel{(222)}{\leq} \bar{\gamma}_j (\delta^j - |\{j \in [k - \delta^k .. k - 1] : \gamma_j^* = 0\}|) \\ 4494 \quad & \stackrel{(220)}{=} \bar{\gamma}_j \bar{\delta}^j, \end{aligned} \quad (224)$$

4496 hence, for any $k \in [0..K]$
 4497

$$\begin{aligned} 4498 \quad & \bar{\gamma}_k \left(1 + 2 \sum_{j \in M_k} \sum_{p=j-\delta^j}^{j-1} \bar{\gamma}_j (1 - \bar{b}_p) \right) \\ 4501 \quad & \stackrel{(224)}{\leq} \bar{\gamma}_k \left(1 + 2 \sum_{j \in M_k} \bar{\delta}^j \bar{\gamma}_j \right) \\ 4504 \quad & \stackrel{(a)}{=} \bar{\gamma}_k \left(1 + 2 \sum_{j \in M_k \cap T_0} \bar{\delta}^j \bar{\gamma}_j \right) \\ 4507 \quad & \stackrel{(b)}{\leq} 1, \end{aligned} \quad (225)$$

4509 where in (a) we use the fact that for all $k \notin T_0$, by construction, $\bar{\gamma}_k = 0$ while in (b) we use the fact
 4510 that $\{\bar{\gamma}_k\}_{k \in T_0}$ is a feasible solution of (\mathcal{P}_K^*) .
 4511

4512 Combining the inequalities (223) and (225) for all integer $k \in [0..K]$ we deduce that $\{\bar{\gamma}_k\}_{k \geq 0}$ is a
 4513 feasible solution of problem $(\mathcal{P}_K^{\text{mi}})$ thus, using the strict inequality (221) we obtain
 4514

$$\sum_{k=0}^K \gamma_k^* = \sum_{k \in T_0} \gamma_k^* < \sum_{k \in T_0} \bar{\gamma}_k \stackrel{(a)}{=} \sum_{k=0}^K \bar{\gamma}_k \leq \text{val}(\mathcal{P}_K^{\text{mi}}), \quad (226)$$

4517 where (a) follows by construction of the $\{\bar{\gamma}_k\}_{k \geq 0}$ and $\text{val}(\mathcal{P}_K^{\text{mi}})$ denotes the optimal value of prob-
 4518 lem $(\mathcal{P}_K^{\text{mi}})$. Inequality (226) establishes the sub-optimality of the feasible solution $\{\gamma_k^*\}_{k \geq 0}$ which
 4519 leads to a contradiction since we assume originally that it was optimal. Hence, we conclude that
 4520 all the optimal solutions of the optimization problem $(\mathcal{P}_K^{\text{mi}})$ satisfy the “alternative” (216) and this
 4521 achieves the proof of the theorem. \square
 4522

Practical Implementation in Gurobi: the Big-M Method. In order to implement the mixed-
 4523 integer nonlinear optimization problem (215), we need to handle a trilinear product of variables of
 4524 the form
 4525

$$\gamma_k \gamma_j (1 - b_p),$$

4526 where $b_p = \mathbb{I}\{\gamma_p = 0\}$. In Gurobi 11 and older versions, while bilinear terms in the constraint are
 4527 supported, products of 3 or more variables like in the constraints of problem $(\mathcal{P}_K^{\text{mi}})$ are not directly
 4528 supported and require some tricks, especially since in our case one of the variable involved is binary
 4529 (the $1 - b_p$ in $(\mathcal{P}_K^{\text{mi}})$). To overcome this issue, we employ a technique called the *Big-M Method*.
 4530 For this we introduce a new continuous variables $z_{j,p}$ whose value will be forced to $\gamma_j (1 - b_p)$. It is
 4531 enough to notice that the equality $z_{j,p} = \gamma_j (1 - b_p)$ is equivalent to the set of inequalities
 4532

$$\begin{cases} 0 \leq z_{j,p}, \\ z_{j,p} \leq \gamma_j, \\ z_{j,p} \leq 1 - b_p, \\ \gamma_j + b_p \leq z_{j,p}. \end{cases}$$

Effectively, as $0 \leq z_{j,p} \leq 1 - b_p$ then if $b_p = 1$ we deduce that $z_{j,p} = 0$. Otherwise, if $b_p = 0$ then we have both $\gamma_j \leq z_{j,p} \leq \gamma_{j,p}$ as desired.

