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Abstract
Knowledge graphs play a pivotal role in vari-001
ous applications, such as question-answering002
and fact-checking. Abstract Meaning Repre-003
sentation (AMR) represents text as knowledge004
graphs. Evaluating the quality of these graphs005
involves matching them structurally to each006
other and semantically to the source text. Ex-007
isting AMR metrics are inefficient and struggle008
to capture semantic similarity. We also lack009
a systematic evaluation benchmark for assess-010
ing structural similarity between AMR graphs.011
To overcome these limitations, we introduce a012
novel AMR similarity metric, rematch, along-013
side a new evaluation for structural similarity014
called RARE. Among state-of-the-art metrics,015
rematch ranks second in structural similarity;016
and first in semantic similarity by 1–5 percent-017
age points on the STS-B and SICK-R bench-018
marks. Rematch is also five times faster than019
the next most efficient metric.020

1 Introduction021

Knowledge graphs provide a powerful framework022

for multi-hop reasoning tasks, such as question an-023

swering and fact-checking (Yasunaga et al., 2021;024

Vedula and Parthasarathy, 2021). Even for closed-025

domain tasks like long-form question answering026

and multi-document summarization, knowledge027

graphs derived from documents exhibit superior028

performance compared to plain text (Fan et al.,029

2019). This highlights the significance of automati-030

cally parsed knowledge graphs in both large-scale031

and fine-grained structured reasoning applications.032

The Abstract Meaning Representation (AMR)033

framework leverages acyclic, directed, labeled034

graphs to represent semantic meaning (knowledge)035

extracted from text (Banarescu et al., 2013). As036

illustrated in the example of Fig. 1, AMRs capture037

the relationships between concepts and their roles038

in a sentence. They have been applied to a vari-039

ety of natural language processing tasks, includ-040

ing summarization and question answering (Liu041

Figure 1: AMR for the sentence: “He did not cut the
apple with a knife.” Colors indicate AMR components:
instances (blue), relations (red), constants (teal), and
attributes (orange). The instance cut-01 is a Prop-
Bank frame that uses ARG0, ARG1 and inst to express
the verb’s agent (he), patient (apple), and instrument
(knife), respectively. The attribute polarity ex-
presses the negation of the verb through the constant -.

et al., 2015; Hardy and Vlachos, 2018; Bonial et al., 042

2020; Mitra and Baral, 2016). Recent work has 043

also shown that AMRs can reduce hallucinations 044

and improve performance in factual summarization 045

tasks (Ribeiro et al., 2022). 046

However, evaluating the quality of knowledge 047

graphs like AMRs hinges critically on the ability 048

to accurately measure similarity. This assessment 049

must consider a dual perspective. Firstly, the simi- 050

larity between two AMRs should reflect structural 051

consistency, guaranteeing that the similarity be- 052

tween two AMRs aligns with the similarity of their 053

structural connections. Secondly, AMRs should ex- 054

hibit semantic consistency, ensuring that the simi- 055

larity between two AMRs aligns with the similarity 056

of the texts from which they are derived. Therefore, 057

an effective AMR similarity metric must success- 058

fully account for both structural and semantic simi- 059

larity, all while overcoming the resource-intensive 060

nature of matching labeled graphs. 061

Current AMR similarity metrics fall short in 062

several key areas. Firstly, their computational ef- 063

ficiency hinders the comparison of large AMRs 064

extracted from documents (Naseem et al., 2022). 065

Secondly, these metrics struggle to accurately cap- 066

ture the semantic similarity of the underlying text 067
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from which AMRs are derived (Leung et al., 2022).068

