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Abstract—Deep learning has significantly progressed the field
of medical image segmentation; yet, its susceptibility to adver-
sarial attacks affects clinical and end-user confidence in the
automated solutions derived from the AI systems. This study
examines the adversarial robustness of five deep learning-based
segmentation models and six loss functions against the Fast
Gradient Sign Method attack across multiple attack strengths
on a prostate MRI dataset. The experimental findings indicate
that Recurrent U-Net had the highest adversarial robustness.
Specifically, it surpassed all the other assessed models in two
out of three evaluation metrics, achieving a mean of 0.52 Dice
Coefficient and a 95th percentile Hausdorff Distance of 11.12
across the folds. Additionally, in the hold-out dataset, it attained
a mean of 0.54 Dice Coefficient, a 95th percentile Hausdorff
Distance of 9.45 and an Average Surface Distance of 0.93.
Likewise, the loss functions derived from the Tversky index
had the highest adversarial robustness. Precisely, Tversky loss
surpassed all the other assessed loss functions in two out of three
metrics across the folds, with a mean of 0.57 Dice Coefficient and
13.07 for the 95th percentile Hausdorff Distance and in all three
evaluation metrics in the hold-out dataset, with a mean of (.52
Dice Coefficient, a 95th percentile Hausdorff Distance of 10.05
and an Average Surface Distance of (0.74 when combined with the
Binary Cross-Entropy loss function. From a clinical perspective,
the findings of this work can guide the development of more
adversarially resilient AI segmentation systems.

Index Terms—Adversarial robustness, Adversarial Attacks,
Medical Image Segmentation, Prostate MRI, Deep Learning

I. INTRODUCTION

Prostate segmentation is a very important task in the
diagnosis of prostate cancer in men. Deep learning-based
segmentation models have significantly advanced this process
by providing accurate delineation of the prostate gland and
potential lesions from MRI, assisting doctors in their decision-
making process. Despite their capabilities, their susceptibility
to adversarial attacks raises significant concerns about the
reliability of their functioning under this critical medical
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application. These attacks can modify the image such that
the human eye cannot distinguish the differences between
the original and the modified image [1]]. Nevertheless, the
inherent characteristics of Al models indicate that these minor
modifications can affect this automated segmentation process.

The adversarial robustness of deep learning models is
extensively studied, with various adversarial attacks having
been proposed in the literature [2]. In the domain of medical
imaging segmentation, there are several studies that examine
the effects of the adversarial attacks on the performance of
segmentation models [3[], [4]. Nevertheless, these studies have
been focused only on the adversarial robustness of the Al
models themselves. Conversely, the role of the loss functions
in adversarial robustness remains underexplored. The selected
loss function is very crucial for an Al model’s ability to
learn to differentiate between the classes [5]], but it can also
negatively influence the adversarial robustness of the Al model
itself.

Therefore, to our knowledge, this is the first work that
evaluates the adversarial robustness of both the segmentation
models and the loss functions, overall assessing the adversarial
robustness of the main components within an Al segmentation
system that may be utilized by the doctors for the automated
segmentation solutions that they provide to their patients. The
results demonstrate that segmentation models that incorporate
recurrent convolutional layers into their original configuration
and loss functions based on the Tversky index can significantly
resist the adversarial noise.

The objective of this work was to conduct an adversarial ro-
bustness stress test on the state-of-the-art segmentation model
architectures and loss functions that are widely used in the field
of medical imaging segmentation, overall providing practical
recommendations on selecting architectural components that
are robust to the noise generated from the FGSM adversarial



attack, as it may enhance patient safety in scenarios where
Al-generated segmentations are being employed. Moreover,
the development of Al tools that exhibit reduced adversarial
vulnerability can elevate doctors’ confidence regarding the
reliability of the automated segmentations produced by the
Al systems that they utilize.

