
Published as a conference paper at ICLR 2024

NEUR2RO:
NEURAL TWO-STAGE ROBUST OPTIMIZATION

Justin Dumouchelle∗
University of Toronto

Esther Julien
TU Delft

Jannis Kurtz
University of Amsterdam

Elias B. Khalil
University of Toronto

ABSTRACT

Robust optimization provides a mathematical framework for modeling and solv-
ing decision-making problems under worst-case uncertainty. This work addresses
two-stage robust optimization (2RO) problems (also called adjustable robust op-
timization), wherein first-stage and second-stage decisions are made before and
after uncertainty is realized, respectively. This results in a nested min-max-
min optimization problem which is extremely challenging computationally, es-
pecially when the decisions are discrete. We propose Neur2RO, an efficient ma-
chine learning-driven instantiation of column-and-constraint generation (CCG),
a classical iterative algorithm for 2RO. Specifically, we learn to estimate the
value function of the second-stage problem via a novel neural network archi-
tecture that is easy to optimize over by design. Embedding our neural net-
work into CCG yields high-quality solutions quickly as evidenced by experi-
ments on two 2RO benchmarks, knapsack and capital budgeting. For knap-
sack, Neur2RO finds solutions that are within roughly 2% of the best-known
values in a few seconds compared to the three hours of the state-of-the-art exact
branch-and-price algorithm; for larger and more complex instances, Neur2RO
finds even better solutions. For capital budgeting, Neur2RO outperforms three
variants of the k-adaptability algorithm, particularly on the largest instances, with
a 10 to 100-fold reduction in solution time. Our code and data are available at
https://github.com/khalil-research/Neur2RO.

1 INTRODUCTION

A wide range of real-world optimization problems in logistics, finance, and healthcare, among
others, can be modeled by discrete optimization models (Petropoulos et al., 2023). While such
mixed-integer (linear) problems (MILP) can still be challenging to solve, the problem size that
can be tackled with modern solvers has increased significantly thanks to algorithmic developments
(Wolsey, 2020; Achterberg & Wunderling, 2013). In recent years, the incorporation of Machine
Learning (ML) models into established algorithmic frameworks has received increasing attention
(Zhang et al., 2023; Bengio et al., 2021).

While most of ML for discrete optimization has focused on deterministic problems, in many cases,
decision-makers face uncertainty in the problem parameters, e.g., due to forecasting or measure-
ment errors in quantities of interest such as customer demand in inventory management. Besides
the stochastic optimization approach, for which learning-based heuristics have been proposed re-
cently (Dumouchelle et al., 2022), another popular approach to incorporate uncertainty into opti-
mization models is robust optimization, where the goal is to find solutions which are optimal con-
sidering the worst realization of the uncertain parameters in a pre-defined uncertainty set (Ben-Tal
et al., 2009). This more conservative approach has been extended to two-stage robust problems
(2RO) where some of the decisions can be made on the fly after the uncertain parameters are real-
ized (Ben-Tal et al., 2004); see Yanıkoğlu et al. (2019) for a survey.

Example (Capital Budgeting). As a classical example of a two-stage robust problem, consider
the capital budgeting problem as defined in Subramanyam et al. (2020) where a company decides
to invest in a subset of n projects. Each project i has an uncertain cost ci(ξ) and an uncertain profit

∗Corresponding author: justin.dumouchelle@mail.utoronto.ca

1

https://github.com/khalil-research/Neur2RO
mailto:justin.dumouchelle@mail.utoronto.ca

Published as a conference paper at ICLR 2024

ri(ξ) that both depend on the nominal cost and profit, respectively, and some risk factor ξ that
dictates the difference from the nominal values to the actual ones. This risk factor, which we call an
uncertain scenario, is contained in a given uncertainty set Ξ. The company can invest in a project
either before or after observing the risk factor ξ, up to a budget B. In the latter case, the company
generates only a fraction η of the profit, which reflects a penalty of postponement. The objective of
the capital budgeting problem is to maximize the total revenue subject to the budget constraint. This
problem can be formulated as:

max
x∈X

min
ξ∈Ξ

max
y∈Y

r(ξ)⊺(x+ ηy) (1a)

s.t. x+ y ≤ 1 (1b)
c(ξ)⊺(x+ y) ≤ B. (1c)

Here, X = Y = {0, 1}n and xi and yi are the binary variables that indicate whether the company
invests in the i-th project in the first- or second-stage, respectively. Constraint 1b ensures that the
company can invest in each project only once and constraint 1c ensures that the total cost does not
exceed the budget.

2RO with integer decisions is much harder to solve than deterministic MILPs, especially when
the uncertain parameters appear in the constraints and the second-stage decisions are discrete. Even
evaluating the objective value of a solution in this case is algorithmically challenging (Zhao & Zeng,
2012). In Subramanyam et al. (2020), none of the generated capital budgeting instances could be
solved even approximately in a two-hour time limit for n = 25, terminating with an optimality gap
of around 6%. In contrast to deterministic optimization problems, there is only limited literature on
using ML methods to improve robust optimization (Julien et al., 2022; Goerigk & Kurtz, 2022).

Contributions. We propose Neural Two-stage Robust Optimization (Neur2RO), an ML framework
that can quickly compute high-quality solutions for 2RO. Our contributions are as follows:

• ML in a novel optimization setting: 2RO (also known as adjustable RO) has been receiv-
ing increased interest from the operations research community (Yanıkoğlu et al., 2019) and
our work is one of the first to leverage ML in this setting.

• ML at the service of a classical optimization algorithm: to deal with the highly con-
strained nature of real-world optimization problems and rather than attempting to predict
solutions directly, we “neuralize” a well-established 2RO algorithm, a strategy that com-
bines the best of both worlds: correctness of an established algorithm with the predictive
capabilities of an accurate neural network.

• A compact, generalizable neural architecture that is MILP-representable and estimates
the thorny component of a 2RO problem, namely the value of the second-stage problem.
The network is invariant to problem size and parameters, allowing, for example, the use
of the same architecture for capital budgeting instances with a different number of projects
and budget parameters.

• Competitive experimental results on capital budgeting and a two-stage robust knapsack
problem, both benchmarks in the 2RO literature. Neur2RO finds solutions that are of sim-
ilar quality to or better than the state of the art. Large instances benefit the most from our
method, with 100× reduction and 10 to 100× reductions in running time for knapsack and
capital budgeting, respectively.

2 BACKGROUND

2.1 TWO-STAGE ROBUST OPTIMIZATION

2RO problems involve two types of decisions. The first set of decisions, x, are referred to as here-
and-now decisions and are made before the uncertainty is realized. The second set of decisions,
y, are referred to as the wait-and-see decisions and can be made on the fly after the uncertainty
is realized. The uncertain parameters ξ are assumed to be contained in a convex and bounded
uncertainty set Ξ ⊂ Rq . The 2RO problem aims at finding a first-stage solution x which minimizes
the worst-case objective value over all scenarios ξ ∈ Ξ, where for each scenario the best possible

2

Published as a conference paper at ICLR 2024

second-stage decision y(ξ) is implemented. Mathematically, a 2RO problem is given by

min
x∈X

max
ξ∈Ξ

min
y∈Y

c(ξ)⊺x+ d(ξ)⊺y (2a)

s.t. T (ξ)x+W (ξ)y ≤ h(ξ), (2b)

where X ⊆ Rn and Y ⊆ Rm are feasible sets for the first and second stage decisions, respectively.
In this work, we consider the challenging case of integer sets X and Y . All parameters of the
problem, namely c(ξ) ∈ Rn,d(ξ) ∈ Rm,W (ξ) ∈ Rr×m, T (ξ) ∈ Rr×n, and h(ξ) ∈ Rr depend
on the scenario ξ. We make the following assumption which is satisfied for the capital budgeting
problem (and implicitly knapsack, which does not involve constraint uncertainty).

Assumption. For every x ∈ X , we have a method which calculates a scenario ξ ∈ Ξ for which the
second-stage constraints T (ξ)x+W (ξ)y ≤ h(ξ) over y ∈ Y are infeasible or verifies that no such
scenario exists.

Both single- and multi-stage robust mixed integer problems are NP-hard even for deterministic prob-
lems which can be solved in polynomial time Buchheim & Kurtz (2018). Compared to single-stage
problems, which are often computationally tractable as they can be solved using reformulations Ben-
Tal et al. (2009) or constraint generation Mutapcic & Boyd (2009), two-stage problems are much
harder to solve. When dealing with integer first-stage and continuous recourse, CCG is one of the
key approaches Zeng & Zhao (2013); Tsang et al. (2023). However, many problems, such as the
ones we study here, deal with (mixed-)integer second-stage decisions. While an extension of CCG
has been proposed that is able to handle mixed-integer recourse Zhao & Zeng (2012), this method is
not well-established and often intractable and the results do not apply for pure integer second-stage
problems.

In the case that the uncertainty only appears in the objective function, the 2RO can be solved by
oracle-based branch-and-bound methods (Kämmerling & Kurtz, 2020), branch-and-price (Arslan &
Detienne, 2022), or iterative cut generation using Fenchel cuts (Detienne et al., 2024). For special
problem structures and binary uncertainty sets, a Lagrangian relaxation can be used to transform
2RO problems with constraint uncertainty into 2RO with objective uncertainty which can then be
solved by the aforementioned methods (Subramanyam, 2022; Lefebvre et al., 2023).

2.2 COLUMN-AND-CONSTRAINT GENERATION

The main idea of CCG is to iterate between a main problem (MP) and an adversarial problem (AP).
The MP is a relaxation of the original problem that only considers a finite subset of the uncertainty
set Ξ′ ⊂ Ξ. The latter problem can be modeled as a MILP by introducing copies of the second-
stage decision variables y for each of the scenarios in Ξ′. After calculating an optimal solution of
the MP, the AP finds new scenarios in the uncertainty set that cut off the current solution in the
MP. When no such scenario can be found, the optimality of the current MP solution is guaranteed.
For mathematical formulations of the two problems and a more detailed description of the CCG
procedure, see Figure 1 and Appendix B.1.

