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ABSTRACT

We study the bilinear program that arises when tuning the stepsizes in asyn-
chronous gradient descent (AGD). Notably, we prove a necessity theorem: ev-
ery global maximizer lies at an extreme point of the feasible region, strengthen-
ing the classical sufficiency guarantee for linear objectives on compact sets. Ex-
ploiting this structure, we recast the continuous problem as a discrete search over
the vertices of the hyper-cube and design a solver that performs a biased random
walk among them. Over all the tested benchmarks, including the Cyclic Staircase
benchmark, our solver reaches global optimality up to 1000× faster than Gurobi
11 while using orders of magnitude fewer evaluations.
This structural result allows us to prove near-optimal stepsize scheme for the re-
cently proposed Ringmaster AGD algorithm and a provable factor–2 approxima-
tion on the error to find an ε–stationary point. Together, our results provide both a
sharper theoretical characterization and a practical solver for nonconvex bilinear
programs emerging in distributed learning.

1 INTRODUCTION

Artificial Intelligence (AI) systems built on large-scale neural networks have progressed at an un-
precedented pace during the last decade. Ground-breaking results span visual perception, where
deep convolutional networks first closed the ImageNet gap (Krizhevsky et al., 2012) and later sur-
passed human-level accuracy via residual learning (He et al., 2015), strategic decision-making via
reinforcement-learning, where AlphaGo defeated human Go champions (Silver et al., 2016), and
natural language understanding, where autoregressive transformers scaled to 175 billion parameters
in GPT-3 (Brown et al., 2020). These successes share a common denominator: massive computa-
tional resources exploited by well-designed learning and optimization procedures such as (stochas-
tic) first-order methods (Ghadimi & Lan, 2013; Lan, 2020)). Efficient optimization is therefore
central to modern AI applications. Yet as neural networks scale toward trillion-parameter (Rajb-
handari et al., 2020), training must be distributed across hundreds or even thousands of compute
nodes (Llama Team, 2024; Microsoft, 2024; OpenAI, 2024; Gemini Team, 2025). While Minibatch-
SGD (Cotter et al., 2011; Dekel et al., 2012; Takac et al., 2013) is one of the most commonly used
distributed training strategy, every worker is forced to wait until the slowest one finishes its compu-
tations, causing severe under utilization of the resources (Goyal et al., 2017; Bottou et al., 2018). It
seems then natural to let workers proceed asynchronously, giving rise to asynchronous-type methods
like asynchronous gradient-descent (AGD) that let processors read eventually stale model parameters
and post their gradients without locks or prior coordination (Recht et al., 2011).

Like all gradient-descent methods, a crucial design choice in AGD is the stepsize policy, which must
offset the extra variance introduced by delayed gradients. To our surprise, in many works the step-
sizes are engineered based on prior intuitions on the behavior of the optimization method and lack
rigorous justifications. While in general these hand crafted stepsizes does not hurt the convergence
rate, they might lead to suboptimal hidden constant which in practice, e.g., when training large ma-
chine learning models, can be detrimental, especially in decentralized and federated learning (Dean
et al., 2012; McMahan et al., 2017; Kairouz et al., 2021). Investigating for optimal stepsizes in AGD
and compare them to known methods is therefore a crucial step, beyond the theoretical convergence
rates, to understand how one algorithm compare to the other in practical scenarios.
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1.1 OUR CONTRIBUTIONS

The contributions of the present work span from advances in bilinear programming theory and its
implications to the design of asynchronous optimization methods, with a particular focus on provid-
ing a deeper understanding of the optimal choice of the stepsizes.

♠ An Optimization Problem for Choosing The Stepsizes. We show that selecting improved
stepsizes for asynchronous gradient descent (AGD) can be cast as an optimization problem with a
linear objective and bilinear constraints.

♣ A Sharper Characterization of the Global Maximizers. Starting from our stepsize problem,
and beyond the existence of an optimal solution, we provide a sharper characterization of the optimal
solutions of a whole family of bilinear programs by establishing a necessity theorem: every global
maximizer is necessarily extremal, thereby tightening the classical result.

♦ A Simple yet Powerful Heuristic to Solve the Optimization Problem. Leveraging our ex-
tremality guarantee, we show how a simple randomized heuristic, searching over the vertices of the
feasible region, can already very efficient in practice and we empirically compare this heuristic to
the general-purpose solver Gurobi.

Together, these contributions yield both a refined theoretical understanding and a practical heuristic
for nonconvex bilinear programs, particularly those with separable or low-dimensional nonconvex
components, such as problems with one constraint per coordinate of the ambient space. This frame-
work is not limited to AGD, and can be naturally extended to inform the design of other distributed
learning methods.

2 RELATED WORKS†

2.1 ASYNCHRONOUS GRADIENT DESCENT (AGD)

Asynchronous optimization can be dated back to the 1970-80s (Baudet, 1978; Tsitsiklis et al., 1986;
Bertsekas & Tsitsiklis, 1989) and regains interest with the seminal work of Recht et al. (2011). While
subsequent works have focused on the stochastic variant of AGD, i.e., ASGD (Agarwal & Duchi,
2011; Chaturapruek et al., 2015; Lian et al., 2015; Feyzmahdavian et al., 2016; Sra et al., 2016; Dutta
et al., 2018; Nguyen et al., 2018; Arjevani et al., 2020; Stich & Karimireddy, 2020), it is only recently
that tight convergence analysis of ASGD and optimal algorithms have been derived (Koloskova et al.,
2022; Mishchenko et al., 2022; Feyzmahdavian & Johansson, 2023) culminating in Ringmaster
ASGD (Maranjyan et al., 2025) with provable optimal time complexity. In Zhang et al. (2016);
Mishchenko et al. (2022) delay-adaptive stepsizes are used where the learning rate is divided by
the delay while Koloskova et al. (2022); Maranjyan et al. (2025) use a threshold to penalize/discard
stale gradients. Surprisingly, the delay threshold used in Ringmaster ASGD does not depend on the
compute times nor on the delays and it is an open question whether one can improve this threshold.

2.2 BILINEAR PROGRAM (BLP)

BLPs are a class of nonlinear optimization problems in which the objective function or constraints
involve products of pairs of variables from two distinct sets, leading to intrinsic non-convexity and
computational hardness (Al-Khayyal, 1992). Even for seemingly simple linear objectives and bi-
linear constraints, the feasible region can have complex geometry (Horst & Hoang, 1996). BLPs
arise in diverse applications from pooling (Misener & FLOUDAS, 2009) and packing (Locatelli
& Raber, 2002) to network design (Davarnia et al., 2017) and economic equilibrium (Mathiesen,
1985), motivating a range of algorithmic solutions. Approaches for solving BLPs include convex
relaxations such as McCormick envelopes (McCormick, 1976), mixed-integer programming refor-
mulations (Adams & Sherali, 1993), and advanced cutting plane or disjunctive algorithms (Saxena
et al., 2011; Fampa & Lee, 2021; Rahimian & Mehrotra, 2024) for global solution strategies. Despite
these advances, exact solution and efficient computation for large-scale BLPs remain significant re-
search challenges (Rahimian & Mehrotra, 2024).

† We refer the reader to Appendix B for further references.
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3 GLOBAL MAXIMIZERS IN BILINEAR PROGRAMS

In this section, we introduce and study in depth a class of bilinear programs that is essential for our
later analysis of AGD.

3.1 THE OPTIMIZATION PROBLEM

The bilinear program we are interested is the following maximization problem:

(Pd) : maximize ⟨Λ | a⟩ =
d∑

k=1

akλk

over (λ1, . . . , λd) ∈ [0 , 1]
d

subject to 0 ≤ λk

(
1 +

d∑
j=1

Mi,jλj

)
≤ 1 for k = 1, 2, . . . , d;

(1)

where d > 0 is the dimension, Λ = (λ1, . . . , λd)
⊤ are the variables of the problem, a =

(a1, . . . , ad)
⊤ ∈ Rd is a constant vector such that for all i ∈ [d], ai ̸= 0 and M is a d × d matrix

with non-negative entries. It is worth noting that the bilinear constraints of (Pd) can be re-written
in the following “matrix-form” inequality

0 ≤ Λ + Λ⊙ (MΛ) ≤ 1, (2)

where ⊙ denotes the Hadamard product, i.e., element-wise multiplication1 and the inequalities
from (2) are considered coordinate-wise. Additionally, notice that problem (Pd) is scale-invariant
in a, that is, if we scale the vector a in the objective function by some positive scalar then the set of
solution is unchanged.

Throughout this work, while we mainly focus on the general case where M has non-negative entries,
we also highlight in Appendix F an important special case of problem (1) where M is a strictly
upper triangular matrix (with non-negative entries), that is, Mi,j = 0 for every 1 ≤ j ≤ i ≤ d and
Mi,j ≥ 0 for all 1 ≤ i, j ≤ d so that the constraints in (2) simplify to

λk

1 +

d∑
j=k+1

Mi,jλj

 ≤ 1, k = 1, 2, . . . , d. (3)

It is this case which naturally arises from the state-of-the-art analysis of asynchronous gradient
descent (AGD) as outlined in Section 5 and more thoroughly in Appendix G; the triangular geometry
of the matrix M being induced by the sequential nature of AGD.

We define the feasible region of (Pd) as follows:
Definition 3.1. The feasible region F of problem (Pd) is

F :=
{
Λ ∈ [0 , 1]

d
: 0 ≤ Λ + Λ⊙ (MΛ) ≤ 1

}
, (4)

where M is a d× d matrix with non-negative entries.

3.2 THE SUFFICIENCY RESULT

In this section, we recall a general result which implies that the problem (Pd) in (1) admits at least
one optimal solution that is an extreme point of the feasible region. We recall the notion of extreme
point for general non-empty, and in particular non-convex, subsets of Rd in Definition 4.1.

Let us consider the general optimization problem:

(P lin
cpt) : maximize ⟨x | c⟩

over x ∈ K,
(5)

1For two matrices A and B from Rd×n, the Hadamard product of A by B, denoted by A⊙B is the matrix
C whose entry (i, j) ∈ [d]× [n] is given by Ci,j = Ai,j ×Bi,j .
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x

y

z

(a) M =

0 1 0
0 0 1
0 0 0

 and a =

1
1
1

.

x

y

z

(b) M =

0 1 1
0 0 2
0 0 0

.

where a ∈ Rd \ {0} is a constant non-zero vector and K ⊆ Rd a non-empty and compact
subset2. Nonetheless we can still say something about some of the global maximizers of prob-
lem (5) as stated in the next result and proved in Appendix E.1. For convenience, we denote by
X∗ := argmaxx∈K f(x) := ⟨x | c⟩ the set of global maximizers of (5).
Theorem 3.2 (Maximization of Linear Forms over Non-empty Compact Sets). There exists an opti-
mal solution of problem (P lin

cpt) in (5) which is also an extreme point of K, i.e., ExtrK ∩X∗ ̸= ∅.

Actually Theorem 3.2 above is a special case of Theorem 3.1 from Chen et al. (2021) but since we
only focus here on the particular case where the objective is linear, we can prove Theorem 3.2 more
directly (see Appendix E.1).

3.3 SOME KEY LEMMAS

In this part, we establish two key results concerning the system of inequalities defined by the d
constraints in problem (Pd) in (1). In the first result (Lemma 3.3), we prove that one can control
the value of each coordinate of the column vector Λ + Λ ⊙ (MΛ). That is, given some weights
w = (w1, . . . , wd)

⊤ ∈ [0 , 1]
d, the system of d equations Λ + Λ ⊙ (MΛ) = w, is always solvable

and we prove that this system admits a unique solution Λ(w). In the second result (Lemma 3.4) we
study the regularity of this unique solution as the weights vector w varies in [0 , 1]

d.
Lemma 3.3 (A Linear-Quadratic System; Proof in Appendix E.2). Let d ∈ N be a positive integer,
M ∈ Rd×d a matrix with non-negative entries and W = (w1, . . . , wd)

⊤ ∈ Rd a d-dimensional
column vector with non-negative entries. Then, the system

Λ + Λ⊙ (MΛ) = W, (6)
has a unique solution Λ = (λ1, . . . , λd)

⊤ ∈ Rd with non-negative entries and for any i ∈ [d] we
have λi = 0 if, and only if wi = 0.

The proof of Lemma 3.3 is deferred to Appendix E.2. It uses the notion of P -matrix and crucially
relies the Gale–Nikaidô theorem. This theorem is a powerful tool which provides a link between P -
matrices and the injectivity of functions defined from Rd to Rd. The reader can refer to Appendix C.5
for more details about P -matrices.

Counter-examples to the existence and uniqueness of solution(s) to (6) are discussed in Ap-
pendix E.2.
Lemma 3.4 (Regularity of the Solution of (6)). Let d ∈ N be a positive integer and M ∈ Rd×d a
matrix with non-negative entries. For any d-dimensional column vector w = (w1, . . . , wd)

⊤ ∈ Rd

with non-negative entries, let Λ(w) = (λ
(w)
1 , . . . , λ

(w)
d )

⊤
be the unique solution of the equation

Λ + Λ⊙ (MΛ) = w, (7)

then, the map Ψ: [0 , 1]
d → F defined for w ∈ [0 , 1]

d by

Ψ(w) := Λ(w) =
(
λ
(w)
1 , . . . , λ

(w)
d

)⊤

,

where F :=
{
Λ ∈ [0 , 1]

d
: 0 ≤ Λ + Λ⊙ (MΛ) ≤ 1

}
, is a C∞–diffeomorphism.

2Here we do not impose anything special on the geometry of the compact set K, e.g., convexity or the fact
that K is described by linear inequalities. So K can be an arbitrary compact and non-empty subset of Rd,
notably K is not necessarily convex.
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4 MAIN RESULTS

4.1 CHARACTERIZING THE EXTREME POINTS OF F

We start this section by studying the extremal points of the feasible set F . More precisely, we
prove that the set of extreme points of F can be characterized as the set of vertices {0, 1}d of the
hypercube [0 , 1]

d mapped by the diffeomorphism Ψ defined in Lemma 3.4.

Before stating our results, we recall the two common definitions of an extreme point for general
(e.g., non-convex) subsets of Rd. One (Definition 4.1) is more wide spread in the literature than the
other (Definition 4.2). We refer the reader to Appendix C.2 for further discussions on this point.
Definition 4.1 (Extreme Point). Let S ⊆ Rd be a non-empty subset, a point x ∈ S is said to be
an extreme point of S if, for any a, b ∈ S with a ̸= b, the point x does not lie in the interior of the
segment [a, b], that is, x /∈ (a, b). The set of extreme points of S is denoted by ExtrS.
Definition 4.2 (Extreme Point: a Relaxed Variant). Let S ⊆ Rd be a non-empty subset, a point
x ∈ S is said to be an extreme point in the “relaxed” sense of S if, for any a, b ∈ S with a ̸= b such
that [a, b] ⊂ S the point x does not lie in the interior of the segment [a, b], that is, x /∈ (a, b). The set
of extreme points of S in the sense of this relaxed definition is denoted by ExtrR S.

Clearly we have ExtrS ⊆ ExtrR S for any subset S ⊆ Rd. This inclusion can be tight in some
specific cases, for instance, when S is a convex set3 we have ExtrS = ExtrR S.

The next two theorems characterize the extreme points of the feasible region F , either in the general
setting (Theorem 4.3) or when the matrix M is assumed to be strictly upper triangular (Theorem 4.4).
Their proof can be found respectively in Appendix E.3 and in Appendix F.1.
Theorem 4.3 (Extreme Points of F in the Relaxed Sense). For the feasible region F of problem
(Pd), we have

ExtrR F =
{
Ψ(w) : w ∈ {0, 1}d

}
, (8)

that is, the extreme points of F (in the relaxed sense) are exactly the vertices of the hypercube [0 , 1]d

mapped by the diffeomorphism Ψ.

In the particular case where the matrix M is strictly upper triangular, we can strengthen this result
with the set ExtrF .
Theorem 4.4 (Extreme Points of F in the Strictly Upper Triangular Case). For the feasible region
F of the problem (Pd) in the particular case where the matrix M is strictly upper triangular with
non-negative entries, we have

ExtrF =
{
Ψ(w) : w ∈ {0, 1}d

}
, (9)

that is, the extreme points of F are exactly the vertices of the hypercube [0 , 1]
d mapped by the

diffeomorphism Ψ.

Remark 4.5. As a consequence of the above two theorems, when the matrix M is strictly upper
triangular the feasible region F of problem (Pd) satisfies ExtrF = ExtrR F .

4.2 EVERY OPTIMAL SOLUTION IS EXTREMAL

We now state our main theorem which complements the “sufficiency” result from Section 3.2 and
provides a sharper characterization of the global maximizers of problem (Pd). Indeed, while the
later Theorem 3.2 asserts that there exists at least an extreme point of F which is an optimal solution
to (Pd), our result strengthen this claim and states that every optimal solution to the problem (Pd)
is necessarily an extreme point of F and hence, reduces the search space from the whole domain
F to only its extremal points.

3So as to make the paper self-contained, we recall some basic notions of convexity (convex sets, convex
functions. . . ) in Appendix C.1.
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x

y

0 1
0

1

F

Ψ−1

Ψ

x

y

0 1
0

1

[0 ; 1]d

Figure 2: Flattening the Nonconvex Feasible Set F via Ψ.

Theorem 4.6 (Global Maximizers of Problem (Pd); Proof in Appendix E.4). The set X∗ of the
global maximizers of problem (Pd) as defined in (1) satisfies

X∗ ⊆
{
Ψ(w) : w ∈ {0, 1}d

}
,

that is, the global maximizers of (Pd) must be some points p of the feasible region F which are
mapped (through the bijection Ψ−1) to the vertices of the unit hypercube [0 , 1]

d.

More specifically Theorem 4.6 allows us to drastically simplify the original problem (Pd) by re-
stricting the constrained set to a finite set of points. This gives the following reformulation of (Pd):

(P ′
d) : maximize ⟨a | Ψ(w)⟩

over w ∈ {0, 1}d.
(10)

The essence of our result, illustrated in Figure 2, is that the inverse map Ψ−1 carries the complicated
feasible set F onto the familiar hypercube [0 , 1]d. By Theorems 4.3 and 4.6, every global maximizer
of the original problem lies at a vertex of F . Hence it suffices to evaluate the objective only on the 2d
vertices in {0, 1}d using Ψ to pull them back to the corresponding points in the original space. This
formulation as a discrete optimization problem suggests to use evolutionary algorithms in order to
tackle (10). These algorithms are known to be particularly useful in such setting where only function
calls are allowed. Based on this observation and on recent results in the field of randomized search
algorithms (Lissovoi et al., 2023; Bendahi et al., 2025), we conceive a new randomized heuristic,
the MMAHH Solver, tailored to problem (P ′

d) and compare it empirically with the well-established
and general-purposes Gurobi solver (Gurobi Optimization, LLC, 2024) in Section 6.

Notes on the uniqueness of optimal solution(s) to the problem (Pd) are provided in Appendix I.

5 APPLICATION TO ASYNCHRONOUS GD

We consider the following optimization problem

min
x∈Rd

f(x), f(x) := Eξ∼D [f(x, ξ)] , (11)

where f : Rd × S → R, S is the sample space and D the distribution of the training samples. In
the nonconvex setting, the goal is to find an ε–stationary point, i.e., a (random) vector x∗ such that
E[∥∇f(x∗)∥2] ≤ ε (Nesterov & Polyak, 2006; Zhang et al., 2020). In practical scenarios, e.g., in
machine learning, f (x, ξ) denotes the loss of a model with weights x on a data sample ξ ∼ D.

5.1 PRESENTATION OF THE METHOD

Let us recall the well-known asynchronous GD (AGD) algorithm (Algorithm 1). For the sake of
generality, we allow arbitrary non-negative stepsizes {γk}k≥0 in the gradient descent step (line 8)
contrary to the original version where the stepsizes are assumed to be constant. In the distributed
framework under consideration, n machines operate in parallel under the coordination of a central
server. At the beginning of Algorithm 1, all workers start computing a stochastic gradient at a com-
mon initial point x0 (line 6). Then the server enters a loop (assumed infinite for simplicity of the ex-
position and analysis) where it awaits and processes incoming gradient estimates from the workers as
they complete their computations. At the beginning of the kth iteration of the while loop, a stochastic

6
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gradient gki is received from some worker i ∈ [n] (line 7), and this gradient is applied to the sequence
of iterates {xk}k≥0. We say the gradient gki is “accepted” by the server if γk > 0 otherwise, it is
“discarded” (γk = 0) and xk+1 = xk−γkgki = xk so we do not move during kth loop. Additionally,
in Algorithm 1, the delays {δk}k≥0 represents the total number of gradients the server received from
the time a worker starts computing and when it replies, i.e., if worker i ∈ [n] sends a stochastic gra-
dient to the server at iteration k ≥ 0 then δk := k−max {r ∈ [1 .. k] : LW [r − 1] = i}, where LW

is the ordered list which keeps track of which worker sends a stochastic gradient at which iteration.

Algorithm 1: Asynchronous GD

1 Initialization:
2 k ← 0, the iteration counter
3 x0 ∈ Rd, the starting point
4 {γk}k≥0, the stepsizes, γk ≥ 0

5 Run Procedure 1 in all workers
6 Send to all worker the point x0

7 while true do
8 Wait until receiving gki := ∇f

(
xk−δk

)
from worker i

// Do one descent step.

9 xk+1 ← xk − γkg
k
i

// Reset the delay of worker i

10 Send to worker i the point xk+1

11 Update the iteration counter: k ← k + 1

Procedure 1: Workers’ (infinite) loop
1 while true do
2 Wait until receiving xk ∈ Rd from the server

// May take some time.

3 Compute a full gradient g ← ∇f(xk)
4 Send g to the server

Hence two natural questions arise: (1) what are the optimal “gradient-independent” stepsizes
{γ∗

k}k≥0 and (2) how do the hand crafted stepsizes compared to them? We investigate these two
questions in the deterministic setting (i.e., no stochasticity) and, to the best of our knowledge, prove
a first theoretical guarantee in this direction: AGD with constant stepsizes and a tuned threshold4 (to
discard old gradients) leads to near-optimal theoretical performance.

5.2 CONVERGENCE OF AGD IN THE NONCONVEX SETUP

We recall below the assumptions satisfied by the function f from (11) and the stochastic gradi-
ents; these assumptions are standard in the analysis of SGD-type methods in the nonconvex set-
ting (Ghadimi & Lan, 2013; Bottou et al., 2018).
Assumption 5.1. Function f : Rd → R is differentiable, and its gradients are L–Lipschitz continu-
ous, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀x, y ∈ Rd.

Assumption 5.2. There exist f inf ∈ R such that f(x) ≥ f inf for all x ∈ Rd.

Based on Assumption 5.2, we define the initial sub-optimality ∆ := f(x0) − f inf , where x0 is the
starting point of optimization method.
Assumption 5.3. The workers can compute full gradients, that is, when asked to compute a gradient
of f at x ∈ Rd they will reply, deterministically,∇f(x) after some time.

Main Result We now state the convergence analysis of Algorithm 1: the proof builds on the
state-of-the-art analysis of asynchronous methods (Mishchenko et al., 2022; Koloskova et al., 2022;
Maranjyan et al., 2025; Tyurin & Sivtsov, 2025). As discussed in a subsequent paragraph, we further
refine our analysis in Appendix G.9 and, as a byproduct of our general analysis, we recover with
more transparency the convergence rate of Ringmaster ASGD (see Theorem G.14).
Theorem 5.4 (Convergence Analysis of AGD). Under Assumptions 5.1 to 5.3, for any integer K ≥ 0
and any choice of non-negative stepsizes {γk}k≥0 such that there exists k ∈ [0 ..K] for which
γk > 0, the iterates {xk}k≥0 of AGD (Algorithm 1) satisfy, with ΓK := γ0 + · · ·+ γK > 0

1

ΓK

K∑
k=0

γk E
[∥∥∇f (xk

)∥∥2] ≤ 2∆

ΓK
+

1

ΓK

K∑
k=0

Rkγk E
[∥∥∥∇f (xk−δk

)∥∥∥2]︸ ︷︷ ︸
:=R(K)

, (12)

where Rk := γkL+ 2γkL
2
∑

j∈Mk

γj δ
j − 1 and Mk :=

{
j ∈ [0 ..K] : j − δj ≤ k ≤ j − 1

}
.

4Such an algorithm is considered in the work of Maranjyan et al. (2025) and the method is called Ringmaster
ASGD.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Link to the Optimization Problem (Pd) According to the analysis done in Theorem 5.4, a
natural approach to get rid of the R(K) term in (12) is to ensure each Rk ≤ 0, i.e.,

Lγk + L2γk
∑
j∈Mk

γj δ
j − 1 ≤ 0, k = 0, 1, . . . ,K (13)

and, if we let Mi,j = δj I{j ∈Mi} for all i, j ∈ [0 ..K] then as R(K) ≤ 0 by (13), and minimizing
the left-hand side of (12) is equivalent to maximizing γ0 + · · ·+ γK over

F =
{
Λ ∈ [0 , 1]

K+1
: 0 ≤ LΛ + (LΛ)⊙ (M δ[LΛ]) ≤ 1

}
,

where Λ = (γ0, . . . , γK) and M δ = (Mi,j)i,j∈[0 .. K] is the “matrix of delays” and we recover
problem (Pd) with a = (1, . . . , 1)

⊤ and M = Mδ . Hence, optimal stepsizes in Algorithm 1 and
satisfying (13) are obtained when solving this specific instance of (Pd).

A Small Caveat In Algorithm 1, the delay δk stays constant whether the gradient is accepted
(γk > 0) or discarded (γk = 0): δk is only influenced by the workers’ compute times and not how
the gradients are selected. It seems much more natural (e.g., as in Ringmaster ASGD) for the delay
to be the total number of accepted gradients, i.e., we define the effective delay δ̃k as

δ̃k := δk −
∣∣{j ∈ [k − δk .. k − 1

]
: γj = 0

}∣∣ ≤ δk. (14)

While Theorem 5.4 still holds with the delays {δ̃k}k≥0, (14) shows that the constraints (13) needs
binary variables to be expressed and the optimization problem then becomes a mixed-integer nonlin-
ear program. Nonetheless, we show in Appendix G.10 that we can still apply the main Theorem 4.6
and obtain the next result, proved in Appendix G.11. We refer to Appendix G for more details.
Theorem 5.5 (Near Optimality of Ringmaster AGD). Under Assumptions 5.1, 5.2 and G.6, for any
integer K ≥ 0 the stepsizes {γ(R)

k }k≥0 of Ringmaster AGD (with a threshold5 of R = 1) satisfy

K∑
k=0

γ
(R)
k ≤

K∑
k=0

γ∗
k ≤ 2

K∑
k=0

γ
(R)
k ,

with {γ∗
k}k≥0 the optimal stepsizes and γ

(R)
k = 1

L I
{
δ̃k = 0

}
.

In other word Theorem 5.5 asserts that once AGD, when ran with optimal stepsizes {γ∗
k}k≥0, has

found a ε–stationary point then Ringmaster AGD has provably found a 2ε–stationary point. This
proves that Ringmaster AGD achieve an approximation factor of 2.

6 EXPERIMENTAL RESULTS

The MMAHH Solver. The reformulation (P ′
d) of (Pd) in (10) reduces the original continuous

optimization problem into a discrete one, suggesting the use of evolutionary algorithms. Based on
this observation, we propose a new solver based on the recent Markov Move-Acceptance Hyper-
Heuristic (MMAHH; Bendahi et al. (2025)). The MMAHH maintains a vector x ∈ {0, 1}d and flips
one randomly chosen bit at each iteration to explore new candidates. Moreover, the MMAHH al-
ternates between two search phases: ONLYIMPROVING (OI) where a move is accepted only if it
improves the objective value, and ONLYWORSENING (OW) where a move is accepted only if it
worsens the objective value. Two independent hyper-parameters p and q (the switching probabili-
ties) are used to switch between the operators OI and OW. While there is no theoretically optimal
values for p and q, the choice p = q = O(1/(d log d)) seems to perform well in practice.

Benchmarking Gurobi vs. MMAHH. To benchmark its performance against a state-of-the-art
solver, we compare the MMAHH to Gurobi 11 (Gurobi Optimization, LLC, 2024) on two families
of instances: (1) the Cyclic Staircase Benchmark which corresponds to the case where workers
periodically send a gradient to the server so that the list of worker’s index LW consists in repeating
[1, 2, . . . , n] exactly c times for some integers n and c, e.g., with n = 4 and c = 3 the instance is

5Following the choice of Maranjyan et al. (2025), when σ2 = 0 then R = 1.
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Figure 3: Comparison of solver runtime (left) and number of iterations (right) for Gurobi (blue)
vs. MMAHH (orange) on the Cyclic Staircase Benchmark. For the MMAHH, means and standard
deviations are taken over 10 runs.

LW = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4], and (2) the Stochastic Repetition Benchmark, which consists of
repeating a uniformly random sequence of length n exactly c times, allowing repetitions of workers.
For n = 4 and c = 3 an instance can be LW = [3, 4, 5, 4, 10, 3, 4, 5, 4, 10, 3, 4, 5, 4, 10]. Notice
that for both benchmarks, the dimension of an instance with parameters (n, c) is d = nc. Gurobi
can solve the bilinear problem (Pd) via non-convex branch-and-bound and finds a provable global
optima but at the cost of millions of simplex iterations and long runtimes. We run Gurobi once
per instance and the MMAHH 10 independent trials to report the means and standard deviations for
both wall-clock time and bit-flip counts. Across all tested instances (n, c), MMAHH achieves better
performance, reaching up to a 100× speed-up in runtime while requiring up to 100× less iterations
on the Cyclic Staircase Benchmark (Figure 3). On the Stochastic Repetition Benchmark, MMAHH
reaches speed-ups up to a 105× factor in both runtime and number of iterations (see Appendix H).