II. MATERIALS & METHODS
A. Imaging Dataset

The ProstateX [6] dataset was utilized for the experiments.
This dataset comprises 3D T2-weighted magnetic resonance
imaging (MRI) scans of the prostate from a total of 204 pa-
tients. It also contains binary segmentation masks of the whole
gland, annotated by experienced radiologists. This dataset is
part of the PICAI Challenge [7] and it is publicly available.

B. Preprocessing steps

A series of preprocessing steps were performed to ensure
uniformity in the shape and voxel intensity distribution of all
MRIs. First, a bias correction filter was applied to address
intensity variations, and the z-score normalization technique
was employed on the images in order to standardize the
voxel values. Furthermore, all the images and their corre-
sponding masks were standardized to a fixed image shape of
256x256x1. A resampling operation for the voxel spacing was
conducted by setting the spacing between neighboring voxels
to 0.5x0.5x3.0, using linear interpolation. Finally, a Gaussian
smoothing filter (¢ = 1.0) was employed in order to suppress
the high-frequency components of the images that arise due
to hardware limitations or poor light conditions during the
acquisition process of the MRIs.

C. Deep Learning Models

In this work, we evaluated the adversarial robustness of
five deep learning segmentation models. (a) The U-Net [§]]
model, which introduces a symmetrical U-shaped structure
that consists of a downsampling path (encoder) and an up-
sampling path (decoder), where the feature maps produced by
the encoder are concatenated with the corresponding feature
maps from the decoder. (b) The Attention U-Net [9] which
introduces attention gates (AGs) into the original U-Net de-
coder before the concatenation of the feature maps from the
skip connections, assists the model in focusing on the most
important regions of the input image. (c) The Recurrent U-
Net [[10], which replaces the standard convolutional layers with
recurrent convolutional layers (RCLs), inputs the output of a
layer at a given iteration back as an input to the same layer
in the subsequent iteration. (d) The ResU-Net [[11] introduces
residual connections from the Residual Networks (ResNets)
[12], in both the encoder and decoder parts of the U-Net
model, enabling the training of deeper networks. (e¢) The U-
Net combined with a Vision Transformer incorporates the ViT
[13] in the deepest part (bottleneck) of the U-Net. The ViT
tokenizes the input image into a sequence of patches, where
multiple self-attention and feedforward neural network layers
are then used to capture their global information.

D. Loss Functions

The models presented in Section [[I-C| are trained using the
following loss functions, both individually and in weighted
combinations: (a) The Binary Cross-Entropy (BCE) loss is a
widely used loss function specifically for binary classification
tasks. It measures the difference between the probability of the
predicted pixel/voxel belonging to the target and the actual
ground truth class. (b) The Dice loss [14] is based on the
Dice Coefficient (DC), which measures the overlap between
the predicted and ground truth segmentation masks. (c) The
Tversky loss [[15] is a generalised version of the Dice loss,
which controls the trade-off between false positives and false
negatives. In addition, we also took the weighted combinations
of the previous loss functions. (d) The Binary Cross Entropy-
Dice loss (BCE-Dice), which is a loss function that is the
weighted sum of the BCE and the Dice loss [16]. (e) The
Binary Cross Entropy-Tversky (BCE-Tversky) loss function,
which combines the BCE and Tversky loss functions as a
weighted sum [[16]. (f) The Dice-Tversky loss function, which
occurs by taking the weighted sum of the Dice and Tversky
loss functions [|16].

E. Adversarial Attack Method

The adversarial robustness assessment of the segmentation
models and loss functions was performed by employing the
Fast Gradient Sign Method (FGSM) attack [1]], which is a
computationally efficient one-step adversarial attack. FGSM
is a white-box attack, meaning that the attacker has complete
knowledge of the target model, including its architecture, pa-
rameters, and gradients. It operates by calculating the gradient
of the model’s loss function with respect to the input and then
modifies the input in the direction of the sign of this gradient,
overall maximizing the model’s likelihood of misclassification.