Additionally, while recent efforts like BAMBOO069

(Opitz et al., 2021) have evaluated metrics on AMR070

transformations, we still lack a large-scale bench-071

mark to systematically evaluate the ability of AMR072

metrics to capture structural similarity.073

Our work introduces a structural AMR bench-074

mark called Randomized AMRs with Rewired075

Edges (RARE) and proposes rematch, a novel and076

efficient AMR similarity metric that captures both077

structural and semantic similarity. Compared to078

the state of the art, rematch trails the best simi-079

larity metric on RARE by 1 percentage point and080

ranks first on the STS-B (Agirre et al., 2016) and081

SICK-R (Marelli et al., 2014) benchmarks by 1–5082

percentage points. Additionally, rematch is five083

times faster than the next most efficient metric.084

2 Background085

2.1 Abstract Meaning Representations086

Abstract Meaning Representation (AMR) is a struc-087

tural, explicit language model that utilizes directed,088

labeled graphs to capture the semantics of text (Ba-089

narescu et al., 2013). AMR is designed to be inde-090

pendent of surface syntax, ensuring that sentences091

with equivalent meanings are represented by the092

same graph. An AMR comprises three fundamen-093

tal components: instances, attributes, and relations.094

1. Instances are the core semantic concepts. Struc-095

turally, they are represented by nodes in the graph.096

AMRs have two types of instances. One utilizes097

PropBank (Palmer et al., 2005), a dictionary of098

frames that map verbs and adjectives. The other099

comprises entities. Considering the sentence in100

Fig. 1, “He did not cut the apple with a knife,” the101

AMR contains a PropBank instance cut-01 and102

three entity instances: he, apple and knife.103

2. Attributes capture details about instances, such104

as names, numbers, and dates. These values are105

represented as constant nodes. Structurally, an at-106

tribute is identified in the graph as the edge from107

an instance node to a constant node. For example,108

in Fig. 1, the attribute polarity is specified for109

the instance cut-01, where - is the constant that110

represents the negation of the verb.111

3. Relations represent the connections between112

instances. In Fig. 1, the instance cut-01 has113

three outgoing relations: ARG0, ARG1, and inst.114

These come from PropBank’s cut-01 frame and115

link to the agent (he), the patient (apple), and 116

the instrument (knife), respectively. 117

2.2 AMR Similarity 118

Graph isomorphism is a test to determine whether 119

two graphs are structurally equivalent. The class- 120

wise isomorphism testing with limited backtrack- 121

ing (CISC) algorithm efficiently identifies isomor- 122

phic relationships in labeled graphs (Hsieh et al., 123

2006), such as AMRs. But a pair of AMRs may 124

not have the same number of nodes, which vio- 125

lates a key assumption of graph isomorphism. A 126

more appropriate approach is subgraph isomor- 127

phism, which determines whether a smaller graph 128

is isomorphic to a subgraph of a larger graph. Sub- 129

graphs of directed acyclic graphs, like AMRs, can 130

be enumerated in polynomial time (Peng et al., 131

2018), enabling efficient application of the CISC 132

test to each pair of smaller AMR and larger AMR 133

subgraphs. However, even if two AMRs are not 134

subgraph-isomorphic, they may still exhibit simi- 135

larities in meaning and structure. Next, we describe 136

various existing approaches to measure the similar- 137

ity between AMR graphs. 138

2.3 AMR Similarity Metrics 139

2.3.1 Smatch 140

Smatch is a prominent tool for evaluating AMR 141

parsers (Cai and Knight, 2013). It establishes AMR 142

alignment by generating a one-to-one node map- 143

ping, considering node and edge labels. To effi- 144

ciently explore this vast mapping space, smatch 145

employs a hill-climbing heuristic. 146

2.3.2 S2match 147

Similar to smatch, s2match (Opitz et al., 2020) 148

also establishes a node alignment between two 149

AMRs. However, instead of relying on AMR la- 150

bels, s2match utilizes GloVe word embeddings 151

(Pennington et al., 2014). To address the exten- 152

sive search space, it uses the same hill-climbing 153

heuristic adopted by smatch. 154

2.3.3 Sembleu 155

Sembleu generates path-based n-grams from AMRs 156

by leveraging node and edge labels (Song and 157

Gildea, 2019). The final similarity score for an 158

AMR pair is determined by calculating the BLEU 159

score (Papineni et al., 2002) between their n-grams. 160

By avoiding a one-to-one node alignment, Sembleu 161

efficiently bypasses the issue of exploring a large 162

search space. 163
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Figure 2: An example of rematch’s similarity calculation for a pair of AMRs. After AMRs are parsed from sentences,
rematch has a two-step process to calculate similarity. First, sets of motifs are generated. Second, the two sets are
used to calculate the Jaccard similarity (intersecting motifs shown in color).