Landscape of the Discrete Function. To give an idea of the landscape of the discrete function
φ(w) := ⟨a | Ψ(w)⟩ (for w ∈ {0, 1}d) we optimize with the MMAHH solver, we represent φ for
(n, c) = (5, 4) on the Cyclic Staircase and on the Stochastic Repetition benchmarks. We plot in Ap-
pendix H.3 the value of the 230 bit-strings in {0, 1}30. We group the points w by their Hamming
distance to the optimum w∗, more precisely, the x-axis corresponds to the quantity 30−dH(w,w∗),
which is equal to 30 only for w = w∗ and to 0 only for w = (w∗)c, where (w∗)c is the comple-
mentary bit-string of w∗, i.e., (w∗)ci = 1 − wi for all i ∈ [d]. The plots indicate that the discrete
objective we optimize is not “monotonic across the layers” (see the definition in Appendix B.2),
which unfortunately is outside the class of functions for which the theoretical work of Bendahi et al.
(2025) applies. Nonetheless, we show that the MMAHH still achieves strong performance in practice
on all these instances. This highlights a key advantage of hyper-heuristics: even when deployed
outside their ideal theoretical framework (where guarantees hold) they can deliver excellent results,
reflecting their inherently heuristic nature.

7 CONCLUSION

We presented a sharper characterization of the global maximizers in a class of bilinear programs
arising naturally in the analysis of asynchronous gradient descent. Our main theoretical contribution
shows that under general conditions, every global maximizer is extremal, reducing the search space
from a continuous non-convex region to a finite set of structured vertices. This insight allows us
to reformulate the original optimization problem into a discrete one over the vertices of unit hy-
percube, enabling the design of a randomized hyper-heuristic solver based on the recent MMAHH
framework. Our experiments on the challenging Cyclic Staircase and Stochastic Repetition bench-
marks demonstrate that a simple heuristic can already outperforms the commercial solver Gurobi by
several orders of magnitude in both runtime and iteration count. These results highlight the practi-
cal and theoretical value of exploiting extremality in non-convex optimization and open the door to
future work on applying combinatorial solvers and heuristics in non-convex settings.
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Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

V. L. Klee. Extremal structure of convex sets. i. Archiv der Mathematik, 8(3):234–240, Aug
1957. ISSN 1420-8938. doi: 10.1007/BF01899998. URL https://doi.org/10.1007/
BF01899998.

V. L. Klee. Extremal structure of convex sets. ii. Mathematische Zeitschrift, 69(1):90–104, Dec
1958. ISSN 1432-1823. doi: 10.1007/BF01187394. URL https://doi.org/10.1007/
BF01187394.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
Asynchronous SGD for distributed and federated learning. Advances in Neural Information Pro-
cessing Systems, 35:17202–17215, 2022.

S.G. Krantz and H.R. Parks. The Implicit Function Theorem: History, Theory, and Applications.
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A NOTATION

Asymptotic Meaning
g = o(f) (resp. g = ω(f)) When g(n)/f(n) −−−−−→

n→+∞
0 (resp. +∞)

g = O(f) There exists C > 0 such that g(n) ≤ Cf(n) for n sufficiently large
g = Ω(f) There exists c > 0 such that g(n) ≥ cf(n) for n sufficiently large
g = Θ(f) When both g = O(f) and g = Ω(f)

Sets and intervals Meaning
N0, N The set of non-negative (left) and positive (right) integers

[a..b] (a, b ∈ N0) The set [a, b] = {a, a+ 1, . . . , b− 1, b}
[n] (n ∈ N) The set [n] = [1, n] = {1, 2, . . . , n}

Symbol Meaning
P (·), P (·|·) Probability and conditional probability
E [·], E [ · | ·] Expectation and conditional expectation
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B ADDITIONAL RELATED WORKS

B.1 REVERSE-CONVEX PROGRAMMING (RCP)

RCP addresses global optimization over a convex feasible set with one or more reverse convex
(complement of convex) constraints, resulting in highly nonconvex solution spaces. Classical theory
provides foundational optimality and stability conditions, decomposition algorithms, and reduction
approaches for RCPs Horst (1988); Tuy & Nguyen Duc (2000). Major algorithmic advances include
cut-generating methods, polyhedral annexation, and intersection cut techniques for non-polyhedral
settings (Towle & Luedtke, 2022; Yamada et al., 2000).

B.2 HYPER-HEURISTICS

Hyper-heuristics, defined in Burke et al. (2013) as “a search method or learning mechanism for
selecting or generating heuristics to solve computational search problems”, emerged in early 2000s
and quickly found numerous practical applications (Cowling et al., 2000; Ross et al., 2002; Chakhle-
vitch & Cowling, 2005; Garrido & Castro, 2009) notably to tackle NP-hard optimization tasks like
scheduling, packing or routing problems (see the surveys Burke et al. (2003); Chakhlevitch & Cowl-
ing (2008); Burke et al. (2013; 2019)). While rigorous mathematical analysis of hyper-heuristics
started only a decade ago (Lehre & Özcan, 2013), they have revealed intriguing results about their
ability to solve optimization problems, notably on pseudo-Boolean functions f : {0, 1}n → R.
Among them, selection hyper-heuristics (He et al., 2012; 2013; Alanazi & Lehre, 2014; Doerr et al.,
2018; Lissovoi et al., 2019; 2020) and more recently the Move-Acceptance Hyper-Heuristic (MAHH)
have gained attention for their remarkable efficiency in escaping local optima.

Based on this success, Bendahi et al. (2025) proposed an enhanced version of the MAHH: the Markov
Move-Acceptance Hyper-Heuristic (MMAHH) with two enhancements that significantly improve the
performance of the original MAHH across a broad range of functions. These two enhancements
yields a significant runtime improvement and the authors derived a bound of O(nk+1 log(n)) on a
wide class of functions: SEQOPTk.

We recall the next definitions from Bendahi et al. (2025) for clarity concerning the experiments.
Definition B.1 (k-th Layer). Let k ∈ [0..d] and f : {0, 1}d → R such that f admits a unique
maximizer x∗ ∈ {0, 1}d. The k-th layer Lk of f is defined as:

Lk := {x ∈ {0, 1}n | dH(x, x∗) = n− ∥x∥1 = k}, (15)

where we used dH(·, ·) to denote the Hamming distance between two bit-strings. In other words,
Lk is the set of all bit-strings at distance k from the global maximum x∗ where the numbering starts
at the global optimum, e.g., L0 = {x∗}, L1 are all bit-strings at Hamming distance 1 from x∗, etc.
Definition B.2 (Monotonicity across layers). Let h ∈ [0..d − 1] and f : {0, 1}d → R. We say that
f is increasing (resp. decreasing) between layers Lh+1 and Lh if for any y ∈ Lh+1 and any x ∈ Lh

we have
f(y) < f(x) (resp. f(y) > f(x)).

We denote this by Lh+1

f
≺ Lh (resp. Lh+1

f
≻ Lh).

Definition B.3 (The SEQOPT benchmark). Let d ≥ 2 be an integer and k ∈ [0..d − 2]. Let
d = d0 > d1 > d2 > · · · > dk > dk+1 = 0 be integers. We define SEQOPTk(d1, . . . , dk) to be
the set of all functions f : {0, 1}d → R such that f has admits a unique maximizer x∗ ∈ {0, 1}d
and for any ℓ ∈ [0..d],

1. if k − ℓ is even then f is increasing across Ldℓ
, . . . ,Ldℓ+1

, i.e., Ldℓ

f
≺ · · ·

f
≺ Ldℓ+1

,

2. if k − ℓ is odd, f is decreasing, i.e., it satisfies Ldℓ

f
≻ · · ·

f
≻ Ldℓ+1

.

The union of these classes of functions, for fixed k, will be denoted by

SEQOPTk :=
⋃

d>d1>···>dk>0

SEQOPTk(d1, . . . , dk).
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C PRELIMINARIES AND USEFUL RESULTS

C.1 CONVEX FUNCTIONS AND CONVEX SETS

Definition C.1 (Convex and Strictly Convex Function; Definitions 8.1 and 8.7 in Bauschke & Com-
bettes (2017)). Let C be a convex subset of Rd, then the function f : C → R is

• convex on C if its epigraph

epi(f) := {(x, t) ∈ Rd × R : t ≥ f(x)},
is a convex subset of Rd × R.

• strictly convex6 on C if for any x, y ∈ C such that x ̸= y and for any λ ∈ (0, 1) we have

f(λx+ (1− λy) < λf(x) + (1− λ)f(y).

Lemma C.2 (Proposition 8.4 of Bauschke & Combettes (2017)). Let C be a convex subset of Rd,
then the function f : C → R is convex on C if for any x, y ∈ C and any λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Lemma C.3 (Composition of a Convex and a Linear Function). Let C be a convex subset of Rd,
h : C → R be a linear function, I ⊆ R an open interval containing h(C) ⊆ R and let g : I → R be
a convex function then the map f = g ◦ h is convex on C.

Proof. Note that the map f = g ◦ h : C → R is well-defined. Now, let x, y ∈ C and let λ ∈ (0, 1)
then since g is convex, by Lemma C.2 and by linearity of h we have

f(λx+ (1− λ)y) = (g ◦ h)(λx+ (1− λ)y)
(a)
= g(λh(x) + (1− λ)h(y))

Def. C.1

≤ λg(h(x)) + (1− λ)g(h(y))

= λf(x) + (1− λ)f(y),

hence, f is convex according to Lemma C.2.

Given any two points a, b ∈ Rd, we denote by

[a, b] := {ta+ (1− t)b : t ∈ [0 , 1]}, (16)

the closed segment joining a to b and by

(a, b) := [a, b] \ {a, b} = {tx+ (1− t)y : t ∈ (0, 1)} \ {a, b}, (17)

the interior of the segment [a, b] or open segment from a to b. Note that when a = b we have both
[a, b] = {a} and (a, b) = ∅. More generally from (16) and (17) it follows

[a, b] \ (a, b) = {a, b}. (18)

C.2 EXTREME POINTS

The notion of extreme point is often studied along with convex sets and convexity. Nonetheless, we
can still extend the definition of extreme point from convex sets to, more generally, any subset of a
linear space. In what follows we consider S to be a non-empty subset of Rd.

To the best of our knowledge, there are two ways to do this generalization and these approaches
end up giving a slightly different meaning for what an “extreme point” is (actually, one definition is
narrower than the other). In the literature, the most common approach is to define the concept of an
extremal set of S which we recall in Definition C.4. Besides, another option consists in defining a
support variety of S as stated in Definition C.5.

6To clarify, here the functions we consider always have a non-empty domain and they never take the value
±∞ hence, they are automatically proper. That is why we do not precise this in our definition, contrary
to Bauschke & Combettes (2017).
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Definition C.4 (Extremal Set; See Taylor & Lay (1980); Dunford & Schwartz (1988); Rudin (1991);
Brezis (2010)). Let S be a subset of a Rd. A non-empty set K ⊆ S is called an extreme set of S if
for any x, y ∈ S and t ∈ (0, 1) then tx+ (1− t)y ∈ K if, and only if x ∈ K and y ∈ K.

Then following Definition C.4 an extremal point is defined as an extremal set which consists in just
a single point.
Definition C.5 (Support Variety; See Grothendieck (1973)). Let S be a subset of a Rd. A linear
sub-variety A (i.e., an affine subspace) of Rd is a support variety if S ∩ A ̸= ∅ and for every open
segment I ⊆ S whose interior meets A then I ⊆ A.

Then, based on Definition C.4, an extremal point is defined as a (linear) support variety of dimension
0 (which is a single point).

We can see that the constraints which ensure a point x ∈ S is extremal are more restrictive in Defi-
nition C.5 than in Definition C.4. More precisely, for a point x ∈ S to be an extreme point, it must
not be in the interior of any segment [a, b] ⊆ S while in Definition C.4 it is only required that the
endpoints a end b to be in S and not whole segment [a, b] anymore. Since it seems that the Defi-
nition C.4 has been more widely accepted and used in the literature, we then define extreme points
following this definition.

Below we recall for clarity what we mean by an “extreme point” of a non-empty subset S ⊆ Rd.
This is the definition used throughout this paper, unless otherwise specified.
Definition 4.1 (Extreme Point; Following Definition C.4). Let S ⊆ Rd be a non-empty subset, a
point x ∈ S is said to be an extreme point of S if, for any a, b ∈ S with a ̸= b, the point x does not
lie in the interior of the segment [a, b], that is, x /∈ (a, b).

The set of extreme points of S is denoted by ExtrS.
Lemma C.6. The Definitions 4.1 and C.4 are equivalent.

Proof. Let S ⊆ Rd. Assume first p ∈ S is an extreme point in the sense of Definition C.4. Given
x, y ∈ S we suppose for the sake of contradiction that p ∈ (x, y), then necessarily x ̸= y (otherwise,
if x = y then (x, y) = [x, x] \x = ∅ which is not possible) and by (17), there must exists t ∈ (0, 1)
such that tx+ (1− t)y = p but then, since p is an extreme point we must have x = y = p which is
a contradiction. Hence, we must have p /∈ (x, y).

Now, for the converse direction, let p ∈ S to be an extreme point in the sense of Definition 4.1.
Given x, y ∈ S and any t ∈ (0, 1), if x = y = p then tx + (1 − t)y = x = y = p. For the other
direction, if tx+(1− t)y = p then p ∈ [x, y] and since p is an extreme point, we have p /∈ (x, y) so

p ∈ [x, y] \ (x, y) (18)
= {x, y}.

Then, it remains to distinguish the cases p = x or p = y. Without loss of generality, assume p = x
then from tx + (1 − t)y = p we obtain (1 − t)y = (1 − t)p thus p = y. Hence, p = x = y which
proves the equivalence of Definition C.4.

C.3 CONVEX HULLS

Below, we recall both the definition of the convex hull and closed convex hull of a subset S ⊆ Rd.
Definition C.7 (Convex Hull and Closed Convex Hull). Let S ⊆ Rd then, the convex hull of S,
denoted by ConvS is defined as the smallest convex subset of Rd which contains S, alternatively,

ConvS :=
⋂

C⊆Rd, convex
S⊆C

C.

The closed convex hull of S, denoted by ConvS is defined as the smallest closed convex subset of
Rd which contains S, alternatively,

ConvS :=
⋂

C⊆Rd, closed and convex
S⊆C

C.
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Lemma C.8 (Closure of the Convex Hull of a Compact Set; Theorem 5.35 from Aliprantis & Border
(2006)). Let S ⊂ Rd be a compact set then, the closed convex hull of S, denoted by ConvS is also
a compact subset of Rd.

The next result is a special case of a partial “converse” of the Krein-Milman theorem formulated
by Milman (1947). A general statement can be found in Phelps (2001) and in earlier works of Klee
(1957; 1958). We state below the particular case of a compact subset of Rd.
Lemma C.9 (Lemma 3.4 of Chen et al. (2021)). Let S be a compact subset of Rd then

Extr
(
ConvS

)
⊆ ExtrS.

Lemma C.10 (Extreme Points Always Exists on Non-empty Compact Sets). Let S be a non-empty
compact subset of Rd then ExtrS ̸= ∅.

Proof. Let S ⊆ Rd be a non-empty and compact set, consider the function ∥·∥2 : S → R then, as it
is continuous over the compact S, the function ∥·∥2 is bounded and it reaches its global maximum
M ∈ R+, say, at some point p ∈ S. We now show that p must be an extreme point of S. To do
so, assume for the sake of contradiction that is it not the case so there exists x, y ∈ S such that
p ∈ (x , y). Moreover, as ∥·∥2 attains its global maximum at p we must have ∥p∥2 ≥ ∥x∥2 and
∥p∥2 ≥ ∥y∥2. but, since p ∈ (x , y) then, by definition (16) we have p ̸= x and p ̸= y and since the
points p, x and y are aligned, there exists some vector v ∈ Rd \ {0} and scalars tx, ty ∈ R∗ such
that txty < 07 and

x = p+ txv and y = p+ tyv.

Now, we distinguish two cases:

• if ⟨p | v⟩ = 0 then expanding ∥x∥2 we obtain

∥x∥2 = ∥p+ txv∥2

= ∥p∥2 + 2tx ⟨p | v⟩+ t2x ∥v∥2

= ∥p∥2 + t2x ∥v∥2

> ∥p∥2 ,

(19)

since by assumption we have v ̸= 0 and the scalar tx ̸= 0 (because p ̸= 0). We see that the
inequality (19) is contradictory about the maximality of ∥·∥2 on S.

• if ⟨p | v⟩ ≠ 0 then, without loss of generality we may assume ⟨p | v⟩ > 0 and since
txty < 0 then, one of them must be positive, say without loss of generality it is tx > 0 and,
expanding ∥x∥2 again gives

∥x∥2 = ∥p∥2 + 2tx ⟨p | v⟩+ t2x ∥v∥2 > ∥p∥2 , (20)

because both quantities 2tx ⟨p | v⟩ and t2x ∥v∥2 are positive. This is again a contradiction.

Thus we conclude that the point p cannot lie in the interior of the segment [x , y], and this holds
true for any points x, y ∈ S so according to Definition 4.1 p must be an extreme point of S, i.e.,
p ∈ ExtrS ̸= ∅.

C.4 SUPPORT HYPERPLANES

We now recall some results concerning the support hyperplanes of a convex subset C of Rd.
Definition C.11 (Supporting Hyperplane). Let C ⊆ Rd be a convex subset. We say that an (affine)
hyperplane H is a supporting hyperplane of C at point p ∈ ∂C if, and only if there exists some
vector a ∈ Rd \ {(0, . . . , 0)} such that

H =
{
x ∈ Rd : ⟨a | x⟩ = ⟨a | p⟩

}
and ⟨a | x⟩ ≥ ⟨a | p⟩ for all x ∈ C.

7Both scalars tx and ty are non-zero since p ̸= x and p ̸= y. Moreover, they must have opposite sign since
p lies in the interior of the segment [x , y], that is, x and y are on the opposite side of p on the line [x , y].
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In other word, there exists an affine hyperplane which meets p and for which the convex set C is
included in one of its two closed half-spaces:

H+ :=
{
x ∈ Rd : ⟨a | x⟩ ≥ ⟨a | p⟩

}
, (21)

or
H− :=

{
x ∈ Rd : ⟨a | x⟩ ≤ ⟨a | p⟩

}
. (22)

Lemma C.12 (Supporting Hyperplane Theorem). For any non-empty convex subset C ⊆ Rd and
any p ∈ ∂C there exists a supporting hyperplane of C at point p.

A refined version of the supporting hyperplane theorem above, for the case of convex subsets which
are level-sets of convex functions, is provided below. Notably, it provides the uniqueness of the
supporting hyperplane.
Lemma C.13 (Theorem 3.1 of He & Xu (2013); Case of H = Rd). Let φ : Rd → R be a real-
valued, continuous and convex function which is differentiable8 on Rd, then the level set

C :=
{
x ∈ Rd : φ(x) ≤ 0

}
,

is convex and for each point p ∈ ∂C there exists a unique supporting hyperplane of C at p. More-
over, this supporting hyperplane is given by

H =
{
x ∈ Rd : ⟨∇φ(p) | x− p⟩ = 0

}
.

Lemma C.14 (Intersection of a Family of Affine Hyperplanes). Let k ∈ [d] be an integer,
v1, . . . , vk ∈ Rd be vectors, a1, . . . , ak ∈ R some scalars and H1, . . . ,Hk be the k affine hy-
perplanes of Rd associated to the linear forms (⟨vi | ·⟩)i∈[k], that is, for any i ∈ [k]

Hi :=
{
x ∈ Rd : ⟨vi | x⟩ = ai

}
.

If A :=
⋂

i∈[k]

Hi ̸= ∅ then, dimA ≥ d− k.

Proof. By assumption
⋂

i∈[k]

Hi ̸= ∅ hence, the system

⟨vi | x⟩ = ai, i = 1, 2, . . . , k, (23)

consisting of k equation has a solution x0 ∈ Rd. Then for all i ∈ [k], if we subtract ⟨vi | x0⟩ in the
ith equation from the system (23), we obtain the equivalent system

⟨vi | x− x0⟩ = 0, i = 1, 2, . . . , k,

hence (x−x0) ∈ {v1, . . . , vk}⊥ so x−x0 belongs to the subspace of Rd orthogonal to each (vi)i∈[k].
Hence, we deduce that

A :=
⋂
i∈[k]

Hi = x0 + {v1, . . . , vk}⊥,

which is a subspace of Rd whose dimension is

dimA = dim ({v1, . . . , vk}⊥) ≥ d− k,

since the rank of the family (v1, . . . , vk) is at most k. This concludes the proof of the lemma.

C.5 P -MATRICES AND INJECTIVITY

In this section, we present a very practical sufficient condition of injectivity of functions f defined
from Rd to Rd. This condition is captured by the celebrated Gale–Nikaidô theorem, a cornerstone
of global analysis and mathematical economics. Detailed proofs and broader context for this result
can be found in Gale & Nikaido (1965) and Okuguchi (1978), as well as in later expositions within
applied mathematics and dynamical systems (Banaji et al., 2007; Zheng et al., 2021)

We start with some fundamental definitions commonly referenced in linear algebra and matrix the-
ory:

8More precisely, Gateaux differentiable which means that φ has a gradient at all point x ∈ Rd.
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Definition C.15 (Minors and Principal Minors of a Matrix). A minor of a matrix A ∈ Rd×d is
the determinant of some square sub-matrix of A obtained by removing one or more of its rows and
columns. If I and J are (ordered) subsets of [d] with k elements (where 1 ≤ k ≤ d), then we denote
by [A]I,J the k × k minor of A that corresponds to the intersection of the rows and columns of A
whose indices are taken in I and in J respectively.

When I = J , the minor [A]I,I is called a principal minor.

Definition C.16 ((Positive) Dominant Diagonal). Let A be a Rd×d matrix, then A has a dominant
diagonal if, and only if there exists d positive real numbers α1, . . . , αd > 0 such that for all i ∈ [n]
the inequality

αi |Ai,i| >
d∑

j=1
j ̸=i

αj |Ai,j | , (24)

holds.

Additionally, if for all i ∈ [n] we have Ai,i > 0, i.e., A has positive diagonal entries then A has a
positive dominant diagonal.

Definition C.17 (P -matrix). A real matrix A ∈ Rd is said to be a P -matrix if, and only if, all its
principal minors are positive.

Definition C.18 (Region and Closed Rectangular Region). A region is an connected set in Rd, either
without its boundary or together with its boundary.

A closed rectangular region is a subset of Rd of the form{
x ∈ Rd : ∀i ∈ [d], pi ≤ xi ≤ qi

}
,

where −∞ ≤ pi < qi ≤ +∞ are numbers (possibly ±∞).

A key property relevant to our context is the following classical result:

Lemma C.19 (Positive Dominant Diagonal Implies P -Matrix). Let A be a matrix in Rd×d such that
A has a positive dominant diagonal, then A is a P -matrix.

The foundational theorem that links P -matrices to injectivity is as follows:

Theorem C.20 (Gale–Nikaidô). Let Ω be a closed rectangular region of Rd. If F : Ω → Rd is a
differentiable function such that its Jacobian matrix ∇F (x) is a P -matrix for all x ∈ Ω, then F is
injective on Ω, i.e., if a, b ∈ Ω are such that F (a) = F (b) then necessarily, a = b.

These results, originally developed in the seminal paper by Gale & Nikaido (1965), have exten-
sive applications in nonlinear analysis, mathematical economics, chemical reaction networks, and
beyond.

C.6 FIXED-POINT THEOREMS

Fixed-point theorems are foundational tools in nonlinear analysis, optimization, game theory, and
mathematical economics. These theorems assert that, under certain topological or algebraic con-
ditions, a mapping admits a point that is mapped to itself. In particular, we focus here on the
classical Brouwer fixed-point theorem, which forms the backbone of many existence proofs in high-
dimensional non-convex settings. Comprehensive treatments of this result can be found in standard
texts such as Brouwer (1911); Border (1985); Granas & Dugundji (2003).

We state the central result in finite-dimensional topological fixed-point theory:

Theorem C.21 (Brouwer Fixed-Point Theorem). Let D ⊂ Rd be a non-empty, compact, convex
subset. Then any continuous function f : D → D has at least one fixed-point in D, i.e., there exists
x∗ ∈ D such that f(x∗) = x∗.
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C.7 IMPLICIT FUNCTIONS THEOREM

The Implicit Function Theorem (IFT) is a cornerstone result in multivariable calculus and nonlinear
analysis. It gives conditions under which a system of equations implicitly defines one set of vari-
ables as functions of another. The theorem ensures local solvability and differentiability of these
implicit functions under mild regularity conditions. This result underpins much of optimization the-
ory, differential equations, and dynamical systems. For formal treatments, see Rudin (1976); Lang
(1995); Krantz & Parks (2002).

Theorem C.22 (Implicit Functions Theorem). Let F : Rn+m → Rm be a continuously differen-
tiable on an open set U ⊂ Rn+m, and let (x0, y0) ∈ U such thta F (x0, y0) = 0. Suppose the
Jacobian matrix∇yF (x0, y0) ∈ Rm×m is invertible. Then there exist open neighborhoods V ⊂ Rn

of x0 and W ⊂ Rm of y0, and a unique continuously differentiable function g : V →W such that:

F (x, g(x)) = 0 for all x ∈ V. (25)

In essence, the theorem guarantees the local solvability of the system F (x, y) = 0 for y in terms of
x, assuming local nonsingularity of the Jacobian with respect to y.
Remark C.23. When F is infinitely differentiable, i.e., C∞, then the function g in the previous
theorem inherits the same regularity property.

C.8 USEFUL IDENTITIES AND INEQUALITIES

For any vectors x, y ∈ Rd, we have

2 ⟨x | y⟩ = ∥x∥2 + ∥y∥2 − ∥x− y∥2 . (26)

Lemma C.24 (L–Lipchitz Gradients Implies L–Smoothness (Nesterov, 2018, Lemma 1.2.3, p. 25)).
Let f : Rd → R be continuously differentiable such that f has L–Lipchitz gradients then, for any
x, y ∈ Rd

−L ∥x− y∥2 ≤ 2Df (x, y) ≤ L ∥x− y∥2 ,
where Df (x, y) := f(x)− f(y)− ⟨∇f(y) | x− y⟩ is the Bregman divergence of f at x and y.

Lemma C.25 (Variance Decomposition). For any random vector X ∈ Rd and any non-random
vector c ∈ Rd we have

E
[
∥X − c∥2

]
= E

[
∥X − E [X]∥2

]
+ ∥E [X]− c∥2 .

Lemma C.26 (Tower Property of the Expectation). For any random variables X ∈ Rd and
Y1, . . . , Yn we have

E [E [X | Y1, . . . , Yn]] = E [X] .

Lemma C.27 (Cauchy Schwarz’s Inequality). For any vectors a, b ∈ Rd we have

⟨a | b⟩ ≤ |⟨a | b⟩| ≤ ∥a∥ ∥b∥ .

Lemma C.28 (Young’s inequality (Norm Form)). For any vectors a, b ∈ Rd and any scalar α > 0
we have

∥a+ b∥2 ≤ (1 + α) ∥x∥2 +
(
1 +

1

α

)
∥y∥2 .

Lemma C.29 (Bounded Variance of Pairwise Independent Stochastic Gradients). Under Assump-
tion G.5, let x1, . . . , xn ∈ Rd be non-random vectors and α1, . . . , αn ∈ R be scalars then for any
pairwise independent random variables ξ1, . . . , ξn ∼ D we have

E

∥∥∥∥∥
n∑

i=1

αi (∇f(xi, ξi)−∇f(xi))

∥∥∥∥∥
2
 =

n∑
i=1

α2
i E
[
∥∇f(xi, ξi)−∇f(xi)∥2

]
≤ σ2

n∑
i=1

α2
i .

(27)
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Proof. Expanding the squared norm in left-hand side of (27) (for now, without taking the expectation
in account) we get∥∥∥∥∥

n∑
i=1

αi (∇f(xi; ξi)−∇f(xi))

∥∥∥∥∥
2

=

n∑
i=1

α2
i ∥∇f(xi, ξi)−∇f(xi)∥2

+
∑

1≤i,j≤n
i̸=j

αiαj ⟨∇f(xi, ξi)−∇f(xi) |
∇f(xj , ξj)−∇f(xj)⟩ ,

(28)

and for any 1 ≤ i, j ≤ n such that i ̸= j we have

E [⟨∇f(xi; ξi)−∇f(xi) | ∇f(xj ; ξj)−∇f(xj)⟩]
(a)
= ⟨E [f(xi, ξi)−∇f(xi)] | E [∇f(xj , ξj)−∇f(xj)]⟩

Ass. G.6
= 0,

where in (a) we use the pairwise independence of the stochastic gradients while in the second equal-
ity we rely on the unbiasedness of the stochastic gradients (Assumption G.5) to get rid of the above
cross-product. Hence, taking the expectation in (28) gives

E

∥∥∥∥∥
n∑

i=1

αi (∇f(xi, ξi)−∇f(xi))

∥∥∥∥∥
2
 =

n∑
i=1

α2
i E
[
∥∇f(xi, ξi)−∇f(xi)∥2

]
Ass. G.5

≤ σ2
n∑

i=1

α2
i ,

as desired.

Lemma C.30 (Jensen’s Inequality). Let f : Rd → R be a convex function then

1. (probabilistic form) for any random vector X ∈ Rd we have

E [f(X)] ≥ f (E [X]) .

2. (deterministic form) for any vectors v1, . . . , vn ∈ Rd and scalars λ1, . . . , λn ∈ R we have
n∑

i=1

λif(vi) ≥ f

(
n∑

i=1

λivi

)
,

provided λi ≥ 0 for all i ∈ [n] and
n∑

i=1

λi = 1.

Lemma C.31. For any vectors v1, . . . , vn ∈ Rd we have∥∥∥∥∥
n∑

i=1

vi

∥∥∥∥∥
2

≤ n

n∑
i=1

∥vi∥2 .

Proof. The function ∥·∥2 : Rd → R is µ-strongly convex with µ = 2 so is convex thus applying
Jensen’s inequality (Lemma C.30) with λ1 = · · · = λn = 1

n gives∥∥∥∥∥
n∑

i=1

vi
n

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥vi∥2 ,

and multiplying both sides by n2 gives the desired result.

Remark C.32. Note that we can obtain the following improved upper bound from Lemma C.31; for
any vectors v1, . . . , vn ∈ Rd, let v = (v1, . . . , vn) then, we have∥∥∥∥∥

n∑
i=1

vi

∥∥∥∥∥
2

≤ |suppv| ·
n∑

i=1

∥vi∥2 , (29)

where suppv := {i ∈ [n] : vi ̸= 0} is the set of non-zero vectors among v1, . . . , vn.
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Lemma C.33 (Switching Two Nested Sums). Let S be a finite set (possible empty9) and for every
k ∈ S, let S(k) be another, eventually empty, finite set. For any k ∈ S and any j ∈ S(k) let Ck,j be
a real number then ∑

k∈S

∑
j∈S(k)

Ck,j =
∑
j∈S′

∑
k∈S′(j)

Ck,j , (30)

where S′ is a finite set such
⋃
k∈S

S(k) ⊆ S′ and

S′(j) := {k ∈ S : j ∈ S(k)}.