The adversarial image X,q4v 1S generated from the original
input x using the following equation:

Xadv = X+ € sign(Vxﬁ(B, X, y)) (])

where x is the original input image, y is the ground truth label
corresponding to x, £(6, x,y) is the loss function used to train
the model with parameters 6, V< £(0,x,y) is the gradient of
the loss function with respect to the input image x, sign(-) is
the sign function, and € controls the attack strength.

In our experiments, the FGSM attack was applied to each
image in both the cross-validation phase and the hold-out
dataset (Section [I-G), using a range of attack strengths.
Specifically e € {0.1,0.2,...,1.0}. While the goal of the
adversarial attacks is to generate adversarial examples imper-
ceptible to the human eye, the selection of the values for the
adversarial strength (e) was perfomed with the intention to
produce not only weak but also strong enough adversarial ex-
amples, to test the limits of the presented model architectures
and loss functions under a potential adversarial attack.

FE. Evaluation Metrics

Three evaluation metrics were utilized in the present work.
(a) The Dice Coefficient [[17], which measures the similarity



between two given samples (in this case the predicted and
ground truth segmentation masks). It quantifies how much the
two samples overlap. (b) The 95th percentile Hausdorff Dis-
tance (HD95), which is a distance metric that is an extension
of the original Hausdorff Distance (HD) [17]] that measures the
maximum spatial distance between the predicted and ground
truth segmentation boundaries, with the difference being that
the HD95 excludes the largest 5% of the distances, making
it more robust to outliers. (c) The Average Surface Distance
(ASD) [[17] which is also a distance metric that calculates the
average symmetric distance between the predicted and ground
truth segmentation boundaries.

G. Experimental Design

The ProstateX dataset, which consists of 204 patients,
was initially split into a training set (70%, 143 patients), a
validation set (15%, 30 patients), and a hold-out test set (15%,
31 patients). Then the following two evaluation phases were
conducted:

Cross-Validation: A 3-fold cross-validation was conducted
within the 70% training set, where the FGSM attack was ap-
plied to each validation fold, and the results that are presented
for the models in Table [[ and for the loss functions in Table
of Section [[1I represent the average results across the folds
and adversarial attack strengths (€).

Hold-Out Dataset: After cross-validation, the models were
retrained with the loss functions from Section on the en-
tire 70% training dataset. The final robustness evaluation was
performed by applying the FGSM attack to the independent
15% hold-out dataset. The results that are presented for the
models in Table [l and for the loss functions in Table [V]
of Section represent the average results across all the
adversarial attack strengths (e¢) values which are presented in
Section [I=El

The two described evaluation phases have been conducted
in order to ensure that the experimental results regarding the
adversarial robustness are consistent and representative for
all the model architectures and loss functions. It should be
mentioned that based on the methodological description, a
standard arithmetic mean of the results was used. Specifically,
all the adversarial strength values (¢) for the FGSM attack
were treated with equal importance for the final calculation
of the results for the models and loss functions for both the
cross-validation strategy and the hold-out dataset.

H. Training and architecture parameters

All segmentation models were trained using the TensorFlow
2 framework on an NVIDIA A40 GPU for up to 150 epochs,
using a batch size of 4. The Adam optimizer [18] was selected,
with an initial learning rate (LR) of 1 x 10~%. Furthermore,
a reduction scheduling of the initial LR was applied if the
validation loss was not improving for 2 consecutive epochs.
This reduction was continued until a minimum LR value of
1 x 1079 was reached. In addition, to prevent unnecessary
overfitting to the training data, an early stopping was applied.
To ensure a fair comparison on the unique components of

each model (e.g., attention gates, recurrent convolution layers,
residual connections, etc.) we chose fixed encoder-decoder
depth, number of filters per level and activation functions.
The fixed selection of all the architectural parameters for the
models, guarantees the non existence of bias against a specific
model architecture.