G.11 A PROVABLE FACTOR-2 APPROXIMATION

Theorem 5.5 (Near Optimality of Ringmaster AGD). *For any integer $K \geq 0$ the stepsizes $\{\gamma_k^{(R)}\}_{k \geq 0}$ of Ringmaster AGD (with a threshold³³ of $R = 1$) satisfy*

$$\sum_{k=0}^K \gamma_k^{(R)} \leq \sum_{k=0}^K \gamma_k^* \leq 2 \sum_{k=0}^K \gamma_k^{(R)},$$

with $\{\gamma_k^*\}_{k \geq 0}$ the optimal stepsizes and $\gamma_k^{(R)} = \frac{1}{L} \mathbb{I}\{\tilde{\delta}^k = 0\}$.

Proof. The proof of the above theorem builds on several intermediate lemmas we state and prove below.

Lemma G.19. *We have $\gamma_0^{(R)} = \frac{1}{L}$.*

Proof. Since $\delta^0 = 0$ by definition of the sequence of delays (see (14)) and as $0 \leq \tilde{\delta}^0 \leq \delta^0$ we deduce that

$$\gamma_0^{(R)} = \frac{1}{L} \mathbb{I}\{\tilde{\delta}^0 = 0\} = \frac{1}{L},$$

as desired. \square

Hence, based on Lemma G.19, we can define the (finite) sequence $t_0 = 0 < t_1 < \dots < t_i \leq K$ (with eventually $i = 0$) of loop number for which the stepsizes of Ringmaster ASGD when $R = 1$ are nonzero, i.e., for all $j \in [0..K]$

$$\gamma_j^{(R)} \neq 0 \text{ iff } j \in \{t_0, t_1, \dots, t_i\}.$$

It is important to note that the *effective* delay $\{\tilde{\delta}^k\}_{k \geq 0}$ depends on how the stepsizes are chosen. To prevent confusion, we denote by $\{\tilde{\delta}_k^*\}_{k \geq 0}$ the effective delays for an (arbitrarily taken, but fixed) optimal solution $\{\gamma_k^*\}_{k \geq 0}$.

Lemma G.20. *For any $j \in [0..i-1]$, there do not exist integers $t_j \leq \ell_1 < \ell_2 \leq t_{j+1} - 1$ such that the same worker sends a stochastic gradient at loop number ℓ_1 and ℓ_2 .*

Proof. For the sake of contradiction, assume not and suppose worker $p \in [n]$ sends a stochastic gradient to the server at both loop number ℓ_1 and ℓ_2 . Without loss of generality, we can assume ℓ_1 and ℓ_2 to be the first two times where worker p sends a stochastic gradient in the time frame $[t_j, t_{j+1} - 1]$. By definition of the sequence $\{t_j\}_{j \in [0..i]}$ we know that all the stochastic gradients received by the server from loop number $t_j + 1$ to $\ell_2 - 1$ are discarded. Hence,

$$\tilde{\delta}^{\ell_2} = \delta^{\ell_2} - \left| \left\{ j \in [\ell_2 - \delta^{\ell_2} .. \ell_2 - 1] : \gamma_j^{(R)} = 0 \right\} \right| = 0, \quad (227)$$

since by definition of the delay $\delta^{\ell_2} = \ell_2 - \ell_1 - 1$ is the number of stochastic gradients received by the server between times ℓ_1 and ℓ_2 (endpoints excluded). But (227) and the fact that $t_j < \ell_2 < t_{j+1}$ contradict the definition of the sequence $\{t_j\}_{j \in [0..i]}$. Thus, the claimed property holds. \square

Hence, the previous lemma asserts that for all $j \in [0..i-1]$, on the time frame $[t_j, t_{j+1} - 1]$ the server receives stochastic gradients from distinct workers only. In particular, this shows that

$$\delta^\ell \geq \ell - t_j, \quad (228)$$

for all $\ell \in [t_j, t_{j+1} - 1]$: this remark is actually at the core of the proof and is crucial for the next part. For now, let us fix $j \in [0..i-1]$ and focus on the time frame $[t_j, t_{j+1} - 1]$ (in case $i = 0$, we can just replace $t_{j+1} - 1$ by the last loop number). We would like to compare the stepsizes

³³Following the choice of Maranjyan et al. (2025), when $\sigma^2 = 0$ then $R = 1$.

