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ABSTRACT

Physics-informed neural networks (PINNs) provide a machine learning framework
to solve differential equations. However, PINNs do not inherently consider mea-
surement noise or model uncertainty. In this paper, we propose the UQ-PINN
which is an extension of the PINN with additional outputs to approximate noise.
The multi-output architecture enables the approximation of the mean and standard
deviation in data using negative Gaussian log-likelihood loss. The performance of
the UQ-PINN is demonstrated on the Poisson equation with additive noise.

1 INTRODUCTION

Alternative approaches to approximate partial differential equation (PDE) solutions have emerged
with advances in scientific machine learning (SciML). One of the methods that recently emerged
in SciML is Physics-Informed Neural Networks (PINNs) (Lu et al., 2021). Using this approach,
physical constraints are encoded as additional loss functions, where information about the physical
system is used as a regularizer when fitting the model (Raissi et al., 2017; Karniadakis et al., 2021).
PINNs, also called vanilla PINNs, typically utilize a mean squared error loss function and cannot
quantify uncertainty.

Several approaches have been proposed to enable uncertainty quantification in PINNs. These include
negative Gaussian log-likelihood as a loss function and a single scalar, which is used to approximate
additive noise in the data set Xiang et al. (2021). In addition, Bayesian neural networks in combination
with sampling methods such as Monte Carlo or Variational Inference Sun & Wang (2020); Dandekar
et al. (2020); Linka et al. (2022); Zou et al. (2022). Another approach is to create an ensemble of
models such as PINNs Zou et al. (2022); Psaros et al. (2023). However, many of these types of
methods are generally computationally expensive and do not always account for heteroscedastic noise
in the data.

We propose a multi-output PINN architecture called the UQ-PINN that can quantify aleatoric
uncertainty and account for measurement noise. This approach is computationally inexpensive and can
closely approximate the standard deviation for different types of homoscedastic and heteroscedastic
noise. We evaluate the method on the Poisson equation corrupted with additive noise and compare its
performance with a regular PINN.

2 METHODS

2.1 PHYSICS-INFORMED NEURAL NETWORKS

Given a system of parameterized nonlinear partial differential equations (PDEs) of the form

F [u(x)] = f(x), x ∈ Ω; B[u(x)] = b(x), x ∈ Γ, (1)

where x is the D dimensional space or spacetime coordinate vector defined in the physical domain
Ω ⊂ RD with boundary Γ. B(·) is a boundary condition operator and b(x) are Dirichlet boundary
conditions. F (·) is a differential operator and f(x) is typically referred to as the source term or
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driving force. The goal of a PINN is to find a surrogate model û(x, θ) that approximates the unknown
PDE solution u(x) of this PDE system. The PINN û(x, θ) is parameterized by θ, the parameters of
the neural network. In the remainder of the paper, the dependence of û on θ is omitted for simplicity.

We focus on forward-deterministic PDE problems, in which the operators F and B are known. For
the source terms f(x) and the boundary conditions b(x), we have access to noisy measurements at a
finite number of (collocation) points in the domain. Specifically, the observations f̃i of the actual
source term and measurements at the boundary conditions are corrupted with noise:

f̃i = f(x
(f)
i ) + ϵf , b̃i = b(x

(b)
i ) + ϵb , (2)

where ϵf ∼ N (0, σ2
(f)(x

(f)
i )) and ϵb ∼ N (0, σ2

(b)(x
(b)
i )) are Gaussian noise terms with heteroscedas-

tic variance. Noise on the source term can be interpreted as a lack of knowledge of the exact
parameters of the PDE. Noise at the boundary conditions can be a direct result of noisy sensor
measurements. Measurements at the Nf collocation points have been sampled Sf times, giving a
data set D(f) of Nf × Sf data points. The boundary condition data set D(b) contains Nb × Sb data
points.

2.2 UQ-PINN

To quantify aleatoric uncertainty, we propose to extend the PINN with additional outputs to predict the
standard deviations σ̂f and σ̂b as a function of input coordinates x, we call this extension UQ-PINN.
In our problem set-up, we allow for additive noise both in the source terms and on the boundary
condition measurements. Our goal is not only to estimate the PDE solution but also the standard
deviations to help quantify the uncertainty. We use feedforward neural networks with the hyperbolic
tangent activation function in all hidden layers. The output layer uses linear activation for the
estimation of the mean and exponential activation for estimation of the standard deviation to ensure
positive values.
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Figure 1: UQ-PINN. An overview of the PINN architecture applied to the Poisson equation. The
inputs are x for location and t for time. The feedforward neural network produces an estimate û(x, t)
of the PDE solution u(x, t), as well as the estimated standard deviations σ̂f (x, t) and σ̂b(x, t). In the
PDE block, the left-hand side of (1) is obtained by automatic differentiation, which is compared
with the residual of the PDE and combined with the standard deviation σ̂f (x, t) to contribute to the
loss Lf . In the boundary condition block, the mean estimate is compared with measurements at the
boundary conditions and combined with standard deviation σ̂b(x, t) to contribute to the loss Lb.
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PINNs typically use the mean squared error loss function to estimate the solution u of the PDE and
are therefore not able to estimate the standard deviations of the noise, σf and σb. Instead, we utilized
the mean negative Gaussian log-likelihood (NLL) as a loss function to enable estimating the standard
deviation. Combining the NLL loss with additional output in the architecture enables UQ-PINN to
estimate the mean and standard deviation of the data.