2.3.4 WLK and WWLK164

The Weisfeiler-Leman Kernel (WLK) and Wasser-165

stein Weisfeiler-Leman Kernel (WWLK) for AMRs166

also utilize graph features for computing similar-167

ity (Opitz et al., 2021). WLK first constructs node168

features by recursively aggregating AMR node and169

edge labels. Then it generates a frequency-based170

feature vector for each AMR and calculates a simi-171

larity score using their inner product. WWLK ex-172

tends WLK with features based on aggregated node173

embeddings (GloVE) instead of node labels.174

3 Methods175

In this work, we propose rematch, an AMR similar-176

ity metric that aims to capture both the structural177

and semantic overlap between two AMRs.178

3.1 Rematch179

A straightforward approach to match two labeled180

graphs involves identifying the alignment between181

node labels. However, labeled graphs often con-182

tain duplicate labels, necessitating an exhaustive183

exploration of all one-to-one combinations among184

nodes within the same label group to determine the185

optimal match. The resulting matching complex-186

ity hinges on the size of node groups with shared187

labels. This is why algorithms like smatch and188

s2match do not scale well to large AMRs, where189

these node groups can be large.190

Graph features constructed using an ordered con-191

catenation of edge-node bi-grams are utilized in192

both isomorphism tests like the CISC and ker-193

nels like Weisfeiler-Leman (Shervashidze et al.,194

2011). This approach is effective: it consistently 195

produces smaller node groups compared to those 196

based solely on node labels. Matching between 197

two graphs is significantly accelerated as a result. 198

Inspired by this idea of exploiting graph fea- 199

tures for efficiency, rematch computes the similar- 200

ity between two AMRs by analyzing the overlap 201

of semantically rich features, which we call motifs. 202

Unlike the ordered graph partitions used by CISC 203

and Weisfeiler-Leman Kernel, which rely on node 204

and edge labels, AMR motifs are unordered graph 205

partitions that leverage AMR instances, attributes, 206

and relations. This approach allows rematch to cap- 207

ture meaning across three semantic levels: specific 208

facts (attributes), main concepts (instances), and 209

the relationships among concepts (relations). Fig. 2 210

illustrates rematch through an example. Next, we 211

delve into the three orders of semantic motifs that 212

we use for rematch. We extract these motifs using 213

the Python package Penman (Goodman, 2020). 214

1. Attribute motifs are pairs of attributes and con- 215

stants associated with AMR instance nodes. For 216

the bottom AMR in Fig. 2, talk-01 has attribute 217

motif (polarity -), indicating a negation. The 218

first name has the attribute motif (op1 "Helen") 219

and the second name has (op1 "Maya"), identi- 220

fying the name values. The remaining instances do 221

not have any attributes. 222

2. Instance motifs leverage Verbatlas, a resource 223

that maps PropBank frames to more generalized 224

frames (Di Fabio et al., 2019). If an instance in 225

the AMR corresponds to a Verbatlas frame, the 226
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latter is used instead. Otherwise, the original Prop-227