Proof. First, note that since S is finite and since each S(k) for k ∈ S is finite then
⋃
k∈S

S(k) is

also finite and a finite set S′ containing the union of the {S(k)}k∈S exists. Moreover, if there exists
j ∈ S′ \ ⋃

k∈S

S(k) then by definition

S′(j) := {k ∈ S : j ∈ S(k)} = ∅,

so taking a bigger S′ doesn’t affect the right-hand side of (30) hence, without loss of generality
assume

S′ =
⋃
k∈S

S(k).

Now let us define the sets
E := {(k, j) : k ∈ S, j ∈ S(k)} ,

and
E′ := {(j, k) : j ∈ S′, k ∈ S′(j)}

then the map ϕ : E → E′ is well-defined since for any (k, j) ∈ E we have j ∈ S(k) ⊆ S′ and
because k ∈ S and j ∈ S(k) then by definition of S′(j) we also have k ∈ S′(j) thus (j, k) ∈ E′.
Moreover, the map ϕ is injective because, if (j, k) = ϕ(k, j) = ϕ(k′, j′) = (j′, k′) for some
(k, j), (k′, j′) ∈ E then j = j′ and k = k′. Also, ϕ is surjective since, given (j, k) ∈ E′ we have
j ∈ S′ and k ∈ S′(j) by definition of E′, then as k ∈ S′(j) we deduce that k ∈ S and j ∈ S(k) so
(k, j) ∈ E and ϕ(k, j) = (j, k) so (j, k) admits an antecedent by ϕ in E. This shows that the map
ϕ is bijective hence ∑

(k,j)∈E

Ck,j =
∑

(j,k)∈ϕ(E)

Ck,j =
∑

(j,k)∈E′

Ck,j ,

thus, since ∑
k∈S

∑
j∈S(k)

Ck,j =
∑

(k,j)∈E

Ck,j ,

and ∑
j∈S′

∑
k∈S′(j)

Ck,j =
∑

(j,k)∈E′

Ck,j ,

we deduce that equality (30) holds.

9By convention any sum
∑
k∈∅

· over the empty set is equals to zero.
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D TECHNICAL LEMMAS

D.1 PRELIMINARY LEMMAS

Lemma D.1 (A Convex Function on Rd). Let d be a positive integer, α = {αj}1≤j≤d be d

non-negative real numbers and C = H+
α be the open half-space above the hyperplane Hα :={

x = (x1, . . . , xd) ∈ Rd : ⟨x | α⟩ = −1
}

so that C is defined as

C :=

(x1, . . . , xd) ∈ Rd :

d∑
j=1

αj xj > −1

 . (31)

Then C is a convex subset of Rd and the function f : C → Rd
+ defined as

f : (x1, . . . , xd) 7→

1 +

d∑
j=1

αjxj

−1

, (32)

is smooth, i.e., f ∈ C∞(C,Rd
+)

10 and convex11 on C.

Proof of Lemma D.1. We first show that C is an open convex subset of Rd. Note that for any x, y ∈
C and any t ∈ [0 , 1], we have

⟨tx+ (1− t)y | α⟩ = t ⟨x | α⟩+ (1− t) ⟨y | α⟩ > −1,
since both ⟨x | α⟩ − 1 and ⟨y | α⟩ > −1 and because max {t, 1− t} ≥ 1

2 > 0 so none of the two
terms can simultaneously vanish due to the variable t; this proves that the closed segment [x , y] ⊆ C
hence C is convex. Moreover, to prove C is an open subset of Rd, let x ∈ C so we can define the
positive real number

ε :=

d∑
j=1

αjxj + 1 > 0,

Now, we argue that the open ball B(x, r) where r = ε
(1+∥α∥∞)d > 0 is included in C. Here, we

consider Rd equipped with its usual euclidean norm ∥ · ∥2 and we denote by ∥ · ∥∞ the supremum
norm, that is, for any x = (x1, . . . , xd) ∈ Rd we have ∥x∥∞ = sup

i∈[d]

|xi|. To do so, let y =

(y1, . . . , yd) ∈ B(x, r) and define v = (v1, . . . , vd) := y − x ∈ B(0, r) then
d∑

j=1

αjyj =

d∑
j=1

αj(xj + vj) (33)

=

d∑
j=1

αjxj +

d∑
j=1

αjvj

(a)

≥
d∑

j=1

αjxj − ∥α∥∞
d∑

j=1

|vj |

(b)

≥
d∑

j=1

αjxj − d∥α∥∞∥v∥∞

= −1 + ε− d∥α∥∞∥v∥∞,

where in (a) we lower bound the right sum as
d∑

j=1

αjvj ≥ −
d∑

j=1

|αj | |vj | ,

10By this we mean that the function f defined from C → Rd
+ is infinitely differentiable.

11For the sake of clarity and completeness, we included a definition of convexity in the appendix (see Defi-
nition C.1 along with the usual inequality characterizing convex functions f : Rd → R in Lemma C.2.
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and then we lower bound again using the inequality ∥α∥∞ ≥ |αj | for all j ∈ [d]. In (b) we use the
inequality ∥v∥∞ ≥ |vj | for all j ∈ [d] to lower bound the sum by d∥v∥∞. Now, since v ∈ B(0, r)
we have

∥v∥2 =

√√√√ d∑
j=1

|vj |2 ≥ ∥v∥∞,

hence

ε− d∥α∥∞∥v∥∞ ≥ ε− d∥α∥∞∥v∥2
≥ ε− ε

(1 + ∥α∥∞)d
· d∥α∥∞

= ε

(
1− ∥α∥∞

1 + ∥α∥∞

)
> 0,

because ∥α∥∞ ≥ 0 and thus the quantity in (33) is lower bounded by

d∑
j=1

αjyj ≥ −1 + ε

(
1− ∥α∥∞

1 + ∥α∥∞

)
> −1,

which implies that y ∈ C and since this holds for any y ∈ B(x, r) then B(x, r) ⊆ C as desired.

Now, for the other part of the lemma, note that the function f : C → R+ is well-defined and smooth,
that is, C∞ on its domain. Note that for any (x1, . . . , xd) ∈ C, the function f can be rewritten as

f(x1, . . . , xd) = g(h(x1, . . . , xd)),

where g : R∗
+ → R∗

+ is the inverse function, that is, g : x 7→ 1
x and h : C → (0 ,+∞) is the linear

functional

h : (x1, . . . , xd) 7→ 1 +

d∑
j=1

αjxj . (34)

Using this, for any (x1, . . . , xd) ∈ C and thanks to the non-negativity of the coefficients {αj}1≤j≤d

and the definition of C, the following inequality holds:

h(x1, . . . , xd) = 1 +

d∑
j=1

αjxj > 0,

hence f is well-defined on its domain since h takes its values in (0 ,+∞). Moreover as the function
g is strictly decreasing over R∗

+, we obtain 0 < f(x1, . . . , xd) < +∞12. Additionally, because
both h and g are C∞ functions respectively from C → (0 ,+∞) and from R∗

+ → R∗
+ then their

composition f = g ◦ h is also a C∞ function from C → R∗
+.

Now, we show that f is convex on its domain. From (34), we see that h is linear in x1, . . . , xd from
C → (0 ,+∞), and since g : x 7→ 1

x is strictly convex13 on (0 ,+∞) then it is convex and we can
conclude using Lemma C.3 that the composition

f = g ◦ h,
is a convex function from C → (0 ,+∞).

This completes the proof of the lemma.

12Thus f is a proper function (f never takes the value +∞ on its domain).
13It suffice to compute the first and second derivative of g. Since g : x 7→ 1

x
is C∞ these derivatives are

well-defined and for any real number x > 0

g′(x) = − 1

x2
and g′′(x) =

2

x3
,

thus g′(x) < 0 and g′′(x) > 0 on (0,+∞) thus g is strictly decreasing and strictly convex over its domain.
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In particular Lemma D.1 above shows that the epigraph of f is convex. We give further properties of
f in the next Lemma D.2 where we provide some results about its epigraph and on the hypersurface
S induced by the graph of f .
Lemma D.2 (Properties of the Hypersurface S and the Epigraph epi f ). Let C as defined in (31) be
the domain of the function f defined in (32) and let α = (α1, . . . , αd) be non-negative real numbers.
Assume αk = 0 and let gk : Ck → (0 ,+∞) be the function

gk : x̂
(k)

:= (x1, . . . , xk−1, xk+1, . . . , xd) 7→

1 +
∑

j∈[1..K]\{k}

αjxj

−1

,

where Ck :=

{
x̂
(k) ∈ Rd−1 :

∑
j∈[1..K]\{k}

αjxj > −1
}

. Then

1. epi gk is a d-dimensional closed convex subset of Rd where

epi gk :=

(x1, . . . , xn) ∈ C : xk ≥

1 +

d∑
j=1

αjxj

−1
 ,

2. given x ∈ Sk := ∂(epi gk)
14 then, for any vector v = (v1, . . . , vd) ∈ Rd \ {(0, . . . , 0)}

such that

vk = 0 and
d∑

j=1

αjvj = ⟨α⊤ | v⟩ = 0, (35)

the parametric line (ℓ) : x + tv belongs to Sk. Conversely, if for some ε > 0 and vector
v ∈ Rd \ {(0, . . . , 0)} the segment [x − εv , x + εv] is included in Sk then the whole line
(ℓ) : x+ tv for t ∈ R is also included in Sk and v is of the form (35),

3. let J := {j ∈ [d] : j ̸= k and αj = 0}, then

• either J = [d] \ {k}, that is, all the coefficients αj for j ∈ [d] \ {k} are zero, in which
case Sk is the (d− 1)-dimensional affine hyperplane A defined as

A =
{
(x1, . . . , xd) ∈ Rd : xk = 1

}
,

• otherwise, there exists at least one j ∈ [d] with j ̸= k such that αj ̸= 0, and for every
p ∈ Sk there exists a unique affine subspace A of Rd of dimension d− 2 which meets
p and is included in the hypersurface Sk, that is, such that p ∈ A and A ⊆ Sk.
Moreover, if we decompose the affine subspace A as A = p + E where E is parallel
to A and pass through the origin, then the canonical basis vectors (ej)j∈J all belong
to E,

4. for any point p ∈ Sk := ∂(epi gk), there exists a unique supporting hyperplane Hk(p)
of epi gk at p and this affine hyperplane Hk(p) contains the affine subspace A described
above (property 3).

Proof of Lemma D.2. We establish these claims one after the other.

1. First, note that since αk = 0 then the function gk is well-defined since its value does
not depend on xk. Then, up to a permutation of the coordinates, we see that we can ap-
ply Lemma D.1 to gk hence, the function gk : Ck → (0 ,+∞) is convex. According

14It should be understand here that the hypersurface Sk is the set

Sk :=

(x1, . . . , xd) ∈ C : xk =

(
1 +

d∑
j=1

αjxj

)−1
 .
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to Definition C.1 this means that the epigraph of gk is a convex subset of Rd. Moreover,
this epigraph is

epi gk =

(x1, . . . , xn) ∈ C : xk ≥

1 +

d∑
j=1

αjxj

−1
 ,

which is a closed subset of Rd. Effectively, if
(
(x

(ℓ)
i )i∈[d]

)
ℓ≥0

is a sequence of points of

epi gk which converges (say, in ℓ2-norm) to the point (x(∞)
i )i∈[d] ∈ Rd then, for any integer

ℓ ≥ 0

x
(ℓ)
k ≥

1 +

d∑
j=1

αjx
(ℓ)
j

−1

,

and taking the limits ℓ→ +∞ leads to

x
(∞)
k ≥

1 +

d∑
j=1

αjx
(∞)
j

−1

,

since the inverse function is continuous on R∗
+. Hence (x

(∞)
i )i∈[d] ∈ epi gk so is closed.

To show that epi gk is a d-dimensional convex subset of Rd is suffices to show that
it contains an non-empty open-ball (say, for the ℓ2-norm). First, note that the func-
tion gk is continuous over Ck and since Ck is an open convex subset of Rd as proved
in Lemma D.1 then (since Rd is a metric space), there exists some r > 0 and some
point x̂(k)

= (x1, . . . , xk−1, xk+1, . . . , xd) ∈ Ck such that the (non-empty) closed ball

B(x̂
(k)

, r) ⊆ Ck. Now, since we are in a finite dimensional space, the we can apply Riesz
theorem (Rynne & Youngson, 2008) so that the closed ball B(x̂

(k)
, r) is a compact subset

of Ck. As the function gk is continuous then, it is upper bounded on the ball B(x̂
(k)

, r) by
some constant M ≥ 0. Then, let xk ≥M + r, we deduce that the open ball

B(x, r) ⊆ epi gk,

where x = (x1, . . . , xk). Effectively, for any y = (y1, . . . , yd) ∈ B(x, r), we have ŷ
(k) ∈

B(x̂
(k)

, r) and

yk > xk − r ≥M ≥ max
z∈B(x̂(k),r)

gk(z) ≥

1 +

d∑
j=1

αkyj

−1

,

which proves the desired result.

2. We will first prove the second part of the statement (the “converse” direction) namely,
that every vector v ∈ Rd \ {(0, . . . , 0)} for which x + tv ∈ Sk for all t ∈ (−ε , ε)
where ε > 0 is fixed is of the form (35) and, in this case, the whole line for t ∈ R is
included in the hypersurface Sk. Hence, let x ∈ Sk and assume there exists some non-zero
v = (v1, . . . , vd) ∈ Rd and ε > 0 such that for every t ∈ (−ε , ε) we have x + tv ∈ Sk.
This means

xk + tvk =

1 +

d∑
j=1

αj(xj + tvj)

−1

,
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that is

(xk + tvk)

1 +

d∑
j=1

αj(xj + tvj)


= xk

1 +

d∑
j=1

αjxj

+ t

vk
1 +

d∑
j=1

αkxj

+ xk

d∑
j=1

αjvj

+ t2vk

d∑
j=1

αjvj

(a)
= 1 + t

vk
1 +

d∑
j=1

αkxj

+ xk

d∑
j=1

αjvj

+ t2vk

d∑
j=1

αjvj

= 1,

where in (a) we use the fact that x ∈ Sk, in particular, xk > 0. Hence, simplifying the
above computation gives

t

vk
1 +

d∑
j=1

αkxj

+ xk

d∑
j=1

αjvj + tvk

d∑
j=1

αjvj

 = 0, (36)

and since this equality holds for all t ∈ (−ε , ε) hence, the right factor in (36) vanishes
infinitely many times in (−ε , ε) \ {0} ̸= ∅ hence, it must vanish everywhere thus, its
coefficients must be zero, i.e.

vk

1 +

d∑
j=1

αkxj

+ xk

d∑
j=1

αjvj = 0,

and

vk

d∑
j=1

αjvj = 0.

Thus, either v0 = 0 which implies

xk

d∑
j=1

αjvj = 0,

but since x ∈ Sk then xk > 0 hence
d∑

j=1

αjvj = 0. Otherwise, if
d∑

j=1

αjvj = 0 then

vk(1 + 0) + 0 = vk = 0,

thus we obtain the claimed conditions

vk = 0 and
d∑

j=1

αjvj = 0.

Conversely, let x ∈ Sk and let v = (v1, . . . , vd) ∈ Rd \ {(0, . . . , 0)} such that

vk = 0 and
d∑

j=1

αjvj = 0,

then, for any t ∈ R, we have

xk + tvk = xk =

1 +

d∑
j=1

αjxj

−1

=

1 +

d∑
j=1

αj(xj + tvj)

 ,

hence, the whole parametric line (ℓ) : x + tv belongs to the hypersurface Sk and this
achieves the proof of the statement.
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3. Recall the definition of the set J := {j ∈ [d] : j ̸= k and αj = 0}, we distinguish two
cases:

• if J = [d] \ {k} then α = (0, . . . , 0) ∈ Rd thus the function gk : Ck → (0 ,+∞) is
constant equal to one thus, the hypersurface Sk = ∂(epi gk) is by definition the set

Sk :=
{
(x1, . . . , xd) ∈ Rd : xk = 1

}
,

which is a non-trivial hyperplane of Rd. This proves the first claim,
• otherwise, assume there exists some j ̸= k in [d] such that αj ̸= 0 and let
p ∈ Sk. First, any affine subspace A of Rd which meets p is of the form A =
p + VectR

(
(v(1), . . . , v(ℓ))

)
for some integer ℓ ≥ 1 and (possibly zero) vectors

(v1, . . . , vℓ) ∈ Rd. Then, note that according to the previous statement (property
2), if A is included in Sk then the lines (ℓi) : p + tv(i) for any i ∈ [ℓ] should be
included in Sk hence, are of the form (35), that is

v
(i)
k = 0 and

〈
α⊤ | v(i)

〉
= 0,

hence v(i) ∈ {α⊤}⊥, the orthogonal subspace to the line VectR (α⊤). Moreover,
since α ̸= (0, . . . , 0) and αk = 0 then {α⊤}⊥ is a subspace of Rd of dimension d− 1
containing ek, the k-th basis vector. Hence, we deduce that

v(i) ∈ {α⊤}⊥ ∩ {ek}⊥ ,

which is a subspace of dimension d−2 of Rd because αk = 0 hence the family (α, ek)
has rank 2. Hence, any affine subspace which meets p and is included in Sk satisfies

A ⊆ p+ {α⊤}⊥ ∩ {ek}⊥ .

Conversely, the affine subspace p + {α⊤}⊥ ∩ {ek}⊥ meets p and is also included in
Sk since for any v = (v1, . . . , vd) ∈ {α⊤}⊥ ∩ {ek}⊥ we have

⟨v | ek⟩ = vk = 0 and ⟨α⊤ | v⟩ = 0,

thus by property 2 above, the line (ℓ) : p+ tv, t ∈ R belongs to Sk.
This proves that there exists a unique maximal affine subspace A which meets p and
which is included in Sk. This affine subspace is A = p+{α⊤, ek}⊥ and has dimension
d − 2. Additionally, for any j ∈ J , both j ̸= k and αj = 0 thus, since ⟨ej | ek⟩ = 0
and ⟨α⊤ | ej⟩ = 0 thus

ej ∈ {α⊤}⊥ ∩ {ek}⊥ ,

which shows that ej ∈ (A− p) hence, the basis vector (ej)j∈J all belong to (A− p)
and the claim follows.

4. Note, by definition of epi gk we have

epi gk =

(x1, . . . , xk) ∈ Rd : 0 ≥ −xk +

1 +

d∑
j=1

αjxj

−1
 ,

and let

φ(x1, . . . , xn) := −xk +

1 +

d∑
j=1

αjxj

−1

,

then epi gk is a level set of φ : Rd → R and, since φ is real-valued, continuous and differ-
entiable over Rd, applying Lemma C.13 gives, for any point p = (p1, . . . , pk) ∈ Sk there
exists a unique supporting hyperplane Hk(p) of epi gk at point p. Moreover, we know that
this supporting hyperplane is defined as

Hk(p) :=
{
x ∈ Rd : ⟨∇φ(p) | x⟩ = ⟨∇φ(p) | p⟩

}
,

hence, based on the previous property (and notably the set J), we distinguish two cases:
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• if J = [d] \ {k} then we proved that Sk is the affine hyperplane

Sk =
{
(x1, . . . , xd) ∈ Rd : xk = 1

}
,

and in this case, the affine subspace A and the supporting hyperplane Hk(p) are the
same, for any p ∈ Sk, which follows from the fact that we have φ : (x1, . . . , xd) 7→
1 − xk so ∇φ(p) = −ek and hence, for any x ∈ Rd, ⟨∇φ(p) | x⟩ = ⟨∇φ(p) | p⟩ is,
and only if

xk = pk = 1.

• now, assume J contains some j ̸= k such that αj ̸= 0. Recall that we proved the
largest affine subspace A which meets p and which is included in Sk to be

A = p+ {α⊤, ek}⊥ ,

and, since

∇φ(p) =



α1/C(p)
...

αk−1/C(p)
−1

αk+1/C(p)
...

αd/C(p)


=

1

C(p)
α− ek,

where C(p) :=

(
1 +

d∑
j=1

αjpj

)2

then, for any vector v ∈ {α⊤, ek}⊥ we have both

⟨α⊤ | v⟩ = 0 and ⟨ek | v⟩ ,
which gives, by linearity of the cross-product

⟨∇φ(p) | v⟩ = 1

C(p)
⟨α⊤ | v⟩ − ⟨ek | v⟩ = 0,

thus v ∈ Hk(p). This shows that A ⊆ Hk(p) but these affine subspaces are not equal
since dimA = d− 2 < d− 1 = dimHk(p).

This achieves the proof of property 4.

D.2 THE GEOMETRY OF THE FEASIBLE REGION F

Now, let us study the geometrical aspects of the feasible region F whose definition is recalled below
for clarity.

Definition D.3. The feasible region F of problem (Pd) is the set

F :=
{
Λ ∈ [0 , 1]

d
: 0 ≤ Λ + Λ⊙ (MΛ) ≤ 1 for all k ∈ [d]

}
, (37)

where M is a d× d matrix with non-negative entries.

Moreover, so as to handle the expression appearing in the above definition, we define, for any λ =

(λ1, . . . , λd) ∈ [0 , 1]
d and any k ∈ [d] the quadratic function associated to the k-th constraint,

ρk(λ) := λk

1 +

d∑
j=1

Mk,jλj

 .

We now start to study the geometrical aspect of the feasible region F .
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Definition D.4 (Components of the Region F ). For any element I = (i1, . . . , id) ∈ {−1, 0, 1}d,
we define

CI :=

{
λ = (λ1, . . . , λd) ∈ F : for all k ∈ [d],

{
if ik ∈ {0, 1}, then ρk(λ) = ik
if ik = −1, then 0 < ρk(λ) < 1

}
,

the component of F associated to the constraints index I .
Definition D.5 (Interior Region, Extreme Points, Edges and Faces of F ). For the feasible re-
gion (37), given I = (i1, . . . , id) ∈ {−1, 0, 1}d then,

• if I = (−1, . . . ,−1), we call the component RF := C(−1,...,−1) the interior region of F ,

• if I ∈ {0, 1}d, the component EI := CI is called an extreme point15 of the domain F ,

• if there exists a unique k ∈ [d] such that ik = −1 then the component EI := CI is called
an edge of F . The set of all I ∈ {−1, 0, 1}d such that CI is an edge of F is denoted by
EF , that is

EF :=
{
(i1, . . . , id) ∈ {−1, 0, 1}d : there exists a unique k ∈ [d], such that ik = −1

}
.

• otherwise, if there exists 1 ≤ k, ℓ ≤ d with k ̸= ℓ such that ik = −1 and iℓ ∈ {0, 1} then
the component FI := CI is called a face of F . The set of all I ∈ {−1, 0, 1}d such that CI
is a face of F is denoted by FF , that is

FF := {−1, 0, 1}d \
(
{−1}d ∪ {0, 1}d ∪ EF

)
.

Let k ∈ [d], recall that the constraint of the feasible region F associated to λk as defined in (37) is
given by

0 ≤ λk

1 +

d∑
j=1

Mk,jλj

 ≤ 1,

that is, (λ1, . . . , λd) belongs to the quadrant Rd
+ of non-negative real numbers, intersected with the

hypograph of the function gk : Rd−1
+ → R defined as

gk : x̂
(k)

:= (x1, . . . , xk−1, xk+1, . . . , xd) 7→

1 +

d∑
j=1

Mk,jxj

−1

, (38)

i.e.,
(λ1, . . . , λd) ∈ Rd

+ ∩
{
(x1, . . . , xd) ∈ Rd : xk ≤ gk

(
x̂
(k))}

.

These are the same functions as introduced and studied in Lemma D.2 but specialized with the
coefficients of the strictly upper triangular matrix M. Moreover, so as to ease the statement of
future results, we introduce the very similar function

gεk : x̂
(k)

:= (x1, . . . , xk−1, xk+1, . . . , xd) 7→ ε

1 +

d∑
j=1

Mk,jxj

−1

, (39)

where ε ∈ {0, 1}. Again, the function gεk is still convex and its epigraph is thus a d-dimensional
convex subset of Rd according to Lemma D.2 (property 1). Additionally, if ε = 0 then ∂(epi gεk) is
simply the hyperplane orthogonal to basis vector ek.

15It is not clear at this moment if the nomenclature of “extreme point” for these objects is meaningful.
The definition of extreme point is provided in Definition 4.1 and it is shown in Lemma E.3 that indeed, the
(eI)I∈{0,1}d are extreme points of the feasible region F .
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For clarity, we recall below the epigraph and hypograph of the function gεk which are defined as

epi gεk :=
{
(x1, . . . , xd) ∈ Rd : xk ≥ gεk

(
x̂
(k))}

,

and
hypo gεk :=

{
(x1, . . . , xd) ∈ Rd : xk ≤ gεk

(
x̂
(k))}

.

Moreover, their exterior are the respective sets

ext(epi gεk) :=
{
(x1, . . . , xd) ∈ Rd : xk < gεk

(
x̂
(k))}

,

and
ext(hypo gεk) :=

{
(x1, . . . , xd) ∈ Rd : xk > gεk

(
x̂
(k))}

.

Additionally, we define the closed half-space induced by the supporting hyperplane Hε
k(p) of

epi gεk
16 at point p ∈ ∂(epi gεk) and directed toward the feasible region F as

Hε,+
k (p) :=

{
x = (x1, . . . , xd) ∈ Rd :

{
xk ≥ 0, if ε = 0,

⟨∇φk(p) | x− p⟩ ≥ 0, if ε = 1.

}
, (40)

where φk : C → R is defined as

φk : (x1, . . . , xd) 7→ −xk +

1 +

d∑
j=1

αjxj

−1

,

and C is the convex set defined in Lemma D.1, i.e., in (31) (for the special case αk = 0). No-
tably, (epi g1k) is convex (see Lemma D.2, property 1) and (hypo g0k) is also convex since its the
hypersurface x = g0k(x̂

(k)
) is an hyperplane of Rd so, the convexity of these two sets implies both

H1,+
k (p) ∩ int (epi g1k) = ∅,

and
H0,+

k (p) ∩ int (hypo g0k) = H0,+
k (p) ∩ ext (epi g0k) = ∅. (41)

Lemma D.6 (Properties of the feasible region F ). The feasible region F as defined in definition 3.1

1. is diffeomorphic to the unit hypercube [0 , 1]
d,

2. is a compact (closed and bounded subset of Rd) and non-empty subset of [0, 1]d. Moreover,
it contains the zero vector (0, . . . , 0)⊤ ∈ F ,

3. has a non-empty interior,

4. is convex if, and only if Mk,j = 0 for all 1 ≤ k, j ≤ d iff (1, . . . , 1)⊤ ∈ F .

Proof. We establish these claims one after the other.

1. According to lemma 3.4, we know there exists a C∞–diffeomorphism Ψ: [0 , 1]
d → F

hence the feasible region F is diffeomorphic to the unit hypercube [0 , 1]
d.

2. By definition of the feasible region F , we know that F ⊆ [0, 1]
d so F is bounded.

Moreover, the zero vector (0, . . . , 0)⊤ is in F since putting λ0 = · · · = λd = 0 leads to

0 ≤ 0 = λk

1 +

d∑
j=k+1

Mk,jλj

 ≤ 1,

for all k ∈ [d] and all constraints are satisfied so F ̸= ∅. Finally, F is also a closed
subset of Rd because it is diffeomorphic to the unit (closed) hypercube [0 , 1]

d and since
diffeomorphisms preserve open and closed sets then F is also closed thus, it is a compact
subset of Rd.

16Note that ∂(epi gεk) = ∂(hypo gεk) so the boundary does not change if we take the epigraph of the hypo-
graph of gεk.
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3. Here, as the map Ψ: [0 , 1]
d → F is a homeomorphism (notably, Ψ−1 is continuous), we

have, where intA denotes the interior of a set A,

intF = intΨ([0 , 1]
d
) = Ψ(int [0 , 1]

d
) = Ψ((0, 1)d) ̸= ∅, (42)

since (0, 1)d ̸= ∅. Hence, the feasible region F has non-empty interior (and its interior is
even diffeomorphic to the open unit hypercube (0, 1)d).

4. We first show the second equivalence, that is, Mk,j = 0 for all 1 ≤ k, j ≤ d iff
(1, . . . , 1)

⊤ ∈ F . Assume first that Mk,j = 0 for all 1 ≤ k, j ≤ d then, the inequal-
ity constraints in problem (1) reduce to

0 ≤ λk ≤ 1, (43)

for all k ∈ [d] thus 0 ≤ λk ≤ 1 and since there is now no inter-dependency anymore
between the stepsizes {λk}k∈[d] we deduce that the feasible region is simply F = [0 , 1]

d

so it is convex and contains the vector (1, . . . , 1)⊤. Conversely, if F contains the vector
(1, . . . , 1)

⊤ then, it means this point satisfies all the constraints thus

0 ≤

1 +

d∑
j=k+1

Mk,j

 = 1 +

d∑
j=k+1

Mk,j ≤ 1,

which is impossible, except in the case where Mk,j = 0 for all j ∈ [k + 1 .. d] that is, the
upper triangular matrix M = 0 is the zero matrix.

Now, for the first equivalence, we already proved the converse, that is, if M is the zero
matrix then F = [0 , 1]

d so the feasible region is convex. So, let us assume F is convex
and, for the sake of contradiction, suppose the strictly upper triangular matrix M is non-
zero, hence, there exists an integer 0 ≤ k < j0 ≤ d such that Mk,j0 ̸= 0. Necessarily, k <
d since M is strictly upper triangular so without loss of generality, let us take k ∈ [d − 1]
to be the largest integer such that for some j ∈ [k + 1 .. d] the coefficient Mk,j ̸= 0. Then,
for all k′ ∈ [k + 1 .. d] we must have Mk′,j = 0 for all j ∈ [k′ + 1 .. d] so the variables
λk+1, . . . , λd all satisfy inequalities (43), i.e., we have the freedom to choose them inside
[0, 1] and then we can always found values for the other variables λ1, . . . , λk (notably, zero
as it is always possible to choose this value) so as to ensure the point (λ0, . . . , λd) is still
feasible. That being said, note that the two points

{0}k ×
{

1

1 + sk

}
× {1}d−k ∈ F and {0}k × {1} × {0}d−k ∈ F ,

where sk :=
d∑

j=k+1

Mk,j > 0 since Mk,j0 > 0 by assumption. Effectively, for both points

we only need to check the constraint associated to stepsize γk which for the first one gives

0 ≤ 1

1 + sk

1 +

d∑
j=k+1

Mk,j

 =
1

1 + sk
(1 + sk) = 1 ≤ 1,

while for the second one we have

0 ≤ (1 + 0) = 1 ≤ 1.