CCG often fails to calculate an optimal solution in reasonable time since both the MP and the AP
are very hard to solve. In each iteration, the size of the MP increases leading to it being difficult to
solve to optimality even with commercial MILP solvers such as Gurobi (Gurobi Optimization, LLC,
2023). Furthermore, solving the AP is extremely challenging for integer second-stage variables. In
Zhao & Zeng (2012), the authors present a column-and-constraint algorithm which solves the AP if
the second stage is a mixed-integer problem; this leads to a CCG for the AP inside the main CCG, a
most intractable combination. Additionally, the method of Zhao & Zeng (2012) is not applicable to
purely integer second-stage decisions such as the problems we consider here.

3 METHODOLOGY

At a high level, our approach aims to train a neural network that predicts the optimal second-stage
objective value function and then integrates this model within a CCG framework to obtain first-stage
decisions. We rely on a training dataset of historical instances that can be used or generated, as is
typically assumed in ML-for-optimization work.

3

Published as a conference paper at ICLR 2024

Neur2RO

CHECK OPTIMALITYAdd to

Terminate

Optimal

 MAIN PROBLEM

CCG

 ADVERSARIAL PROBLEM Neur2RO

CCG

Not Optimal

b

a c

d

Figure 1: Column-and-constraint generation: in each iteration, a main problem (box (a)) is solved to
find a good first-stage solution x⋆ for the set of scenarios that have been identified thus far (initially,
none). Then, an adversarial problem (box (c)) is solved to obtain a new scenario for which the
solution x⋆ is not feasible anymore in MP. If no such scenario exists, then x⋆ is optimal and CCG
terminates. Otherwise, the adversarial scenario is added to the set of worst-case scenarios and we
iterate to MP. For each of the MP and AP, we show two versions: classical (CCG, boxes (a) and (c))
and learning-augmented (Neur2RO, dashed boxes (b) and (d)).

3.1 LEARNING MODEL

As mentioned before, CCG is computationally very expensive. Both the MP and AP contribute to its
intractability (see Figure 1 boxes (a) and (c) for descriptions). In the MP, for each added scenario, a
new second-stage decision y is introduced. When a large number of scenarios are required to obtain
a robust solution, the number of variables grows rapidly. Moreover, the AP is especially hard when
the second-stage decisions are integer, which is the case we consider. In our learning-augmented
approach, we replace the intractable elements of the CCG with MILP representations of a trained
NN which is computationally much easier to handle (Figure 1).

We train a neural network that can accurately predict the optimal value of the second-stage problem
for a given input of a first-stage decision, an uncertainty realization, and the problem’s specification,
P . The problem specification refers to the coefficients and size of the optimization problem, e.g.,
the nominal values of the profit and costs in the capital budgeting problem. More formally we train
a neural network NNΘ(·), to approximate the optimal value of the integer problem

NNΘ(x, ξ,P) ≈ min
y∈Y

{cP(ξ)⊺x+ dP(ξ)
⊺y : WP(ξ)y ≤ hP(ξ)− TP(ξ)x}, (3)

where Θ are the weights of the neural network. For ease of notation, we hereafter omit P in the
formulation. For more details on the architecture of NNΘ(·), see Section 3.3. Alternatively, as
cP(ξ)

⊺x is a scalar product of the input vectors, we instead could only predict the second-stage ob-
jective, i.e., dP(ξ)

⊺y, subject to the same constraints. However, as demonstrated in Appendix H.3,
predicting the sum of first- and second-stage objectives achieves higher-quality solutions.

3.2 ML-BASED COLUMN-AND-CONSTRAINT GENERATION

Having defined the learning task, we now describe the ML-based approximate CCG algorithm. For
an overview of this method, see Figure 1.

Main Problem. Given a finite subset of scenarios Ξ′ ⊂ Ξ, we reformulate the MP using an argmax
operator which selects a scenario that achieves the worst objective function value when replacing
the second-stage objective value by the neural network formulation.

min
x∈X ,y∈Y,ξa∈Ξ

c(ξa)
⊺x+ d(ξa)

⊺y (4a)

s.t. W (ξa)y + T (ξa)x ≤ h(ξa), (4b)

ξa ∈ argmaxξ∈Ξ′

{
NNΘ(x, ξ)

}
. (4c)

Modeling the argmax can be done by adding additional linear constraints and binary variables,
which we explicitly show in Appendix C. The MP results in a MILP formulation.

4

Published as a conference paper at ICLR 2024

This formulation is indeed not the only option; for example, one could instead consider another for-
mulation, called max, which provides a more intuitive formulation and does not require modeling
second-stage variables; details are provided in Appendix H.1. However, equation 4 has one key
property that motivates its efficacy. From the machine learning perspective, rather than requiring a
neural network to be an accurate estimator of the objective for each scenario, we only require that the
neural network be able to identify the maximal scenario. Prediction inaccuracy is then compensated
for in equation 4a by exactly modeling the second-stage cost. As a result, when solving the MP, the
true optimal first-stage decision for the selected scenario will be the minimizer, rather than a poten-
tially suboptimal first-stage decision based on any inaccuracy of the learning model. Appendix H.1
presents an ablation comparing both the solution quality of the argmax and max formulations on
the knapsack problem, and establishes that the argmax formulation indeed computes higher quality
solutions across every instance.

Adversarial Problem. In the AP of Neur2RO, we replace the inner optimization problem over
y by its prediction NNΘ(x

⋆, ξ), where x⋆ is given (see Figure 1 box (d)). When we deal with
constraint uncertainty, we first check if there exists a scenario ξ ∈ Ξ, such that no feasible y ∈ Y
exists for the constraints

W (ξ)y + T (ξ)x⋆ ≤ h(ξ),

which we can do by the assumption from Section 2.1. If such a scenario exists, we add it to Ξ′

and continue with solving the MP again. Note that in this case x⋆ is not feasible for MP in the
next iteration. If no such scenario could be found, we calculate an optimal solution ξ⋆ of the AP
in box (d) of Figure 1 which can be done by using the MILP representation for NN. Note that if
Ξ is a polyhedron or an ellipsoid, then this problem results in a mixed-integer linear or quadratic
problem, respectively, which can be solved by state-of-the-art solvers such as Gurobi. We compare
the optimal value of the latter problem with the objective values of all scenarios that were considered
in the MP before. If the following holds

max
ξ∈Ξ

NNΘ(x
⋆, ξ) ≥ max

ξ∈Ξ′
NNΘ(x

⋆, ξ) + ε (5)

for a pre-defined accuracy parameter ε > 0, then we add ξ⋆ to Ξ′ and continue with the MP.
Otherwise, we stop the algorithm. Finally, note that we can calculate both types of scenarios in
each iteration and add them both to Ξ′ before we iterate to the MP. As the adversarial problem
requires finding the worst-case uncertainty over a neural network’s input, heuristic approaches may
significantly improve solving time with minimal degradation in solution quality. Appendix H.2
presents an ablation demonstrating significantly lower solution time at a minimal cost of solution
quality for sampling- and relaxation-based heuristics.

Convergence. Since our algorithm does not apply the standard CCG steps, the convergence guar-
antee from the classical algorithm does not hold. However, we prove in Appendix F that it holds if
only finitely many first-stage solutions exist, which is the case if all first-stage variables are integer
and X is bounded; this indeed holds for the knapsack and capital budgeting problems.

Theorem 1. If X is finite, the ML-based CCG terminates after a finite number of iterations.

3.3 ARCHITECTURE

For the ML-based CCG, one requirement is the optimization, in each iteration, over several trained
neural networks in the MP (one for each scenario in equation 4c) and a single trained neural network
in the AP. Generally, increasing the size of the networks will lead to more challenging and potentially
intractable optimization problems. For that reason, developing an architecture that can be efficiently
optimized over is a crucial aspect of an efficient ML-based CCG algorithm.

To achieve efficient optimization, we embed the first-stage decisions, x, and a scenario, ξ, into
low-dimensional embeddings using networks Φx and Φξ, respectively. These embeddings are con-
catenated and passed through a final small neural network (the Value Network) Φ that predicts the
objective of the optimal second-stage response; see Figure 2 for a pictorial representation.

Main Problem Optimization. When representing the trained models in the MILP, we only have
to represent the embedding network Φx and the small value network Φ, which can be done by
classical MILP representations of ReLU NNs (Fischetti & Jo, 2018). Since the scenario parameters
are not variables here, the scenario embeddings Φξ(ξ

k) can be precomputed via a forward pass

5

Published as a conference paper at ICLR 2024

 First-stage
 Embedding
 Network

 Scenario
 Embedding
 Network

 Value
 Network

as estimate for

Figure 2: Neural network architecture for ML-based CCG. The current first-stage solution, x⋆, is
embedded once using the network Φx(·). A scenario ξk is embedded using the network Φξ(·).
To estimate the value of the second-stage optimization problem corresponding to a particular pair
(x⋆, ξk), the two embedding vectors are concatenated into one (dashed arrows) and then passed into
the final Value Network.

for each scenario, i.e., no MILP representation is needed for Φξ. If Φ is a small neural network,
then representing a large number of copies of the network (one per scenario) remains amenable to
efficient optimization.

Adversarial Problem Optimization. For the AP, we only require representing Φξ and Φ as the
embedding of x can be precomputed with a forward pass.

Generalizing Across Instances. For simplicity of notation and presentation, the previous sections
have omitted the generalization across instances, which is a key aspect of the generality of our
methodology. To generalize across instances, invariance to the number, ordering, constraint coeffi-
cients, and objective coefficients of decision variables is required. To handle this, Neur2RO lever-
ages set-based neural networks (Zaheer et al., 2017) for Φx and Φξ. Specifically, embeddings are
computed for each single first-stage and scenario variable (xi and ξi) using their values, constraints,
and objective coefficients, via a network with shared parameters. These embeddings are then ag-
gregated and passed through an additional feed-forward neural network to derive the first-stage and
scenario embeddings. For a detailed diagram of this architecture, see Appendix D.