Bank instance is retained. For example, in Fig. 2,228

talk-01 is replaced by the more generalized Ver-229

batlas frame speak. The generation of instance230

motifs follows two approaches. If an instance lacks231

associated attributes, the instance itself serves as its232

motif. However, if attributes are present, instance233

motifs are constructed by combining the instance234

with each of its attribute motifs. For the bottom235

AMR in Fig. 2, the instance motif for talk-01236

is (speak (polarity -)), indicating a nega-237

tion of the verb. For the two person instances238

and the politics instance, the instances them-239

selves become their motifs, namely (person) and240

(politics). Finally, the instance motifs for the241

two name instances are (name (op1 "Helen"))242

and (name (op1 "Maya")) respectively, identify-243

ing the names in the conversation.244

3. Relation motifs are constructed for relation245

edges in an AMR graph. Each relation motif246

comprises three elements: an instance motif of247

the source instance, the relation label, and an in-248

stance motif of the target instance. A relation249

can have multiple relation motifs, one for each250

unique combination of source and target instance251

motifs. For the bottom AMR in Fig. 2, the re-252

lation motifs for ARG0, ARG1 and ARG2 are:253

((speak (polarity -)) ARG0 person), indi-254

cating a person is the speaker of the conversation;255

((speak (polarity -)) ARG1 politics), in-256

dicating that the topic of conversation is politics;257

and ((speak (polarity -)) ARG2 person),258

indicating that a person is the recipient of the con-259

versation. For the two name relations, the motifs260

are: ((person) name (op1 "Helen"))), iden-261

tifying "Helen" as the name of one person; and262

((person) name (op1 "Maya")), identifying263

"Maya" as the name of the other person.264

Each AMR is represented by the union of its in-265

stance, relation, and attribute motifs. The rematch266

score between two AMRs is determined by calculat-267

ing the Jaccard similarity between their respective268

motif sets, as illustrated in Fig. 2.269

4 Evaluation270

We evaluate the effectiveness of rematch on three271

types of similarity: structural similarity, semantic272

similarity, and BAMBOO (Opitz et al., 2021), a273

hybrid benchmark that modifies AMR semantics274

through structural transformations. Additionally,275

we assess the efficiency of rematch.276

4.1 Structural Similarity (RARE) 277

Given that AMRs are graphical representations of 278

text, an AMR similarity metric should be sensitive 279

to structural variations between AMRs, even if its 280

labels remain unchanged. 281

Since there is no established evaluation of AMR 282

metrics on structural similarity, we have developed 283

a new benchmark dataset called Randomized AMRs 284

with Rewired Edges (RARE). RARE consists of En- 285

glish AMR pairs with similarity scores that reflect 286

the structural differences between them. 287

In the construction of RARE, we adopt the it- 288

erative randomization technique commonly used 289

for graph rewiring. This involves repeatedly se- 290

lecting a random pair of directed edges and swap- 291

ping either their source or target nodes to establish 292

new connections. This way each node’s in-degree 293

and out-degree are preserved. In applying this ap- 294

proach to AMRs, we swap a random pair of edges 295

between either attributes or relations. This allows 296

us to quantify the structural changes made to the 297

AMR through the number of swapped edges. We 298

generate a spectrum of modified graphs from an 299

original AMR, ranging from the unchanged graph 300

to one where all edges are rewired, subject to some 301

constraints that preserve the integrity of AMRs: 302

1. Structural Constraints. AMRs are acyclic, 303

connected graphs that allow no multiedges (more 304

than one edge between the same pair of nodes). 305

To preserve these properties during the rewiring 306

process, pairs of swapped edges must maintain 307

these constraints in the modified AMR. 308

2. Semantic Contraints. These contraints relate 309

to swapping attributes and relations: 310

(a) Attributes have an inherent connection with 311

constants in AMRs. Hence, while rewiring 312

a pair of attribute edges, only the source in- 313

stance node should be swapped. This restric- 314

tion ensures that the association between the 315

attribute and its corresponding constant re- 316

mains intact. For example, the constant node 317

- should remain associated solely with the at- 318

tribute edge polarity . 319

(b) Relations in AMRs connect two instances. 320

When rewiring a pair of relation edges, only 321

the target instance node should be swapped. 322

This restriction maintains the association be- 323

tween the relation’s source instance and the re- 324

lation itself. For example, PropBank instances 325

have a predefined set of relations with which 326
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they can be associated. The instance node327