III. RESULTS

The segmentation models and loss functions were assessed
based on the evaluation metrics presented in Section [II-
The results, which are presented in this section represent the
average performance results across the 3-fold cross-validation
that is performed on the training dataset and in the hold-out
dataset, as discussed in Section [[I-G

A. Comparison of the different model architectures

Table [l summarizes the models’ average performance results
for the cross-validation strategy after the FGSM attack was
performed in each validation fold. Based on the results, Re-
current U-Net achieved the highest mean DC and lowest mean
HD95, suggesting adversarial robustness due to the recurrent
convolutional layers. On the other hand, while Attention U-
Net achieved a competitive mean ASD compared to Recurrent
U-Net, its higher standard deviation suggests Recurrent U-Net
was more consistent in this metric compared to Attention U-
Net. Conversely, based on the evaluation metrics, the ResU-
Net achieved the least adversarial robustness performance
compared to the rest of models.

TABLE 1

MEAN RESULTS AND STANDARD DEVIATIONS ACROSS FOLDS FOR EACH
MODEL AFTER THE FGSM ATTACK IS APPLIED IN EACH VALIDATION FOLD

Model DC HD95 (mm) ASD (mm)
U-Net 0.49 £0.17 13.33 £7.79 1.72+2.84
Attention U-Net 0.48 £0.21 12.60 £ 7.58 1.43 £ 3.23
Recurrent U-Net | 0.52 £ 0.11 | 11.12 £ 5.53 1.45 +2.03
ResU-Net 0.35£0.32 36.17 + 39.99 33.03 +42.73
UNet-ViT 0.54+0.14 13.59 £ 6.57 2.28 +£2.76

Similarly, Table |lI| shows the average results for the hold-
out dataset for all the models. It is evident that Recurrent U-
Net again attained the best mean results across all evaluation
metrics, indicating the advantages of introducing recurrent
convolutional layers into the original U-Net architecture,
which shows adversarial robustness against the FGSM attack.

TABLE II
MEAN RESULTS AND STANDARD DEVIATION ACROSS THE HOLD-OUT

DATASET FOR EACH SEGMENTATION MODEL AFTER THE FGSM ATTACK IS
APPLIED IN THE HOLD-OUT DATASET

Model DC HD95 (mm) ASD (mm)

U-Net 0.52 +0.22 10.43 £ 3.77 1.24+1.31
Attention U-Net | 0.48 £0.17 | 16.17 £ 16.81 4.19 +£9.23
Recurrent U-Net | 0.54 £+ 0.1 9.45 + 2.93 | 0.93 £+ 0.42
ResU-Net 0.37 £ 0.28 25.9 + 33.57 15.1 4+ 27.45
UNet-ViT 0.51 +£0.21 14.61 £11.06 3.61 £ 7.52

Figure [I] presents the segmentation masks derived from the
ResU-Net under the FGSM attack, when it is trained with the
most robust loss function from Section The difference
heatmaps visualize the pixel values distribution of the added
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Fig. 1. Segmentation performance of the ResUNet on a random MRI slice
under the FGSM attack. As the adversarial strength increase, it loses its
robustness, overall producing low quality segmentation masks.

adversarial noise to the clean MRI slice. It is evident that the
quality of the predicted segmentation masks degrades as the
adversarial strength increases, where € = 0 represents the clean
MRI slice, when no adversarial noise is added. The visual
representations are supported by the experimental findings
from Table [l and Table [Tl where the ResU-Net consistently
achieves the lowest mean DC and the highest mean values
for the distance metrics among the rest of the models across
the folds and the hold-out dataset, indicating that the specific
architecture is more vulnerable to the FGSM attack, even when
it is trained with the most robust loss function.

Conversely, Figure [2] illustrates the generated segmentation
masks from the Recurrent-UNet under the FGSM attack on
a random MRI slice when it is trained with the most robust
loss function from Section As illustrated in Figure 2} the
RecurrentU-Net is more capable of maintaining its adversarial
robustness as the adversarial attack strength (€) increases,
compared to the ResU-Net. The superior performance of the
Recurrent U-Net can be further supported by the experimental
results from Table[l|and Table [T} where it achieves the highest
mean DC and the lowest mean value for the 95SHD among the
rest of the model architectures across the folds and the hold-
out dataset.