4 EXPERIMENTAL SETUP

Computational Setup. All experiments were run on a computing cluster with an Intel Xeon CPU
E5-2683 and Nvidia Tesla P100 GPU with 64GB of RAM (for training). Pytorch 1.12.1 (Paszke
et al., 2019) was used for all learning models. Gurobi 10.0.2 (Gurobi Optimization, LLC, 2023) was
used as the MILP solver and gurobi-machinelearning 1.3.0 was used to embed the neural networks
into MILPs. For evaluation, all solving was limited to 3 hours. For Neur2RO, we terminate a solve
of the MP or AP early if no improvement in solution is observed in 180 seconds. Our code and data
are at https://github.com/khalil-research/Neur2RO.

2RO Problems. We benchmark Neur2RO on two 2RO problems from the literature, namely a
two-stage knapsack problem and the capital budgeting problem. In both cases, our instances are
as large or larger than considered in the literature. The two-stage knapsack problem is in the first
stage a classical knapsack problem. The second stage has decisions for responding to an uncertain
profit degradation. The capital budgeting problem is described in the introduction. For a detailed
description of these problems, see Appendix A. Below we briefly detail each problem.

• Knapsack. For the knapsack problem, we use the same instances as in Arslan & Detienne
(2022), which have been inspired by Ben-Tal et al. (2009). They have categorized their instances
into four groups: uncorrelated (UN), weakly correlated (WC), almost strongly correlated (ASC),
and strongly correlated (SC), which affects the correlation of the nominal profits of items with
their cost and, in turn, the difficulty of the problem. More correlated instances are much harder
to solve. We consider instances of sizes n ∈ {20, 30, 40, 50, 60, 70, 80}.

6

https://github.com/khalil-research/Neur2RO

Published as a conference paper at ICLR 2024

• Capital budgeting. These problem instances are generated similar to Subramanyam et al.
(2020).While uncertain parameters appear in the constraints (see equation 1c), we can easily ver-
ify the assumption given in Section 2.1 as follows: for every x we check if maxξ∈Ξ c(ξ) ≤ B,
where the maximum can be easily calculated since it is a linear problem over Ξ. If the lat-
ter inequality is true, the second-stage problem is feasible since we can choose y = 0. On
the other hand, if the inequality is violated, then no feasible second-stage solution exists since
y ≥ 0, and hence the maximizing scenario will be added to MP. We consider instances of sizes
n ∈ {10, 20, 30, 40, 50}.

Baselines. For knapsack, we compare to the branch-and-price (BP) algorithm from Arslan & Deti-
enne (2022), the state-of-the-art for 2RO problems with objective uncertainty. We use the instances
and the objective values and solution times reported in their paper (link). For capital budgeting, we
use the k-adaptability approach of Subramanyam et al. (2020) (more details in Appendix B.2) with
k = 2, 5, 10 as a baseline; CCG is not tractable for this problem due to its integer recourse.

Evaluation. After Neur2RO finds the first-stage decision x⋆, we obtain the corresponding objective
value by solving 2 for a fixed x. For knapsack, this can be efficiently solved by constraint generation
of y. For capital budgeting on the other hand, due to constraint uncertainty, we cannot use the
constraint generation approach. Instead we sample scenarios from Ξ, and solve 2 with fixed x and
ξ. See Appendix E for a more detailed explanation of these methods.

As previously mentioned, we use k-adaptability as the baseline for the capital budgeting problem.
This method solves 2 only approximately with the approximation quality getting better with larger k
at an increase in solution times. We take the first-stage solution found by k-adaptability and compare
it with the one of Neur2RO using the scenario sampling approach just described.

For the evaluation of the objective values, two metrics are considered. We use relative error (RE),
i.e., the gap to the best-known solution, to compare solution quality. Specifically, if obj⋆ is the value
of the best solution found by Neur2RO or a baseline for a particular instance, then for algorithm A

with objective objA, the RE is given by 100 · |obj⋆−objA|
|obj⋆| . To compare efficiency, we compare the

average solution time.

Data Collection & Training. For data collection, we sample sets of instances, first-stage decisions,
and scenarios to obtain features. The features are provided in Appendix I. Labels are then computed
by solving the corresponding innermost optimization problem, i.e., a tractable deterministic MILP
as both x and ξ are fixed. Additionally, this process is highly parallelizable since each optimization
problem is independent. For knapsack and capital budgeting, we randomly sample 500 instances, 10
first-stage decisions per instance, and 50 scenarios per first-stage decision, resulting in 250,000 data
points. The dataset is split into 200,000 and 50,000 samples for training and validation, respectively.

We train one size-independent model for each problem for 500 epochs. The data collection times,
training times, and total times (in seconds) are 2,162, 3,789, and 5,951 for knapsack and 3,212,
2,195, and 5,407 for capital budgeting. We note that both times are relatively insignificant given
that we provide approximately twice the time (3 hours) to solve a single instance during evaluation.
Furthermore, the model for Neur2RO generalizes across instance parameters and sizes. Appendix I
provides full detail on model hyperparameters and training.

5 EXPERIMENTAL RESULTS

For knapsack, we test our method and the baseline on 18 instances per correlation type and instance
size (504 instances). For capital budgeting, we test on 50 instances per instance size (250 instances).
We note that training and validation data are generated using the procedures specified in the corre-
sponding papers, and different instances are used for testing. For optimization of Neur2RO, this
section presents results for solving the MIP and MILP formulations for the MP and AP, with the
argmax formulation outlined in Section 3 for the MP. Tables 1-2 report the median RE and solving
times. In addition, for more detailed distributional information, boxplots and more detailed metrics,
are provided in Appendix G.

Knapsack. Table 1 demonstrates a clear improvement in scalability, with the solving time of
Neur2RO ranging between 4 and 77 seconds, while the solving time for BP scales directly with
difficulty induced by the size and correlation type. For the more difficult instances, i.e., instances

7

https://github.com/borisdetienne/RobustDecomposition

Published as a conference paper at ICLR 2024

Correlation # items Median RE Times Correlation # items Median RE Times
Type Neur2RO BP Neur2RO BP Type Neur2RO BP Neur2RO BP

Uncorrelated

20 1.417 0.000 4 0

Almost
Strongly
Correlated

20 1.439 0.000 5 9
30 1.188 0.000 6 1 30 0.782 0.000 6 2708
40 1.614 0.000 9 3 40 0.497 0.000 10 4744
50 1.814 0.000 9 12 50 0.019 0.000 7 8852
60 1.146 0.000 14 18 60 0.000 0.016 14 10261
70 1.408 0.000 16 46 70 0.017 0.031 13 10800
80 0.968 0.000 11 388 80 0.000 0.265 12 10800

Weakly
Correlated

20 1.582 0.000 5 29

Strongly
Correlated

20 1.604 0.000 5 9
30 2.236 0.000 11 454 30 0.610 0.000 7 2473
40 1.595 0.000 20 6179 40 0.443 0.000 11 5665
50 1.757 0.000 19 8465 50 0.073 0.000 9 8240
60 0.695 0.000 77 9242 60 0.042 0.010 11 10800
70 0.165 0.000 15 10800 70 0.020 0.027 16 10800
80 0.000 0.341 21 10800 80 0.000 0.179 13 10800

Table 1: Median RE and solving times for knapsack instances. For each row, the median RE and
average solving time are computed over 18 instances. All times in seconds. The smallest (best)
values in each row/metric are in bold.

items Median RE Times
Neur2RO k = 2 k = 5 k = 10 Neur2RO k = 2 k = 5 k = 10

10 1.105 1.140 0.000 0.000 59 20 9561 10800
20 0.000 0.196 0.112 0.064 324 8702 10800 10800
30 0.109 0.020 0.073 0.032 602 10801 10800 10800
40 0.009 0.074 0.011 0.019 739 10806 10801 10801
50 0.001 0.033 0.039 0.020 1032 10807 10804 10801

Table 2: Combined results for capital budgeting instances. For each row, the median RE and average
solving time are computed over 50 instances. All times in seconds. The smallest (best) values in
each row/metric are in bold.

with a large number of items and (almost) strong correlation, Neur2RO generally finds better quality
solutions over 100 times faster than BP, which is a very strong result considering BP is the state-of-
the-art for problems with objective uncertainty. Figures 6-7 of Appendix G further demonstrate that
the distribution of RE achieved by Neur2RO, not just the median, is far more favorable than BP’s
on the most challenging instances. For easier instances, Neur2RO is less competitive in terms of
solution quality as BP converges to optimal solutions within the time limit. However, even for these
instances, Neur2RO achieves a median RE of 2.235% in the worst-case, often still 1-2 orders of
magnitude faster than BP, with the exception of a few very easy instances.

Capital budgeting. Neur2RO achieves the lowest median RE for 20, 40, and 50-item instances,
i.e., the two largest and most challenging instance sets. The distribution of RE for 40 and 50-item
instances provided in Figure 8 of Appendix G is indeed consistent with the median result, as it
illustrates that Neur2RO finds quality solutions on the majority of the instances. In terms of solving
time, Neur2RO generally converges much faster than k-adaptability, resulting in a very favorable
trade-off: we can find better or equally good solutions 10 to 100 times faster. Note that the relative
errors are quite small in an absolute sense. For example, for 30-item instances, Neur2RO has a
median RE of 0.109 compared to the best baseline’s 0.020; solutions that are within 0.109% of the
best achievable may be acceptable in practice. Note that we have also measured the median RE for
k-adaptability assuming a shorter time limit, namely the same amount of time as Neur2RO on each
instance. Taking the incumbent solution found by k-adaptability at that time point typically yields
worse solutions than those reported in Table 2, see Appendix H.4 for details. Compared to the
knapsack, the solving time is generally much larger as the instance size increases. We speculate that
this may relate to the uncertainty in the objective of the first-stage decision or the budget constraints
that are not present in the knapsack problem.