talk-01 can only be associated with edges328

ARG0, ARG1, and ARG2.329

Each pair of AMRs, consisting of an origi-330

nal AMR G with E edges and its corresponding331

rewired AMR G′ with E′ swapped edges, is anno-332

tated with the following similarity score:333

similarity(G,G′) =
|E| − |E′|

|E|
(1)334

To generate the RARE benchmark, we licensed335

the English AMR Annotation 3.0 (Knight, Kevin336

et al., 2020) containing 59,255 human-created337

AMRs. Using the process described above results338

in 563,143 rewired AMR pairs annotated with sim-339

ilarity scores per Eq. 1. RARE is derived from340

AMR 3.0 by merging, shuffling, and re-splitting341

the original data into training (47,404), develop-342

ment (5,925), and test (5,926) sets, following an343

80-10-10 split ratio. The corresponding counts344

in these splits are 450,067, 56,358, and 56,718,345

respectively. The creation of training and devel-346

opment splits could facilitate the future develop-347

ment of supervised AMR metrics. For the current348

evaluation, AMR structural similarity metrics are349

evaluated on the RARE test split.350

We evaluate a similarity metric by computing351

the Spearman correlation between its scores and352

the ground truth values from Eq. 1, across a set of353

pairs of original and modified AMRs. We refer to354

this as the structural consistency of the metric.355

4.2 Semantic Similarity356

A fundamental tenet of AMRs is that if two pieces357

of text are semantically related, their corresponding358

AMRs should exhibit a degree of similarity. Based359

on this assumption, we evaluate an AMR similarity360

metric by considering many pairs of sentences. For361

each pair, we compare the similarity generated by362

the metric for the corresponding AMRs to a human-363

annotated similarity score between the sentences.364

We utilize two standard sentence similarity365

benchmarks for English: STS-B (Agirre et al.,366

2016) and SICK-R (Marelli et al., 2014). To ac-367

count for variations in AMR parsing accuracy,368

we employ four different AMR parsers: spring369

(Bevilacqua et al., 2021), amrbart (Bai et al., 2022),370

structbart (Drozdov et al., 2022), and the maximum371

Bayes smatch ensemble (Lee et al., 2022).372

Given a set of sentence pairs and correspond-373

ing AMR pairs, we evaluate a similarity metric by374

computing the Spearman correlation between its 375

scores for the AMR pairs and the human-annotated 376

similarity values for the sentence pairs. We refer 377

to this as the semantic consistency of the metric. 378

Note that semantic consistency can be used to eval- 379

uate any similarity method for sentences, not only 380

AMR-based ones. For both structural and semantic 381

consistency, we use Spearman rather than Pearson 382

correlation because we do not assume that the sim- 383

ilarity values are normally distributed. 384

4.3 Hybrid Similarity (BAMBOO) 385

In addition to the structural and semantic consis- 386

tency discussed earlier, we evaluate the robustness 387

of AMR metrics using the Benchmark for AMR 388

Metrics Based on Overt Objectives, or BAMBOO 389

(Opitz et al., 2021). BAMBOO assesses the ability 390

of AMR similarity metrics to capture semantic sim- 391

ilarity between English sentences while modifying 392

the structure of the corresponding AMRs. 393

BAMBOO incorporates three types of graph 394

modifications: synonym replacement, reification, 395

and role confusion. Consider the example sentence 396

“He lives in the attic,” represented by an AMR 397

where the node live-01 connects to nodes he 398

and attic via the edges ARG0 and location, 399

respectively. Synonym replacement swaps Prop- 400

Bank instances with equivalent terms. In the exam- 401

ple, live-01 might be replaced by reside-01. 402

Reification transforms a relation into a new in- 403

stance. In the example, the location edge might 404

be replaced by a new node be-located-at-91 405

connected to live-01 and attic via new ARG1 406

and ARG2 edges, respectively. Finally, role con- 407

fusion swaps relation roles. In the example, the 408

relations location and ARG0 might be swapped 409

such that the modified AMR would represent the 410

sentence “The attic lives in him.” BAMBOO ap- 411

plies these modifications to the original train, test 412

and dev splits of the STS-B, SICK-R, and PARA 413

(Dolan and Brockett, 2005) datasets. 414

Given a set of modified AMR pairs, BAMBOO 415

evaluates an AMR metric by the Spearman correla- 416

tion1 between its scores and the similarity between 417

the corresponding sentence pairs. We call this hy- 418

brid consistency of the metric. 419

1The original formulation of BAMBOO (Opitz et al., 2021)
used Pearson correlation. Here we use Spearman because, as
for structural and semantic consistency, we do not assume that
the similarity values are normally distributed.

5



AMR Metric RARE
smatch 96.57
s2match 94.11
sembleu 94.83
WLK 90.39
WWLK 86.31
rematch 95.32

Table 1: Structural consistency of different AMR simi-
larity metrics on the RARE test split.