B. Comparison of the different loss functions

Table presents the average cross-validation results for
the loss functions. Tversky loss attained the highest mean
DC and the lowest mean HD95, indicating its effectiveness in
controlling the trade-off between false positives and negatives.
While Dice loss showed the lowest mean ASD, its higher
standard deviation compared to Tversky suggests Tversky
provided a more consistent average symmetric distance of the
surfaces compared to the Dice loss.

Table [[V| shows the average results of the loss functions on
the hold-out dataset. The combination of the BCE and Tversky
demonstrated the highest levels of adversarial robustness. It is
evident that when the models are trained with the Tversky
loss, either standalone (Table or combined (Table [[V),
they provide enhanced adversarial robustness levels, which
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Fig. 2. Segmentation performance of the Recurrent U-Net under the FGSM
attack on a random MRI slice. Compared to ResU-Net, as the adversarial
strength increases, RecurrentU-Net is more robust overall maintaining its
ability to generate accurate prostate segmentation masks.

TABLE III
MEAN RESULTS AND STANDARD DEVIATIONS ACROSS THE FOLDS FOR
EACH LOSS FUNCTION AFTER THE FGSM ATTACK IS APPLIED IN EACH
VALIDATION FOLD

Loss Function DC HD95 (mm) ASD (mm)
BCE 0.37 £0.21 17.21 £11.96 12.09 £ 29.58
Dice 0.49 £0.21 14.95 £+ 15.59 3.37 &+ 11.03

Tversky 0.57 +0.16 | 13.07 £ 13.06 3.57 £7.39
BCE-Dice 0.5+ 0.26 14.04 £16.4 6.38 £+ 18.64
BCE-Tversky 0.46 £0.23 23.41 4+ 34.87 15.07 £ 36.68
Dice-Tversky 0.44 +0.22 21.47 +23.6 7.37+£17.74

underscores the potential benefit of controlling the trade-off
between false positives and false negatives.
TABLE IV

MEAN RESULTS AND STANDARD DEVIATIONS FOR THE HOLD-OUT
DATASET FOR EACH LOSS FUNCTION AFTER THE FGSM ATTACK IS

APPLIED IN THE HOLD-OUT DATASET

Loss Function DC HD95 (mm) ASD (mm)
BCE 0.43 £0.21 12.24 £5.15 2.3 +4.96
Dice 0.47 +£0.18 16.76 + 18.36 5.07 £ 11.51

Tversky 0.5£0.15 15.43 £ 13 4.33+7.6
BCE-Dice 0.49 +0.19 14.63 £+ 19.22 6.97 +19.44
BCE-Tversky | 0.52 £+ 0.1 | 10.05 £ 5.88 0.74 £5.8
Dice-Tversky 0.49 +0.17 23.49 + 31.96 10.85 £+ 24.12

Figure |3 illustrates the poor segmentation performance of

the Recurrent U-Net when the BCE loss function is used for its
training. It is evident that as the adversarial strength increases,
the quality of the model’s prediction degrades. Specifically, the
overlap between the predicted and the ground truth prostate
segmentation masks is minimized. The degradation perfor-
mance of the BCE is also highlighted from the experimental
results presented in Table |III| and Table where it achieves
the lowest mean DC among the rest of the evaluated loss
functions.