In summary, for both benchmark problems, Neur2RO achieves high-quality solutions. For rela-
tively easy or small instances, state-of-the-art methods sometimes find slightly better solutions, often
at a much higher computational cost. However, as the instances become more difficult, Neur2RO
demonstrates a clear improvement in overall solution quality and computing time.

8

Published as a conference paper at ICLR 2024

6 RELATED WORK

Robust optimization. Besides the exact solution methods mentioned in Section 2.1, several heuris-
tic methods have been developed to derive near-optimal solutions for mixed-integer 2RO problems.
Methods that solve 2RO heuristically are k-adaptability (Bertsimas & Caramanis, 2010; Hanasu-
santo et al., 2015; Subramanyam et al., 2020), decision rules (Bertsimas & Georghiou, 2018; 2015),
and iteratively splitting the uncertainty set (Postek & Hertog, 2016). Machine Learning techniques
have been developed to speed up solution algorithms for the k-adaptability problem in Julien et al.
(2022). In Goerigk & Kurtz (2022) a decision tree classifier is trained to predict good start scenar-
ios for the CCG. While being heuristic solvers, all of the above methods are still computationally
highly demanding. In this paper, the k-adaptability branch-and-bound algorithm by Subramanyam
et al. (2020) is used as a baseline since it is one of the only methods which is able to calculate high
quality solutions for reasonable problem sizes. For an elaborate overview of the latter algorithm, see
Appendix B.2.

Besides improving algorithmic performance, ML methods have been used to construct uncertainty
sets based on historical data. In Goerigk & Kurtz (2023) one-class neural networks are used to
construct highly complex and non-convex uncertainty sets. Results from statistical learning theory
are used to derive guarantees for ML designed uncertainty sets in Tulabandhula & Rudin (2014).
Other approaches use principal component analysis and kernel smoothing (Ning & You, 2018),
support vector clustering (Shang et al., 2017; Shang & You, 2019; Shen et al., 2020), statistical
hypothesis testing (Bertsimas et al., 2018), or Dirichlet process mixture models (Ning & You, 2017;
Campbell & How, 2015). In Wang et al. (2023a) uncertainty sets providing a certain probabilistic
guarantee are derived by solving a CVaR-constrained bilevel problem by an augmented Lagrangian
method. While interesting and related, we here assume the uncertainty set is known.

MILP representations of neural networks. One key aspect of Neur2RO is representing neural
networks as constraints and variables in MILPs, which was first explored in Cheng et al. (2017);
Tjeng et al. (2017); Fischetti & Jo (2018); Serra et al. (2018). These representations have motivated
active research to improve the MILP solving efficiency of optimizing over-trained models Grimstad
& Andersson (2019); Anderson et al. (2020); Wang et al. (2023b), as well as several software con-
tributions Bergman et al. (2022); Ceccon et al. (2022), in addition to Gurobi, a commercial MILP
solver, providing an open-source library. The use of embedding trained predictive models to de-
rive approximate MILPs has been explored for non-linear constraints or intractable constraints (Say
et al., 2017; Grimstad & Andersson, 2019; Murzakhanov et al., 2020; Katz et al., 2020; Kody et al.,
2022), stochastic programming (Dumouchelle et al., 2022; Kronqvist et al., 2023), and bilevel op-
timization (Dumouchelle et al., 2024). As Neur2RO is based on an approximation for intractable
2RO problems with embedded neural networks, the latter area of research is the most closely related.
However, the min-max-min optimization in 2RO renders previous learning-based MILP approxima-
tions unsuitable.

7 CONCLUSION

With the uncertainty in real-world noisy data, the economy, the climate, and other avenues, there
is an increasing need for efficient robust decision-making. We have shown how Neur2RO uses
MILP-representable feedforward neural networks to estimate the thorny component of a family of
two-stage robust optimization instances, namely the value of the second-stage problem. The neural
network architecture delicately combines low-dimensional embeddings of a first-stage decision and
a scenario to produce the second-stage value estimate. Using an off-the-shelf MILP solver, we then
use the neural network in a classical iterative algorithm for 2RO. Neur2RO to find competitive
solutions compared to state-of-the-art methods on two challenging benchmark problems, knapsack
and capital budgeting, at a substantial reduction in solution time.

Our work paves the way for further integration of learning and optimization under uncertainty. The
AP in the CCG algorithm is over the inputs of a neural network, which could benefit from the
many “adversarial attack” heuristics in the ML literature. Generalizations of Neur2RO that make
predictions of the infeasibility of a particular constraint could be explored. ReLU networks are
not the only class of models that is MILP-representable; decision tree models could be used as
alternatives and may be appropriate for other problem settings.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

Dumouchelle and Khalil acknowledge support from the Scale AI Research Chair Program and an
NSERC Discovery Grant. Julien acknowledges funding from the Netherlands Organisation for Sci-
entific Research (NWO).

REFERENCES

Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Facets of combinatorial optimization: Festschrift for martin grötschel, pp. 449–481.
Springer, 2013.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical Program-
ming, pp. 1–37, 2020.

Ayşe N Arslan and Boris Detienne. Decomposition-based approaches for a class of two-stage robust
binary optimization problems. INFORMS journal on computing, 34(2):857–871, 2022.

Ayşe N Arslan, Michael Poss, and Marco Silva. Min-sup-min robust combinatorial optimization
with few recourse solutions. INFORMS Journal on Computing, 34(4):2212–2228, 2022.

Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Nemirovski. Adjustable robust
solutions of uncertain linear programs. Mathematical programming, 99(2):351–376, 2004.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.
Princeton university press, 2009.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

David Bergman, Teng Huang, Philip Brooks, Andrea Lodi, and Arvind U Raghunathan. JANOS:
an integrated predictive and prescriptive modeling framework. INFORMS Journal on Computing,
34(2):807–816, 2022.

Dimitris Bertsimas and Constantine Caramanis. Finite adaptability in multistage linear optimization.
IEEE Transactions on Automatic Control, 55(12):2751–2766, 2010.

Dimitris Bertsimas and Angelos Georghiou. Design of near optimal decision rules in multistage
adaptive mixed-integer optimization. Operations Research, 63(3):610–627, 2015.

Dimitris Bertsimas and Angelos Georghiou. Binary decision rules for multistage adaptive mixed-
integer optimization. Mathematical Programming, 167:395–433, 2018.

Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimization. Mathemat-
ical Programming, 167:235–292, 2018.

Christoph Buchheim and Jannis Kurtz. Robust combinatorial optimization under convex and discrete
cost uncertainty. EURO Journal on Computational Optimization, 6(3):211–238, 2018.

Trevor Campbell and Jonathan P How. Bayesian nonparametric set construction for robust optimiza-
tion. In 2015 American Control Conference (ACC), pp. 4216–4221. IEEE, 2015.

Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D
Laird, and Ruth Misener. OMLT: Optimization & machine learning toolkit. arXiv preprint
arXiv:2202.02414, 2022.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neural
networks. In International Symposium on Automated Technology for Verification and Analysis,
pp. 251–268. Springer, 2017.

10

Published as a conference paper at ICLR 2024

Boris Detienne, Henri Lefebvre, Enrico Malaguti, and Michele Monaci. Adjustable robust opti-
mization with objective uncertainty. European Journal of Operational Research, 312(1):373–384,
2024.

Justin Dumouchelle, Rahul Patel, Elias B Khalil, and Merve Bodur. Neur2SP: Neural two-stage
stochastic programming. Advances in Neural Information Processing Systems, 35, 2022.

Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. Neur2BiLO: Neural bilevel
optimization. arXiv preprint arXiv:2402.02552, 2024.

Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. Con-
straints, 23(3):296–309, 2018.

Alireza Ghahtarani, Ahmed Saif, Alireza Ghasemi, and Erick Delage. A double-oracle, logic-based
benders decomposition approach to solve the k-adaptability problem. Computers & Operations
Research, 155:106243, 2023.

Marc Goerigk and Jannis Kurtz. Data-driven prediction of relevant scenarios for robust optimization.
arXiv e-prints, pp. arXiv–2203, 2022.

Marc Goerigk and Jannis Kurtz. Data-driven robust optimization using deep neural networks. Com-
puters & Operations Research, 151:106087, 2023.

Bjarne Grimstad and Henrik Andersson. ReLU networks as surrogate models in mixed-integer linear
programs. Computers & Chemical Engineering, 131:106580, 2019.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Grani A Hanasusanto, Daniel Kuhn, and Wolfram Wiesemann. K-adaptability in two-stage robust
binary programming. Operations Research, 63(4):877–891, 2015.

Esther Julien, Krzysztof Postek, and Ş İlker Birbil. Machine learning for k-adaptability in two-stage
robust optimization. arXiv preprint arXiv:2210.11152, 2022.

Nicolas Kämmerling and Jannis Kurtz. Oracle-based algorithms for binary two-stage robust opti-
mization. Computational Optimization and Applications, 77:539–569, 2020.

Justin Katz, Iosif Pappas, Styliani Avraamidou, and Efstratios N. Pistikopoulos. The integra-
tion of explicit MPC and ReLU based neural networks. IFAC-PapersOnLine, 53(2):11350–
11355, 2020. ISSN 2405-8963. doi:https://doi.org/10.1016/j.ifacol.2020.12.544. URL https:
//www.sciencedirect.com/science/article/pii/S2405896320308429. 21st
IFAC World Congress.

Alyssa Kody, Samuel Chevalier, Spyros Chatzivasileiadis, and Daniel Molzahn. Modeling
the AC power flow equations with optimally compact neural networks: Application to unit
commitment. Electric Power Systems Research, 213:108282, 2022. ISSN 0378-7796.
doi:https://doi.org/10.1016/j.epsr.2022.108282. URL https://www.sciencedirect.
com/science/article/pii/S0378779622004771.