Note that the above two points are not ill-defined since d− k > 0. Now, as F is assumed
convex then for any t ∈ [0 , 1] we must have

t

(
{0}k ×

{
1

1 + sk

}
× {1}d−k

)
+ (1− t)

(
{0}k × {1} × {0}d−k

)
= {0}k ×

{
t

1 + sk
+ (1− t)

}
× {t}d−k ∈ F .
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Then, this implies that the points
{
{0}k ×

{
t

1+sk
+ (1− t)

}
× {t}d−k

}
t∈[0,1]

all lie in

the feasible region so, in particular, they satisfy the constraint associated to γk that is

0 ≤ L ·
[

t

1 + sk
+ (1− t)

]1 +

d∑
j=k+1

tMk,j

 =

[
t

1 + sk
+ 1− t

]1 + t

d∑
j=k+1

Mk,j

 ≤ 1,

(44)

and, rewriting the left inequality in (44) using sk :=
d∑

j=k+1

Mk,j > 0 gives

t

1 + sk
+

t2sk
1 + sk

+ 1− t+ t(1− t)sk ≤ 1,

i.e.,

0 ≥ t

1 + sk
+

t2sk
1 + sk

− t+ t(1− t)sk

= t

(
1

1 + sk
+

tsk
1 + sk

− 1 + (1− t)sk

)
(a)
= t

(
1

1 + sk
+ t− t

1 + sk
− 1 + (1− t)sk

)
(b)
= t(1− t)

(
1

1 + sk
− 1 + sk

)
= t(1− t)

1− (1 + sk) + sk(1 + sk)

1 + sk

= t(1− t)
s2k

1 + sk
> 0, (45)

for any choice of t ∈ (0, 1) since sk > 0. In the above, in (a) we split tsk
1+sk

as

tsk
1 + sk

=
t(1 + sk − 1)

1 + sk
= t− t

1 + sk
,

while in (b) we factor out by (1 − t). But positivity in (45) violates the aforementioned
constraint associated to λk hence, we conclude that all entries of the upper triangular matrix
M are zero. This achieves the desired equivalence.

We now give some properties satisfied by the components of the feasible set F .

Lemma D.7 (A partition of F ). The components (CI)I∈{−1,0,1}d of the feasible region F satisfy

1. they form a partition of F , i.e., they are all non-empty and their union is F ,

2. for any I ∈ {0, 1}d, the extreme point EI contains only a single feasible point,

3. the interior region RF is exactly the interior of F , that is RF = intF .

4. for any I = (i1, . . . , id) ∈ {−1, 0, 1}d, we have

CI ⊆ Rd
+ ∩

 d⋂
j=1

ij∈{0,1}

∂(epi g
ij
j )

 ∩
 d⋂

j=1
ij=−1

[
ext(epi g1j ) ∩ ext(hypo g0j )

] .
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5. each component CI for I = (i1, . . . , id) ∈ {−1, 0, 1}d is a bounded sub-manifold of Rd of
dimension

dim(CI) = |{k ∈ [d] : ik = −1}| ,
e.g., if d = 3 then the faces of F are either 2-dimensional surfaces and the edges are
1-dimensional curves.

Proof of Lemma D.7. We establish these claims one after the other.

1. Let I = (i1, . . . , id) ∈ {−1, 0, 1}d, we define the weights vector w = (w1, . . . , wd) ∈
[0 , 1]

d as follows, for any k ∈ [d]

wk =

{
ik, if ik ∈ {0, 1};
1
2 , if ik = −1;

then, according to lemma 3.3, the system of equations

λk

1 +

d∑
j=k+1

Mk,jλj

 = wk,

for all k ∈ [d] admits a unique solution Λ(w) =
(
λ
(w)
1 , . . . , λ

(w)
d

)
and this solution is such

that for any k ∈ [d]

ρk

(
Λ(w)

)
=

{
ik, if wk = ik ∈ {0, 1};
1
2 , if ik = −1;

thus Λ(w) ∈ CI ̸= ∅. More precisely, with the same I = (i1, . . . , id) as above, we define
for any k ∈ [d] the set

S
(I)
k =

{{ik}, if ik ∈ {0, 1};
(0, 1), if ik = −1;

then, according to the definition D.4 of the component CI , we have by construction that
S(I) := S

(I)
1 × · · · × S

(I)
d ̸= ∅ and

CI = Ψ
(
S
(I)
1 × · · · × S

(I)
d

)
,

where the map Ψ: [0 , 1]
d → F has been defined in lemma 3.4. Additionally, note that

the sets {0}, (0, 1) and {1} are pairwise disjoint hence, for any two distinct I ̸= I ′ in
{−1, 0, 1}d the elements I and I ′ differ at least by one coordinate thud

S(I) ∩ S(I′) = ∅,

hence the sets
{
S(I)

}
I∈{−1,0,1}d are pairwise disjoint and non-empty. Moreover, their

disjoint union is ⊔
I∈{−1,0,1}d

S(I) =

d∏
i=1

({0} ∪ (0, 1) ∪ {1}) = [0 , 1]
d
,

thus the sets
{
S(I)

}
I∈{−1,0,1}d constitute a partition of the closed unit cube [0 , 1]

d and

transferring them through the bijective map Ψ: [0 , 1]
d → F (the bijectivity being proved

in lemma 3.3) leads to the fact the set sets {CI}I∈{−1,0,1}d are pairwise disjoint (and even
non-empty) and moreover,

F = Ψ([0 , 1]
d
) = Ψ

 ⊔
I∈{−1,0,1}d

S(I)

 (a)
=

⊔
I∈{−1,0,1}d

Ψ
(
S(I)

)
=

⊔
I∈{−1,0,1}d

CI ,

which shows that the {CI}I∈{−1,0,1}d form a partition of the feasible region F . Note that
in (a) we use the fact that Ψ is injective so that it preserves the disjoint union property.
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2. Assume I = (i1, . . . , id) ∈ {0, 1}d then, for any λ ∈ CI , since the value of each of
the expressions {ρk(λ)}k∈[d] have been fixed (to either 0 or 1) then using lemma 3.3 we
conclude that there exists a unique solution to the system of equations

λk

1 +

d∑
j=k+1

Mk,jλj

 = ik,

for all k ∈ [d]. Hence, the set CI is reduce to a single point, as claimed.

3. Using lemma 3.3 and what we have done in the first paragraph above, since the interior
region is defined as RF := C(−1,...,−1) then, we have

RF = Ψ((0, 1)d),

and, using what we have proved from lemma D.6, more particularly from equation (42)
gives

RF = Ψ((0, 1)d) = intF ,

as desired.

4. Let I ∈ {−1, 0, 1}d then by definition D.4 we know that Ci ⊆ Rd
+. Now, let k ∈ [d] then

we distinguish two cases

• if ik = −1 then for any λ = (λ1, . . . , λd) ∈ CI , we know that 0 < ρk(λ) < 1 so
notably

λk

1 +

d∑
j=1

Mk,jλj

 < 1,

hence λ ∈ ext(epi g1k) and by the way

0 < λk

1 +

d∑
j=1

Mk,jλj

 ,

thus λ ∈ ext(hypo g0k),
• if ik ∈ {0, 1} this means that for any λ = (λ1, . . . , λd) ∈ CI we have ρk(λ) ∈ {0, 1}

hence: if ik = 1 we should have ρk(λ) = 1 thus λ ∈ ∂(epi g1k), otherwise if ik = 0
then we must have λk = 0 so λ ∈ ∂(epi g0k) =

{
(x1, . . . , xd) ∈ Rd : xk = 0

}
.

Thus, it follows that we have the inclusion

CI ⊆ Rd
+ ∩

 d⋂
j=1

ij∈{0,1}

∂(epi g
ij
j )

 ∩
 d⋂

j=1
ij=−1

[
ext(epi g1j ) ∩ ext(hypo g0j )

] ,

as desired.

5. Notice from lemma 3.4 that the component CI where I = (i1, . . . , id) ∈ {−1, 0, 1}d is
diffeomorphic (via Ψ) to the cartesian product

S(I) := S
(I)
1 × · · · × S

(I)
d ,

where for any k ∈ [d], we defined S
(I)
k :=

{{ik} , if ik ∈ {0, 1},
(0 , 1), if ik = −1.

and, since S(I) is a

bounded sub-manifold of Rd of dimension ℓ = |{k ∈ [d] : ik = −1}|, we deduce that CI
is also a bounded sub-manifold of Rd of dimension ℓ which proves the desired assertion
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Definition D.8 (Degrees of Freedom of a Component). Given I = (i1, . . . , id) ∈ {−1, 0, 1}d, the
degrees of freedom of component CI is denoted by

deg(I) := {j ∈ [d] : ij = −1} .

According to Lemma D.7, given a constraint index I ∈ {−1, 0, 1}d, we have
|deg(I)| = dim(CI),

hence, faces are components of dimension at least 2 (with two degree of freedom), while edges are
those of dimension 1 and have only one degree of freedom and extreme points have dimension 0 and
degree 0.
Lemma D.9 (Characterizing the Feasible Region F ). We have

F = Rd
+ \

d⋃
i=1

int
(
epi g1i

)
,

where for any i ∈ [d], int
(
epi g1i

)
represents the interior of the epigraph of gi.

Proof. Note that for any i ∈ [d], if we let x := (x, . . . , xd) and λ := (λ1, . . . , λd) then we have

int(epi gi) =

x ∈ Rd : xi >

1 +

d∑
j=k+1

Mi,jxj

−1
 .

Hence, by definition of F from (37) it follows

F
(37)
:=

λ ∈ [0 , 1]
d
: 0 ≤ λi

1 +

d∑
j=i+1

Mi,jλj

 ≤ 1 for all i ∈ [d]


(a)
=

d⋂
i=1

λ ∈ Rd
+ : λi ≤

1 +

d∑
j=i+1

Mi,jλj

−1


= Rd
+ \

d⋃
i=1

λ ∈ Rd
+ : λi >

1 +

d∑
j=i+1

Mi,jλj

−1


= Rd
+ \

d⋃
i=1

int(epi gi).

This proves the desired equality. Note that in (a) we use the non-negativity of the entries of the
matrixM and that each of the λ1, . . . , λd is also non-negative, which implies

0 ≤ λi

1 +

d∑
j=i+1

Mi,jλj

 ,

for all i ∈ [d], i.e., there is no need to force the (λi)i∈[d] to be less than one since the constraints
already imply this inequality thanks to the non-negativity of the entries of the matrixM and of the
(λi)i∈[d].

D.3 SOME TECHNICAL LEMMAS

Lemma D.10. For any p ∈ F , let w = (w1, . . . , wd) = Ψ−1(p) ∈ [0 , 1]
d and for i ∈ [d], let

Hwi
i (p) be the supporting hyperplane of epi gwi

i at p, then

A =

d⋂
i=1

wi∈{0,1}

Hwi
i (p),

is an affine subspace of Rd of dimension dimA ≥ d− |{i ∈ [d] : wi ∈ {0, 1}}|.
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Proof. By definition of supporting hyperplane from Definition C.11, we know that

p ∈
d⋂

i=1
wi∈{0,1}

Hwi
i (p) ̸= ∅,

hence, applying Lemma C.14 we have that the dimension of the intersection of all these k =
|{i ∈ [d] : wi ∈ {0, 1}}| affine hyperplanes Hwi

i (p) for i ∈ [d] with wi ∈ {0, 1} is at least
d− k = |{i ∈ [d] : wi = −1}| = deg(w) as claimed.

Lemma D.11 (No Large Affine Subspaces Except Flat Ones). Let I = (i1, . . . , id) ∈ {−1, 0, 1}d
and denote by S := {j ∈ [d] : ij = −1} ⊆ [d]. Assume there exists some affine subspace A of Rd

of dimension |S| = deg(I) (the degrees of freedom of CI ) such that

A ⊆
d⋂

i=1
wi∈{0,1}

∂(epi gwi
i ), (46)

then, A = p+VectR ((ei)i∈S))
17 for any point p ∈ A.

Proof. Recall from Lemma D.7 that the components of F are all non-empty so is the component
CI where I is constraint index defined in the statement. We distinguish two cases:

• if deg(I) = 0 then A is an affine subspace of Rd of dimension 0 so is just a single point
p ∈ Rd and as S = ∅ then A = {p} and the claims follows,

• now assume deg(I) > 0 then the intersection in (46) is non-empty. Let v = (v1, . . . , vd) ∈
(A − p) be a non-zero vector, where p ∈ A then using Lemma D.2 (property 2) since the
line VectR (v) is included in A so in every ∂(epi gwi

i ) for i ∈ [d] with wi ∈ {0, 1} then we
must have

vi = 0 and ⟨Mi,·
⊤ | v⟩ = 0,

for all i ∈ [d] \ S such that wi = 1. Otherwise, those i ∈ [d] \ S for which wi = 0,
since ∂(epi gwi

i ) is the hyperplane
{
(x1, . . . , xd) ∈ Rd : xi = 0

}
= {ei}⊥ and the line

VectR (v) belongs to this hyperplane then ⟨v | ei⟩ = 0, i.e., vi = 0 too. Hence,

v ∈
{
(ei)i∈[d]\S

}⊥
= Vect

R
((ei)i∈S) ,

thus v ∈ VectR ((ei)i∈S) so (A − p) ⊆ VectR ((ei)i∈S) and because dimA = |S| =
dim (VectR ((ei)i∈S)) then we must have equality in the previous inclusion that is

A = p+Vect
R

((ei)i∈S) ,

and the assertion follows.

Lemma D.12 (A Technical Lemma). For the feasible region of problem (Pd), for any w =

(w1, . . . , wd) ∈ [0 , 1]
d \ {0, 1}d (w is not a vertex of the unit hypercube) let x = Ψ(w) ∈ F ,

there exists ρ > 0 such that for any y ∈ B(x, ρ), if

y ∈
d⋂

i=1
wi∈{0,1}

Hwi,+
i (x),

then y ∈ F . Moreover, we can choose the radius ρ > 0 so that if y ∈ CI for some I = (i1, . . . , id) ∈
{−1, 0, 1}d we have for all j ∈ [d], if 0 < wj < 1 then ij = −1.

17Here, (e1, . . . , ed) denotes the canonical basis of Rd with ei = (0, . . . , 0, 1, 0, . . . , 0)⊤ containing a 1 in
its i-th coordinate and 0 elsewhere.
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Proof. Assume for the sake of contradiction that the property does not hold then, there must exists
some w = (w1, . . . , wd) ∈ [0 , 1]

d and x = Ψ(w) ∈ F such that for all radius ρ > 0, there exists
some yρ ∈ B(x, ρ) such that

yρ ∈
d⋂

i=1
wi∈{0,1}

Hwi,+
i (x) but yρ /∈ F .

First, let us show that for ρ > 0 small enough, we have yρ ∈ Rd
+. Let i ∈ [d], we distinguish three

cases based on the value of xi:

• if xi = 0 and since 1+
d∑

j=1

Mi,jxj > 0 then we must have wi = 018 and the corresponding

closed half-space is Hwi,+
i (x) =

{
(z1, . . . , zd) ∈ Rd : zi ≥ 0

}
so as yρ ∈ Hwi,+

i (x) then
[yρ]i ≥ 0 and taking ρ < 1 is enough to ensure [yρ]i ≤ 1.

• otherwise, if xi > then take m := mini∈[d]
xi>0

xi then, it is enough to choose the radius

0 < ρ < m
2 so as to ensure that the yρ ∈ B(x, ρ) will be such that [yρ]i > xi − ρ > 0 for

all i ∈ [d] with xi > 0.

Hence, for all ρ small enough we have yρ ∈ Rd+.

Then using Lemma D.9 since

F = Rd
+ \

d⋃
i=1

int (epi g1i ),

and yρ /∈ F , but yρ ∈ Rd
+ by the above paragraph, then we must have yρ ∈

d⋃
i=1

int (epi g1i ).

Now, since yρ belongs to the intersection of the closed half-spaces
d⋂

i=1
wi∈{0,1}

Hwi,+
i (x) (the half-

spaces containing F , not the convex epigraph) and since by (41) we have Hwi,+
i (p)∩int (epi gwi

i ) =
∅ for all i ∈ [d] such that wi = 1 so yρ /∈ int (epi g1i ) for all i ∈ [d] such that wi = 1. Moreover,
for all i ∈ [d] such that wi = 0 we know by Lemma D.7 (property 4)

x ∈ ∂(epi g0i ) =
{
(z1, . . . , zd) ∈ Rd : zi = 0

}
,

so xi = 0. Additionally, as the epigraph of g1i is

epi g1i =

(z1, . . . , zd) ∈ Rd : zi ≥

1 +

d∑
j=1

Mi,jzj

−1
 ,

and the function z 7→
(
1 +

d∑
j=1

Mi,jzj

)−1

being continuous and positive all over the compact set

[0 , 2]
d then it must reach its global minimum somewhere on the unit hypercube, hence, there exists

some mi > 0 such that for all (z1, . . . , zd) ∈ [0 , 2]
d we have1 +

d∑
j=1

Mi,jzj

−1

≥ mi > 0.

18Because by definition of w and x = Ψ(w), we have

wi = xi

(
1 +

d∑
j=1

Mi,jxj

)
,

so if xi = 0 then immediately we obtain wi = 0.
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By consequence, for all radius ρ > 0 small enough (say for instance ρ ≤ min i∈[d]
wi=0

mi

2 and ρ < 1)

then the open ball B(x, ρ) intersected with non-negative quadrant Rd
+ is disjoint with the epigraph

epi g1i for all i ∈ [d] such that wi = 0, because since x ∈ [0 , 1]
d then B(x, ρ) ∩ Rd

+ ⊆ [0 , 2]
d (as

we take ρ < 1) thus,

(
Rd

+ ∩ B(x, ρ)
)︸ ︷︷ ︸

̸=∅

∩

 d⋃
i∈[d]
wi=0

(epi g1i )

 = ∅,

hence, for all radius ρ > 0 such that ρ ≤ min i∈[d]
wi=0

mi

2 and ρ < 1, as yρ ∈ B(x, ρ) ∩ Rd
+ then

yρ /∈
d⋃

i∈[d]
wi=0

(epi g1i ) thus yρ /∈
d⋃

i∈[d]
wi=0

int (epi g1i ).

From the above two paragraphs, we deduced that yρ /∈
d⋃

i=1
wi∈{0,1}

int (epi g1i ) so we must have

yρ ∈
d⋃

i=1
0<wi<1

int (epi g1i ),

for all small enough radius 0 < ρ < ρ0.

Next, as asserted in the statement, the set S = {i ∈ [d] : 0 < wi < 1} is non-empty then, since the
set (0 , ρ0) has infinite cardinality but 1 ≤ |S| < +∞ we deduce that there must exists a i0 ∈ S and
some sequences (ρk)k≥1 such that for all k ≥ 1, we have

0 < ρk < ρ0 and ρk −−−−−→
k→+∞

0 and yρk
∈ int (epi g1i0).

Since the sequence of radius (ρk)k≥1 converges to 0 then yρk
−−−−−→
k→+∞

x thus

x ∈ (epi gi0) ∩F ,

hence by Lemma D.9 we obtain x ∈ ∂(epi gi0) but this is a contradiction since wi0 ∈ (0 , 1), i.e.,

xi0 <

1 +
∑
j=1

Mi0,jxj

−1

.

Finally, this proves that there must exists some radius ρ > 0 such that for any y ∈ B(x, ρ), if

y ∈
d⋂

i=1
wi∈{0,1}

Hwi,+
i (x),

then y ∈ F . Moreover, using the set S defined earlier, let ε := mini∈S min {wi, 1− wi} > 0. The
quantity ε is positive by definition and using the diffeomorphism Ψ then Ψ([0 , 1]

d ∩B(w, ε
2 )) is an

open subset of F so there exists some radius r > 0, and without loss of generality we may take
r < ρ, such that

B(x, r) ∩F ⊆ Ψ
(
[0 , 1]

d ∩ B
(
w,

ε

2

))
,

so for any y ∈ B(x, r) ∩F , then w′ = (w′
1, . . . , w

′
d) = Ψ−1(y) ∈ B(w, ε

2 ) thus for any i ∈ S,

0 < wi −
ε

2
≤ w′

i ≤ wi +
ε

2
< 1.

hence the point y ∈ F keeps at least the same degrees of freedom than the point x had.

This completes the proof of the lemma.
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E OMITTED PROOFS

E.1 PROOF OF THEOREM 3.2

For completeness, we recall below the problem (P lin
cpt) as defined in the main paper in (5):

(P lin
cpt) : maximize ⟨x | c⟩

over x ∈ K.
(47)

Theorem 3.2 (Maximization of a Linear Form over a Non-empty Compact Sets). There exists an
optimal solution of problem (P lin

cpt) in (47) which is also an extreme point of K, i.e.,

ExtrK ∩X∗ ̸= ∅.

Proof. Let K ⊆ Rd be a non-empty and compact set and f : Rd → R be a linear form. Note that
when d = 0, the space R0 is reduced to the single point {0} and since K ̸= ∅ then K = {0} which
is an extreme point according to Definition 4.1 (the set K does not contain non-trivial segment).
Thus we deduce that argmaxx∈K f(x) = K = {0} for any linear form f and the main claim
follows.

Now, assume d ≥ 1 then, either f is constant, i.e., f is always zero then X∗ = Rd and since
ExtrK ̸= ∅ according to Lemma C.10 we obtain that ExtrK ∩ X∗ = ExtrK ̸= ∅. Other-
wise, when f is a non-zero linear form, as we are in a finite dimensional space the linear form f is
continuous over the compact K so we know that f is bounded and that it reaches its global maxi-
mum M ∈ R somewhere over K. Moreover, since f is non-constant then Hd−1 := f−1(M) is a
hyperplane of Rd and the set K ′ := f−1(M) ∩K is a compact subset of Hd−1 which is (d − 1)-
dimensional subspace of Rk. Hence, up to a (linear) change of coordinates to transform linearly
Hd−1 into Rd−1 (and this preserves the alignments), we can apply Lemma C.10 to the compact
subset K ′ of Hd−1 and this show that ExtrK ′ ̸= ∅. So let p ∈ ExtrK ′ ⊆ K be such an extreme
point, we now show that p is also an extreme point of K. For the sake of contradiction, assume
p /∈ ExtrK so there exists x, y ∈ K such that p ∈ (x , y) hence x ̸= y and there exists some scalar
t ∈ (0 , 1) such that p = tx + (1 − t)y. Moreover, since p ∈ f−1(M) this means that f(p) = M
so f attains its global maximum on K at least at p from where f(p) ≥ f(x) and f(p) ≥ f(y), and
since f is linear

f(p) = tf(x) + (1− t)f(y)
(a)

≤ max {f(x), f(y)}
(b)

≤ f(p), (48)

where (a) follows from both non-negativity of t and inequalities f(p) ≥ f(x) and f(p) ≥ f(y).
Looking at the sequence of inequalities (48) we must have equality everywhere, notably in (a), that
is to say, we must have M = f(p) = f(x) = f(y) since otherwise as t ∈ (0 , 1), if f(x) ̸= f(y) or
max {f(x), f(y)} < f(p) we cannot have equality in (a) for the former and in (b) for the later. This
shows that x, y ∈ f−1(M) ∩K = K ′ thus we would have p ∈ (x , y) in K ′ too which means that
p would not be an extreme point of K ′, but this is a contradiction. Hence p must also be an extreme
point of K thus

ExtrK ∩X∗ = ExtrK ∩
(
f−1(M) ∩K

)
̸= ∅,

and we are done.

E.2 OMITTED PROOFS IN SECTION 3.3

Lemma 3.3 (A Linear-Quadratic System). Let d ∈ N be a positive integer, M ∈ Rd×d a matrix
with non-negative entries and W = (w1, . . . , wd)

⊤ ∈ Rd a d-dimensional column vector with
non-negative entries. Then, the system

Λ + Λ⊙ (MΛ) = W, (49)

has a unique solution Λ = (λ1, . . . , λd)
⊤ ∈ Rd with non-negative entries and for any i ∈ [d] we

have λi = 0 if, and only if wi = 0.
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Proof. First, we prove the existence of a solution for the system (49). Notice that Λ ∈ Rd
+ is solution

to our linear quadratic system (49) if and only if

∀i ∈ [d], λi =
wi

1 + (MΛ)i
, (50)

which can be written as follows:
GW (Λ) = Λ, (51)

i.e., Λ is a fixed point of GW , where GW : Rd
+ → Rd

+ is defined by GW (Λ)i :=
wi

1+(MΛ)i
. Since

we search for solutions Λ ∈ Rd
+ (i.e., with non-negative entries), and M has non-negative entries,

we have from Equation (50) that if Λ is a solution of the system, then necessarily λi ≤ wi for all
i ∈ [d]. Hence if Λ ∈ Rd

+ is solution of (49), then Λ ∈ K := [0, w1] × · · · × [0, wd]. Besides,
GW has only values in this set K = [0, w1]× · · · × [0, wd]. Since GW : K → K is continuous and
K = [0, w1]× · · · × [0, wd] is a non-empty compact convex subset of Rd, then the Brouwer’s fixed
point theorem 19 gives the existence of a fixed point of GW , and hence the existence of a solution to
(49).

Now, to prove the uniqueness of the solution on Rd
+, we will prove that the function h : Rd

+ → Rd

by:
h : x 7→ (hi(x) := xi (1 + (Mx)i))i∈[d]

, (52)

is injective on Rd
+. This implies the uniqueness of the solution, since Λ ∈ Rd

+ is solution of (49) if
and only if h(Λ) = W .

h is a differentiable map from the closed rectangular region20 Rd
+ to Rd, and its Jacobian is given

by:

∇h(x)i,j =
∂hi

∂xj
(x) =

Mi,jxi, if j ̸= i

1 + 2Mi,ixi +
∑
k ̸=i

Mi,kxk, if j = i , (53)

for all i, j ∈ [d] and x ∈ Rd
+.

Let x ∈ Rd
+. We have for all i ∈ [d]:

∇h(x)i,i = 1 + 2Mi,ixi +
∑
k ̸=i

Mi,kxk > 0, (54)

so∇h(x) has positive diagonal entries. We will use Lemma C.19 to prove that∇h(x) is a P -matrix.
To do so, we need to construct positive numbers a1, . . . , ad > 0 such that for all i ∈ [d]:

ai |∇h(x)i,i| >
d∑

j=1
j ̸=i

aj |∇h(x)i,j | , (55)

which is equivalent, since x and M have non-negative coefficients, to:

ai

1 + 2Mi,ixi +
∑
j ̸=i

Mi,jxj

 >
∑
j ̸=i

Mi,jajxi,

that is
gix(a) := ai + 2Mi,ixiai +

∑
j ̸=i

Mi,j (aixj − ajxi) > 0, (56)

where a denotes the vector (a1, . . . , ad)⊤.

We prove that there exists ε > 0 such that the choice aεi := xi + ε > 0 satisfies the condition (56).
With this choice, we have:

gix(a
ε) = (xi + ε)(1 + 2Mi,ixi) +

∑
j ̸=i

Mi,j [(xi + ε)xj − (xj + ε)xi]

= (xi + ε)(1 + 2Mi,ixi) + ε

∑
j ̸=i

Mi,j(xj − xi)

 . (57)

19See Ben-El-Mechaieh & Mechaiekh (2022) for an elementary proof.
20A definition can be found in Appendix C.5.
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If xi = 0, we have

gix(a
ε) = ε

1 + 2Mi,ixi +
∑
j ̸=i

Mi,jxj

 > 0,

for any ε > 0. Otherwise, xi > 0 and we have

gix(a
ε) = (xi + ε)(1 + 2Mi,ixi) + ε

∑
j ̸=i

Mi,j(xj − xi)

 −−−→
ε→0

xi(1 + 2Mi,ixi) > 0, (58)

since this limit is positive, there exists some εi > 0 such that for any 0 < ε < εi, gix(a
ε) > 0.

Define ε0 := min {1,min {εi : i such that xi > 0}}. Hence, the vector aε0 satisfies gix(a
ε0) > 0

for all i ∈ [d]. In other words, ∇h(x) is positive dominant diagonal and hence it is a P -matrix
by Lemma C.19. Since this holds for every x ∈ Rd

+, Theorem C.20 gives that h is an injective map,
which implies the uniqueness of the solution to (49). This concludes our proof.

On Some Counter-examples when M has Negative Entries: in the following two remarks, we
provide counter-examples to the existence and uniqueness of solutions to (49) when the matrix M
has negative entries.
Remark E.1. The assumption on the non-negativity of the entries of the matrix M in Lemma 3.3
cannot be relaxed, i.e., we cannot simply assume M to be matrix in Rd×d. A simple counter-example
can be constructed even when d = 2. For instance, consider the matrix M and the vector w given
by

M =

(
0 −1
0 0

)
, w =

(
1
1

)
, (59)

in which case the system Λ + Λ⊙ (MΛ) = w can be written as(
λ1

λ2

)
+

(
λ1

λ2

)
⊙
(
−λ2

0

)
=

(
1
1

)
, (60)

which is equivalent to {
λ1 − λ1λ2 = 1

λ2 = 1
, (61)

but the system (61) clearly does not admit any solution since the first equation reduces to 0 = 1,
which is absurd.
Remark E.2. We can also construct another counter-example to the uniqueness of the solutions to
the system in Rd

+ when we authorize the matrix M to have negative entries, even with d = 2. For
that, consider the matrix M and the vector w given by

M =

(
−1 1
0 0

)
, w =

(
2
2

)
, (62)

in which case, the system is equivalent to:{
λ1(1− λ1 + λ2) = 2

λ2 = 1
, (63)

and the first equation becomes λ2
1 − 3λ1 + 2 = 0 which has two solutions, namely 1 and 2, hence

the system two solutions in Rd
+:

Λ∗
1 =

(
1
2

)
and Λ∗

2 =

(
2
2

)
. (64)

Lemma 3.4 (Regularity of the Solution of (6)). Let d ∈ N be a positive integer and M ∈ Rd×d a
matrix with non-negative entries. For any d-dimensional column vector w = (w1, . . . , wd)

⊤ ∈ Rd

with non-negative entries, let Λ(w) = (λ
(w)
1 , . . . , λ

(w)
d )

⊤
be the unique solution of the equation

Λ + Λ⊙ (MΛ) = w, (65)
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then, the map Ψ: [0 , 1]
d → F defined for w ∈ [0 , 1]

d by

Ψ(w) := Λ(w) =
(
λ
(w)
1 , . . . , λ

(w)
d

)⊤

,

where
F :=

{
Λ ∈ [0 , 1]

d
: 0 ≤ Λ + Λ⊙ (MΛ) ≤ 1

}
, (66)

is a C∞–diffeomorphism.