4590 $\gamma_{t_j}^*, \dots, \gamma_{t_{j+1}-1}^*$ to those arising when solving a similar *mixed-integer* optimization problem but
 4591 restricted to the time frame $[t_j, t_{j+1} - 1]$. Let $\gamma_0^*, \dots, \gamma_{s-1}^*$ be an optimal solution of
 4592

$$\begin{aligned} 4593 \quad & (\widetilde{\mathcal{P}}_K^*): \text{ maximize } \gamma_0 + \gamma_1 + \dots + \gamma_{s-1}, \\ 4594 \quad & \text{over } (\gamma_0, \dots, \gamma_{s-1}) \in [0, \frac{1}{L}]^s, \\ 4595 \quad & \text{subject to } 0 \leq \gamma_k L + 2\gamma_k L^2 \sum_{j=k+1}^{s-1} \gamma_j \widetilde{\delta}^j \leq 1 \quad \text{for } k = 0, 1, 2, \dots, s-1. \end{aligned} \quad (229)$$

4598 where $s = t_{j+1} - t_j$ (or $s = K$ if $i = 0$) is the size of the time frame $[t_j, t_{j+1} - 1]$. The optimization
 4599 problem (229) arises for instance when only distinct workers send a stochastic gradient to the server.
 4600 In this case we have $\delta^k = k$ for all $k \in [0..s-1]$ and the sets M_k reduces to
 4601

$$4602 \quad M_k = \{j \in [0..s-1] : j - \delta^j \leq k \leq j - 1\} = [k+1..s-1]. \\ 4603$$

4604 Let $\{\widetilde{\delta}_j^j\}_{j \in [0..s-1]}$ and $\{\widetilde{\delta}_{*,r}^\ell\}_{\ell \in [t_j..t_{j+1}-1]}$ be respectively the effective delays associated to
 4605 $\gamma_0^*, \dots, \gamma_{s-1}^*$ and $\gamma_{t_j}^*, \dots, \gamma_{t_{j+1}-1}^*$ when restricted to the time frame $[t_j, t_{j+1} - 1]$, i.e., for $\ell \in$
 4606 $[t_j..t_{j+1}-1]$ we define

$$4607 \quad \widetilde{\delta}_{*,r}^\ell = (\ell - t_j) - |\{j \in [t_j.. \ell - 1] : \gamma_j^* = 0\}|. \quad (230)$$

4609 We prove the following lemma.

4610 **Lemma G.21.** *For any $j \in [0..i-1]$ we have*

$$\begin{aligned} 4612 \quad & \sum_{\ell=t_j}^{t_{j+1}-1} \gamma_\ell^* \leq \sum_{\ell=0}^{s-1} \gamma_\ell^*. \\ 4613 \quad & \sum_{\ell=t_j}^{t_{j+1}-1} \gamma_\ell^* \leq \sum_{\ell=0}^{s-1} \gamma_\ell^*. \\ 4614 \quad & \end{aligned} \quad (231)$$

4616 *Proof.* Fix some $j \in [0..i-1]$, we know that $0 \leq \gamma_\ell^* \leq \frac{1}{L}$ for all $\ell \in [t_j, t_{j+1} - 1]$. It is
 4617 enough for proving (231) to establish that $\gamma_{t_j}^*, \dots, \gamma_{t_{j+1}-1}^*$ is a feasible solution of (229). Let $k \in$
 4618 $[t_j..t_{j+1}-1]$, we have

$$4619 \quad \gamma_k^* L + 2\gamma_k^* L^2 \sum_{j=k+1}^{t_{j+1}-1} \gamma_j^* \widetilde{\delta}_{*,r}^j \stackrel{(a)}{\leq} \gamma_k^* L + 2\gamma_k^* L^2 \sum_{j=k+1}^{t_{j+1}-1} \gamma_j^* \widetilde{\delta}_*^j \stackrel{(b)}{\leq} \gamma_k^* L + 2\gamma_k^* L^2 \sum_{j \in M_k} \gamma_j^* \widetilde{\delta}_*^j \leq 1,$$