Jan Kronqvist, Boda Li, Jan Rolfes, and Shudian Zhao. Alternating mixed-integer programming
and neural network training for approximating stochastic two-stage problems. arXiv preprint
arXiv:2305.06785, 2023.

Jannis Kurtz. Approximation algorithms for min-max-min robust optimization and k-adaptability
under objective uncertainty. arXiv preprint arXiv:2106.03107, 2023.

Henri Lefebvre, Enrico Malaguti, and Michele Monaci. Adjustable robust optimization with discrete
uncertainty. INFORMS Journal on Computing, 2023.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. Advances in neural information processing systems, 27, 2014.

11

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.544
https://www.sciencedirect.com/science/article/pii/S2405896320308429
https://www.sciencedirect.com/science/article/pii/S2405896320308429
https://doi.org/https://doi.org/10.1016/j.epsr.2022.108282
https://www.sciencedirect.com/science/article/pii/S0378779622004771
https://www.sciencedirect.com/science/article/pii/S0378779622004771

Published as a conference paper at ICLR 2024

Ilgiz Murzakhanov, Andreas Venzke, George S Misyris, and Spyros Chatzivasileiadis. Neu-
ral networks for encoding dynamic security-constrained optimal power flow. arXiv preprint
arXiv:2003.07939, 2020.

Almir Mutapcic and Stephen Boyd. Cutting-set methods for robust convex optimization with pes-
simizing oracles. Optimization Methods & Software, 24(3):381–406, 2009.

Chao Ning and Fengqi You. Data-driven adaptive nested robust optimization: general modeling
framework and efficient computational algorithm for decision making under uncertainty. AIChE
Journal, 63(9):3790–3817, 2017.

Chao Ning and Fengqi You. Data-driven decision making under uncertainty integrating robust opti-
mization with principal component analysis and kernel smoothing methods. Computers & Chem-
ical Engineering, 112:190–210, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

Fotios Petropoulos, Gilbert Laporte, Emel Aktas, Sibel A Alumur, Claudia Archetti, Hayriye Ayhan,
Maria Battarra, Julia A Bennell, Jean-Marie Bourjolly, John E Boylan, et al. Operational research:
Methods and applications. arXiv preprint arXiv:2303.14217, 2023.

Krzysztof Postek and Dick den Hertog. Multistage adjustable robust mixed-integer optimization via
iterative splitting of the uncertainty set. INFORMS Journal on Computing, 28(3):553–574, 2016.

Buser Say, Ga Wu, Yu Qing Zhou, and Scott Sanner. Nonlinear hybrid planning with deep net
learned transition models and mixed-integer linear programming. In IJCAI, pp. 750–756, 2017.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In International Conference on Machine Learning, pp. 4558–
4566. PMLR, 2018.

Chao Shang and Fengqi You. A data-driven robust optimization approach to scenario-based stochas-
tic model predictive control. Journal of Process Control, 75:24–39, 2019.

Chao Shang, Xiaolin Huang, and Fengqi You. Data-driven robust optimization based on kernel
learning. Computers & Chemical Engineering, 106:464–479, 2017.

Feifei Shen, Liang Zhao, Wenli Du, Weimin Zhong, and Feng Qian. Large-scale industrial energy
systems optimization under uncertainty: A data-driven robust optimization approach. Applied
Energy, 259:114199, 2020.

Anirudh Subramanyam. A lagrangian dual method for two-stage robust optimization with binary
uncertainties. Optimization and Engineering, 23(4):1831–1871, 2022.

Anirudh Subramanyam, Chrysanthos E Gounaris, and Wolfram Wiesemann. K-adaptability in two-
stage mixed-integer robust optimization. Mathematical Programming Computation, 12:193–224,
2020.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. arXiv preprint arXiv:1711.07356, 2017.

Man Yiu Tsang, Karmel S Shehadeh, and Frank E Curtis. An inexact column-and-constraint gener-
ation method to solve two-stage robust optimization problems. Operations Research Letters, 51
(1):92–98, 2023.

Theja Tulabandhula and Cynthia Rudin. Robust optimization using machine learning for uncertainty
sets. arXiv preprint arXiv:1407.1097, 2014.

12

Published as a conference paper at ICLR 2024

Irina Wang, Cole Becker, Bart Van Parys, and Bartolomeo Stellato. Learning for robust optimization.
arXiv preprint arXiv:2305.19225, 2023a.

Keliang Wang, Leonardo Lozano, Carlos Cardonha, and David Bergman. Optimizing over an en-
semble of trained neural networks. INFORMS Journal on Computing, 35(3):652–674, 2023b.

Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

İhsan Yanıkoğlu, Bram L Gorissen, and Dick den Hertog. A survey of adjustable robust optimiza-
tion. European Journal of Operational Research, 277(3):799–813, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Bo Zeng and Long Zhao. Solving two-stage robust optimization problems using a column-and-
constraint generation method. Operations Research Letters, 41(5):457–461, 2013.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

Long Zhao and Bo Zeng. An exact algorithm for two-stage robust optimization with mixed integer
recourse problems. submitted, available on Optimization-Online. org, 2012.

13

Published as a conference paper at ICLR 2024

A 2RO PROBLEMS

A.1 ROBUST TWO-STAGE KNAPSACK

We consider the two-stage knapsack problem as defined in Arslan & Detienne (2022) with a set
of n items. Each item i has a weight ci and an uncertain profit pi(ξ) = p̄i − ξip̂i, where p̄i is
the expected profit, p̂i its maximum deviation and ξi the uncertain profit degradation factor, where
the degradation happens after the first stage. In this problem we have a budgeted uncertainty set
Ξ = {ξ ∈ [0, 1]n :

∑n
i=1 ξi ≤ Γ}. The first stage decision is to choose a subset of items to produce.

Then in the second stage, there are three different responses to the profit degradation: (i) accept the
degraded profit, (ii) repair the item by using an additional ti units from the budget to recover the
original profit p̄i, or (iii) outsource the item for a cost of fi units, such that the item’s profit results
in p̄i − fi. This gives the following problem formulation:

min
x∈{0,1}n

max
ξ∈Ξ

min
y∈{0,1}n,r∈{0,1}n

n∑
i=1

(fi − p̄i)xi + (p̂iξi − fi)yi − p̂iξiri

s.t.
n∑

i=1

ciyi + tiri ≤ C

ri ≤ yi ≤ xi ∀i ∈ {1, . . . , n},

where xi is the first-stage decision to produce item i. For the second-stage decisions, we have yi
and ri: (i) yi = 1 if item i is produced without repairing and yi = 0 if the item is outsourced, and
(ii) ri is the decision for repairing item i.

A.2 CAPITAL BUDGETING

Consider the capital budgeting problem in Subramanyam et al. (2020), where a company aims to
invest in a subset of n projects. For each project, i, the uncertain cost, and profit are respectively
defined as

ci(ξ) =
(
1 +Φ⊺

i ξ/2
)
c̄i and ri(ξ) =

(
1 +Ψ⊺

i ξ/2
)
r̄i, ∀i ∈ {1, . . . , n},

where c̄i and r̄i are the nominal cost and nominal profit of project i. Φ⊺
i and Ψ⊺

i are the i-th row
vectors of the sensitivity matrices Φ,Ψ ∈ Rn×4, with ξ ∈ Ξ = [−1, 1]4. We use the problem
formulation described in 1.

B 2RO ALGORITHMS

In this section, we describe the column-and-constraint generation algorithm in more detail and the
k-adaptability problem, briefly describing one of its solution methods.

B.1 COLUMN-AND-CONSTRAINT GENERATION

The CCG iterates between the main problem and the adversarial problem (AP). The MP is given as

min
x∈X

max
ξ∈Ξ′

min
y∈Y

c(ξ)⊺x+ d(ξ)⊺y (6a)

s.t. T (ξ)x+W (ξ)y ≤ h(ξ), (6b)

where Ξ′ ⊂ Ξ is a finite subset of scenarios. Clearly, the MP provides a lower bound on the optimal
value of equation 2. To solve the MP, for each scenario in Ξ′ a copy of the second-stage variables is
generated. Using a level-set transformation, the problem can be formulated as

min
x∈X

µ (7a)

s.t. c(ξ)⊺x+ d(ξ)⊺yξ ≤ µ ∀ξ ∈ Ξ′ (7b)

T (ξ)x+W (ξ)yξ ≤ h(ξ) ∀ξ ∈ Ξ′ (7c)

µ ∈ R,yξ ∈ Y ∀ξ ∈ Ξ′, (7d)

14

Published as a conference paper at ICLR 2024

which is a linear integer problem that state-of-the-art solvers, such as Gurobi, can solve. In each
iteration of the CCG an optimal solution (x∗, µ∗) of equation 7 is calculated. Afterwards, the AP is
solved, which is defined as

max
ξ∈Ξ

min
y∈Y

c(ξ)⊺x⋆ + d(ξ)⊺y (8a)

s.t. W (ξ)y ≤ h(ξ)− T (ξ)x⋆. (8b)

Since the optimal value of the AP is the objective value of the current solution x∗, it provides an
upper bound on the optimal value of equation 2. We define the optimal value to be equal to infinity
if there exists a scenario ξ ∈ Ξ for which no feasible second-stage solution y exists. If the optimal
value of the AP is larger than µ∗ then we add the optimal scenario ξ∗ to Ξ′ and start again from
solving MP. Otherwise, we stop the algorithm since the upper bound is smaller or equal to the lower
bound, and hence x∗ is an optimal solution. The whole procedure is presented in Algorithm 1.