Proof of Lemma 3.4. Note that the set F corresponds to all feasible points, that is, all points Λ =

(λ1, . . . , λd) ∈ [0 , 1]
d such that the inequalities

0 ≤ λk

1 +

d∑
j=k+1

Mk,jλj

 ≤ 1, (67)

hold for any k ∈ [d]. Hence, by Lemma 3.3 uniqueness of the solution Λ(w) for provided weights
w ∈ [0 , 1]

d implies that the map Ψ: [0 , 1]
d → F is bijective.

We consider the function F : Rd × Rd → Rd defined by:

F : (w,Λ) 7→ Λ + Λ⊙ (MΛ)−w. (68)

F is clearly C∞ on Rd (all its components are polynomial in the entries). Now, consider an arbitrary
w0 ∈ [0 , 1]

d, and let Λ(w0) be the unique solution to the system for that w0. We consider the point
(w0,Λ

(w0)) ∈ Rd × Rd. We have:

∇ΛF (w0,Λ
(w0)) = ∇h(Λ(w0)), (69)

where h is defined as in the proof of Lemma 3.3. We already proved that for every x ∈ Rd
+,∇h(x) is

a P -matrix and hence it is invertible. Using the implicit function theorem (Theorem 11.4 in Loomis
& Sternberg (2014)), there exists an open set U ⊂ Rd containing w0 such that there exists a unique
function g : U → Rd in C∞(Rd,Rd) such that g(w0) = Λ(w0) and F (w, g(w)) = 0, for all
w ∈ Rd. Note that F (w, g(w)) = 0 if and only if

g(w) + g(w)⊙ (Mg(w)) = w, (70)

that is, if and only if g(w) is a solution of the system (65). By the uniqueness of the solution to the
system for w ∈ [0 , 1]

d, we have Ψ = g on U ∩ [0 , 1]
d. Since g is C∞ on U ∩ [0 , 1]

d, then Ψ is C∞
on this intersection, and given that w0 ∈ U ∩ [0 , 1]

d, we conclude that Ψ is C∞ in w0.

It only remains to prove that Ψ−1 is C∞ on F , but given that Ψ−1 = h (which was defined previ-
ously) and h has all its components polynomial in the entries, it follows that it (and thus Ψ−1) is C∞
on F . This concludes the proof.

E.3 OMITTED PROOFS OF SECTION 4.1

Theorem 4.3 (Extreme points of F in the Relaxed Sense). For the feasible region F of problem
(Pd), we have

ExtrR F =
{
Ψ(w) : w ∈ {0, 1}d

}
, (71)

that is, the extreme points of F (in the relaxed sense) are exactly the vertices of the hypercube [0 , 1]d

mapped by the diffeomorphism Ψ.

Proof of Theorem 4.3. In order to prove the above Theorem 4.4, we first prove the next two lemmas.

Lemma E.3. Given the feasible region F , we have the inclusion{
Ψ(w) : w ∈ {0, 1}d

}
⊆ ExtrR F . (72)
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Proof of Lemma E.3. Let w = (w1, . . . , wd) ∈ {0, 1}d be a vertex of the hypercube [0 , 1]
d, and

assume, to reach a contradiction, that Ψ(w) ∈ F is not an extreme point (in the relaxed sense), i.e.,
Ψ(w) /∈ ExtrR F . Then there exists x and y in F such that x ̸= y, [x, y] ⊂ F and p := Ψ(w) ∈
(x, y), i.e., there exists 0 < θ < 1 such that p = θx + (1 − θ)y. Setting d := x − y ̸= 0, we have
p± td ∈ F for every t ∈ [0, ε0], for some ε0 > 0.

We define the following sets of indices:

S := {i ∈ [d] : wi = 1} , (73)
Z := {i ∈ [d] : wi = 0} = [d] \ S. (74)

By definition of Ψ, we have for all i ∈ [d]:

pi (1 + (Mp)i) = wi, (75)

hence {
pi = 0 ∀i ∈ Z

pi (1 + (Mp)i)) = 1 ∀i ∈ S
. (76)

Since p± td ∈ F for every t ∈ [0, ε0], then for all i ∈ [d] we have pi ± tdi ≥ 0. In particular:

∀i ∈ Z,∀t ∈ [0, ε0], ±tdi ≥ 0, (77)

this yields di = 0 for every i ∈ [d].

Now, let i ∈ S. Using the same notation from the proof of Lemma 3.3 we have by definition of F :

∀t ∈ [0, ε0], hi(p± td) ≤ 1. (78)

Since hi is C1 on Rd, the First-order Taylor expansion yields (since hi(p) = 1):

∀t ∈ [0, ε0], 1± t∇hi(p) · d+ o(t) ≤ 1, (79)

i.e., ∀t ∈ [0, ε0], ±∇hi(p) · d+ o(t) ≤ 0. Hence∇hi(p) · d = 0. Since for all i ∈ Z, di = 0, we
have ∇hi(p) · d = [∇hi(p)]S · dS . This can be rewritten as follows:

ASdS = 0 where AS := [∇h(p)i,j ]i,j∈S . (80)

Since ∇h(p) is a P -matrix, AS is a P -matrix (every principal sub-matrix of a P -matrix is also
a P -matrix), hence it is invertible. This gives dS = 0. Together with dZ = 0 we have d = 0,
contradicting x ̸= y. Therefore no such distinct x, y exist, and by definition p is an extreme point of
F in the relaxed sense.

The next lemma proves the second inclusion.

Lemma E.4. Given the feasible region F , for any w ∈ [0 , 1]
d\{0, 1}d we have Ψ(w) /∈ ExtrR F .

Proof. Let w = (w1, . . . , wd) ∈ [0 , 1]
d \ {0, 1}d be a non-vertex point of the hypercube [0 , 1]

d,
and let Λ := Ψ(w) be the image of w by the map Ψ. Denote by A the set of indices corresponding
to the active constraints for Λ, i.e.,

A := {k ∈ [d] : λk = 0}︸ ︷︷ ︸
:=A1

∪{k ∈ [d] : λk(1 + (MΛ)k) = 1}︸ ︷︷ ︸
:=A2

. (81)

Define the following functions:

fk(x) :=

{
ϕ1
k(x) := −xk, if k ∈ A1

ϕ2
k(x) := xk(1 + (Mx)k)− 1, if k ∈ A2

, (82)

for every k ∈ A (with ϕ1
k and ϕ2

k are defined in a similar way for every k ∈ [d]), in such a way that
the feasible region F can be re-written as follows:

F =
{
x ∈ Rd : ϕ1

k(x) ≤ 0, ϕ2
k(x) ≤ 0 for all k ∈ [d]

}
. (83)
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The functions (fk)k∈A are differentiable and we have:

∇fk(x) :=
{−ek, if k ∈ A1

(1 + (Mx)k)ek + λkMk,· if k ∈ A2
, (84)

where (ek)k∈[d] denotes the canonical basis of the Rd, i.e., ek is the vector with the k-th entry equals
1 and all other entries equal 0, and Mk,· denotes the column vector of Rd whose i-th entry is Mk,i.
Notice that since w /∈ {0, 1}d, then there exists at least one index i0 ∈ [d] such that i0 /∈ A. Hence
the vector space E := Span

(
{∇fk(Λ)}k∈A

)
has dimension less or equal than d − 1, then there

exists a non-zero vector v ̸= 0 in the orthogonal complement of the to this subspace, i.e., v ∈ E.

We prove that for sufficiently small t, Λ± tv ∈ F . Let k ∈ A1. We have:

ϕ1
k(Λ± tv) = −(λk ± tvk), (85)

and since v ∈ E, we have ∇fk(Λ) · v = 0, which yields vk = 0 using (84), and since k ∈ A1 we
have λk = 0. This gives: ϕ1

k(Λ± tv) = 0, in particular:

∀t > 0, ϕ1
k(Λ± tv) ≤ 0. (86)

Besides, since ϕ2
k(Λ) = −1 < 0 and the map ϕ2

k is continuous on Rd, there exists εk1 > 0 such that:

∀t ∈ (0, εk1), ϕ2
k(Λ± tv) ≤ 0. (87)

Now, fix k ∈ A2. We have:

ϕ2
k(Λ± tv) = (λk ± tvk)(1 + (MΛ)k ± t(Mv)k)− 1. (88)

Since this is a polynomial function of degree at most 2, we can identify the first two coefficients
using Taylor’s theorem as follows:

ϕ2
k(Λ± tv) = fk(Λ)± t∇fk(Λ) · v + t2vk(Mv)k. (89)

We have fk(Λ) = 0 and by construction of the vector v, ∇fk(Λ) · v = 0. Hence, ϕ2
k(Λ ± tv) =

t2vk(Mv)k. Using again (84), the condition∇fk(Λ) · v = 0 becomes:

(1 + (MΛ)k)vk + λk(Mv)k = 0, (90)

and since k ∈ A2, λk > 0 and 1 + (MΛ)k > 0, hence:

vk(Mv)k = − λk

1 + (MΛ)k
(Mv)2k ≤ 0. (91)

Also, since ϕ1
k(Λ) < 0 and the map ϕ1

k is continuous on Rd, there exists εk2 > 0 such that:

∀t ∈ (0, εk2), ϕ1
k(Λ± tv) ≤ 0. (92)

And finally, consider an index k ∈ [d] \ A. By definition of A, ϕ1
k(Λ) < 0 and ϕ2

k(Λ) < 0, so by
the continuity of ϕ1

k and ϕ2
k, there exists εk3 > 0 such that:

∀t ∈ (0, εk3), ϕ1
k(Λ) ≤ 0 and ϕ2

k(Λ) ≤ 0. (93)

Combining all the previous results we have:

∀t ∈ (0, ε), ϕ1
k(Λ) ≤ 0 and ϕ2

k(Λ) ≤ 0, (94)

where

ε := min

(
min
k∈A1

εk1 , min
k∈A2

εk2 , min
k∈[d]\A

εk3

)
> 0.

Using Equation (83), this implies:

∀t ∈ (0, ε), Λ± tv ∈ F . (95)

Writing Λ = (Λ+ε/2v)+(Λ−ε/2v)
2 , we conclude that Λ /∈ ExtrR F . This achieves the proof.
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E.4 OMITTED PROOFS IN SECTION 4.2

We start with a first lemma to show that the global maximizers of problem (Pd) from (37) cannot
be in the interior region of F .
Lemma E.5 (Sub-optimality in the interior region RF of F ). For any point p ∈ RF , there exists
q ∈ RF such that

⟨p | a⟩ < ⟨q | a⟩ ,
that is, the global maximizers of problem (Pd) do not lie in the interior region RF of F .

Proof of Lemma E.5. Let p ∈ RF be some feasible point in the interior region of F . Recall that
according to Lemma D.7 (property 3), the interior region RF is exactly the (topological) interior of
F , that is, RF = intF . Hence, as p ∈ intF there exists some positive radius r > 0 such that the
open ball B(p, r) ⊆ F 21 is still included in the feasible region. Then, take q = p+ r

2 · a
∥a∥2

so that
∥p− q∥2 < r thus q ∈ F is still a feasible point and moreover

⟨q | a⟩ =
〈
p+

r

2∥a∥2
a | a

〉
= ⟨p | a⟩+ r∥a∥2

2︸ ︷︷ ︸
>0

> ⟨p | a⟩ ,

as desired since r > 0 and ∥a∥2 > 0. Thus, the point p cannot be a global maximizer of problem
(Pd). This achieves the proof of this lemma.

Now we give the proof of the main result.
Theorem 4.6 (Global Maximizers of Problem (Pd)). The set X∗ of the global maximizers of prob-
lem (Pd) as defined in (1) satisfies

X∗ ⊆
{
Ψ(w) : w ∈ {0, 1}d

}
, (96)

that is, the global maximizers of (Pd) must be some points p of the feasible region F which are
mapped (through the bijection Ψ−1) to the vertices of the unit hypercube [0 , 1]

d.

So as to give a high-level overview of the proof, we start by a brief proof sketch.

Proof (Sketch). The proof of (96) is the culmination of several intermediate technical results (Lem-
mas D.10 to D.12) combined with previous results on the geometry of the feasible regions (Defini-
tions D.4, D.5 and D.8 and Lemmas D.6 and D.7) and is based on an induction on “the number of
tight constraints” in problem (1).

The proofs starts by Lemma E.5 showing that any points p ∈ RF , the interior region of F (see Def-
inition D.5) is necessarily sub-optimal. This establishes the base case. Then, for the inductive step,
starting at some point p ∈ F with at least one degree of freedom (see Definition D.8), we show
thanks to Lemma D.12 that there exists some point p′ ∈ F having at least one more degree of
freedom than p and such that, either

• p′ has the same objective value as p, i.e., ⟨a | p⟩ = ⟨a | p′⟩,
• or we have ⟨a | p⟩ < ⟨a | p′⟩ establishing the sub-optimality of p regarding the objective

value.

In the former case, we can apply the inductive hypothesis to conclude. Overall, our proof strategy
can be summarized as follows: given p ∈ F with at least one degree of freedom, we construct a
sequence p = p0, . . . , pℓ of feasible points such that

⟨a | p0⟩ = · · · = ⟨a | pℓ−1⟩ < ⟨a | pℓ⟩ .
We provide below a picture (Figure 4) explaining the construction of this sequence. This construc-
tion is permitted thanks to the technical lemma Lemma D.12. Given a point p ∈ F with at least

21The distance used here is the standard euclidean distance, induced by the 2-norm which we denote by
∥ · ∥2.
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one degree of freedom (e.g., being in the middle of one of the curved edges of F as in Figure 4),
we can find a closed ball B(p, ρ) with ρ > 0 such that its intersection with the intersection of all
closed halfspaces associated to each of the tight constraints and “directed towards the region F ” is
non-empty and included in the feasible set.

0 1

0

1

λ1

λ2

F

ap

B(p, ρ)

H1,+
k (p)

Small direction
of improvement

Figure 4: The technical result: Lemma D.12.

Moreover, if we consider the affine hyperplane induced by the objective function which goes through
point p, i.e.,

H :=
{
x ∈ Rd : ⟨a | x⟩ = ⟨a | p⟩

}
,

then to prove the sub-optimality of p, it remains to find some direction v ∈ Rd such that (p+v) ∈ F
while ⟨a | v⟩ > 0. This can be done thanks to Lemmas D.2 and D.11. For instance, a quick
inspection of Figure 4 shows that following the red segment inside the ball B(p, ρ) is enough to
prove the sub-optimality of p.

Proof of Theorem 4.6. Let X∗ be the set of the global maximizers of problem (Pd) and let v∗ be
the optimal value of this problem. To show the above theorem, we proceed by strong backward
induction on the number of degree of freedom of the components of F . More precisely, we show
that the hypothesis (Hk) : “for all I ∈ {−1, 0, 1}d with |deg(I)| = k then CI ∩ X∗ = ∅, i.e.,
for any p ∈ CI , we have ⟨p | a⟩ < v∗ (so that p is a sub-optimal feasible point)” holds for all
k ∈ [d] = {1, 2, . . . , d}.
For the base case k = d, we know that there is a unique component of F which has exactly d degrees
of freedom and this component is the interior region RF of F for which I = (−1, . . . ,−1) ∈ Rd.
Moreover, using Lemma E.5 we know that any point p ∈ RF there exists another feasible point
q ∈ RF such that ⟨p | a⟩ < ⟨q | a⟩ and since q is feasible we obtain ⟨q | a⟩ ≤ v∗ so

⟨p | a⟩ < v∗, (97)

which means the point p is sub-optimal. As inequality (97) holds for any feasible point p in the in-
terior region C(−1,...,−1) of F , we deduce that the hypothesis (Hd) holds for the unique component
of degree d of F .

Now, assume the hypothesis (Hℓ) holds for all ℓ ∈ [k + 1 .. d], that is, for any such integer ℓ and any
I ∈ {−1, 0, 1}d of degree ℓ, the component CI only contains sub-optimal points. For the inductive
step, let I = (i1, . . . , id) ∈ {−1, 0, 1}d be a constraint index such that |deg(I)| = k, we define

Ifree := {ℓ ∈ [d] : iℓ = −1} ,
and

J := {j ∈ [d] : ij ̸= −1} = [d] \ Ifree.
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Then let p ∈ CI , since this point has at least one degree of freedom, we can apply Lemma D.12 thus,
there exists some positive radius ρ > 0 such that for any point y ∈ B(p, ρ), if

y ∈
d⋂

ℓ=1
iℓ∈{0,1}

Hiℓ,+
ℓ (p),

then y ∈ F and moreover, y has at least the same degrees of freedom p has. In particular, this
implies that the intersection of the affine supporting hyperplanes Hiℓ,+

ℓ (p) for all ℓ ∈ J , which is
non-empty as it contains p satisfies

B(p, ρ) ∩
(⋂

ℓ∈J

Hiℓ
ℓ (p)

)
⊆ F .

Moreover, by Lemma D.10 if we denote

A :=
⋂
ℓ∈J

Hiℓ
ℓ (p),

this affine subspace of Rd then p ∈ A and dimA ≥ d − |J | = |deg(I)|. Hence, we can extract
from A another affine subspace, say B, whose dimension is exactly |deg(I)|. Additionally, since
p ∈ B and p is the center of the non-empty open ball B(p, ρ) then let C := B ∩ B(p, ρ) ⊆ F
be the intersection between this affine subspace and the open ball. Notice that up to a invertible
linear transformation (i.e., change of basis) C is a open disk of dimension |deg(I)|22. Besides, let
us consider the affine hyperplane H⊥

a (p) orthogonal to the vector a which goes through point p, that
is,

H⊥
a (p) :=

{
x ∈ Rd : ⟨x | a⟩ = ⟨p | a⟩

}
.

Note that the points x ∈ H⊥
a (p) ∩F are all feasible and all have the same objective value than p

(which is ⟨p | a⟩). Now, we distinguish two cases:

• if the affine subspace B is not included in H⊥
a (p) this means that we can find some non-zero

vector v ∈ (B − p) such that the line (ℓ) : p+ tv for t ∈ R only intersects H⊥
a (p) at point

p, that is, ⟨v | a⟩ ≠ 0. Hence, since C ∩ (ℓ) = (ℓ) ∩ B(p, ρ) is a diameter of the open ball
B(p, ρ) then there exists some ε > 0 such that the closed segment [p−εv , p+εv] ⊆ C ∩(ℓ)
hence, without loss of generality, we may assume ⟨v | a⟩ > 0 thus, since p + εv is both
included in B(p, ρ) and in the affine subspace B so it is a feasible point and its objective
value is

⟨p+ εv | a⟩ = ⟨p | a⟩+ ε ⟨v | a⟩ > ⟨p | a⟩ ,
which implies that the point p is sub-optimal.

• Otherwise, if the affine subspace B is totally included in H⊥
a (p) then it is also the case for

C and again, we distinguish two cases

– if there exists some point y ∈ C such that y /∈ ⋂
j∈J

∂(epi g
ij
j ) then, if we denote

by I ′ = (i′1, . . . , i
′
d) the constraint index of y, we know by Lemma D.12 and since

y ∈ B(p, ρ) ∩ F that y has at least the same degrees of freedom that p so

Ifree ⊆ I ′free :=
{
j ∈ [d] : i′j = −1

}
,

and, if we have Ifree = I ′free then we would have J ′ :=
{
j ∈ [d] : i′j ∈ {0, 1}

}
= J

hence by Lemma D.7 (property 4)

y ∈
⋂
j∈J

∂(epi g
ij
j ),

which is not possible. Thus, necessarily, the point y must have at least one more
degree of freedom than p, i.e., |deg(I ′)| > |deg(I)|. Next, as y and p belong to the

22For examples, if |deg(I)| = 1 then C would be a diameter of B(p, ρ), if |deg(I)| = 2 then C would be a
2-dimensional (open) disk included in B(p, ρ) and so on...
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same affine hyperplane H⊥
a (p) we have ⟨y | a⟩ = ⟨p | a⟩ and, using the induction

hypothesis we conclude that

⟨p | a⟩ = ⟨y | a⟩ < v∗,

so p is again, sub-optimal.
– Otherwise, assume the intersection of B with the open ball B(p, ρ) is included in⋂

j∈J

∂(epi g
ij
i ). Then we first show that the affine subspace B satisfies

B ⊆
⋂
j∈J

∂(epi g
ij
j ).

To do so, for any vector v ∈ (B − p) there exists some ε > 0 such that the point
(p + εv) ∈ C = B(p, ρ) ∩ B and due to the symmetry of the open ball we deduce
that we also have (p − εv) ∈ C . Hence the segment [p − εv , p + εv] is included in
B(p, ρ)∩B (it is a portion of a diameter of B(p, ρ)) so it is included in every ∂(epi g

ij
j )

for j ∈ J by assumption thus, according to Lemma D.2 (property 2, “converse” part)
we deduce that the whole line (ℓv) : p + tv, t ∈ R is included in every hypersurface
∂(epi g

ij
j ) for j ∈ J and because this holds for all vector v ∈ (B − p), we obtain the

desired inclusion, B ⊆ ⋂
j∈J

∂(epi g
ij
j ).

From here, we now use Lemma D.11 since J = {j ∈ [d] : ij ∈ {0, 1}} and dimB =
|deg(I)| = |Ifree|. Hence, we obtain that B = p + VectR ((ei)i∈Ifree) and Ifree ̸= ∅
but, as we assume in this case and the previous one that we have B ⊆ H⊥

a (p) then
H⊥

a (p) − p contains the basis vector (ei)i∈Ifree so by definition we obtain for any
i ∈ Ifree

⟨ei | a⟩ = ai = 0,

which is absurd since all the coordinates of the vector a are non-zero (see for instance
the definition of the optimization problem (Pd) in (1)). Therefore, we conclude that
this case is not possible hence, the intersection of B with the open ball B(p, ρ), that
is the open disk C , cannot be fully included in

⋂
j∈J

∂(epi g
ij
j ). Thus only the previous

case can happen and we have showed that the point p was sub-optimal.

Thus in all the cases, when some point p ∈ F belongs to a component of the feasible region with
exactly k degrees of freedom, we have shown that it is always sub-optimal. Hence, the hypothesis
(Hk) holds and by strong backward induction, we conclude that the hypothesis (Hk) holds for all
integer k ∈ [1 .. d]. Thus, all points p ∈ F having one or more degree of freedom are sub-optimal
which shows that the set of the global maximizers X∗ of problem (Pd) must be included in the set
of feasible points which have no degree of freedom, that is to say,

X∗ ⊆
{
EI : I ∈ {0, 1}d

}
.

This achieves the proof of the theorem.

E.5 OMITTED PROOFS IN APPENDIX I

Lemma I.1. For any positive integer d ≥ 2, there exists a strictly upper triangular Rd×d matrix M
with non-negative entries and a vector a ∈ Rd

+ such that problem (Pd) admits at least two solutions
in Rd

+.

Proof of Lemma I.1. Fix d ≥ 0. We construct a counter-example to the uniqueness of the global
maximizers to the problem (Pd). For that, we consider the instance of the problem (1) given by the
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matrix M and the vector a defined as follows:

M =


0 · · · 0 1
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

 ∈ Rd×d (98)

and a =


2
1
...
1

 ∈ Rd. (99)

In this case, the problem (Pd) becomes equivalent to:

(Pd) : maximize F (Λ) := 2λ1 + λ2 + · · ·+ λd

subject to


0 ≤ λ1 (1 + λd) ≤ 1

0 ≤ λ2 ≤ 1
...

0 ≤ λd ≤ 1

.
(100)

First, we prove that the optimal value of this problem is d. For that, notice that the first bilinear
constraint implies that λ1 ≤ 1

1+λd
, which implies that for all feasible point Λ ∈ F , we have:

F (Λ) ≤ 2

1 + λd
+ λd + λ2 + · · ·+ λd−1 (101)

≤ 2

1 + λd
+ λd︸ ︷︷ ︸

:= f(λd)

+(d− 2), (102)

where the last inequality follows from the constraints λi ≤ 1 for i ∈ [2 .. d− 1]. Notice that:

f ′(λd) = 1− 2

(1 + λd)2
(103)

f ′′(λd) =
4

(1 + λd)3
≥ 0, (104)

which implies that f is strictly convex on [0 , 1] and hence it can only attain its maximum in one of
the extreme points of the segment [0 , 1]. Since f(0) = f(1) = 2, it follows that f(λd) ≤ 2 and
hence F (Λ) ≤ d. Furthermore, notice that

F (Λ∗
1) = F (Λ∗

2) = d, (105)

where

Λ∗
1 :=


1/2
1
...
1

 and Λ∗
2 :=


1
...
1
0

 ,

are both feasible points of the problem (Pd). Hence both points are global maximizers. This
achieves the proof.

Lemma I.2. For any 2 × 2 strictly upper triangular matrix M with non-negative entries, if a =
(1, 1)

⊤ then the problem (P2) admits a unique global maximizer.

Proof of Lemma I.2. Let M be a 2 × 2 strictly upper triangular matrix with non-negative entries,
then there exists some real number m ≥ 0 such that

M =

(
0 m
0 0

)
. (106)
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In this case where a = (1, 1)
⊤, the problem (P2) can be written as:

(P2) : maximize F (Λ) := λ1 + λ2

subject to
{
0 ≤ λ1 (1 +mλ2) ≤ 1

0 ≤ λ2 ≤ 1
.

(107)

In the case where m = 0, it is clear that the problem (P2) admits one unique global maximizer,
which is given by (λ1, λ2) = (1, 1). Now suppose that m > 0.

It follows from the first bilinear constraint that for all Λ in the feasible region F , we have:

F (Λ) ≤ f(λ2) := λ2 +
1

1 +mλ2
. (108)

We compute the two first derivatives of f :

f ′(λ2) = 1− m

(1 +mλ2)2
(109)

f ′′(λ2) =
m2

(1 +mλ2)3
. (110)

Since f ′′(λ2) > 0 for every λ2 ∈ [0 , 1], it follows that f is a strictly convex function on [0 , 1] and
hence it can only achieve its maximum in the extreme points of the interval [0 , 1], i.e., 0 and 1. We
have:

f(0) = 1, f(1) = 1 +
1

1 +m
. (111)

Since f(0) < f(1), the function f admits a unique maximizer given by λ2 = 1.

Now, notice that ( 1
1+m , 1) is a feasible point and

F

((
1

1 +m
, 1

))
= 1 +

1

1 +m
. (112)

Besides, if Λ is a feasible point such that λ2 < 1
1+m , then F (Λ) ≤ f(λ2) < 1 + 1

1+m , so Λ is
not a maximizer of (P2). And if Λ is a feasible point such that λ1 < 1 and λ2 = 1

1+m , then
F (Λ) < 1 + 1

1+m .

Hence, the only global maximizer of (P2) is ( 1
1+m , 1).

Now, we prove the correctness of the claim made in Appendix I, that is to say, the instance of (P3)
given by:

M =

(
0 2 0
0 0 1
0 0 0

)
and a =

(
1
1
1

)
(113)

has the following two maximizers:

Λ∗
1 =

(
1
0
1

)
and Λ∗

2 =

(
1/2
1/2
1

)
. (114)

In this case, the problem (P3) becomes equivalent to:

(P3) : maximize F (Λ) := λ1 + λ2 + λ3

subject to


0 ≤ λ1 (1 + 2λ2) ≤ 1

0 ≤ λ2 (1 + λ3) ≤ 1

0 ≤ λ3 ≤ 1

.
(115)
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From the first bilinear constraint, it follows that for all feasible Λ ∈ F , λ1 ≤ 1
1+2λ2

. Hence, for all
Λ ∈ F ,

F (Λ) ≤ 1

1 + 2λ2
+ λ2︸ ︷︷ ︸

:=g(λ2)

+λ3. (116)

We have:

g′(λ2) = 1− 2

(1 + 2λ2)2
(117)

g′′(λ2) =
8

(1 + 2λ3)3
≥ 0, (118)

hence g is strictly convex on [0, 1
1+λ3

], so it can attain its maximum only in an extreme point of
[0, 1

1+λ3
]. We have:

g(0) = 1, g

(
1

1 + λ3

)
=

1

1 + 2
1+λ3

+
1

1 + λ3
(119)

=
1 + λ3

3 + λ3
+

1

1 + λ3
(120)

= 1− 2

3 + λ3
+

1

1 + λ3
. (121)

Hence

g(0) + λ3 = 1 + λ3 ≤ 2 (122)
(123)

and

g

(
1

1 + λ3

)
+ λ3 = 1− 2

3 + λ3
+

1

1 + λ3
+ λ3︸ ︷︷ ︸

:=h(λ3)

. (124)

We have:

h′(λ3) =
2

(3 + λ3)2
− 1

(1 + λ3)2
+ 1 (125)

h′′(λ3) = −
4

(3 + λ3)3
+

2

(1 + λ3)3
. (126)

We have for all λ3 ∈ [0 , 1],

2

(1 + λ3)3
≥ 4

(3 + λ3)3
(127)

⇐⇒ (3 + λ3)
3 ≥ 2(1 + λ3)

3 (128)

⇐⇒
(
3 + λ3

1 + λ3

)3

≥ 2 (129)

⇐⇒
(
1 +

2

1 + λ3

)3

≥ 2, (130)

which clearly holds since for all λ3, 1 + 2
1+λ3

≥ 2, so
(
1 + 2

1+λ3

)3
≥ 8 ≥ 2. This implies that h

is strictly convex on [0 , 1], and given that h(0) = 1
3 and h(1) = 2, it follows that:

g

(
1

1 + λ3

)
+ λ3 ≤ 2. (131)
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Thus, for all feasible Λ ∈ F , we have F (Λ) ≤ 2. Furthermore, it is clear that Λ∗
1 and Λ∗

2 defined
by:

Λ∗
1 :=

(
1
0
1

)
and Λ∗

2 :=

(
1/2
1/2
1

)
(132)

are both feasible points of (P3) and are such that:
F (Λ∗

1) = F (Λ∗
2) = 2, (133)

hence 2 is the maximal value of (P3) and both Λ∗
1 and Λ∗

2 are global maximizers. This concludes
the proof of the claim.
Theorem I.3 (A Sufficient Condition for Uniqueness). For any positive integer d, if the matrix M
is strictly upper triangular with non-negative entries and satisfies, for all k ∈ [d]

d∑
i=1
i<k

Mi,k < 1, (134)

then with the vector a = (1, . . . , 1)
⊤ ∈ Rd the problem (Pd) admits a unique global maximizer.