The loss function L = Lf + Lb combines individual losses Lf for noisy observations of the source
term and Lb for the boundary conditions. In effect, Lf acts as a regularizer that penalizes solutions
that do not adhere to the PDE dynamics, and Lb enforces the consistency with the boundary conditions.
These two individual losses are defined as

Lf =
1

NfSf

NfSf∑
i=1

NLL(f̃i; F (û(x
(f)
i ), σ̂2

(f)(x
(f)
i )) , Lb =

1

NbSb

NbSb∑
i=1

NLL(b̃i; û(x
(b)
i ), σ̂2

(b)(x
(b)
i )),

with û the mean prediction and σ̂2
(·) the estimated standard deviation.

3 EXPERIMENTS

Data. To validate our UQ-PINN method, we consider the Poisson equation −∂2u
∂x2 = π2 sin(πx),

with boundary conditions u(x) = 0, x ∈ {−1, 1}, and analytical solution u(x) = sin(πx) in the
domain Ω = [−1, 1]. Df has 16 uniformly sampled sensor locations with Sf = 5 samples per
domain point. Db contains of two boundary points, x ∈ {−1, 1}, which are sampled Sb = 5 times.
For performance evaluation, a test data set with Nt = 1000 uniformly sampled points was generated in
the Poisson equation domain and the exact solution was calculated. Table 1 summarizes the variances
of the noise added to the data sets.

Noise type σf (x) σb(x = −1) σb(x = 1)

Homoscedastic 5.0× 10−2 5.0× 10−2 5.0× 10−2

Linear 5.0× 10−2 × (x+ 1)×Nf 5.0× 10−2 5.0× 10−1

Periodic 1
8 |sin(2πx/max(x))| 5.0× 10−2 5.0× 10−1

Table 1: Different types of generated noise added in the data sets.

Experimental setup and training details. The PINN architectures consist of 3 hidden layers with
50 neurons per layer initialized using the uniform Glorot distribution. The network was trained for
100,000 epochs using the ADAM optimizer with a learning rate of 1× 10−3. The σ̂ networks of the
UQ-PINN consist of 3 layers with 10 neurons per layer. The weights of the subnetworks are frozen
for half of the number of epochs. After half the number of epochs, the weights are unfrozen and the
σ̂ networks are updated together with the mean estimation network.

Evaluation metrics. We use various metrics to compare the performance of the different approaches.
All considered architectures, except vanilla PINN, also output an estimate of the standard deviations
σ̂(b) and σ̂(f), which correspond to the standard deviations of noise at the boundary conditions and of
the noise for the source term. We measure the quality of our estimates using the Jensen-Shannon
divergence, which is a symmetric distance measure between two distributions P and Q Fuglede &
Topsoe (2004):

JS(P ||Q) =
1

2
KL

(
P

∥∥∥∥P +Q

2

)
+

1

2
KL

(
Q

∥∥∥∥P +Q

2

)
, (3)

To evaluate the ability of the different methods to estimate the PDE solution, we use the relative error
L2 calculated at all test points:

L2 =
1

Ntest

∥u− û∥22
∥u∥22

,

where u is the solution the PDE and û is the predicted solution with PINNs.
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4 RESULTS

Figure 2 shows examples of the estimated solution for the Poisson equation and standard deviations of
the noise using the split-hidden-unit network. We observe that our approach is capable of estimating
accurate solutions while also estimating the correct pattern of the standard deviation of the noise.

(a) (b) (c)

Figure 2: Estimated UQ-PINN solution. The first row gives an example of the sampled data points
used to train the PINNs and the predictions, û, of the UQ-PINN. The second row illustrates the noise
in the source term ϵf and the two estimated standard deviations 2σ̂f . Different columns correspond
to different types of noise: (a) homoscedastic, (b) linearly increasing, and (c) periodic.

Table 2 presents the Jensen-Shannon divergence (JS PDE for the source term and JS BC for the bound-
ary conditions), which measures the difference between the original and the estimated distribution.
We observe that the UQ-PINN methods outperform the constant method in terms of JS-divergence
for both estimation of the noise added to the boundary conditions and the source term. The only
exception is homoscedastic noise, where the PINN with constant variable architecture slightly outper-
forms the UQ-PINN in terms of JS-divergence for the source term. This is not surprising, since the
constant-variable architecture has a homoscedastic noise assumption due to having a single constant
to estimate noise.