Algorithm 1 Column-and-Constraint Generation
set ub = ∞, lb = −∞
Ξ′ = {ξ0} for any ξ0 ∈ Ξ
while ub− lb > 0 do

Calculate an optimal solution x∗, µ∗ of the main problem equation 7 and set lb = µ∗.
Calculate an optimal solution ξ∗ (with optimal value opt∗) of the adversarial problem equa-
tion 8 where x = x∗.
Set Ξ′ = Ξ′ ∪ {ξ∗} and ub = min{ub, opt∗}.

end while
return x∗

CCG often fails to calculate an optimal solution in a reasonable time since both the MP and the AP
are very hard to solve in the case of integer second-stage variables. In each iteration, the size of MP
increases since we have to add new constraints and a copy of all integer second-stage decisions y.
This often leads to the situation that after even a small number of iterations, the MP cannot be solved
to optimality anymore by classical integer optimization solvers as Gurobi.

Furthermore, solving the AP is extremely challenging for integer second-stage variables. Indeed,
the problem can be formulated as a bilevel problem where the follower problem contains integer
variables. In Zhao & Zeng (2012) the authors present a column-and-constraint algorithm that solves
the AP if the second-stage is a mixed-integer problem. One drawback is that this method is not ap-
plicable if the second-stage does not contain continuous variables, as is the case for many problems,
e.g., the capital budgeting problem. Furthermore, the method involves solving a very large mixed-
integer bilinear problem, which is computationally enormously challenging. The whole procedure
must be executed in each iteration of the main CCG algorithm.

B.2 k-ADAPTABILITY

The k-adaptability approach was introduced in Bertsimas & Caramanis (2010) and later studied for
objective uncertainty and constraint uncertainty in Hanasusanto et al. (2015); Subramanyam et al.
(2020); Ghahtarani et al. (2023); Julien et al. (2022); Kurtz (2023). The main idea of the approach is
to calculate a set of k second-stage solutions already in the first-stage. Instead of choosing the best
feasible second-stage solution for each scenario ξ, we choose the best of the k calculated second-
stage solutions. Since we restrict the number of second-stage reactions, this approach leads to feasi-
ble solutions of equation 2, which are not necessarily optimal. While for larger k the approximation
guarantee gets provably better, the problem gets harder to solve at the same time. Furthermore, it
was shown in Subramanyam et al. (2020) that it may happen that k has to be chosen exponentially
large to guarantee optimality for equation 2. The k-adaptability problem can be formulated as

min
x∈X ,y1,...,yk∈Y

max
ξ∈Ξ

min
y∈{y1,...,yk}

c(ξ)⊺x+ d(ξ)⊺y (9a)

s.t. W (ξ)y + T (ξ)x ≤ h(ξ). (9b)

15

Published as a conference paper at ICLR 2024

The k-adaptability problem is very challenging to solve, especially in the constraint uncertainty case.
The best-known method for this case was introduced in Subramanyam et al. (2020). The authors
perform a branch-and-bound algorithm over partitions of the uncertainty set. They consider k-
partitions of finite scenarios sets, which are iteratively generated, and assign each of the second-stage
solutions to one of the partitions. This approach was later improved by applying machine learning
methods to improve the branching decisions Julien et al. (2022). As an alternative approach in
Postek & Hertog (2016), an iterative uncertainty set splitting method is presented, which converges
to the exact optimal value of the two-stage robust problem.

In case of objective uncertainty, the k-adaptablity problem is easier (but still hard) to solve (Arslan
et al. (2022); Ghahtarani et al. (2023)) and can be approximated if k is not too small; see Kurtz
(2023).

C DETAILED FORMULATION

This section presents the detailed argmax formulation for equation 4. We assume that at this itera-
tion in the MP, we have scenarios ξ1, . . . , ξk and that M and L are upper and lower bounds on the
prediction of the network. The complete formulation is then given by

min
x∈X ,y∈Y,ξa∈Ξ,p,u,z∈{0,1}k

c(ξa)
⊺x+ d(ξa)

⊺y (10a)

s.t. W (ξa)y + T (ξa)x ≤ h(ξa), (10b)
pi = NNΘ(x, ξi) ∀i ∈ {1, . . . , k} (10c)
u ≥ pi ∀i ∈ {1, . . . , k} (10d)
u ≤ pi + (M − L)(1− zi) ∀i ∈ {1, . . . , k} (10e)
k∑

i=1

zi = 1 ∀i ∈ {1, . . . , k} (10f)

ξa =

k∑
i=1

zi · ξi (10g)

To model the argmax, we introduce k binary variables z and k + 1 continuous variables p and u,
which are used to model big-M that ensure z is 1 at the index of the maximizer and 0 everywhere
else. ξa is then given by a linear combination of the scenarios multiplied with z.

D EXTENDED NN ARCHITECTURE

We show the extended neural network architecture used in the experiments in Figure 3.

E 2RO WITH FIXED FIRST-STAGE DECISION

When we compare the calculated solutions of Neur2RO and the baseline in our experiments, we
need to calculate the objective value of a solution x⋆ ∈ X exactly or approximately. The former
involves solving the AP equation 8 for a given solution. Solving this problem is intractable when we
have uncertain parameters in the constraints. We first expand on how the adversarial would be solved
in a tractable way if the uncertain parameters only appear in the objective function. Subsequently,
we describe an approach to approximately solve the AP, which is based on sampling scenarios from
Ξ.

E.1 OBJECTIVE UNCERTAINTY

For the special case of objective uncertainty, the AP can be solved much more efficiently. In this
case, the adversarial problem is given as

max
ξ∈Ξ

min
y∈Y

c(ξ)⊺x⋆ + d(ξ)⊺y (11a)

s.t. Wy ≤ h− Tx⋆, (11b)

16

Published as a conference paper at ICLR 2024

 First-stage
 Embedding
 Network

 Scenario
 Embedding
 Network

 Value
 Network

as estimate for

Per First-Stage / Scenario Variable
Embedding Network

Figure 3: The extended neural network architecture for ML-based CCG. Compared to the NN ar-
chitecture shown in the main text (Figure 2), this model uses the set-based method to be able to
generalize across instance sizes. Let x⋆ ∈ Rn and ξ ∈ Rq . Then, Φ̂x and Φ̂ξ are the embedding
networks for xi, i ∈ [n] and ξj , j ∈ [q], respectively. The features are comprised of the single vari-
able and single-variable specific problem specifications Pi

x, i ∈ [n] and Pj
ξ , j ∈ [q] for first-stage

decisions and scenarios, respectively. The outputs of the Φ̂ networks are aggregated for x∗ and ξ
separately. These embeddings are the input of the original NN given in the main part.

which can be reformulated as

max
ξ∈Ξ

α (12a)

s.t. α ≤ c(ξ)⊺x⋆ + d(ξ)⊺y ∀y ∈ Ȳ, (12b)

where Ȳ = {y ∈ Y : Wy ≤ h− Tx⋆}. While the set Ȳ can contain an exponential number of
solutions, the latter problem can be solved by iteratively generating the constraints for y ∈ Ȳ .

E.2 CONSTRAINT UNCERTAINTY

We collect all scenarios ξ ∈ Ξ which were generated during training and during the solution proce-
dures of the baseline algorithm and our algorithm (including the scenarios calculated by the AP) in
the set Ξsamples. Then for the two returned solutions x∗ and xbaseline we compare

max
ξ∈Ξsamples

min
y∈Y

c(ξ)⊺x⋆ + d(ξ)⊺y (13a)

s.t. W (ξ)y ≤ h(ξ)− T (ξ)x⋆, (13b)

where we replace x by the corresponding solution x∗ or xbaseline. The latter problem can be solved
by calculating the optimal value of the second-stage problem for each scenario independently and
choosing the worst-case overall optimal values.

F CONVERGENCE

In the following, we present the proof of Theorem 1.

Proof. The main idea is to show that the condition equation 5 cannot hold in infinitely many itera-
tions. Since we stop the algorithm if 5 is not true anymore, then finite termination of the algorithm
follows.

Assume the algorithm does not terminate in a finite number of iterations. Let lt and rt be the values
of the left-hand side and right-hand side of inequality 5 in iteration t of the algorithm, i.e.,

lt := max
ξ∈Ξ

NNΘ(x
t, ξ)

and
rt := max

ξ∈Ξt
NNΘ(x

t, ξ).

17

Published as a conference paper at ICLR 2024

where xt is the optimal solution of MP in the t-th iteration and Ξt the finite set of scenarios used
in the MP in iteration t. Let x ∈ X be a feasible first-stage solution and let lt(x) and rt(x) be the
sub-sequences which contain the values of lt and rt only for the iterations where x is an optimal
solution of the MP. Then either this sequence is finite or, if it is infinite, the sequence {rt(x)}t
is monotonous and bounded where monotony follows since Ξt ⊂ Ξt+1 and since the same x is
used. The sequence is bounded since Ξ is a bounded set and NNΘ a piecewise-linear function (as
is known for feedforward ReLU networks (Montufar et al., 2014)) and the maximum of a piecewise
linear function over a bounded set is bounded. Hence, {rt(x)}t converges to a finite value r⋆(x).
Furthermore, it holds lt(x) ≤ rt+1(x) since the optimal scenario of the left-hand-side is added to
Ξt which is a subset of the set later used to evaluate rt+1(x). It follows that

rt(x) ≤ lt(x)− ε ≤ rt+1(x)− ε

for all t which contradicts the convergence of rt(x). Hence the sequence rt(x) must be finite. Since
only finitely many first-stage solutions x exist, and the latter result holds for all of them, the number
of iterations of the algorithm must be finite.

G DISTRIBUTIONAL RESULTS FOR RELATIVE PERFORMANCE

In this section, we provide distributional information for the RE for knapsack in Tables 3-4 and
Figures 4-8.