Proof. When a has only one entries, the objective function to maximize is F (Λ) :=
∑d

i=1 λi.

We start by stating and proving the next lemma that an optimal solution has necessarily tight in-
equalities from the right side for all the bilinear constraints.

Lemma E.6. Let Λ be any feasible solution to (Pd) such that λk(1 + (MΛ)k) < 1 for some
k ∈ [d], then, under the assumptions of Theorem I.3, there exists another feasible point Λ̃ such that
F (Λ̃) > F (Λ), i.e., Λ cannot be a global maximizer of the problem (Pd).

Proof. Fix a feasible Λ and an index k ∈ [d] such that λk(1 + (MΛ)k) < 1, i.e.,

λk <
1

1 +
∑
j>k

Mj,kλk
, (135)

and set:

ε := min

 1

1 +
∑
j>k

Mk,jλj
− λk,

1

2

(
1 +

∑
i<k

Mi,k

)
 . (136)

By assumption we have ε > 0. We construct the new point Λ̃ as follows:

λ̃i :=


λi

1+Mi,kε
, if i < k

λk + ε, if i = k

λi, if i > k

. (137)

First, we prove that Λ̃ is also a feasible solution to (Pd). It is clear that λ̃i ≥ 0 for every i ∈ [d]
(because Λ is a feasible point and ε > 0). The (bilinear) constraints corresponding to indices i with
i > k are clearly satisfied by the new point since λ̃i = λi for any j > i. For the k-th constraint, we
have:

hk(Λ̃) := λ̃k

1 +
∑
j>k

Mk,j λ̃j

 (138)

= (λk + ε)

1 +
∑
j>k

Mk,jλj

 (139)

≤ 1

1 +
∑
j>k

Mk,jλj

1 +
∑
j>k

Mk,jλj

 (140)

= 1, (141)
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where the inequality follows from the definition of ε as a minimum, yielding

ε ≤ 1

1 +
∑
j>k

Mk,jλj
− λk.

Besides, since Λ is a feasible point, λi ≥ 0 for every i ∈ [d], which implies that hk(Λ̃) ≥ 0, hence
Λ̃ satisfies the k-th constraint.

Now fix i < k. We have:
1 +

∑
j>i

Mi,j λ̃j = 1 +Mi,kλ̃k +
∑

j>i,j ̸=k

Mi,j λ̃j (142)

= 1 +
∑
j>i

Mi,jλj︸ ︷︷ ︸
:=Si≥1

+Mi,kε+
∑

i<j<k

Mi,j

(
λj

1 +Mj,kε
− λj

)
(143)

= Si +Mi,kε−
∑

i<j<k

Mi,jλjMj,kε

1 +Mj,kε
(144)

≤ Si +Mi,kε, (145)
where the last inequality follows from the non-positivity of the last term in (144). Now multiply by
λ̃i = λi/(1 +Mi,kε) (which is non-negative):

hi(Λ̃) = λ̃i

1 +
∑
j>i

Mi,j λ̃j

 (146)

≤ λi(Si +Mi,kε)

1 +Mi,kε
(147)

≤ λiSi (148)
≤ 1, (149)

where the second inequality holds because Si ≥ 0, and the last inequality follows from the feasibility
of Λ. Hence the point Λ̃ verifies the i-th bilinear constraint. We conclude that Λ̃ is a feasible solution
to (Pd).

Finally, we prove that Λ̃ has a (strictly) greater objective value than Λ, i.e.,

F (Λ̃)− F (Λ) =
∑
i∈[d]

(λ̃i − λi) > 0.

The gain at coordinate k is:

λ̃k − λk = ε. (150)
The maximum loss we can get at coordinate i with i < k is:

λi − λ̃i = λi

(
1− 1

1 +Mi,kε

)
(151)

=
λiMi,kε

1 +Mi,kε
(152)

≤ λiMi,kε. (153)
We sum the losses over i < k:∑

i<k

(λi − λ̃i) ≤ ε
∑
i<k

Mi,kλi ≤ ε
∑
i<k

Mi,k. (154)

(155)
Hence,

F (Λ̃)− F (Λ) =
∑
i∈[d]

(λ̃i − λi) ≥ ε

(
1−

∑
i<k

Mi,k

)
> 0, (156)

where the last inequality follows from the assumption of Theorem I.3.
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Now, using Lemma E.6 implies that any optimal solution Λ∗ of (Pd) must verify:

∀k ∈ [d], λ∗
k

1 +

d∑
j=k+1

Mk,jλ
∗
j

 = 1. (157)

Hence (Pd) admits a unique maximizer Λ∗ which can be constructed by backward induction as
follows:

λ∗
d = 1, (158)

and for all k < d

λ∗
k =

1

1 +
d∑

j=k+1

Mk,jλ∗
j

. (159)

This achieves the proof of our sufficient condition for uniqueness.
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F THE STRICTLY UPPER TRIANGULAR CASE

F.1 CHARACTERIZATION OF THE EXTREME POINTS OF F

Theorem 4.4 (Extreme points of F in the Strictly Upper Triangular Case). For the feasible region
F of the problem (Pd) in the particular case where the matrix M is strictly upper triangular with
non-negative entries, we have

ExtrF =
{
Ψ(w) : w ∈ {0, 1}d

}
, (160)

that is, the extreme points of F are exactly the vertices of the hypercube [0 , 1]
d mapped by the

diffeomorphism Ψ.

Proof of Theorem 4.4. We first prove the first inclusion:

Lemma F.1. Given the feasible region F , we have the inclusion{
Ψ(w) : w ∈ {0, 1}d

}
⊆ ExtrF .

Proof of Lemma F.1. Let w = (w1, . . . , wd) ∈ {0, 1}d be a vertex of the hypercube [0 , 1]
d and

assume, for the sake of contradiction that Ψ(w) ∈ F is not an extreme point, i.e., Ψ(w) /∈ ExtrF .
Then, following Definition 4.1, there must exist x, y ∈ F with x ̸= y such that p := Ψ(w) ∈ (x , y).
Since p lies in the interior of the closed segment [x , y], there exists some vector v = (v1, . . . , vd) ∈
Rd \ {0} and scalars tx, ty ∈ R∗ such that txty < 0 (because x and y are on both side of p) and

x = p+ txv and y = p+ tyv. (161)

Without loss of generality, we assume tx > 0 so ty < 0.

We first prove the following lemma.

Lemma F.2. If for some i ∈ [d] we have wi = 0 then pi = 0 and xi = 0 = yi.

Proof of Lemma F.2. If wi = 0 for some i ∈ [d], we show that vi = 0 and this will imply that both
xi = 0 = yi since, as defined in (161), both x = p+ txv and y = p+ tyv. So assume for the sake
of contradiction that vi ̸= 0, and without loss of generality, we may assume vi > 0. Since tx > 0
and txty < 0, we deduce that ty < 0 so tyvi < 0 thus

yi = pi + tyvi < pi.

But, recall that wi = 0 and since p = Ψ(w), the i-th coordinate of p reads (following the definition
of Ψ from (3.4)),

pi

1 +

d∑
j=i+1

Mi,jpj

 = wi = 0,

so pi = 0 since p ∈ F ⊆ Rd
+ and

1 +

d∑
j=i+1

Mi,jpj ≥ 1.

Hence, we found that yi < 0 which is a contradiction since y ∈ F . Finally, we conclude that we
must have pi = 0 and vi = 0 so xi = 0 = yi as claimed.

Besides, recall that p = Ψ(w) thus, by definition of Ψ

pi

1 +

d∑
j=i+1

Mi,jpj

 = wi,
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for all i ∈ [d]. Hence, p lies at the boundary of all the hypersurface ∂ (epi gwi ), i.e.

{p} =
d⋂

i=1

∂ (epi gwi ) ,

where for all i ∈ [d], the hypersurface ∂ (epi gwi ) is

∂ (epi gwi ) =

(x1, . . . , xd) : xi = wi

1 +

d∑
j=i+1

Mi,jxj

−1
 . (162)

We now proceed by strong backward induction on i ∈ [d] to show that xi = pi = yi and vi = 0.
For the base case i = d, since

∂ (epi gwd ) = {(x1, . . . , xd) : xd = wd} ,
then pd = wd ∈ {0, 1}. If wd = 0 then using Lemma F.2 we would have directly xd = 0 = yd.
Now, if wd = 1, we assume for the sake of contradiction that vd ̸= 0, and without loss of generality,
we may suppose vd > 0. Then, since tx > 0 we obtain

xd = pd + txvd = wd + txvd = 1 + txvd > 1,

which is impossible since x would lie outside of the closed unit hypercube [0 , 1]d. Thus, we deduce
that xd = pd = yd and vd = 0.

Next, suppose the hypothesis holds for all i ∈ {k + 1, . . . , d} for some integer k ∈ [d − 1] that is,
xi = pi = yi and vi = 0 for all i ∈ [k + 1 .. d]. Then for the k-coordinate, either wk = 0 in which
case Lemma F.2 allows us to conclude that xk = 0 = yk. Otherwise, if wk = 1 then p belongs to

∂ (epi gwk ) =

(x1, . . . , xd) : xk = wk

1 +

d∑
j=k+1

Mk,jxj

−1
 ,

Assume for the sake of contradiction that vk ̸= 0, and without loss of generality, we still suppose
vk > 0. Then, we obtain (recall here wk = 1):

xk = pk + txvk

=

1 +

d∑
j=k+1

Mk,jpj

−1

+ txvk

(a)
= wk

1 +
d∑

j=k+1

Mk,jxj

−1

+ txvk

(b)
>

1 +

d∑
j=k+1

Mk,jpj

−1

,

where in (a) we use the fact that xj = pj for all j ∈ [k + 1 .. d] by the induction hypothesis while
in (b) we use the inequality txvk > 0. Hence, we deduce that

xk > wk

1 +

d∑
j=k+1

Mk,jxj

−1

,

from where x ∈ int (epi gwk ) which is not possible since by Lemma D.9 we have

F = [0 , 1]
d \

d⋃
i=1

int
(
epi g1i

)
,

and as wk = 1 then epi gwk = epi g1k . Thus, we must have vk = 0 from where xk = pk = yk and
this completes the inductive step and the proof of the lemma.
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The next lemma states the second inclusion:

Lemma F.3. Given the feasible region F , for any w ∈ [0 , 1]
d \ {0, 1}d we have Ψ(w) /∈ ExtrF .

Proof of Lemma F.3. Let w = (w1, . . . , wd) ∈ [0 , 1]
d \ {0, 1}d then there exists some i ∈ [d] such

that wi ∈ (0 , 1). Our goal is to construct w1 and w2 in [0 , 1]
d such that w1 ̸= w2 and Ψ(w) ∈

(Ψ(w1) ,Ψ(w2)). Notice that this implies that Ψ(w) /∈ ExtrF since Ψ(w1),Ψ(w2) ∈ F . To
simplify the notations, we introduce the three vectors p := Ψ(w), p1 := Ψ(w1) and p2 := Ψ(w2).
More precisely, we construct w1 and w2 such that the following holds

pk = (1− wi)p
1
k + wip

2
k, for every k ∈ [d]. (163)

For every k > i, we take w1
k = w2

k = wk ∈ [0 , 1]. By strong backward induction on k ∈ [i+ 1..d],
we show that pk = p1k = p2k. Besides, recall that p = Ψ(w) thus, by definition of Ψ

pi

1 +

d∑
j=i+1

Mi,jpj

 = wi, (164)

for all i ∈ [d].

For the base case k = d, we have pd = wd, p1d = w1
d and p2d = w2

d. Hence, pd = p1d = p2d. Next,
suppose the hypothesis holds for all k ∈ [ℓ+ 1..d] for some ℓ > i. We have

pℓ = wℓ

1 +

d∑
j=ℓ+1

Mℓ,jpj

−1

(165)

=


w1

ℓ

(
1 +

d∑
j=ℓ+1

Mℓ,jp
1
j

)−1

w2
ℓ

(
1 +

d∑
j=ℓ+1

Mℓ,jp
2
j

)−1 (166)

=

{
p1ℓ
p2ℓ

, (167)

where the second equality uses the induction hypothesis and the fact that w1
ℓ = w2

ℓ = wℓ. This
completes the inductive step. This result ensures that

pk = (1− wi)p
1
k + wip

2
k, for every k ∈ [i+ 1..d]. (168)

We complete the construction of the remaining coordinates of w1 and w2 by a backward induction.
For k = i, we choose

w1
i = 0 and w2

i = 1. (169)

Using Equation (164), we conclude that

p1i = 0 and p2i =

1 +

d∑
j=i+1

Mi,jpj

−1

, (170)

and furthermore,

pi = wi

1 +

d∑
j=i+1

Mi,jpj

−1

. (171)

This yields that our aimed property holds for k = i, i.e.,

pi = (1− wi)p1i + wip2i . (172)
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Now, suppose that w1
i , w

1
i−1, . . . , w

1
k and w2

i , w
2
i−1, . . . , w

2
k are constructed (in [0 , 1]) for some k >

1. We construct the k−1-th coordinates such that w1
k−1 = w2

k−1 and pk−1 = (1−wi)p
1
k−1+wip

2
k−1.

This property is equivalent to

wk−1

1 +

d∑
j=k

Mi,jpj

−1

=
(1− wi)w

1
k−1(

1 +
d∑

j=k

Mi,jp1j

) +
wiw

2
k−1(

1 +
d∑

j=k

Mi,jp2j

) , (173)

it is sufficient to take

w1
k−1 = w2

k−1 =

wk−1

(
1 +

d∑
j=k

Mi,jpj

)−1

(1−wi)(
1+

d∑
j=k

Mi,jp1
j

) + wi(
1+

d∑
j=k

Mi,jp2
j

) , (174)

Using the backward induction hypothesis we have1 +

d∑
j=k

Mi,jpj

−1

=

(1− wi)

1 + d∑
j=k

Mi,jp
1
j

+ wi

1 + d∑
j=k

Mi,jp
2
j

−1

. (175)

Then, using Jensen’s inequality (Lemma C.30) on the convex function f : x 7→ 1
x using weights

(1− wi, wi) we obtain1 +

d∑
j=k

Mi,jpj

−1

(175)
=

(1− wi)

1 + d∑
j=k

Mi,jp
1
j

+ wi

1 + d∑
j=k

Mi,jp
2
j

−1

(176)

Lem. C.30

≤ (1− wi)

1 +

d∑
j=k

Mi,jp
1
j

−1

+ wi

1 +

d∑
j=k

Mi,jp
2
j

−1

, (177)

besides 0 ≤ wk−1 ≤ 1, thus 0 ≤ w1
k−1 = w2

k−1 ≤ wk−1 ≤ 1 and since p1 ̸= p2 (p1i = 0 and
p2i ̸= 0), this concludes the proof.

Combining Lemmas F.1 and F.3, this achieves the proof of the theorem.
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0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



0 0 0 0 4 0
0 0 0 0 4 0
0 0 0 0 4 0
0 0 0 0 4 0
0 0 0 0 0 1
0 0 0 0 0 0


(a) Case of a fast and a slow worker.

0 1 2 3
0 0 2 3
0 0 0 3
0 0 0 0



0 1 2 3 4 0
0 0 2 3 4 4
0 0 0 3 4 4
0 0 0 0 4 4
0 0 0 0 0 4
0 0 0 0 0 0


(b) Case of equally fast workers.

Figure 5: The matrices M δ
3 (left) and Mδ

5 (right).

G APPLICATION TO ASYNCHRONOUS (S)GD

In this part, we start by providing some examples of the “matrix of delays” as introduced in Sec-
tion 5.2 and which arises during the convergence analysis of asynchronous gradient descent (AGD).
This matrix, which we denote by Mδ , consists of all the coefficients Mi,j where23 for i, j ∈ [0 ..K]
we have

Mi,j =

{
0, if j /∈Mi,
δj , if j ∈Mi,

with, as we recall, the set Mi is defined as

Mi :=
{
j ∈ [0 ..K] : j − δj ≤ i ≤ j − 1

}
,

and
{
δj
}
j≥0

is the sequence of delays while K is the last iterations of AGD.

Then, for completeness, we not only provide the convergence analysis of AGD (Algorithm 1) but
also of its stochastic counterpart, that is, asynchronous stochastic gradient descent ASGD (Algo-
rithm 2) which will be enough to prove Theorem 5.4. The proof follows the analysis performed
in Mishchenko et al. (2022); Koloskova et al. (2022); Maranjyan et al. (2025) while we make it more
general by allowing arbitrary non-negative stepsizes {γk}k≥0 in the gradient descent step (contrary
to the original version where the stepsizes are assumed to be constant). Next, we refine the choice of
the {γk}k≥0 to the best possible choice. In addition to Algorithm 2 we also recall in Algorithm 3 the
pseudo-code of the recently proposed Ringmaster ASGD algorithm (Maranjyan et al., 2025) which
is the first asynchronous SGD method with provably optimal time complexity24. This new algorithm
introduces a tunable threshold R > 0 on top of the original asynchronous SGD so as to discard the
stale stochastic gradients which can be harmful for the global convergence of the method.

G.1 A FEW TOY EXAMPLES

In the examples below, we provide a few realistic scenarios for the sequence of delays along with
the associated matrix of delays M δ for small value of K (last iteration count). The examples men-
tioned below are relevant in real-world scenarios as they reflect on one hand, heterogeneity among
the workers (different computation time, which is often witnessed in federated learning) but also,
similarity among them to account for settings where the worker are equally fast.
Example G.1 (One Fast and One Slow Worker). Here we assume to have only n = 2 workers, one
being very fast (say worker 1) while the other (worker 2) is slow. For instance, say worker 1 sent
to the server the first 4 stochastic gradients while worker 2 sent the fifth one, then worker 1 sent the
four next stochastic gradients and so on. This gives rise to the Table 1 below

Table 1: Illustration of which worker sends a gradient.

Iteration number 0 1 2 3 4 5 6 7 8 9
Worker index 1 1 1 1 2 1 1 1 1 2

23To align with the notation of Lemmas G.9 and G.10 and theorem G.11 and not to confuse the reader, we
purposely tweak the indices of this matrix to start at 0 instead of 1.

24We do not expand on the time complexity framework (Tyurin & Richtárik, 2023; Tyurin & Richtárik,
2024; Tyurin, 2025) here, this framework will be slightly discussed in a subsequent paragraph.
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which can be written concisely in the form LW := [1, 1, 1, 1, 2, 1, 1, 1, 1, 2] after dropping the itera-
tion number. Based on this we can construct the associated sequence of delays

Lδ := [0, 0, 0, 0, 4, 1, 0, 0, 0, 4],

since, by definition, if worker i sends a stochastic gradient to the server at iteration k ≥ 0 then, the
delay associated to its worker in Algorithm 2 will be

δk := k −max {r ∈ [1 .. k] : LW [r − 1] = i} ,
where we implicitly assume here that max∅ = 0 (the lowest non-negative integer) in order to have
δ0 = 0. We display above in Figure 5a the two matrices of delays Mδ

3 and Mδ
5 corresponding25 to

Lδ for K = 3 and K = 5.
Example G.2 (Equally Fast Workers). In this paragraph, we assume to have n = 5 workers capable
of working equally fast, i.e., the workers send their stochastic gradient one after the other in a
periodic fashion (say, first worker 1, then worker 2, then worker 3, then 4, 5 and next worker 1 again
and so on). We can represent this scenario as the list LW := [1, 2, 3, 4, 5, 1, 2, 3, 4, 5] where we store
the workers’ index and the corresponding sequence of delays is

Lδ := [0, 1, 2, 3, 4, 4, 4, 4, 4, 4].

The matrices M δ
3 and Mδ

5 corresponding to Lδ for K = 3 and K = 5 are given in Figure 5b.

G.2 ASSUMPTIONS

G.2.1 ASSUMPTIONS FROM THE NONCONVEX WORLD

We recall below the assumptions satisfied by the function f in the minimization problem (11) and the
stochastic gradients∇f (x, ξ); these assumptions are standard in the analysis of SGD-type methods
in the nonconvex setting (Ghadimi & Lan, 2013; Bottou et al., 2018).
Assumption G.3. Function f : Rd → R is differentiable, and its gradients are L–Lipschitz contin-
uous, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀x, y ∈ Rd.

Assumption G.4. There exist f inf ∈ R such that f(x) ≥ f inf for all x ∈ Rd.

Based on Assumption 5.2, we define the initial sub-optimality ∆ := f(x0) − f inf , where x0 is the
starting point of optimization method.
Assumption G.5. The stochastic gradients∇f(x; ξ) are unbiased and have bounded variance σ2 ≥
0. Specifically,

Eξ [∇f(x; ξ)] = ∇f(x), ∀x ∈ Rd,

Eξ

[
∥∇f(x; ξ)−∇f(x)∥2

]
≤ σ2, ∀x ∈ Rd.

The following assumption is also standard in the literature but rarely explicitly stated.
Assumption G.6. Let x ∈ Rd be a (possibly random) vector then, conditionally on x the random-
ness ξ in the stochastic gradient∇f (x, ξ) is independent from all the past.

G.2.2 ADDITIONAL ASSUMPTIONS

Throughout this part we consider the universal computation model introduced in Tyurin (2025). In
this model, each worker can have arbitrary computation dynamic and such dynamic is characterized
by a computational power function, as we recall below.
Assumption G.7. For any worker i ∈ [n], its computational power function vi : R+ → R+ is
non-negative and continuous almost everywhere.

25Note that the last iteration count is K but the total number of iterations if K + 1.
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Even though we do not derive time complexities (Tyurin & Richtárik, 2023; Tyurin, 2025; Maran-
jyan et al., 2025) in our convergence analysis, the universal computation model is important to keep
in mind since it influences directly the sequence of delays

{
δk
}
k≥0

.

Following Tyurin (2025), the number of stochastic gradients received by the server from worker
i ∈ [n] on some interval of time [T0 , T1] (with 0 ≤ T0 < T1) is either

⌊∫ T1

T0

vi(t) dt

⌋
or 1 +

⌊∫ T1

T0

vi(t) dt

⌋
,

depending on if client i was already computing a stochastic gradient before T0 or not.

Additionally, so as to ensure our algorithms will never end prematurely due to the lack of compu-
tational power, e.g., for instance all workers crash suddenly and never get repaired, we also assume
the following assumptions:

Assumption G.8. For any time t ≥ 0, there exists some i ∈ [n] and some t′ ≥ t such that

⌊∫ t′

t

vi(τ) dτ

⌋
≥ 1,

that is, if not stop the server will receive infinitely many stochastic gradients from the workers.

G.3 ASYNCHRONOUS SGD ALGORITHMS

We consider asynchronous SGD (ASGD) whose pseudo-code is recalled below. We allow arbitrary
non-negative stepsizes {γk}k≥0 as of now. These stepsizes will be refined during the convergence
analysis in Theorems G.11 and G.13.

In the three pseudo-codes below, Algorithm 2 and Procedure 2 have already been stated in Section 5
while Algorithm 3 is the pseudo-code of Ringmaster ASGD which will be discussed and analyzed
in Appendices G.7 to G.9. While its convergence analysis is very similar to Algorithm 2, we show
that actually Algorithm 3 is nothing else than a special case of Algorithm 2. Notably, Algorithm 3
relies on the sequence of effective delays {δ̃k}k≥0 which will play an important role as it allows to
obtain refined convergence analysis of Algorithm 2, established in Theorem G.13. For clarity, we
recall the definition of the effective delays {δ̃k}k≥0:

δ̃k := δk −
∣∣{j ∈ [k − δk .. k − 1

]
: γj = 0

}∣∣ .
Algorithm 2: Asynchronous SGD

1 Initialization:
2 k ← 0, the iteration counter
3 x0 ∈ Rd, the starting point
4 {γk}k≥0, the stepsizes, γk ≥ 0

5 Run Procedure 2 in all workers
6 Send to all workers the point x0

7 while true do
8 Wait until receiving gki := ∇f

(
xk−δk ; ξk−δk

i

)
from worker i

9 xk+1 ← xk − γkg
k
i

// Reset the delay of worker i

10 Send to worker i the point xk+1

11 Update the iteration counter: k ← k + 1

Procedure 2: Workers’ (infinite) loop
1 while true do
2 Wait until receiving xk ∈ Rd from the server

// May take some time.

3 Compute a (stochastic) gradient g ← ∇f(xk, ξ) where ξ ∼ D
4 Send g to the server
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Algorithm 3: Ringmaster ASGD

1 Initialization:
2 k ← 0, the iteration counter
3 ℓ← 0, the loop counter
4 x0 ∈ Rd, the starting point
5 γ > 0, the stepsize
6 R > 0, the delay threshold (to discard old gradients)
7 Run Procedure 1 in all workers
8 Send to all workers the point x0

9 while true do
// Wait for some time...

10 Receive gℓi := ∇f
(
xℓ−δℓ ; ξℓ−δℓ

i

)
from worker i

// If the gradient is not too old.

11 if δ̃ℓ < R then
// Do one descent step.

12 xk+1 ← xk − γgℓi
13 Update the iteration counter: k ← k + 1
14 else
15 Ignore the stochastic gradient gℓi

// Reset the delay of worker i

16 Send to worker i the point xk

17 Update the loop counter: ℓ← ℓ+ 1

Let us show how Ringmaster ASGD (Algorithm 3) can be seen a a special case of the general Al-
gorithm 2. In Ringmaster ASGD the stochastic gradients whose effective delays δ̃ℓ are smaller than
the threshold R are accepted and contribute to the optimization process, in other word, during the
ℓth loop, the stepsize γ

(R)
ℓ used by Ringmaster ASGD is

γ
(R)
ℓ := γ I

{
δ̃ℓ < R

}
,

where γ := min
{

1
2LR , ε

4Lσ2

}
is provided in Maranjyan et al. (2025, Theorem 4.1). Here I{·}

denotes the indicator function. Hence, a tight analysis of the general asynchronous SGD algorithm
provided in Algorithm 2 would allow one to recover the convergence rate of Ringmaster SGD; this
is what we show in Theorem G.14.

G.4 A DESCENT LEMMA

The next descent lemma is adapted from (Maranjyan et al., 2025, Lemma C.1).
Lemma G.9 (A Descent Lemma). Under Assumptions G.3, G.5 and G.826, for any choice of non-
negative stepsizes {γk}k≥0 in ASGD (Algorithm 2), the inequality

Ek+1

[
f(xk+1)

]
≤f(xk)− γk

2

∥∥∇f (xk
)∥∥2

− γk
2
(1− γkL)

∥∥∥∇f (xk−δk
)∥∥∥2

+
γkL

2

2

∥∥∥xk − xk−δk
∥∥∥2 + γ2

kL

2
σ2,

holds, where Ek+1 [·] represents the expectation conditioned on all randomness up to iteration k.

Proof. Assume, that we get a stochastic gradient from the worker with index ik when calculating
xk+1. Since the function f has L–Lipchitz gradients according to Assumption 5.1, it is L-smooth
and we have (Nesterov, 2018):

Ek+1

[
f
(
xk+1

)] Lem. C.24

≤ f
(
xk
)
− γk Ek+1

[〈
∇f

(
xk
)
| ∇f

(
xk−δk , ξk−δk

ik

)〉]
︸ ︷︷ ︸

=: t1

+
L

2
γ2
k Ek+1

[∥∥∥∇f (xk−δk , ξk−δk

ik

)∥∥∥2]︸ ︷︷ ︸
=: t2

,

26This assumption serves only to ensure that the (k + 1)-th iteration is well-defined and the iterate xk+1

exists. Assumption G.8 is enough to ensure this property, so that the iterate xk always exists for any k ≥ 0.
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which comes from upper bounding the Bregman divergence of f at xk+1 = xk −
γk∇f

(
xk−δk , ξk−δk

ik

)
and xk. Then, using the unbiasedness of the stochastic gradients from As-

sumption G.5, we estimate the first term t1 as

t1
Ass. G.5
=

〈
∇f

(
xk
)
,∇f

(
xk−δk

)〉
(26)
=

1

2

(∥∥∇f (xk
)∥∥2 + ∥∥∥∇f (xk−δk

)∥∥∥2 − ∥∥∥∇f (xk
)
−∇f

(
xk−δk

)∥∥∥2) , (178)

and for the second term t2, we use the variance decomposition (Lemma C.25) and Assumption G.5,
we get

t2
Lem. C.25
= Ek+1

[∥∥∥∇f (xk−δk , ξk−δk

ik

)
−∇f

(
xk−δk

)∥∥∥2]+ ∥∥∥∇f (xk−δk
)∥∥∥2

Ass. G.5

≤ σ2 +
∥∥∥∇f (xk−δk

)∥∥∥2 . (179)

Now, combining the results for both terms t1 and t2, and using the L–Lipchitz gradients property of
f to bound the squared norm ∥∇f

(
xk
)
−∇f(xk−δk)∥2, we obtain the inequality

Ek+1

[
f
(
xk+1

)] (178)+(179)

≤ f
(
xk
)
− γk

2

∥∥∇f (xk
)∥∥2

− γk
2
(1− γkL)

∥∥∥∇f (xk−δk
)∥∥∥2

+
γkL

2

2

∥∥∥xk − xk−δk
∥∥∥2 + γ2

kL

2
σ2,

which is what we wanted to prove.