IV. DISCUSSION

The experimental results demonstrated the enhanced per-
formance of the Recurrent U-Net model architecture and loss
functions that are based on the Tversky index against the
FGSM attack. Specifically, the Recurrent U-Net achieved in
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Fig. 3. Segmentation performance of the Recurrent U-Net when the BCE
loss function is used for its training. As the adversarial strength (e) increases,
the segmentation performance of the model degrades.

the cross-validation phase (Table [[) mean 52% Dice Co-
efficient (DC) and 54% in the hold-out dataset (Table [[I).
In contrast, ResU-Net showed poor levels of adversarial ro-
bustness, achieving mean 35% DC in the cross-validation
phase (Table [) and 37% in the hold-out dataset (Table [II),
suggesting that despite residual connections being an efficient
technique for training deeper networks, they do not auto-
matically guarantee adversarial robustness against the FGSM
attack. The performance gap between the Recurrent U-Net
and Res U-Net exists due to their fundamental differences
in their architectural components. Recurrent U-Net introduces
recurrent connections, while Res U-Net introduces residual
connections. In particular, recurrent connections can process
the feature maps multiple times, allowing the model to filter
the noise that is presented in the image. Conversely, residual
connections introduce a shortcut connection that adds the input
of a block into its output [12]. Although this mechanism
has been proven to be very effective in training deeper
networks, because they can efficiently mitigate the problem
of vanishing/exploding gradients [[19]], it can unintentionally
make the network more vulnerable to the adversarial attacks,
as the residual connections can propagate the adversarial noise
more effectively throughout the entire network.

The Tversky loss function has shown, both independently
in the cross-validation phase (Table , with a mean 57%
DC and in conjunction with BCE in the hold-out dataset
(Table , with mean 52% DC, the importance of control-
ling the trade-off between false positives and false negatives.
Conversely, the standard BCE showed the lowest levels of
adversarial robustness, only achieving mean 37% DC during
the cross-validation phase (Table and mean 43% DC in the
hold-out dataset, indicating higher vulnerability to the FGSM
attack in this task. As confirmed by the experimental findings
(Section , the significant difference in the adversarial
robustness levels between the models trained with Tversky and
BCE loss functions is a result of their fundamental difference
in their pixel processing operations. Specifically, the Tversky
is a region-based loss and was developed with the goal to
address the problem of high class imbalance that occurs in

the field of medical imaging segmentation, by controlling
the trade-off between false positives and false negatives [/15].
Conversely, BCE operates on individual pixels. As a result, it
treats all pixels with equal significance, which can cause the
model to put significance into the majority class (background),
leading to poor detection of the small regions of the image
(foreground).

Our work aligns with existing research that explores the
vulnerabilities of deep learning models in medical imaging
segmentation [3]], [4]]. Previous studies have focused mainly
on either the model architectures [3], [4] or the loss functions
(5], [14], [16] without quantifying their adversarial robustness.
However, a novel aspect of this work is that it evaluates
the adversarial robustness of both model architectures and
loss functions, illustrating that, in addition to the model
architecture, the careful consideration of a robust loss func-
tion is essential for developing an adversarially resilient Al
segmentation system.

Accurate prostate segmentation from medical images is
essential for the diagnosis of prostate cancer in men. It
is essential that segmentations produced by Al systems are
accurate and robust to potentially minor modifications in MRIs
in order for the doctors to be confident that they deliver the
best treatment to their patients.

A limitation of this work is its focus on a single one-
step, white-box adversarial attack and a single dataset. Con-
sequently, the observed robustness levels may differ when
models and loss functions are subjected to iterative attacks
or when applied to datasets with different imaging modalities,
such as images from X-rays, CT scan or ultrasound. Neverthe-
less, these findings underscore the impact of selecting model
architectures and loss functions that are robust to the FGSM
attack.

V. CONCLUSION

The purpose of this paper is to assess the adversarial
robustness of five segmentation models and six loss func-
tions widely used in medical imaging segmentation against
the FGSM attack on a prostate MRI dataset. The results
demonstrate that the recurrent convolutional layers and loss
functions that incorporate the Tversky index enhance the
adversarial robustness. Future work will aim to investigate the
presented configurations against multi-step adversarial attacks
and validate the generalizability of the results across additional
prostate MRI datasets and in datasets with different medical
imaging modalities, such as images from X-ray, CT scan and
ultrasound.
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