Correlation # items Mean RE Median RE RE 1st Quartile RE 3rd Quartile
Type Neur2RO BP Neur2RO BP Neur2RO BP Neur2RO BP

Uncorrelated

20 2.005 0.000 1.417 0.000 0.541 0.000 2.379 0.000
30 1.189 0.000 1.188 0.000 0.712 0.000 1.399 0.000
40 2.895 0.000 1.614 0.000 1.221 0.000 4.042 0.000
50 3.032 0.000 1.814 0.000 0.946 0.000 3.801 0.000
60 2.099 0.000 1.146 0.000 0.577 0.000 2.872 0.000
70 2.214 0.000 1.408 0.000 0.761 0.000 2.506 0.000
80 1.591 0.000 0.968 0.000 0.758 0.000 2.063 0.000

Weakly
Correlated

20 2.569 0.000 1.582 0.000 1.229 0.000 4.010 0.000
30 2.664 0.000 2.236 0.000 0.616 0.000 4.293 0.000
40 2.320 0.000 1.595 0.000 1.164 0.000 2.292 0.000
50 2.183 0.145 1.757 0.000 0.793 0.000 2.674 0.000
60 2.165 0.390 0.695 0.000 0.000 0.000 3.445 0.458
70 0.884 0.338 0.165 0.000 0.000 0.000 0.623 0.175
80 0.392 0.691 0.000 0.341 0.000 0.000 0.165 0.831

Almost
Strongly
Correlated

20 2.355 0.000 1.439 0.000 0.000 0.000 2.757 0.000
30 1.166 0.113 0.782 0.000 0.075 0.000 1.911 0.000
40 0.825 0.335 0.497 0.000 0.019 0.000 1.606 0.000
50 0.314 0.884 0.019 0.000 0.000 0.000 0.229 1.251
60 0.197 0.523 0.000 0.016 0.000 0.000 0.268 1.129
70 0.551 0.615 0.017 0.031 0.000 0.000 1.058 1.227
80 0.388 0.694 0.000 0.265 0.000 0.000 0.554 0.770

Strongly
Correlated

20 2.387 0.000 1.604 0.000 0.905 0.000 3.018 0.000
30 1.068 0.121 0.610 0.000 0.054 0.000 1.939 0.000
40 0.658 0.191 0.443 0.000 0.002 0.000 0.888 0.000
50 0.411 0.648 0.073 0.000 0.000 0.000 0.780 0.963
60 0.322 0.367 0.042 0.010 0.000 0.000 0.173 0.693
70 0.389 0.738 0.020 0.027 0.000 0.000 0.535 0.793
80 0.318 0.668 0.000 0.179 0.000 0.000 0.245 0.906

Table 3: Table of distributional information for knapsack. For each row, all RE statistics are com-
puted over 18 instances.

items Mean RE Median RE RE 1st Quartile RE 3rd Quartile
Neur2RO k = 2 k = 5 k = 10 Neur2RO k = 2 k = 5 k = 10 Neur2RO k = 2 k = 5 k = 10 Neur2RO k = 2 k = 5 k = 10

10 2.558 2.849 1.029 1.165 1.105 1.140 0.000 0.000 0.000 0.000 0.000 0.000 3.534 4.349 0.547 1.557
20 0.423 0.304 0.232 0.266 0.000 0.196 0.112 0.064 0.000 0.094 0.013 0.000 0.410 0.453 0.320 0.362
30 0.408 0.149 0.131 0.084 0.109 0.020 0.073 0.032 0.002 0.000 0.003 0.000 0.337 0.182 0.212 0.110
40 0.234 0.114 0.098 0.073 0.009 0.074 0.011 0.019 0.000 0.001 0.000 0.002 0.121 0.180 0.137 0.137
50 0.090 0.107 0.090 0.056 0.001 0.033 0.039 0.020 0.000 0.000 0.000 0.002 0.050 0.193 0.139 0.084

Table 4: Table of distributional information for capital budgeting. For each row, all RE statistics are
computed over 50 instances.

18

Published as a conference paper at ICLR 2024

20 30 40 50 60 70 80
Items

0

2

4

6

8

R
E

Neur2RO

BP

Figure 4: Boxplot of RE for baseline and Neur2RO on UN knapsack instances.

20 30 40 50 60 70 80
Items

0

2

4

6

8

10

R
E

Neur2RO

BP

Figure 5: Boxplot of RE for baseline and Neur2RO on WC knapsack instances.

20 30 40 50 60 70 80
Items

0

2

4

6

8

10

12

R
E

Neur2RO

BP

Figure 6: Boxplot of RE for baseline and Neur2RO on ASC knapsack instances.

H ABLATION

This section presents an ablation across two aspects of Neur2RO, namely, the formulation of the
MP and the method to obtain worst-case scenarios. Both results are presented on the knapsack
instances.

H.1 MAIN PROBLEM FORMULATION

As an alternative to the formulation using argmax over a set of scenarios. One more straightforward
formulation is to consider instead the max over all of the scenarios, which is given by

19

Published as a conference paper at ICLR 2024

20 30 40 50 60 70 80
Items

0

2

4

6

8

10

R
E

Neur2RO

BP

Figure 7: Boxplot of RE for baseline and Neur2RO on SC knapsack instances.

10 20 30
Items

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
E

Neur2RO

k = 2

k = 5

k = 10

40 50
Items

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
E

Neur2RO

k = 2

k = 5

k = 10

Figure 8: Box plot of RE for baselines and Neur2RO on capital budgeting instances.

min
x∈X ,α

α (14a)

s.t. α ≥ NNΘ(x, ξi) ∀k ∈ {1, . . . ,K}. (14b)

Table 5 reports the MRE of the argmax and max formulations and the solving time. Table 5
demonstrates an improvement in solution quality, with argmax obtaining a lower MRE in every
case and a lower computing time in most cases.

H.2 WORST-CASE SCENARIO ACQUISITION

This section compares the adversarial approach for determining scenarios to a sampling and a linear
programming (LP) relaxation-based approach.

H.2.1 SAMPLING-BASED SCENARIO ACQUISITION

For sampling, as a baseline, we sample 100, 000 scenarios, and then to approximate the AP, we take
the maximizer over a forward pass. Table 6 demonstrates a clear trade-off between solution quality
and efficiency. Generally, sampling improves average solving time across all instances but leads to
worse solution quality as the instance size increases.

H.2.2 LP RELAXATION-BASED SCENARIO ACQUISITION

For 2RO, the uncertainty set is often polyhedral, which scenarios can be heuristically obtained via
a LP relaxation. For the LP relaxation, we compare the performance of the standard MILP-based
scenario acquisition (standard), i.e., solving the AP to optimality, to the relaxation (LP relaxation).
For both problems, we report the RE to the baselines. Tables 7 and 8 present the knapsack and

20

Published as a conference paper at ICLR 2024

Correlation # items Median RE Times
Type argmax max argmax max

Uncorrelated

20 0.000 1.167 5 11
30 0.000 0.945 7 14
40 0.000 1.931 9 24
50 0.000 1.634 10 33
60 0.000 0.452 17 29
70 0.000 0.801 19 28
80 0.000 2.227 13 35

Weakly
Correlated

20 0.000 3.515 6 13
30 0.000 2.405 11 22
40 0.000 0.502 26 42
50 0.000 0.254 24 39
60 0.000 1.528 77 58
70 0.000 1.769 18 35
80 0.000 3.492 27 75

Almost
Strongly
Correlated

20 0.000 2.042 5 12
30 0.000 1.433 6 14
40 0.000 1.739 11 33
50 0.000 3.161 8 20
60 0.000 2.449 15 30
70 0.000 2.497 18 35
80 0.000 1.824 17 30

Strongly
Correlated

20 0.000 1.154 5 11
30 0.000 0.967 7 15
40 0.000 1.928 16 28
50 0.000 3.613 10 21
60 0.000 2.005 20 26
70 0.000 2.657 16 33
80 0.000 2.051 16 28

Table 5: argmax and max formulations on knapsack instances. For each row, the median RE and
solving time are computed over 18 instances. All times in seconds.

capital budgeting results, respectively. In general, we can observe that the LP relaxation leads to
significantly faster solving time, with an overall decreased solution quality. That being said, for
capital budgeting in particular, Neur2RO with the LP relaxation still achieves a lower median RE
than the baselines on larger instances, while being roughly five times faster than results without the
relaxation.

H.3 PREDICTION TARGET

This section compares the prediction target. For capital budgeting, the coefficients of the first-stage
decisions in the objective contain uncertainty. As such, this presents a choice of either predicting the
sum of the first- and second-stage objectives, i.e., c(ξ)⊺x +miny∈Y

{
d(ξ)⊺y : W (ξ)y ≤ h(ξ) −

T (ξ)x
}

, or only the second-stage objective, i.e., miny∈Y
{
d(ξ)⊺y : W (ξ)y ≤ h(ξ) − T (ξ)x

}
.

Specifically, we compare the downstream optimization performance with respect to the resulting
formulations. The formulation for predicting the sum of the first- and second-stage objectives is
presented in Section 3. For predicting the second-stage objective only, the MP is given by

min
x∈X ,y∈Y,ξa∈Ξ

c(ξa)
⊺x+ d(ξa)

⊺y (15a)

s.t. W (ξa)y + T (ξa)x ≤ h(ξa), (15b)

ξa ∈ argmaxξ∈Ξ′

{
c(ξ)⊺x+NNΘ(x, ξ)

}
, (15c)

and the AP is given by
max
ξ∈Ξ

c(ξ)⊺x⋆ +NNΘ(x
⋆, ξ). (16)

The main difference with this formulation is that the objective coefficients c(ξ) can be utilized di-
rectly rather than requiring the ML model to predict them. Table 9 compares the two approaches on
the capital budgeting instances wherein the RE is computed with respect to the baselines. Empiri-
cally, we can see that predicting the sum of the first- and second-stage objectives yields significantly
better solutions. On the methodological side, when only the second stage is predicted each node in
the branch-and-bound tree being explored by a MIP solver will contain the exact first-stage and the
predicted second-stage objectives. As such, we speculate that the LP relaxation at each node will

21

Published as a conference paper at ICLR 2024

Correlation # items Median RE Times
Type adversarial sampling adversarial sampling

Uncorrelated

20 0.000 0.000 5 2
30 0.000 0.000 7 4
40 0.560 0.000 9 4
50 0.723 0.000 10 5
60 0.066 0.000 17 6
70 0.150 0.000 19 8
80 0.395 0.000 13 9

Weakly
Correlated

20 0.000 0.074 6 3
30 0.000 0.444 11 4
40 0.000 0.093 26 5
50 0.441 0.000 24 7
60 0.119 0.065 77 9
70 0.000 0.185 18 8
80 0.000 0.536 27 9

Almost
Strongly
Correlated

20 0.000 0.000 5 5
30 0.000 0.000 6 6
40 0.000 0.000 11 10
50 0.000 0.000 8 7
60 0.000 0.000 15 14
70 0.000 0.000 18 13
80 0.000 0.000 17 12

Strongly
Correlated

20 0.000 0.000 5 5
30 0.000 0.000 7 7
40 0.000 0.000 16 11
50 0.000 0.000 10 8
60 0.000 0.000 20 13
70 0.000 0.000 16 14
80 0.000 0.000 16 13

Table 6: Adversarial and sampling-based approaches for worst-case scenario acquisition on knap-
sack instances. For each row, the median RE and solving time are computed over 50 instances. All
times in seconds.