G.5 RESIDUAL ESTIMATION (A FIRST VERSION)

Lemma G.10 (Residual Estimation). Under Assumptions G.3, G.5, G.6 and G.8, for any integer k ≥
0 and any choice of non-negative stepsizes {γj}j≥0, the iterates {xj}j≥0 of ASGD (algorithm 2)
satisfy

E
[∥∥∥xk − xk−δk

∥∥∥2] ≤ 2δk
k−1∑

j=k−δk

γ2
j E
[∥∥∥∇f (xj−δj

)∥∥∥2]+ 2σ2
k−1∑

j=k−δk

γ2
j .

Proof. Assume that for any j ∈ [0 .. k], we receive a stochastic gradient from the worker with index
ij ∈ [n] when calculating xj . Then, to upper bound the residual xk − xk−δk , we begin by expanding
the difference between the two points to obtain27

xk − xk−δk =

k−1∑
j=k−δk

γj∇f
(
xj−δj , ξj−δj

ij

)
, (180)

and now, according to the tower property of expectation (Lemma C.26) and Assumption G.5 we
have

E

 k−1∑
j=k−δk

γj∇f
(
xj−δj , ξj−δj

ij

) Lem. C.26
=

k−1∑
j=k−δk

γj E
[
E
[
∇f

(
xj−δj , ξj−δj

ij

) ∣∣∣ xj−δj
]]

(181)

Ass. G.5
= E

 k−1∑
j=k−δk

γj∇f
(
xj−δj

) . (182)

Now, as notced in Mishchenko et al. (2022), we cannot apply directly the variance decomposition
(Lemma C.25) as the asynchronicity causes certain stochastic gradients to depend on each other.

27See, for instance lemma 1 of Mishchenko et al. (2022).
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Instead, we first apply Young’s inequality (Lemma C.28) to the sum of random variables in (180)
which gives

E
[∥∥∥xk − xk−δk

∥∥∥2] (180)
= E


∥∥∥∥∥∥

k−1∑
j=k−δk

γj∇f
(
xj−δj , ξj−δj

ij

)∥∥∥∥∥∥
2


Lem. C.25
= E


∥∥∥∥∥∥

k−1∑
j=k−δk

γj

[
∇f

(
xj−δj , ξj−δj

ij

)
−∇f

(
xj−δj

)]
+

k−1∑
j=k−δk

γj∇f
(
xj−δj

)∥∥∥∥∥∥
2


Lem. C.28

≤ 2E


∥∥∥∥∥∥

k−1∑
j=k−δk

γj

[
∇f

(
xj−δj , ξj−δj

ij

)
−∇f

(
xj−δj

)]∥∥∥∥∥∥
2


+ 2E


∥∥∥∥∥∥

k−1∑
j=k−δk

γj∇f
(
xj−δj

)∥∥∥∥∥∥
2
 (183)

Moreover, thanks to Assumption G.6 and unbiasedness from Assumption G.5, when conditioned on
the random points x0, . . . , xk the stochastic gradients

∇f
(
xj−δj ; ξj−δj

ij

)
,

for k − δk ≤ j ≤ k − 1 are pairwise independent and we can apply Lemma C.29 in the first
term of (183) with the conditional expectation over x0, . . . , xk. First, we apply the tower property
(Lemma C.26) to get

2E


∥∥∥∥∥∥

k−1∑
j=k−δk

γj

[
∇f

(
xj−δj , ξj−δj

ij

)
−∇f

(
xj−δj

)]∥∥∥∥∥∥
2


Lem. C.26
= 2E

E

∥∥∥∥∥∥

k−1∑
j=k−δk

γj

[
∇f

(
xj−δj , ξj−δj

ij

)
−∇f

(
xj−δj

)]∥∥∥∥∥∥
2
∣∣∣∣∣∣∣ x0, . . . , xk




Lem. C.29
= 2E

 k−1∑
j=k−δk

γ2
j E
[∥∥∥∇f (xj−δj , ξj−δj

ij

)
−∇f

(
xj−δj

)∥∥∥2 ∣∣∣∣ x0, . . . , xk

]
= 2

k−1∑
j=k−δk

γ2
j E
[∥∥∥∇f (xj−δj , ξj−δj

ij

)
−∇f

(
xj−δj

)∥∥∥2] ,

(184)

and since all the stochastic gradient considered are σ2–variance bounded by Assumption G.5 then
we can further upper bound the sum (184) by

2

k−1∑
j=k−δk

γ2
j E
[∥∥∥∇f (xj−δj , ξj−δj

ij

)
−∇f

(
xj−δj

)∥∥∥2] Ass. G.5

≤ 2σ2
k−1∑

j=k−δk

γ2
j . (185)

Then to deal with the second term of (183), we apply Jensen’s inequality in the form of Lemma C.31
to obtain ∥∥∥∥∥∥

k−1∑
j=k−δk

γj∇f
(
xj−δj

)∥∥∥∥∥∥
2

Lem. C.31

≤ δk
k−1∑

j=k−δk

γ2
j

∥∥∥∇f (xj−δj
)∥∥∥2 , (186)

and finally, taking expectation inside the inequality (186) and, combining the upper bounds (185)
and (186) on both terms of (183) respectively gives

E
[∥∥∥xk − xk−δk

∥∥∥2] (184) + (186)

≤ 2σ2
k−1∑

j=k−δk

γ2
j + 2δk

k−1∑
j=k−δk

γ2
j E
[∥∥∥∇f (xj−δj

)∥∥∥2] ,
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which achieves the proof of this lemma.

G.6 CONVERGENCE ANALYSIS OF ALGORITHM 2

Theorem G.11 (Convergence Analysis of Algorithm 2). Under Assumptions G.3 to G.6 and G.8,
for any integer K ≥ 0 and any choice of non-negative stepsizes {γk}k≥0 such that there exists
k ∈ [0 ..K] for which γk > 0, the iterates {xk}k≥0 of ASGD (Algorithm 2) satisfy, with ΓK :=
γ0 + · · ·+ γK > 0

1

ΓK

K∑
k=0

γk E
[∥∥∇f (xk

)∥∥2] ≤ 2∆

ΓK
+R(K) +

Lσ2

ΓK

K∑
k=0

γ2
k

1 + 2L
∑
j∈Mk

γj

 , (187)

where R(K) := 1
ΓK

K∑
k=0

Rkγk E
[∥∥∥∇f (xk−δk

)∥∥∥2],

Rk := γkL+ 2γkL
2
∑
j∈Mk

γj δ
j − 1,

and the sets Mk for k ∈ [0 ..K] are defined as

Mk :=
{
j ∈ [0 ..K] : j − δj ≤ k ≤ j − 1

}
. (188)

Proof. According to Lemma G.9, under the above assumptions for any k ∈ [0 ..K] we have

Ek+1

[
f
(
xk+1

)] Lem. G.9

≤ f
(
xk
)
− γk

2

∥∥∇f (xk
)∥∥2

− γk
2
(1− γkL)

∥∥∥∇f (xk−δk
)∥∥∥2

+
γkL

2

2

∥∥∥xk − xk−δk
∥∥∥2 + γ2

kL

2
σ2,

hence, taking expectation on both sides and using the tower property gives

E
[
Ek+1

[
f(xk+1)

]] Lem. C.26
= E

[
f(xk+1)

]
(189)

Lem. G.9

≤ E
[
f(xk)

]
− γk

2
E
[∥∥∇f (xk

)∥∥2]
− γk

2
(1− γkL)E

[∥∥∥∇f (xk−δk
)∥∥∥2]

+
γkL

2

2
E
[∥∥∥xk − xk−δk

∥∥∥2]+ γ2
kL

2
σ2,

(190)

and reshuffling the above inequality yields

γk
2
E
[∥∥∇f (xk

)∥∥2] ≤ (E [f(xk)
]
− E

[
f(xk+1)

])︸ ︷︷ ︸
:=A

(1)
k

(191)

− γk
2
(1− γkL)E

[∥∥∥∇f (xk−δk
)∥∥∥2] (192)

+
γkL

2

2
E
[∥∥∥xk − xk−δk

∥∥∥2]︸ ︷︷ ︸
:=A

(2)
k

+
γ2
kL

2
σ2. (193)
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Now, if we sum the above inequality (193) over all k ∈ [0 ..K], the sum of all A(1)
k terms can be

telescoped, i.e.,

K∑
k=0

A
(1)
k =

K∑
k=0

(
E
[
f(xk)

]
− E

[
f(xk+1)

])
= E

[
f(x0)− f(xK+1)

]
Ass. 5.2

≤ E
[
f(x0)− f inf

]
= ∆,

while for the residual term A
(2)
k we upper bound it using Lemma G.10 since for any k ∈ [0 ..K] the

quantity γkL
2/2 is non-negative. This gives the upper bound

K∑
k=0

A
(2)
k =

K∑
k=0

γkL
2

2
E
[∥∥∥xk − xk−δk

∥∥∥2]
Lem. G.10

≤
K∑

k=0

γkL
2

2

2δk k−1∑
j=k−δk

γ2
j E
[∥∥∥∇f (xj−δj

)∥∥∥2]+ 2σ2
k−1∑

j=k−δk

γ2
j


(a)
= L2

K∑
k=0

k−1∑
j=k−δk

γk δ
kγ2

jE
[∥∥∥∇f (xj−δj

)∥∥∥2]
︸ ︷︷ ︸

:=B1

+L2σ2
K∑

k=0

k−1∑
j=k−δk

γkγ
2
j︸ ︷︷ ︸

:=B2

,

where in (a) we expand the outer sum.

Then, we reshuffle both sums B1 and B2 by exchanging the indices k and j of the two nested
sums. To do so, we use Lemma C.33 with S = [0 ..K] and for any k ∈ S, we have S(k) =[
k − δk .. k − 1

]
⊆ [0 ..K] so we choose S′ = [0 ..K] so that it contains every S(k) and now for

every j ∈ S′ we have

S′(j)
Lem. C.33
= {k ∈ [0 ..K] : j ∈ S(k)}
=
{
k ∈ [0 ..K] : k − δk ≤ j ≤ k − 1

}
(188)
= Mj ,

thus we can rewrite the term B1 as

B1 =

K∑
j=0

∑
k∈Mj

γk δ
kγ2

j E
[∥∥∥∇f (xj−δj

)∥∥∥2] , (194)

and the term B2 can we rewritten as

B2 =

K∑
j=0

∑
k∈Mj

γkγ
2
j . (195)
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Now, plugging both (194) and (195) in inequality (193) after summing over k ∈ [0 ..K] leads to

1

2

K∑
k=0

γk E
[∥∥∇f (xk

)∥∥2]
≤ ∆− 1

2

K∑
k=0

γk(1− γkL)E
[∥∥∥∇f (xk−δk

)∥∥∥2]+ L2
K∑
j=0

∑
k∈Mj

γk δ
kγ2

j E
[∥∥∥∇f (xj−δj

)∥∥∥2]

+ L2σ2
K∑
j=0

∑
k∈Mj

γkγ
2
j +

Lσ2

2

K∑
k=0

γ2
k

(a)
= ∆− 1

2

K∑
k=0

γk(1− γkL)E
[∥∥∥∇f (xk−δk

)∥∥∥2]+ L2
K∑

k=0

∑
j∈Mk

γj δ
jγ2

k E
[∥∥∥∇f (xk−δk

)∥∥∥2]

+ L2σ2
K∑

k=0

∑
j∈Mk

γjγ
2
k +

Lσ2

2

K∑
k=0

γ2
k

(b)
= ∆+

1

2

K∑
k=0

γk E
[∥∥∥∇f (xk−δk

)∥∥∥2]
Lγk

1 + 2L
∑
j∈Mk

γj δ
j

− 1


+

Lσ2

2

K∑
k=0

γ2
k

1 + 2L
∑
j∈Mk

γjγ
2
k


(196)

where in (a) we permute the labels of the indices of the second and third sum (those involving the
sets {Mj}j∈[0 .. K]), i.e. j ↔ k, while in (b) we merge the first two sums involving the gradients
∇f(·) and the last two sums involving the stochastic term in σ2. More precisely, for the “gradient
terms”, the resulting k-th term for k ∈ [0 ..K] reads

−γk(1−γkL) + 2γ2
kL

2

∑
j∈Mk

γj δ
j

 (197)

= γk

γkL+ 2γkL
2

∑
j∈Mk

γj δ
j

− 1

 (198)

= γk

Lγk
1 + 2L

∑
j∈Mk

γj δ
j

− 1

 , (199)

while for the “stochastic terms”, the k- term reads

2γ2
kL

2

∑
j∈Mk

γj

+ γ2
kL = γ2

kL

1 + 2L
∑
j∈Mk

γj

 .

Now, multiplying (196) by two and dividing both sides of the inequality by γ0+γ1+ · · ·+γK > 028

leads to

1
K∑

k=0

γk

K∑
k=0

γk E
[∥∥∇f (xk

)∥∥2] ≤ 2∆
K∑

k=0

γk

+R(K) + Lσ2

K∑
k=0

γ2
k

(
1 + 2L

∑
j∈Mk

γj

)
K∑

k=0

γk

,

28Recall that in statement of Theorem G.11 where we assume there exists k ∈ [0 ..K] such that γk > 0
ensuring the division to be legal.
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where we define

R(K) :=
1

K∑
k=0

γk

K∑
k=0

γk E
[∥∥∥∇f (xk−δk

)∥∥∥2]
γkL

1 + 2L
∑
j∈Mk

γj δ
j

− 1

 ,

which achieves the proof the the theorem.

In the case where σ2 = 0, we recover Assumption 5.3 and Theorem G.11 reduces to Theorem 5.4
which we recall here for completeness.

Theorem 5.4. Under Assumptions 5.1 to 5.3, for any integer K ≥ 0 and any choice of non-negative
stepsizes {γk}k≥0 the iterates {xk}k≥0 of AGD (Algorithm 1) satisfy, with ΓK := γ0 + · · ·+ γK

1

ΓK

K∑
k=0

γk E
[∥∥∇f (xk

)∥∥2] ≤ 2∆

ΓK
+R(K), (200)

where R(K) := 1
ΓK

K∑
k=0

Rkγk E
[∥∥∥∇f (xk−δk

)∥∥∥2],

Rk := γkL+ 2γkL
2
∑
j∈Mk

γj δ
j − 1,

and Mk := {r ∈ [0 ..K] : r − δr ≤ k ≤ r − 1}.

Proof. Setting σ2 = 0 in the left-hand side of (187) immediately gives (200), as desired.

G.7 IMPROVING THE CONVERGENCE ANALYSIS

As observed in Section 5.2, the sequence of delays
{
δk
}
k≥0

is not influenced at all by how we
choose the stepsizes {γk}k≥0 which is unreasonable since only the accepted gradients (correspond-
ing to a positive stepsize) contribute to the optimization process. So the discarded gradients should
not impact the choice of the stepsizes but, considering the matrix of delay M δ and the associated op-
timization problem (Pd), this is not the case since the delays δk corresponding to a stepsize γk > 0
also counts some of the discarded gradients. This may results in smaller stepsizes when solving the
corresponding optimization problem.

Hence naturally, (e.g., as in Ringmaster ASGD) it seems much more relevant for the delay δk to
account for the total number of accepted gradients. To this end, we introduce a new sequence of
delays {δ̃k}k≥0 where which will count, among all stochastic gradients received by the server on
some interval, precisely those which have been accepted. This result in the following definition: for
any integer k ≥ 0

δ̃k := δk −
∣∣{j ∈ [k − δk .. k − 1

]
: γj = 0

}∣∣ , (201)

where we assume that max∅ = 0 (so that δ̃0 = 0). Notably, we have δ̃ℓ ≤ δℓ for all integer ℓ ≥ 0.

In the next two parts (Appendices G.8 and G.9) we improve the residual estimation using the se-
quence {δ̃ℓ}ℓ≥0 and state the new convergence rate obtained. As a byproduct of our general anal-
ysis, we also recover the convergence rate of Ringmaster ASGD (Maranjyan et al., 2025) in The-
orem G.14. The improvement stems from the application of Jensen’s inequality (Lemma C.30)
in (186). Following most state-of-the-art analysis of asynchronous methods, we also apply Jensen’s
inequality to bound the staleness error. While these analysis rely on the special case stated
in Lemma C.31, so as to tighten our bounds we apply the “refined” inequality in Remark C.32:
since some of the stepsizes can be zero, we can apply the inequality Lemma C.31 only on the pos-
itive terms rather than all of them. This strengthening is crucial to recover the rate of Ringmaster
ASGD (see Theorem G.14).
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G.8 RESIDUAL ESTIMATION (A REFINED VERSION)

While the descent lemma proved in Appendix G.4 is still the same, the residual estimation in Ap-
pendix G.5 can be improved using the new sequence of delays {δ̃ℓ}ℓ≥0 which is the purpose of the
following lemma.

Lemma G.12 (Residual Estimation: A Refined Version). Under Assumptions G.3, G.5, G.6
and G.8, for any integer k ≥ 0 and any choice of non-negative stepsizes {γj}j≥0, the iterates
{xj}j≥0 of ASGD (Algorithm 2) satisfy

E
[∥∥∥xk − xk−δk

∥∥∥2] ≤ 2δ̃k
k−1∑

j=k−δk

γ2
j E
[∥∥∥∇f (xj−δj

)∥∥∥2]+ 2σ2
k−1∑

j=k−δk

γ2
j .

where the sequence {δ̃k}k≥0 is defined in (201).

Proof. We follows exactly the same steps as in the proof of Lemma G.10 with the sole exception
that in (186) instead of using Jensen’s inequality in the form of Lemma C.31, we use Remark C.32
to obtain the upper bound∥∥∥∥∥∥

k−1∑
j=k−δk

γj∇f
(
xj−δj

)∥∥∥∥∥∥
2

Rem. C.32

≤ δ̃k
k−1∑

j=k−δk

γ2
j

∥∥∥∇f (xj−δj
)∥∥∥2 , (202)

for all integer k ≥ 0. We then combine the tighter upper bound (202) with the other bound in (185)
to obtain that, for any k ≥ 0 we have

E
[∥∥∥xk − xk−δk

∥∥∥2] ≤ 2δ̃k
k−1∑

j=k−δk

γ2
j E
[∥∥∥∇f (xj−δj

)∥∥∥2]+ 2σ2
k−1∑

j=k−δk

γ2
j ,

which achieves the proof of the lemma.

G.9 CONVERGENCE ANALYSIS OF ALGORITHM 3

Improving the Convergence Analysis. Equipped with the improved residual estimation
in Lemma G.12, we can now state our main result for the convergence analysis of ASGD in full
generality.

Theorem G.13. Under Assumptions G.3 to G.6 and G.8, for any integer K ≥ 0 and any choice
of non-negative stepsizes {γk}k≥0 such that there exists k ∈ [0 ..K] for which γk > 0, the iterates
{xk}k≥0 of ASGD (Algorithm 2) satisfy, with ΓK := γ0 + · · ·+ γK > 0

1

ΓK

K∑
k=0

γk E
[∥∥∇f (xk

)∥∥2] ≤ 2∆

ΓK
+ R̃(K) +

Lσ2

ΓK

K∑
k=0

γ2
k

1 + 2L
∑
j∈Mk

γj

 , (203)

where R̃(K) := 1
ΓK

K∑
k=0

R̃kγk E
[∥∥∥∇f (xk−δk

)∥∥∥2], with

R̃k := γkL+ 2γkL
2
∑
j∈Mk

γj δ̃
j − 1,

and the sets Mk and delays δ̃k are defined in (188) and (201).

Proof. The proof is a straightforward adaption of the previous proof of Theorem G.11 where instead
of the residual estimation from Lemma G.10 we use the its sharper version Lemma G.12.
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Recovering the convergence rate of Ringmaster ASGD. Now using the improved upper bound
from Theorem G.13, we can recover the same rate as in the paper Maranjyan et al. (2025), which is
the purpose of the next theorem. Moreover, our proof is more transparent than the one in Maranjyan
et al. (2025) as in our proof we capture all stochastic gradients received by the server and not just
the gradients which are accepted.
Theorem G.14 (Recovering Ringmaster ASGD Convergence Rate). Let R ≥ 1 be the delay thresh-
old of Ringmaster ASGD (Maranjyan et al., 2025) then, under Assumptions G.3 to G.6 and G.8, if
we let the stepsizes of ASGD (Algorithm 3) be

γk = γ I
{
δ̃k < R

}
, with γ = min

{
1

2RL
,

ε

4Lσ2

}
, (204)

for all integer k ≥ 0 then we have

1

ΓK

K∑
k=0

γk E
[∥∥∇f (xk

)∥∥2] ≤ ε, (205)

with ΓK := γ0 + γ1 + · · ·+ γK , as long as

|S| ≥ 4∆

εγ
= max

{
8RL∆

ε
,
16L∆σ2

ε2

}
,

where S :=
{
k ∈ [0 ..K] : δ̃k < R

}
.

Remark G.15. Note that the set S in Theorem G.14 corresponds to the loop numbers where a positive
stepsize is applied to the stochastic gradient received. Hence, |S| exactly counts the number of
iterative updates which was denoted by K in the analysis of Ringmaster ASGD.

Proof. Let the stepsizes of Ringmaster ASGD {γk}k≥0 be as in (204) then

K∑
k=0

γk = γ

K∑
k=0

I
{
δ̃k < R

}
= γ |S| , (206)

where we defined the set S :=
{
k ∈ [0 ..K] : δ̃k < R

}
. Now, we need to check that the constraints

γkL

1 + 2L
∑
j∈Mk

γj δ̃
j

 ≤ 1, k = 0, 1, 2, . . . ,K, (207)

where Mk :=
{
j ∈ [0 ..K] : j − δj ≤ k ≤ j − 1

}
, are all fulfilled. Given k ∈ [0 ..K], we distin-

guish two cases:

• if δ̃k ≥ R then γk = 0 and k-th constraint from (207) is (clearly) satisfied,

• otherwise, if δ̃k < R then γk = γ > 0 and we have

γkL

1 + 2L
∑
j∈Mk

γj δ̃
j


(a)
= γL

1 + 2Lγ
∑

j∈Mk∩S

δ̃j


(b)

≤ γL (1 + 2Lγ(R− 1) |Mk ∩ S|)
= γL+ 2 (γL)

2
(R− 1) |Mk ∩ S| ,

(208)

where in (a) we use the definition of S, that is, for any j ∈ [0 ..K] the stepsize γj > 0 if,
and only if j ∈ S in which case γj = γ. In (b) we use the fact that for any j ∈Mk∩S ⊆ S
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the delay δ̃k < R and since it is an integer, δ̃k ≤ R − 1. Now it remains to upper bound
the cardinal of the set Mk ∩ S; we show that

|Mk ∩ S| ≤ R− 1. (209)

To do so, we distinguish two cases: either the set is empty in which case inequality (209)
holds. Otherwise, if Mk ∩ S ̸= ∅ then, let m = |Mk ∩ S| denotes the cardinal of the
set and j1 < j2 < · · · < jm its elements. By definition of S and since all j1, . . . , jm are
in S, all the stepsizes γj1 , . . . , γjm are positive as δ̃j1 < R, . . . , δ̃jm < R. Moreover, by
definition of Mk we have, for all i ∈ [m]

ji − δji ≤ k ≤ ji − 1,

hence notably jm − δjm ≤ k < k + 1 ≤ j1 < j2 < · · · < jm thus for any i ∈ [m− 1]

ji ∈
{
r ∈

[
jm − δjm .. jm − 1

]
: γr > 0

}
,

and k ∈
{
r ∈

[
jm − δjm .. jm − 1

]
: γr > 0

}
. Moreover by definition of δ̃jm we have

δ̃jm =
∣∣{r ∈ [jm − δjm .. jm − 1

]
: γr > 0

}∣∣ ≥ m,

since it contains k, ji, j2, . . . , jm−1. Hence, as jm ∈ S then δ̃jm ≤ R − 1 thus we obtain
m ≤ R− 1 as desired.

Now, if we continue to upper bound quantity from (208), we have

γL+ 2 (γL)
2
(R− 1) |Mk ∩ S|

(209)

≤ γL+ 2 (γL(R− 1))
2

(a)

≤ 1

2R
+

1

2
(b)

≤ 1

2
+

1

2
= 1,

where in (a) we use both the fact that the γ ≤ 1
2RL so that

γL ≤ 1

2R
and 2γ2L2(R− 1)2 ≤ 2(R− 1)2

4R2
<

1

2
,

while in (b) we use the fact that R ≥ 1.

Hence, all the constraints are fulfilled. Therefor, it remains to further upper bound the quantity (203)
from Theorem G.13 without the R̃(K) residual term. The first term in (203) is equal to

2∆
K∑

k=0

γk

(206)
=

2∆

γ |S| ,

while for the stochastic term, the numerator can be upper bounded as

Lσ2
K∑

k=0

γ2
k

1 + 2L
∑
j∈Mk

γj

 (a)
= Lσ2γ2

∑
k∈S

(1 + 2γL |Mk ∩ S|)

(209)

≤ Lσ2γ2 |S| (1 + 2γLR) ,

hence, when dividing by
K∑

k=0

γk it gives

Lσ2

K∑
k=0

γ2
k

(
1 + 2L

∑
j∈Mk

γj

)
K∑

k=0

γk

≤ Lσ2 γ2 |S| (1 + 2γLR)

γ |S| = Lσ2γ(1 + 2γLR).
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Thus, to obtain the inequality (205) it is enough to have

2∆

γ |S| ≤
ε

2
and Lσ2γ(1 + 2γLR) ≤ ε

2
,

and, for the later inequality, it is enough to ensure γLR ≤ 1
2 along with Lσ2γ ≤ ε

4 and we recover
the stepsize given in the statement, i.e., γ = min

{
1

2RL ,
ε

4Lσ2

}
. Now, for the other inequality, we

need to have
4∆

εγ
≤ |S| ,

which, after plugging the expression of γ given before leads to the desired lower bound of

|S| ≥ max

{
8RL∆

ε
,
16L∆σ2

ε2

}
.

G.10 A Mixed-Integer OPTIMIZATION PROBLEM

We review here the different optimization problems derived with our analysis of ASGD and AGD.

The General Optimization Problem: According to the analysis done in Theorem G.13, a natural
approach to get rid of the R̃(K) term appearing in (12) is to ensure each individual factor Rk to be
nonpositive, i.e.,

Rk := γkL+ 2γkL
2
∑
j∈Mk

γj δ̃
j − 1 ≤ 0, k = 0, 1, . . . ,K (210)

and, if we let

Mi,j =

{
0, if j /∈Mi,
δ̃j , if j ∈Mi,

(211)

for all i, j ∈ [0 ..K] then as R(K) ≤ 0 by (210), finding theoretically optimal stepsizes {γ∗
k}k≥0 is

equivalent to minimize the left-hand side of (12) over the constrained region

F =
{
Λ ∈ [0 , 1]

K+1
: 0 ≤ LΛ + (LΛ)⊙ (M δ[LΛ]) ≤ 1

}
,

where Λ = (γ0, . . . , γK) and Mδ = (Mi,j)i,j∈[0 .. K] is the “matrix of delays” defined in (211). The
resulting optimization problem to solve for the optimal stepsizes {γ∗

k}k≥0 can be stated as follows:

(P̃σ2

K ) : minimize 1
γ0+···+γK

[
2∆ + Lσ2

K∑
k=0

γ2
k

(
1 + 2L

∑
j∈Mk

γj

)]
,

over (γ0, . . . , γK) ∈ [0 , 1
L ]

K+1
,

subject to 0 ≤ γkL+ 2γkL
2
∑

j∈Mk

γj δ̃
j ≤ 1 for k = 0, 1, 2, . . . ,K.

(212)

Remark G.16. Notice that, in the special case where all delays are 0, in the case of synchronous
SGD for instance, then all Mk = ∅ and the constraints in (212) reduces to 0 ≤ γkL ≤ 1, and to
minimize the quantity

1

γ0 + · · ·+ γK

[
2∆ + Lσ2

K∑
k=0

γ2
k

]
,

it’s enough, due to the symmetry, to assume γ0 = · · · = γK = γ which gives γ =

min
{

1
L ,
√

2∆
KLσ2

}
. then, taking K ≥ 2L∆σ2

ε2 ensures an ε–stationary point is found which leads to

γ = min

{
1

L
,

ε

Lσ2

}
,

an improvement over the stepsizes of Ringmaster ASGD with a factor ×2 to ×4.
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The “matrix of delay” defined in (211) has some interesting properties as stated in the next result.
Examples of the matrix of delays will be provided in a subsequent paragraph.

Lemma G.17 (Properties of the matrix of delays). For the matrix of delays Mδ introduced in (211),
we have

1. the matrix Mδ is strictly upper triangular, that is, Mδ
i,j = 0 for any 0 ≤ j ≤ i ≤ K,

2. for any j ∈ [0 ..K] we have Mj−1,j = Mj−2,j = · · · = Mj−δj ,j = δ̃j .

Proof. For the first claim, let 0 ≤ i, j ≤ K such that j ≤ i then clearly we can’t have i ≤ j − 1

hence necessarily j /∈ Mi :=
{
j′ ∈ [0 ..K] : j′ − δj

′ ≤ i ≤ j′ − 1
}

. Consequently, we deduce

that M δ
i,j = 0, i.e., the matrix M δ is strictly upper triangular.

For the second statement, we use again the definition of the sets {Mi}0≤i≤K . Let j ∈ [0 ..K]
from (188) then for any integer i between j − δj and j − 1 we have j ∈ Mi, because j − δj ≤
i ≤ j − 1. Hence, we deduce that j ∈ Mj−1, j ∈ Mj−2, . . ., j ∈ Mj−δj that is ot say Mj−1,j =

Mj−2,j = · · · = Mj−δj ,j = δ̃j , as desired. Note that the quantity Mj−δj ,j is well-defined since
0 ≤ δj ≤ j.

Observe that the optimization problem (212) is a nonlinear mixed-integer program which in practice
is hard to solve, notably the objective function is even nonlinear. This “mixed-integer” characteristic
comes from the effective delays {δ̃k}k≥0 which intrinsically depends on the binary variables

bk := I{γk = 0} .
A part of the “hardness” of problem (P̃σ2

K ) arises from the presence of the stochastic term in σ2.
For now on, we focus on the simpler case where σ2 = 0, i.e., the machines compute full gradients
instead of noisy ones in the sense that when asked to compute a gradient of f at x ∈ Rd they will
reply, deterministically,∇f(x) after some time. Assuming σ2 = 0 we can rewrite the minimization
problem (212) as a maximization problem:

(P̃K) : maximize γ0 + γ1 + · · ·+ γK ,

over (γ0, . . . , γK) ∈ [0 , 1
L ]

K+1
,

subject to 0 ≤ γkL+ 2γkL
2
∑

j∈Mk

γj δ̃
j ≤ 1 for k = 0, 1, 2, . . . ,K.