4623 where the last inequality follows from the feasibility of $\{\gamma_k^*\}_{k \in [0..K]}$. The inequality (a) follows
 4624 from

$$\begin{aligned} 4625 \quad & \widetilde{\delta}_*^\ell := \delta^\ell - |\{j \in [\ell - \delta^\ell .. \ell - 1] : \gamma_j^* = 0\}| \\ 4626 \quad & = (|\ell - t_j| - |\{j \in [t_j.. \ell - 1] : \gamma_j^* = 0\}|) + (\delta^\ell - |\ell - t_j| - |\{j \in [\ell - \delta^\ell .. t_j - 1] : \gamma_j^* = 0\}|) \\ 4627 \quad & (\ell - t_j) - |\{j \in [t_j.. \ell - 1] : \gamma_j^* = 0\}| \\ 4628 \quad & \stackrel{(230)}{=} \widetilde{\delta}_{*,r}^\ell, \end{aligned} \quad (232)$$

4631 where in (232) we use (228), i.e.,

$$4633 \quad \delta^\ell - |\ell - t_j| \geq 0 \text{ and } |\{j \in [\ell - \delta^\ell .. t_j - 1] : \gamma_j^* = 0\}| \leq \delta^\ell - |\ell - t_j|,$$

4634 and (b) follows from the non-negativity of all γ_j^* and all $\widetilde{\delta}_*^j$ along with the inclusion

$$4636 \quad [k+1..t_{j+1}-1] \subseteq M_k = \{j \in [0..K] : j - \delta^j \leq k \leq j - 1\},$$

4638 since for all $\ell \in [k+1..t_{j+1}-1]$ we have $\ell - 1 \geq k$ and

$$4640 \quad \ell - \delta^\ell \stackrel{(230)}{\leq} t_j \leq k,$$

4641 as desired. This shows that $\gamma_{t_j}^*, \dots, \gamma_{t_{j+1}-1}^*$ is a feasible solution of (229) from where inequality
 4642 (231) is a consequence. \square
 4643

4644 *Remark G.22.* The inequality (231) also holds on the last block $[t_i, K]$ for the same reasons.

4644 Equipped with Lemma G.19 we now need to upper bound the sum $\gamma_0^* + \dots + \gamma_{s-1}^*$, which we do
 4645 in the next lemmas. We first start by a technical lemma.
 4646

4647 **Lemma G.23** (A Technical Result). *Let $n > 0$ be an integer and define the sequence $(u_i)_{i \in [n]}$ by
 4648 $u_1 = 1$ and for all $i \in [n - 1]$ by the recurrent relation*

$$4649 \quad u_{i+1} = \frac{u_i}{1 + 2u_i^2(n - i)},$$

4651 then, we have³⁴

$$4652 \quad S_n := \sum_{i=1}^n u_i \leq 2.$$

4655 *Proof.* First, we prove by induction on $i \in [n - 1]$ that $0 \leq u_{i+1} \leq u_i$. For the base case $i = 1$ we
 4656 have

$$4658 \quad u_2 = \frac{u_1}{1 + 2u_1^2(n - 1)} = \frac{1}{2n - 1} \leq 1 = u_1, \quad (233)$$

4659 and $u_2 \geq 0$ too. Now, assuming $0 \leq u_{i+1} \leq u_i$ holds for some integer $0 \leq i \leq n - 2$ we have

$$4661 \quad u_{i+2} = \frac{u_{i+1}}{1 + 2u_{i+1}^2(n - (i + 1))} \leq u_{i+1},$$

4663 since $1 + 2u_{i+1}^2(n - (i + 1)) \geq 1$ (because $i + 1 \leq n$). Moreover, we also deduce that $u_{i+2} \geq 0$
 4664 since by the induction hypothesis we have $u_{i+1} \geq 0$. This proves the claim, as desired.