Correlation # items Median RE Times Correlation # items Median RE Times
Type standard LP relaxation standard LP relaxation Type standard LP relaxation standard LP relaxation

Uncorrelated

20 1.417 1.673 4 1

Almost
Strongly
Correlated

20 1.439 1.211 5 1
30 1.188 1.167 6 1 30 0.782 0.665 6 1
40 1.614 1.387 9 2 40 0.497 0.927 10 2
50 1.814 1.660 9 2 50 0.019 1.884 7 2
60 1.146 1.146 14 1 60 0.000 1.079 14 2
70 1.408 1.166 16 2 70 0.017 0.025 13 4
80 0.986 0.970 11 2 80 0.000 1.775 12 4

Weakly
Correlated

20 1.582 1.454 5 1

Strongly
Correlated

20 1.604 1.368 5 1
30 2.236 2.034 11 1 30 0.610 0.796 7 2
40 1.595 2.733 20 2 40 0.443 1.375 11 3
50 1.757 1.126 19 2 50 0.073 2.333 9 2
60 0.695 0.729 77 3 60 0.042 0.510 11 4
70 0.165 0.243 15 3 70 0.020 0.623 16 3
80 0.000 0.316 21 9 80 0.000 1.097 13 3

Table 7: Median RE and solving times for knapsack instances with LP relaxation. For each row, the
median RE and average solving time are computed over 18 instances. All times in seconds. The
smallest (best) values in each row/metric are in bold.

consist of two components that are on entirely different scales. Specifically, the first-stage objective
will be tight as it is being represented exactly while the second-stage objective requires the relax-
ation of the prediction model which will not be tight due to the big-M constraints. This means that
the maximization problem in the AP favors the second stage. This mismatch could lead to inaccurate
scenarios and undesirable downstream effects within branch-and-bound.

H.4 BASELINE SOLUTION QUALITY AT NEUR2RO TERMINATION TIME

In this section, we report the objective quality, i.e., the median relative error, for k-adaptability
baseline at the termination time of Neur2RO in Table 10. From the table, we can see that the
performance is median RE of Neur2RO is marginally better than when k-adaptability is given 3
hours, except n = 20, 40. Note that these tables are only be reproduced for capital budgeting as

22

Published as a conference paper at ICLR 2024

items Median RE Times
standard LP relaxation standard LP relaxation

10 1.105 2.663 59 4
20 0.000 0.060 324 142
30 0.109 0.071 602 141
40 0.009 0.007 739 226
50 0.001 0.001 1,032 231

Table 8: Median RE and solving times for capital budgeting instances with LP relaxation. For each
row, the median RE and average solving time are computed over 50 instances. All times in seconds.
The smallest (best) values in each row/metric are in bold.

items Median RE Times
sum second only sum second-only

10 1.105 2.424 20 233
20 0.000 0.192 324 1,823
30 0.109 0.151 602 3,823
40 0.009 0.010 739 4,062
50 0.001 0.005 1,032 7,424

Table 9: Sum and second-stage only predictions for capital budgeting instances. For each row, the
median RE and solving time are computed over 50 instances. Note that in these results, the RE is
calculated with respect to the k-adaptability and each respective ML-approach. All times in seconds.

we do not have the knapsack results throughout the solving process, given only the final objective
values are reported in Arslan & Detienne (2022).

items Median RE at 3 hours Median RE at Neur2RO termination
Neur2RO k = 2 k = 5 k = 10 Neur2RO k = 2 k = 5 k = 10

10 1.105 1.140 0.000 0.000 0.809 1.559 0.267 0.359
20 0.000 0.196 0.112 0.064 0.011 0.240 0.098 0.084
30 0.109 0.020 0.073 0.032 0.102 0.067 0.093 0.029
40 0.009 0.074 0.011 0.019 0.013 0.079 0.058 0.019
50 0.001 0.033 0.039 0.020 0.002 0.035 0.006 0.008

Table 10: Median RE for capital budgeting at 3 hour time limit and Neur2RO termination time.
For each row, the median RE and average solving time are computed over 50 instances. All times in
seconds. The smallest (best) values in each row/metric are in bold.

I MACHINE LEARNING MODEL DETAILS

I.1 FEATURES

Here we provide the features for each of the problems. In both cases, set-based architectures Zaheer
et al. (2017) with parameter sharing utilized, so we report the features for a single dimension of the
first-stage decision and scenario accordingly. Table 11 reports all of the features for each instance.

I.2 MODEL HYPERPARAMETERS

This section reports the hyperparameters for the neural networks for each problem. For both prob-
lems, we have the same architecture with slightly different hyperparameters. As the objective of
Neur2RO is to enable efficient optimization, we train small networks that can achieve a low mean
absolute error value to ensure that the main and adversarial problems are tractable. For this reason,
no systematic hyperparameter tuning was done. Hyperparameter optimization would likely only
further improve the already strong numerical results. For both problems, we train a model for 500

23

Published as a conference paper at ICLR 2024

Problem First-Stage Features Scenario Features

Knapsack xi, fi, p̄i, p̂i, ri, ci, ti, C ξi, fi, p̄i, p̂i, ri, ci, ti, C
Capital budgeting xi, ri, ci

(
1 +Φ⊺

i ξ/2
)
i
,
(
1 +Ψ⊺

i ξ/2
)
i
, ri, ci

Table 11: Features for first-stage decision and scenario embedding networks.

epochs and compute the mean absolute error on a validation set every 10 epochs. We then use the
model with the lowest reported mean absolute validation error during training for evaluation.

Table 12 reports the hyperparameters for each model. As our model generalizes across instances,
which requires invariance to the order and number of decision variables, both the first-stage and sce-
nario embedding networks are set-based architectures (Zaheer et al., 2017). We refer to Figure 3 for
a refresher on the overall architecture which has the following hyperparameters. The hyperparame-
ters “Φ̂x dimensions” and “Φx dimensions” correspond to the hidden and embedding dimensions of
the first-stage embedding network. Specifically, “Φ̂x dimensions” corresponds to the network with
shared parameters that embed the representation for each first-stage decision. The last dimension
of “Φ̂x dimensions” is that of the aggregated vector. The hyperparameter “Φx dimensions” cor-
responds to the network that takes the aggregated first-stage embedding vector as input. The last
dimension of “Φx dimensions” specifies the embedding dimension of the first-stage embedding net-
work. “Φ̂ξ dimensions” and “Φξ dimensions” are analogous for the scenario embedding network.
“Φ dimensions” correspond to the hidden dimensions of the value network. Finally, “aggregation
type” specifies the type of aggregation that combines the first-stage/scenario embeddings.

Hyperparameter Knapsack Capital budgeting

Feature scaling min-max min-max
Label scaling min-max min-max
epochs 500 500
Batch size 256 256
Learning rate 0.001 0.001
Dropout 0 0
Loss function MSELoss MSELoss
Optimizer Adam Adam
Φ̂x dimensions [32, 16] [16, 4]
Φx dimensions [64, 8] [32, 8]
Φ̂ξ dimensions [32, 16] [16, 4]
Φξ dimensions [64, 8] [32, 8]
Φ dimensions [8] [8]
Aggregation type sum sum

Table 12: Hyperparameters for neural networks.

I.3 TRAINING CURVES

Figures 9-10 plot the mean absolute error at every 10 epochs during training for the training and
validation data. Generally, the training and validation mean absolute error is very close, and in both
problems, a relatively low mean absolute error is achieved.

24

Published as a conference paper at ICLR 2024

0 100 200 300 400 500
Epoch

0.004

0.006

0.008

0.010

0.012

M
ea

n
ab

so
lu

te
er

ro
r

Train
Validation

Figure 9: Training curve for knapsack.

0 100 200 300 400 500
Epoch

0.0350

0.0375

0.0400

0.0425

0.0450

0.0475

0.0500

0.0525

0.0550

M
ea

n
ab

so
lu

te
er

ro
r

Train
Validation

Figure 10: Training curve for capital budgeting.

25

	Introduction
	Background
	Two-Stage Robust Optimization
	Column-and-Constraint Generation

	Methodology
	Learning Model
	ML-Based Column-and-Constraint Generation
	Architecture

	Experimental Setup
	Experimental Results
	Related Work
	Conclusion
	2RO Problems
	Robust Two-stage Knapsack
	Capital Budgeting

	2RO Algorithms
	Column-and-Constraint Generation
	k-Adaptability

	Detailed Formulation
	Extended NN Architecture
	2RO with fixed first-stage decision
	Objective uncertainty
	Constraint uncertainty

	Convergence
	Distributional Results for Relative Performance
	Ablation
	Main Problem Formulation
	Worst-case Scenario Acquisition
	Sampling-Based Scenario Acquisition
	LP relaxation-Based Scenario Acquisition

	Prediction Target
	Baseline Solution Quality at Neur2RO Termination Time

	Machine Learning Model Details
	Features
	Model Hyperparameters
	Training Curves