(213)

This simpler problem seems much more tractable at first glance since now it has a linear objective
in the variables (γ0, . . . , γK) and we can use general-purpose solvers like Gurobi 11 (Gurobi Opti-
mization, LLC, 2024) to attempt solving it. Gurobi approach to solve optimization problems of the
form of (P̃K) uses branch-and-bound to systematically partition the feasible space into subprob-
lems and constructs relaxations at each node. The algorithm provides mathematically guaranteed
global optimality by maintaining upper and lower bounds across all active nodes until the optimality
gap closes. However, this approach can demand millions of simplex iterations on some instances.

A Bilinear Program: While it is tractable to solve problem (213) numerically, the presence of the
effective delays {δ̃k}k≥0 makes it difficult to study directly the theoretical properties of the optimal
solutions. To further simplify (P̃K) we consider the following problem:

(PK) : maximize γ0 + γ1 + · · ·+ γK ,

over (γ0, . . . , γK) ∈ [0 , 1
L ]

K+1
,

subject to 0 ≤ γkL+ 2γkL
2
∑

j∈Mk

γj δ
j ≤ 1 for k = 0, 1, 2, . . . ,K.

(214)

where, instead of the effective delays, we directly use {δk}k≥0 which are simply constants in our
problem. Of course, the optimal solutions of this new maximization problem are, in general, looser
than those provided by the mixed-integer problem (P̃K) (in term of objective function value); this
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can be seen by taking a feasible solution {γk}k≥0 of (PK) and using the inequality δ̃k ≤ δk, this
gives

0 ≤ γkL+ 2γkL
2
∑
j∈Mk

γj δ̃
j ≤ 0 ≤ γkL+ 2γkL

2
∑
j∈Mk

γj δ
j

(a)

≤ 1,

where (a) follows by the feasibility of {γk}k≥0. So, {γk}k≥0 is still a feasible solution for (P̃K),
showing that the optimal value of problem (213) is always at least as large as the one of (214).

The new optimization problem (PK) belongs to the family of bilinear programs (and also to the
class of reverse-convex programs). Surprisingly, with a little more effort, we can also extend our
main Theorem 4.6 (characterization of the optimal solution(s) of problem (PK) in (214)) to our
original mixed-integer problem (P̃K).

Reformulating Problem (P̃K): We now reformulate problem (P̃K) in a more friendly way using
binary variables. This gives rises to the optimization problem (Pmi

K ) where “mi” stands for mixed-
integer. First, let us recall the constraints of the mixed-integer problem (P̃d), i.e.,

0 ≤ γkL+ 2γkL
2
∑
j∈Mk

γj δ̃
j − 1 ≤ 0, (215)

for all integer k ∈ [0 ..K]. Since δ̃k depends on whether some of the stepsizes γj for j ∈[
k − δk .. k − 1

]
are positive or zero, we introduce binary variables

bk := I{γk = 0} ∈ {0, 1} , (216)

where k ∈ [0 ..K]. So, by the definition of δ̃k from (14) we can rewrite it as

δ̃k
(14)
= δk −

∣∣{j ∈ [k − δk .. k − 1
]
: γj = 0

}∣∣ (216)
= δk −

k−1∑
p=k−δk

bp, (217)

and since

δj −
j−1∑

p=j−δj

bp =

j−1∑
p=j−δj

(1− bp),

then, plugging (217) back in (215) gives for all k ∈ [0 ..K]

γkL+ 2γkL
2
∑
j∈Mk

j−1∑
p=j−δj

γj(1− bp)− 1 ≤ 0. (218)

The above reformulation is more compact for practical implementation and lead to the following
mixed-integer nonlinear program

(Pmi
K ) : maximize γ0 + γ1 + · · ·+ γK

over (γ0, . . . , γK) ∈ [0 , 1
L ]

K+1

subject to 0 ≤ γkL

(
1 + 2L

∑
j∈Mk

j−1∑
p=j−δj

γj(1− bp)

)
≤ 1 for k = 0, 1, . . . ,K;

and bp = I{γp = 0} , for p = 0, 1, . . . ,K.
(219)

Even though (219) is not anymore a bilinear program, we can still implement it in Gurobi 11 using
the Big-M method. We further expand on implementation details concerning problem (Pmi

K ) in a
subsequent paragraph.

Extending Theorem 4.6. In this paragraph, we will extend our main result (Theorem 4.6) to
optimization problems of the form of (Pmi

K ), which is formalized in the next result:
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Theorem G.18. For any positive real number L > 0, any integer K ≥ 0 and any sequence of
integers {δk}k≥0 such that 0 ≤ δk ≤ k for all k ≥ 0 then, any global maximizers {γ∗

k}k≥0 of
problem (Pmi

K ) satisfies, for all k ∈ [0 ..K]

γ∗
k = 0 or γ∗

kL

1 + 2L
∑
j∈Mk

j−1∑
p=j−δj

γ∗
j (1− b∗p)

 = 1, (220)

where b∗k = I{γ∗
k = 0}.

Proof. Up to a scaling factor of L in the optimal solutions, let us assume without loss of generality
that L = 1. First, let us recall that for all k ∈ [0 ..K] we have

δ̃k := δk −
∣∣{j ∈ [k − δk .. k − 1

]
: γj = 0

}∣∣ . (221)

Additionally, observe that the sets Mk for k ∈ [0 ..K] does only depends on the delays {δj}j≥0

with Now let us suppose, for the sake of contradiction, that there exists an optimal solution {γ∗
k}k≥0

for which (220) does not hold, that is, there exists k0 ∈ [0 ..K] such that

0 < γ∗
k0

1 + 2
∑

j∈Mk0

j−1∑
p=j−δj

γ∗
j (1− b∗p)

 < 1. (222)

For now on, let us fix S0 = {i ∈ [0 ..K] : γ∗
i = 0} and T0 = [0 ..K] \ S0, notably by (222) we

have k0 ∈ T0. Then, observe that {γ∗
k}k∈T0 is a feasible solution for the optimization problem

(P∗
K) : maximize

∑
k∈T0

γk

over {γk}k∈T0
∈ [0 , 1]

|T0|

subject to 0 ≤ γk

(
1 + 2

∑
j∈Mk∩T0

δ̄j γj

)
≤ 1

for k ∈ T0;

(223)

where we just kept the indices k ∈ [0 ..K] for which γ∗
k > 0 since the other indices (for which

the corresponding variable γ∗
k is zero) do neither impact the objective value nor the variables γk for

k ∈ T0. Additionally, we defined in (223)

δ̄k := δk −
∣∣{j ∈ [k − δk .. k − 1

]
: γ∗

j = 0
}∣∣ ≥ 0. (224)

Note that in problem (P∗
K) the “delays” {δ̄k}k≥0 are fixed contrary to (Pmi

K ). It is important to
observe that the coefficient δ̄k is simply δ̃k when in (221) we use the tuple {γ∗

k}k≥0. We can now
apply Theorem 4.6 on the optimization problem (223), notably, using (222) which is equivalent to

0 < γ∗
k

1 + 2
∑

j∈Mk∩T0

δ̄j γ∗
j

 < 1,

we obtain that the feasible solution {γ∗
k}k∈T0

of (P∗
K) is not extremal and thus is not optimal.

Hence, let us denote by {γ̄k}k∈T0
an optimal solution of (P∗

K) (which by Theorem 4.6 is extremal
too) so ∑

k∈T0

γ∗
k <

∑
k∈T0

γ̄k. (225)

Next, let us complete {γ̄k}k∈T0
into a tuple {γ̄k}k≥0 where γ̄k = 0 for all integer k /∈ T0. First, by

construction of the optimization problem (P∗
K) and the optimal solution {γ̄k}k≥0, for any k ∈ S0

we have γ̄k = 0 hence, for all k ∈ [0 ..K]

δ̄k
(224)
= δk −

∣∣{j ∈ [k − δk .. k − 1
]
: γ∗

j = 0
}∣∣

≥ δk −
∣∣{j ∈ [k − δk .. k − 1

]
: γ̄j = 0

}∣∣ , (226)
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so since all {γ̄k}k≥0 are non-negative then for k ∈ [0 ..K]

0 ≤ γ̄k

1 + 2
∑
j∈Mk

j−1∑
p=j−δj

γ̄j
(
1− b̄p

) , (227)

where b̄p := I{γ̄p = 0} with p ∈ [0 ..K]. Using (217) and (226) we obtain
j−1∑

p=j−δj

γ̄j
(
1− b̄p

)
(217)
= γ̄j

(
δj −

∣∣{j ∈ [k − δk .. k − 1
]
: γ̄j = 0

}∣∣)
(226)

≤ γ̄j
(
δj −

∣∣{j ∈ [k − δk .. k − 1
]
: γ∗

j = 0
}∣∣)

(224)
= γ̄j δ̄

j ,

(228)

hence, for any k ∈ [0 ..K]

γ̄k

1 + 2
∑
j∈Mk

j−1∑
p=j−δj

γ̄j
(
1− b̄p

)
(228)

≤ γ̄k

1 + 2
∑
j∈Mk

δ̄j γ̄j


(a)
= γ̄k

1 + 2
∑

j∈Mk∩T0

δ̄j γ̄j


(b)

≤ 1,

(229)

where in (a) we use the fact that for all k /∈ T0, by construction, γ̄k = 0 while in (b) we use the fact
that {γ̄k}k∈T0

is a feasible solution of (P∗
K).

Combining the inequalities (227) and (229) for all integer k ∈ [0 ..K] we deduce that {γ̄k}k≥0 is a
feasible solution of problem (Pmi

K ) thus, using the strict inequality (225) we obtain
K∑

k=0

γ∗
k =

∑
k∈T0

γ∗
k <

∑
k∈T0

γ̄k
(a)
=

K∑
k=0

γ̄k ≤ val
(
Pmi

K

)
, (230)

where (a) follows by construction of the {γ̄k}k≥0 and val
(
Pmi

K

)
denotes the optimal value of prob-

lem (Pmi
K ). Inequality (230) establishes the sub-optimality of the feasible solution {γ∗

k}k≥0 which
leads to a contradiction since we assume originally that is was optimal. Hence, we conclude that
all the optimal solutions of the optimization problem (Pmi

K ) satisfy the “alternative” (220) and this
achieves the proof of the theorem.

Practical Implementation in Gurobi: the Big-M Method. In order to implement the mixed-
integer nonlinear optimization problem (219), we need to handle a trilinear product of variables of
the form

γkγj(1− bp),

where bp = I{γp = 0}. In Gurobi 11 and older versions, while bilinear terms in the constraint are
supported, products of 3 or more variables like in the constraints of problem (Pmi

L ) are not directly
supported and require some tricks, especially since in our case one of the variable involved is binary
(the 1 − bp in (Pmi

L )). To overcome this issue, we employ a technique called the Big-M Method.
For this we introduce a new continuous variables zj,p whose value will be forced to γj(1− bp). It is
enough to notice that the equality zj,p = γj(1− bp) is equivalent to the set of inequalities

0 ≤ zj,p,

zj,p ≤ γj ,

zj,p ≤ 1− bp,

γj + bp ≤ zj,p.
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Effectively, as 0 ≤ zj,p ≤ 1− bp then if bp = 1 we deduce that zj,p = 0. Otherwise, if bp = 0 then
we have both γj ≤ zj,p ≤ γj,p as desired.

G.11 A PROVABLE FACTOR–2 APPROXIMATION

Theorem 5.5 (Near Optimality of Ringmaster AGD). For any integer K ≥ 0 the stepsizes
{γ(R)

k }k≥0 of Ringmaster AGD (with a threshold29 of R = 1) satisfy

K∑
k=0

γ
(R)
k ≤

K∑
k=0

γ∗
k ≤ 2

K∑
k=0

γ
(R)
k ,

with {γ∗
k}k≥0 the optimal stepsizes and γ

(R)
k = 1

L I
{
δ̃k = 0

}
.

Proof. The proof of the above theorem builds on several intermediate lemmas we state and prove
below.

Lemma G.19. We have γ
(R)
0 = 1

L .

Proof. Since δ0 = 0 by definition of the sequence of delays (see (14)) and as 0 ≤ δ̃0 ≤ δ0 we
deduce that

γ
(R)
0 =

1

L
I
{
δ̃0 = 0

}
=

1

L
,

as desired.

Hence, based on Lemma G.19, we can define the (finite) sequence t0 = 0 < t1 < · · · < ti ≤ K
(with eventually i = 0) of loop number for which the stepsizes of Ringmaster ASGD when R = 1
are nonzero, i.e., for all j ∈ [0 ..K]

γ
(R)
j ̸= 0 iff j ∈ {t0, t1, . . . , ti} .

It is important to note that the effective delay {δ̃k}k≥0 depends on how the stepsizes are chosen. To
prevent confusion, we denote by {δ̃k∗}k≥0 the effective delays for an (arbitrarily taken, but fixed)
optimal solution {γ∗

k}k≥0.

Lemma G.20. For any j ∈ [0 .. i− 1], there do not exists integers tj ≤ ℓ1 < ℓ2 ≤ tj+1 − 1 such
that the same worker sends a stochastic gradient at loop number ℓ1 and ℓ2.

Proof. For the sake of contradiction, assume not and suppose worker p ∈ [n] sends a stochastic
gradient to the server at both loop number ℓ1 and ℓ2. Without loss of generality, we can assume
ℓ1 and ℓ2 to be the first two times where worker p sends a stochastic gradient in the time frame
[tj , tj+1 − 1]. By definition of the sequence {tj}j∈[0 .. i] we know that all the stochastic gradients
received by the server from loop number tj + 1 to ℓ2 − 1 are discarded. Hence,

δ̃ℓ2 = δℓ2 −
∣∣∣{j ∈ [ℓ2 − δℓ2 .. ℓ2 − 1

]
: γ

(R)
j = 0

}∣∣∣ = 0, (231)

since by definition of the delay δℓ2 = ℓ2 − ℓ1 − 1 is the number of stochastic gradients received by
the server between times ℓ1 and ℓ2 (endpoints excluded). But (231) and the fact that tj < ℓ2 < tj+1

contradict the definition of the sequence {tj}j∈[0 .. i]. Thus, the claimed property holds.

Hence, the previous lemma asserts that for all j ∈ [0 .. i− 1], on the time frame [tj , tj+1 − 1] the
server receives stochastic gradients from distinct workers only. In particular, this shows that

δℓ ≥ ℓ− tj , (232)

for all ℓ ∈ [tj , tj+1 − 1]: this remark is actually at the core of the proof and is crucial for the next
part. For now, let us fix j ∈ [0 .. i− 1] and focus on the time frame [tj , tj+1 − 1] (in case i = 0,
we can just replace tj+1 − 1 by the last loop number). We would like to compare the stepsizes

29Following the choice of Maranjyan et al. (2025), when σ2 = 0 then R = 1.
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γ∗
tj , . . . , γ

∗
tj+1−1 to those arising when solving a similar mixed-integer optimization problem but

restricted to the time frame [tj , tj+1 − 1]. Let γ⋆
0 , . . . , γ

⋆
s−1 be an optimal solution of

(P̃⋆
K) : maximize γ0 + γ1 + · · ·+ γs−1,

over (γ0, . . . , γs−1) ∈ [0 , 1
L ]

s
,

subject to 0 ≤ γkL+ 2γkL
2

s−1∑
j=k+1

γj δ̃
j ≤ 1 for k = 0, 1, 2, . . . , s− 1.

(233)

where s = tj+1−tj (or s = K if i = 0) is the size of the time frame [tj , tj+1−1]. The optimization
problem (233) arises for instance when only distinct workers send a stochastic gradient to the server.
In this case we have δk = k for all k ∈ [0 .. s− 1] and the sets Mk reduces to

Mk =
{
j ∈ [0 .. s− 1] : j − δj ≤ k ≤ j − 1

}
= [k + 1 .. s− 1] .

Let {δ̃j⋆}j∈[0 .. s−1] and {δ̃ℓ∗,r}ℓ∈[tj .. tj+1−1] be respectively the effective delays associated to
γ⋆
0 , . . . , γ

⋆
s−1 and γ∗

tj , . . . , γ
∗
tj+1−1 when restricted to the time frame [tj , tj+1 − 1], i.e., for ℓ ∈

[tj .. tj+1 − 1] we define

δ̃ℓ∗,r = (ℓ− tj)−
∣∣{j ∈ [tj .. ℓ− 1] : γ∗

j = 0
}∣∣ . (234)

We prove the following lemma.

Lemma G.21. For any j ∈ [0 .. i− 1] we have

tj+1−1∑
ℓ=tj

γ∗
ℓ ≤

s−1∑
ℓ=0

γ⋆
ℓ . (235)

Proof. Fix some j ∈ [0 .. i− 1], we know that 0 ≤ γ∗
ℓ ≤ 1

L for all ℓ ∈ [tj , tj+1 − 1]. It is
enough for proving (235) to establish that γ∗

tj , . . . , γ
∗
tj+1−1 is a feasible solution of (233). Let k ∈

[tj .. tj+1 − 1], we have

γ∗
kL+ 2γ∗

kL
2

tj+1−1∑
j=k+1

γ∗
j δ̃

j
∗,r

(a)

≤ γ∗
kL+ 2γ∗

kL
2

tj+1−1∑
j=k+1

γ∗
j δ̃

j
∗

(b)

≤ γ∗
kL+ 2γ∗

kL
2
∑
j∈Mk

γ∗
j δ̃

j
∗ ≤ 1,

where the last inequality follows from the feasibility of {γ∗
k}k∈[0 .. K]. The inequality (a) follows

from

δ̃ℓ∗ := δℓ −
∣∣{j ∈ [ℓ− δℓ .. ℓ− 1

]
: γ∗

j = 0
}∣∣

=
(
[ℓ− tj ]−

∣∣{j ∈ [tj .. ℓ− 1] : γ∗
j = 0

}∣∣)+ (δℓ − [ℓ− tj ]−
∣∣{j ∈ [ℓ− δℓ .. tj − 1

]
: γ∗

j = 0
}∣∣)

(ℓ− tj)−
∣∣{j ∈ [tj .. ℓ− 1] : γ∗

j = 0
}∣∣ (236)

(234)
= δ̃ℓ∗,r,

where in (236) we use (232), i.e.,

δℓ − [ℓ− tj ] ≥ 0 and
∣∣{j ∈ [ℓ− δℓ .. tj − 1

]
: γ∗

j = 0
}∣∣ ≤ δℓ − [ℓ− tj ] ,

and (b) follows from the non-negativity of all γ∗
j and all δ̃j∗ along with the inclusion

[k + 1 .. tj+1 − 1] ⊆Mk =
{
j ∈ [0 ..K] : j − δj ≤ k ≤ j − 1

}
,

since for all ℓ ∈ [k + 1 .. tj+1 − 1] we have ℓ− 1 ≥ k and

ℓ− δℓ
(234)

≤ tj ≤ k,

as desired. This shows that γ∗
tj , . . . , γ

∗
tj+1−1 is a feasible solution of (233) from where inequal-

ity(235) is a consequence.

Remark G.22. The inequality (235) also holds on the last block [ti ,K] for the same reasons.
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Equipped with Lemma G.19 we now need to upper bound the sum γ⋆
0 + · · ·+ γ⋆

s−1, which we do
in the next lemmas. We first start by a technical lemma.

Lemma G.23 (A Technical Result). Let n > 0 be an integer and define the sequence (ui)i∈[n] by
u1 = 1 and for all i ∈ [n− 1] by the recurrent relation

ui+1 =
ui

1 + 2u2
i (n− i)

,

then, we have30

Sn :=

n∑
i=1

ui ≤ 2.

Proof. First, we prove by induction on i ∈ [n− 1] that 0 ≤ ui+1 ≤ ui. For the base case i = 1 we
have

u2 =
u1

1 + 2u2
1(n− 1)

=
1

2n− 1
≤ 1 = u1, (237)

and u2 ≥ 0 too. Now, assuming 0 ≤ ui+1 ≤ ui holds for some integer 0 ≤ i ≤ n− 2 we have

ui+2 =
ui+1

1 + 2u2
i+1(n− (i+ 1))

≤ ui+1,

since 1 + 2u2
i+1(n − (i + 1)) ≥ 1 (because i + 1 ≤ n). Moreover, we also deduce that ui+2 ≥ 0

since by the induction hypothesis we have ui+1 ≥ 0. This proves the claim, as desired.

Now, as the sequence (ui)i∈[n] is monotonically non-increasing we have

ui ≤ u2
(237)
=

1

2n− 1
, (238)

for all i ∈ [2 .. n] thus

Sn =

n∑
i=1

ui = u1 +

n∑
i=2

ui

(238)

≤ 1 +
n

2n− 1
≤ 2,

and this achieves the proof of the lemma.

Lemma G.24. For all s ≥ 0, any optimal solution γ⋆
0 , . . . , γ

⋆
s−1 of (233) satisfies

s−1∑
ℓ=0

γ⋆
ℓ ≤

2

L
. (239)

Proof. Let S = {j ∈ [0 .. s− 1] : γ⋆
s = 0} and denote by T = [s] \ S the indices for which the

stepsizes are positive. Let us prove that
s−1∑
ℓ=0

γ⋆
ℓ =

∑
ℓ∈T

γ⋆
ℓ ≤

S|T |

L
, (240)

where the sequence (Sn)n≥1 is the one defined in Lemma G.23. Once inequality (240) is estab-
lished, the desired claim (239) will follow since Sn ≤ 2 for all n ≥ 1 by Lemma G.23. Let us now
prove the inequality (240). By Theorem G.18, we know that the optimal solution {γ⋆

k}k∈[0 .. s−1] is
such that all constraints in Equation (213) (and so in (233)) are tight thus, for all ℓ ∈ T , since γ⋆

ℓ > 0
then if we let T =

{
j0, . . . , j|T |−1

}
where 0 = j0 < j1 < · · · < jm with m = |T | − 1 ≥ 031, we

have
γ⋆
ℓ =

1

L
· 1

1 + 2L
s−1∑

j=ℓ+1

γ⋆
j δ̃

j
⋆

(a)
=

1

L
· 1

1 + 2L
∑

r∈[0 ..m]
jr>ℓ

γ⋆
jr
r
,

30It can be proved that Sn −−−−−→
n→+∞

1 + arctan
(√

5− 2
√
6
)√

2 ≈ 1.4352098756. As of now, it is an

open question to prove (Sn)n≥1 is a monotonically non-decreasing sequence.
31The optimal solution is never (0, . . . , 0) since we can always take γ⋆

0 = 1
L

and all other variables to 0.
Additionally, the first stepsize γ⋆

0 if never zero.
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where in (a) we use the definition of the effective delays: as soon as one of the stepsizes is zero, it
is “removed” from the effective delays. In other words, since the effective delay counts exactly how
many stochastic gradients have been accepted by the server since the iteration 0 (this is specific to
our case here), we have

δ̃j⋆ =

{
r, if j = jr for some r ∈ [0 ..m];
0, otherwise;

thus, if we let ui = Lγ⋆
jm−i

for all i ∈ [0 ..m] then the stepsizes {γ⋆
jr
}r∈[0 ..m] can be computed

using the following recurrent system:

u0 = 1 and ui =
1

1 + 2
i−1∑
r=0

(m− r)ur

, (241)

for all i ∈ [0 ..m]. Using (241) we obtain

1

ui+1
=

1

ui
+ 2(m− i)ui,

for all i ∈ [0 ..m− 1] thus

ui+1 =
1

1
ui

+ 2(m− i)ui

=
ui

1 + 2u2
i (m− i)

; (242)

Hence, using Lemma G.23 combined with (242) yields
s∑

ℓ=0

γ⋆
ℓ =

m∑
r=0

γ⋆
jr =

m∑
r=0

ur

L

(242)
=

Sm+1

L

Lem. G.23

≤ 2

L
,

as desired. This achieves the proof of the lemma.

Finally, combining Lemmas G.21 and G.24 we obtain

K∑
ℓ=0

γ∗
ℓ =

i−1∑
j=0

tj+1−1∑
ℓ=tj

γ∗
ℓ +

K∑
j=ti

γ∗
j

Lem. G.21

≤
m−1∑
j=0

tj+1−1∑
ℓ=tj

γ⋆
ℓ +

K∑
j=ti

γ⋆
j

Lem. G.24

≤
i−1∑
j=0

2

L
+

2

L

=
2(i+ 1)

L

= 2

i∑
j=0

γ
(R)
tj

= 2

K∑
ℓ=0

γ
(R)
ℓ ,

and this concludes the proof of the main theorem.
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H EXPERIMENTS

H.1 THE STOCHASTIC REPETITION BENCHMARK

We present on Figure 6a the measures of runtime and the number of iterations of both Gurobi
11 and the MMAHH solver on the Stochastic Repetition benchmark, which is the benchmark that
corresponds to LW which consists of repeating c times a randomly sampled elementary sequence
of length n (with entries chosen uniformly in random between 1 and 100). We run both solvers
on three instances of this benchmark, namely, (n, c) = (9, 5), (n, c) = (8, 4) and (n, c) = (9, 4).
While the MMAHH keeps a comparable performance compared to the Cyclic Staircase Benchmark
(see Figure 3) in both the runtime and in number of iterations, instead, Gurobi has much more
difficulties with this benchmark. More precisely, the MMAHH attains up to a 105× speed-up in
runtime while requiring up to 5000× less iterations.

H.2 THE RANDOM SEQUENCES BENCHMARK

In this section we present the performance results of Gurobi and the MMAHH on the Random Se-
quences benchmark, which corresponds to lists LW in Rd whose entries are randomly chosen be-
tween 0 and 10000. For this benchmark again, the MMAHH again outperforms Gurobi across all
tested dimensions, achieving speed-ups of up to 5 · 104 factor, and reducing the number of iterations
by up to a factor of 100. We present the results in Figure 6b.

(a) Stochastic Repetition Benchmark.

(b) Random Sequences Benchmark.

Figure 6: Comparison of solver runtime (left) and number of iterations (right) for Gurobi (blue) vs.
MMAHH (orange). For the MMAHH, means and standard deviations are taken over 10 runs.
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H.3 LANDSCAPE OF THE DISCRETE FUNCTION

This experiment aims at representing the function φ(w) := ⟨a | Ψ(w)⟩ for w ∈ {0, 1}d, we choose
to represent this function for the instance (n, c) = (5, 4) of the Cyclic Staircase Benchmark (Fig-
ure 7a), the instance (n, c) = (5, 4) of the Stochastic Repetition Benchmark (Figure 7b). For that,
we plot the values of 2d the bit-strings in {0, 1}d. We group the points w by their Hamming distance
to the optimum w∗, more precisely, the x-axis corresponds to the quantity d− dH(w,w∗).

For comparison between the landscapes in Figures 7a and 7b and the standard functions used to
compare hyper-heuristics, we provide in Figure 8 plots for the three most used benchmarks. These
functions presents valleys and hills which are clearly visible. It is worth mentioning that the theo-
retical work of Bendahi et al. (2025) applies to a class of functions similar to these three, which is
not the case of the landscapes in Figures 7a and 7b.

(a) Cyclic Staircase Benchmark. (b) Stochastic Repetition Benchmark.

Figure 7: Instance (n, c) = (5, 4) on the Two Benchmarks

f(x)

∥x∥10

n

n

(a) ONEMAX.

f(x)

∥x∥10

n− d

n− d n

n− d+ 1
2

(b) CLIFFd.

f(x)

∥x∥10

n

n−m n

n+m

m

(c) JUMPm.

Figure 8: Plot of the Three Most Common Benchmarks in Hyper-Heuristics.
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I NOTES ON THE UNIQUENESS OF OPTIMAL SOLUTIONS

A natural question following Theorem 4.6 is whether there exists a unique optimal solution to the
problem (Pd) or not and under which sufficient condition(s) uniqueness can hold.

First, we show that we can always construct an instance of the problem (Pd) that has more than one
optimal solution.
Lemma I.1 (Proof in Appendix E.5). For any positive integer d ≥ 2, there exists a strictly upper
triangular Rd×d matrix M with non-negative entries and a vector a ∈ Rd

+ such that problem (Pd)

admits at least two solutions in Rd
+.

The specific instance built in the previous lemma relied on the fact that a can have distinct coordi-
nates. We can ask the same question when all coordinates of a are equal32, which reduces, due to
the scale-invariance of (Pd) in a, to a = (1, . . . , 1)

⊤.
Lemma I.2. For any 2 × 2 strictly upper triangular matrix M with non-negative entries, if a =
(1, 1)

⊤ then the problem (P2) admits a unique global maximizer.

However, Lemma I.2 fails to hold in higher dimensions. For example, the following instance of
(Pd) in dimension d = 3

M =

(
0 2 0
0 0 1
0 0 0

)
and a =

(
1
1
1

)
(243)

has the following two maximizers: Λ∗
1 = (1, 0, 1)

⊤ and Λ∗
2 =

(
1
2 ,

1
2 , 1
)⊤

. Nonetheless, the follow-
ing simple and sufficient condition ensures the uniqueness of the optimal solution of (Pd).
Theorem I.3 (A Sufficient Condition for Uniqueness). For any positive integer d, if the matrix M
is strictly upper triangular with non-negative entries and satisfies, for all k ∈ [d]

d∑
i=1
i<k

Mi,k < 1, (244)

then with the vector a = (1, . . . , 1)
⊤ ∈ Rd the problem (Pd) admits a unique global maximizer.

For further details and proofs of Lemmas I.1 and I.2 and Theorem I.3, the interested reader is invited
to consult Appendix E.5 where all the claims stated in this section are rigorously established.

32This choice is motivated in Section 5. In the analysis of asynchronous gradient descent, the problem (Pd)
naturally arises and the vector a is simply (1, . . . , 1)⊤.
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J NOTE ON THE USAGE OF LARGE LANGUAGE MODELS

The authors acknowledge the use of Large Language Models to assist in polishing the writing of
this manuscript. The LLMs were used only for language refinement and did not contribute to the
research ideas, experimental design, analysis, or conclusions exposed here.
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