4665 Now, as the sequence $(u_i)_{i \in [n]}$ is monotonically non-increasing we have

$$4667 \quad u_i \leq u_2 \stackrel{(233)}{=} \frac{1}{2n - 1}, \quad (234)$$

4669 for all $i \in [2 .. n]$ thus

$$4671 \quad S_n = \sum_{i=1}^n u_i = u_1 + \sum_{i=2}^n u_i \stackrel{(234)}{\leq} 1 + \frac{n}{2n - 1} \leq 2,$$

4673 and this achieves the proof of the lemma. \square

4674 **Lemma G.24.** *For all $s \geq 0$, any optimal solution $\gamma_0^*, \dots, \gamma_{s-1}^*$ of (229) satisfies*

$$4676 \quad \sum_{\ell=0}^{s-1} \gamma_\ell^* \leq \frac{2}{L}. \quad (235)$$

4679 *Proof.* Let $S = \{j \in [0 .. s - 1] : \gamma_j^* = 0\}$ and denote by $T = [s] \setminus S$ the indices for which the
 4680 stepsizes are positive. Let us prove that

$$4682 \quad \sum_{\ell=0}^{s-1} \gamma_\ell^* = \sum_{\ell \in T} \gamma_\ell^* \leq \frac{|T|}{L}, \quad (236)$$

4685 where the sequence $(S_n)_{n \geq 1}$ is the one defined in Lemma G.23. Once inequality (236) is estab-
 4686 lished, the desired claim (235) will follow since $S_n \leq 2$ for all $n \geq 1$ by Lemma G.23. Let us now
 4687 prove the inequality (236). By Theorem G.18, we know that the optimal solution $\{\gamma_k^*\}_{k \in [0 .. s-1]}$ is
 4688 such that all constraints in Equation (209) (and so in (229)) are tight thus, for all $\ell \in T$, since $\gamma_\ell^* > 0$
 4689 then if we let $T = \{j_0, \dots, j_{|T|-1}\}$ where $0 = j_0 < j_1 < \dots < j_m$ with $m = |T| - 1 \geq 0$ ³⁵, we
 4690 have

$$4691 \quad \gamma_\ell^* = \frac{1}{L} \cdot \frac{1}{1 + 2L \sum_{j=\ell+1}^{s-1} \gamma_j^* \tilde{\delta}_\star^j} \stackrel{(a)}{=} \frac{1}{L} \cdot \frac{1}{1 + 2L \sum_{\substack{r \in [0 .. m] \\ j_r > \ell}} \gamma_{j_r}^* r},$$

4694 ³⁴It can be proved that $S_n \xrightarrow[n \rightarrow +\infty]{} 1 + \arctan \left(\sqrt{5 - 2\sqrt{6}} \right) \sqrt{2} \approx 1.4352098756$. As of now, it is an
 4695 open question to prove $(S_n)_{n \geq 1}$ is a monotonically non-decreasing sequence.

4696 ³⁵The optimal solution is never $(0, \dots, 0)$ since we can always take $\gamma_0^* = \frac{1}{L}$ and all other variables to 0.
 4697 Additionally, the first stepsize γ_0^* if never zero.

4698 where in (a) we use the definition of the effective delays: as soon as one of the stepsizes is zero, it
 4699 is “removed” from the effective delays. In other words, since the *effective* delay counts exactly how
 4700 many stochastic gradients have been accepted by the server since the iteration 0 (this is specific to
 4701 our case here), we have

$$4703 \quad \tilde{\delta}_*^j = \begin{cases} r, & \text{if } j = j_r \text{ for some } r \in [0..m]; \\ 0, & \text{otherwise;} \end{cases}$$

4705 thus, if we let $u_i = L\gamma_{j_{m-i}}^*$ for all $i \in [0..m]$ then the stepsizes $\{\gamma_{j_r}^*\}_{r \in [0..m]}$ can be computed
 4706 using the following recurrent system:
 4707

$$4708 \quad u_0 = 1 \text{ and } u_i = \frac{1}{1 + 2 \sum_{r=0}^{i-1} (m-r)u_r}, \quad (237)$$

4711 for all $i \in [0..m]$. Using (237) we obtain
 4712

$$4713 \quad \frac{1}{u_{i+1}} = \frac{1}{u_i} + 2(m-i)u_i,$$

4715 for all $i \in [0..m-1]$ thus
 4716

$$4717 \quad u_{i+1} = \frac{1}{\frac{1}{u_i} + 2(m-i)u_i} = \frac{u_i}{1 + 2u_i^2(m-i)}; \quad (238)$$