Method Noise Mean residual Mean relative L2 JS PDE JS BC

Split Homoscedastic 6.44 × 10−3 2.07× 10−2 5.50× 10−2 1.50 × 10−1

Constant Homoscedastic 7.62× 10−3 2.10× 10−2 3.47 × 10−2 1.70× 10−1

Vanilla Homoscedastic 7.93× 10−3 2.01 × 10−2 - -

Split Linear 4.85× 10−2 2.37× 10−1 1.21 × 10−1 1.49 × 10−1

Constant Linear 3.70× 10−2 2.22× 10−1 1.82× 10−1 5.46× 10−1

Vanilla Linear 1.89 × 10−2 2.20 × 10−1 - -

Split Periodic 1.03 × 10−2 2.21 × 10−1 1.49 × 10−1 6.64 × 10−2

Constant Periodic 1.54× 10−2 2.23× 10−1 1.82× 10−1 1.16× 10−1

Vanilla Periodic 1.68× 10−2 2.22× 10−1 - -

Table 2: Performance of PINN methods estimating the Poisson equation with noise. The best
results are highlighted in bold. Results are averaged over 25 runs with different seeds. Two baselines
are considered: PINN with a constant parameter for the standard deviation of the noise (Xiang et al.,
2021) and vanilla PINN (Raissi et al., 2017).
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5 CONCLUSION

In this paper, we provide a computationally inexpensive approach for quantification of aleatoric
uncertainty in PINNs called UQ-PINN. In the UQ-PINN architectures, we extend the PINN by incor-
porating additional output. These outputs enabled the network to learn a function that approximates
the standard deviation of noise in the datasets with respect to the input. We used the negative Gaussian
log-likelihood loss function for the proposed UQ-PINN. We compared the UQ-PINN architecture
with vanilla PINN and PINN with an external constant to estimate the standard deviation of the noise
in data. The comparison was made in terms of the quality of the approximation of the PDE solution
using L2 score and JS-divergence in terms of the noise variance estimation accuracy.

The UQ-PINN performed similarly to other PINN architectures in terms of mean error L2. However,
the vanilla method is unable to approximate noise, and the constant architecture can only estimate
homoscedastic noise. We found that the constant architecture demonstrates performance comparable
to that of UQ-PINN in scenarios involving homoscedastic noise or a limited number of data samples.
In the case of heteroscedastic noise, the UQ-PINN showed a performance superior to that of constant-
variable PINN. Both in terms of the estimation of the mean solution and standard deviation of the
noise.

5



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

REFERENCES

Raj Dandekar, Karen Chung, Vaibhav Dixit, Mohamed Tarek, Aslan Garcia-Valadez, Krishna Vishal
Vemula, and Chris Rackauckas. Bayesian neural ordinary differential equations. arXiv preprint
arXiv:2012.07244, 2020.

Bent Fuglede and Flemming Topsoe. Jensen-Shannon divergence and Hilbert space embedding. In
International symposium on Information theory, 2004. ISIT 2004. Proceedings., pp. 31. IEEE,
2004.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kevin Linka, Amelie Schäfer, Xuhui Meng, Zongren Zou, George Em Karniadakis, and Ellen Kuhl.
Bayesian physics informed neural networks for real-world nonlinear dynamical systems. Computer
Methods in Applied Mechanics and Engineering, 402:115346, 2022.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning library
for solving differential equations. SIAM Review, 63(1):208–228, 2021.

Apostolos F Psaros, Xuhui Meng, Zongren Zou, Ling Guo, and George Em Karniadakis. Uncertainty
quantification in scientific machine learning: Methods, metrics, and comparisons. Journal of
Computational Physics, 477:111902, 2023.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561,
2017.

Luning Sun and Jian-Xun Wang. Physics-constrained Bayesian neural network for fluid flow
reconstruction with sparse and noisy data. Theoretical and Applied Mechanics Letters, 10(3):
161–169, 2020.

Zixue Xiang, Wei Peng, Xiaohu Zheng, Xiaoyu Zhao, and Wen Yao. Self-adaptive loss balanced
physics-informed neural networks for the incompressible Navier-Stokes equations. arXiv preprint
arXiv:2104.06217, 2021.

Zongren Zou, Xuhui Meng, Apostolos F Psaros, and George Em Karniadakis. NeuralUQ: A
comprehensive library for uncertainty quantification in neural differential equations and operators.
arXiv preprint arXiv:2208.11866, 2022.

6


	Introduction
	Methods
	Physics-informed neural networks
	UQ-PINN

	Experiments
	Results
	Conclusion