4719 Hence, using Lemma G.23 combined with (238) yields
 4720

$$4721 \quad \sum_{\ell=0}^s \gamma_{\ell}^* = \sum_{r=0}^m \gamma_{j_r}^* = \sum_{r=0}^m \frac{u_r}{L} \stackrel{(238)}{=} \frac{S_{m+1}}{L} \stackrel{\text{Lem. G.23}}{\leq} \frac{2}{L},$$

4724 as desired. This achieves the proof of the lemma. \square
 4725

4726 Finally, combining Lemmas G.21 and G.24 we obtain
 4727

$$4728 \quad \sum_{\ell=0}^K \gamma_{\ell}^* = \sum_{j=0}^{i-1} \sum_{\ell=t_j}^{t_{j+1}-1} \gamma_{\ell}^* + \sum_{j=t_i}^K \gamma_j^* \\ 4729 \quad \stackrel{\text{Lem. G.21}}{\leq} \sum_{j=0}^{m-1} \sum_{\ell=t_j}^{t_{j+1}-1} \gamma_{\ell}^* + \sum_{j=t_i}^K \gamma_j^* \\ 4730 \quad \stackrel{\text{Lem. G.24}}{\leq} \sum_{j=0}^{i-1} \frac{2}{L} + \frac{2}{L} \\ 4731 \quad = \frac{2(i+1)}{L} \\ 4732 \quad = 2 \sum_{j=0}^i \gamma_{t_j}^{(R)} \\ 4733 \quad = 2 \sum_{\ell=0}^K \gamma_{\ell}^{(R)},$$

4734 and this concludes the proof of the main theorem. \square
 4735

4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751

4752 H EXPERIMENTS

4755 H.1 THE STOCHASTIC REPETITION BENCHMARK

4757 We present on Figure 6a the measures of runtime and the number of iterations of both Gurobi
 4758 11 and the MMAHH solver on the *Stochastic Repetition benchmark*, which is the benchmark that
 4759 corresponds to \mathcal{L}_W which consists of repeating c times a randomly sampled elementary sequence
 4760 of length n (with entries chosen uniformly in random between 1 and 100). We run both solvers
 4761 on three instances of this benchmark, namely, $(n, c) = (9, 5)$, $(n, c) = (8, 4)$ and $(n, c) = (9, 4)$.
 4762 While the MMAHH keeps a comparable performance compared to the *Cyclic Staircase Benchmark*
 4763 (see Figure 3) in both the runtime and in number of iterations, instead, Gurobi has much more
 4764 difficulties with this benchmark. More precisely, the MMAHH attains up to a $10^5 \times$ speed-up in
 4765 runtime while requiring up to 5000 \times less iterations.

4768 H.2 THE RANDOM SEQUENCES BENCHMARK

4770 In this section we present the performance results of Gurobi and the MMAHH on the *Random Se-
 4771 quences benchmark*, which corresponds to lists \mathcal{L}_W in \mathbb{R}^d whose entries are randomly chosen be-
 4772 tween 0 and 10000. For this benchmark again, the MMAHH again outperforms Gurobi across all
 4773 tested dimensions, achieving speed-ups of up to $5 \cdot 10^4$ factor, and reducing the number of iterations
 4774 by up to a factor of 100. We present the results in Figure 6b.

4804 Figure 6: Comparison of solver runtime (left) and number of iterations (right) for Gurobi (blue) vs.
 4805 MMAHH (orange). For the MMAHH, means and standard deviations are taken over 10 runs.

4806
4807

H.3 LANDSCAPE OF THE DISCRETE FUNCTION

4808
4809
4810
4811
4812

This experiment aims at representing the function $\varphi(w) := \langle \mathbf{a} \mid \Psi(w) \rangle$ for $w \in \{0, 1\}^d$, we choose to represent this function for the instance $(n, c) = (5, 4)$ of the *Cyclic Staircase Benchmark* (Figure 7a), the instance $(n, c) = (5, 4)$ of the *Stochastic Repetition Benchmark* (Figure 7b). For that, we plot the values of 2^d the bit-strings in $\{0, 1\}^d$. We group the points w by their Hamming distance to the optimum w^* , more precisely, the x -axis corresponds to the quantity $d - d_H(w, w^*)$.

4813
4814
4815
4816
4817

For comparison between the landscapes in Figures 7a and 7b and the standard functions used to compare hyper-heuristics, we provide in Figure 8 plots for the three most used benchmarks. These functions presents valleys and hills which are clearly visible. It is worth mentioning that the theoretical work of Bendahi et al. (2025) applies to a class of functions similar to these three, which is not the case of the landscapes in Figures 7a and 7b.

4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828

4829

Figure 7: Instance $(n, c) = (5, 4)$ on the Two Benchmarks4830
4831
4832
48334834
4835
4836
4837
4838
4839
4840
4841
4842
4843
48444845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859

Figure 8: Plot of the Three Most Common Benchmarks in Hyper-Heuristics.

4860 I NOTES ON THE UNIQUENESS OF OPTIMAL SOLUTIONS

4861
 4862 A natural question following Theorem 4.4 is whether there exists a unique optimal solution to the
 4863 problem (\mathcal{P}_d) or not and under which sufficient condition(s) uniqueness can hold.

4864 First, we show that we can always construct an instance of the problem (\mathcal{P}_d) that has more than one
 4865 optimal solution.

4866 **Lemma I.1** (Proof in Appendix E.5). *For any positive integer $d \geq 2$, there exists a strictly upper
 4867 triangular $\mathbb{R}^{d \times d}$ matrix M with non-negative entries and a vector $\mathbf{a} \in \mathbb{R}_+^d$ such that problem (\mathcal{P}_d)
 4868 admits at least two solutions in \mathbb{R}_+^d .*

4869 The specific instance built in the previous lemma relied on the fact that \mathbf{a} can have distinct coordinates.
 4870 We can ask the same question when all coordinates of \mathbf{a} are equal³⁶, which reduces, due to
 4871 the scale-invariance of (\mathcal{P}_d) in \mathbf{a} , to $\mathbf{a} = (1, \dots, 1)^\top$.

4872 **Lemma I.2.** *For any 2×2 strictly upper triangular matrix M with non-negative entries, if $\mathbf{a} =$
 4873 $(1, 1)^\top$ then the problem (\mathcal{P}_2) admits a unique global maximizer.*

4874 However, Lemma I.2 fails to hold in higher dimensions. For example, the following instance of
 4875 (\mathcal{P}_d) in dimension $d = 3$

$$4876 M = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } \mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad (239)$$

4877 has the following two maximizers: $\Lambda_1^* = (1, 0, 1)^\top$ and $\Lambda_2^* = (\frac{1}{2}, \frac{1}{2}, 1)^\top$. Nonetheless, the following
 4878 simple and sufficient condition ensures the uniqueness of the optimal solution of (\mathcal{P}_d) .

4879 **Theorem I.3** (A Sufficient Condition for Uniqueness). *For any positive integer d , if the matrix M
 4880 is strictly upper triangular with non-negative entries and satisfies, for all $k \in [d]$*

$$4881 \sum_{\substack{i=1 \\ i < k}}^d M_{i,k} < 1, \quad (240)$$

4882 then with the vector $\mathbf{a} = (1, \dots, 1)^\top \in \mathbb{R}^d$ the problem (\mathcal{P}_d) admits a unique global maximizer.

4883 For further details and proofs of Lemmas I.1 and I.2 and Theorem I.3, the interested reader is invited
 4884 to consult Appendix E.5 where all the claims stated in this section are rigorously established.

4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913 ³⁶This choice is motivated in Section 5. In the analysis of asynchronous gradient descent, the problem (\mathcal{P}_d)
 naturally arises and the vector \mathbf{a} is simply $(1, \dots, 1)^\top$.

4914 **J NOTE ON THE USAGE OF LARGE LANGUAGE MODELS**
49154916 The authors acknowledge the use of Large Language Models to assist in polishing the writing of
4917 this manuscript. The LLMs were used only for language refinement and did not contribute to the
4918 research ideas, experimental design, analysis, or conclusions exposed here.
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967