4.4 Efficiency420

As discussed earlier, the computational complexity421

associated with node alignment is a crucial chal-422

lenge for comparing AMRs. To address this issue,423

we evaluate the search spaces explored by various424

metrics and the required runtime.425

We establish a realistic test bed using the AMR426

Annotation 3.0 once again. For this evaluation, we427

randomly sampled 500,000 pairs from the
(59,255

2

)
428

possible AMR combinations. For each pair of429

AMRs (G1, G2), the search spaces for node align-430

ment algorithms like smatch and s2match is431

search(G1, G2) =
∏

ni∈G1

|MG2(ni)| (2)432

where MG2(ni) denotes the set of matching can-433

didates in G2 for node ni. For feature-based algo-434

rithms, like sembleu, WLK, and rematch, we record435

the search space using436

search(G1, G2) = |F(G1)| · |F(G2)| (3)437

where F(G) denotes the feature set for graph G.438

For each pair of AMRs, we also record the runtime.439

We could not record the search space or runtime440

for WWLK given its batch-style execution.441

5 Results442

5.1 Structural Consistency443

Table 1 reports on the structural consistency of the444

AMR similarity metrics on the RARE test split.445

We can see that smatch performs the best, followed446

closely by rematch, sembleu and s2match. The447

subpar performance of WLK and WWLK can be448

attributed to their reliance on features using all of a449

node’s neighbors. This approach results in changes450

to node features regardless of the number of mod-451

ified neighbors, failing to capture the nuances of452

neighborhood changes.453

5.2 Semantic Consistency 454

Table 2 reports on the semantic consistency of the 455

similarity metrics for different AMR parsers. Re- 456

match outperforms all other metrics by 1–5 per- 457

centage points, across all parsers and benchmarks. 458

The mbse and amrbart parsers perform best for the 459

STS-B and SICK-R datasets, respectively. 460

So far we have focused on methods that use 461

AMRs to calculate the semantic similarity between 462

sentences. Table 3 reports on the evaluation of alter- 463

native similarity methods on the same benchmarks. 464

Like AMR-based methods, these are also unsuper- 465

vised (not trained specifically) for textual semantic 466

similarity. AMR outperforms some representations 467

like GloVe and RoBERTa but lags behind the state- 468

of-the-art method SimCSE (Gao et al., 2022). 469

5.3 Hybrid Consistency 470

Table 4 reports on the hybrid consistency of AMR 471

similarity metrics on the four different tests of 472

BAMBOO, across three different datasets. The 473

results vary considerably across graph modifica- 474

tions and datasets; none of the methods is a clear 475

winner. Rematch achieves best results in three out 476

of twelve tests and lags slightly behind s2match on 477

average. 478

5.4 Efficiency 479

Fig. 3 shows the search spaces explored by AMR 480

metrics for increasing values of N , the average size 481

of each pair of AMRs. The size of each AMR 482

is determined by the sum of the number of in- 483

stances, attributes, and relations. Approaches that 484

find node alignment between AMRs, like smatch 485

and s2match, explore search spaces that grow ex- 486

ponentially with N . Feature-based methods, like 487

sembleu, WLK, and rematch, in contrast, explore 488

significantly smaller spaces. 489

Fig. 3 also shows the runtimes for increasing N . 490

By using a hill-climbing heuristic, node-alignment 491

metrics effectively overcome the exponentially 492

growing search spaces. However, they are signifi- 493

cantly less efficient compared to feature-based met- 494

rics. For large values of N , smatch and s2match 495

display an approximately quadratic time complex- 496

ity. Sembleu, WLK, and rematch, on the other hand, 497

demonstrate a linear complexity. 498

In terms of absolute runtime on the test bed, 499

rematch is the fastest metric, with a runtime of 51 500

seconds. This is five times faster than sembleu, 501

which took 275 seconds. Smatch, s2match, and 502
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STS-B SICK-R
spring amrbart sbart mbse spring amrbart sbart mbse

smatch 53.84 54.67 54.73 55.16 58.69 58.89 58.70 57.84
s2match 56.60 57.15 57.54 57.64 58.09 58.56 58.42 57.58
sembleu n/a 58.62 58.17 58.95 60.15 60.61 59.62 59.57
WLK 63.18 64.60 64.33 65.37 63.09 63.33 63.07 62.59
WWLK 63.89 64.80 64.34 65.40 62.72 62.99 62.55 62.66
rematch 64.93 65.88 65.06 66.52 67.03 67.72 67.10 67.34

Table 2: Semantic consistency of AMR similarity metrics and AMR parsers on the test splits of STS-B and SICK-R
datasets. Best results are highlighted in bold. Sembleu fails to parse some of the AMRs generated by spring.

Figure 3: Average search space (left) and runtime (right) on a random sample of 500k pairs from AMR Annotation
3.0. N denotes the average size of each AMR pair. The inset zooms in on sembleu, WLK, and rematch, which cannot
be distinguished in the log-linear plot. The lines on the runtime plot indicate approximate fits for N > 101.5, which
on the log-log scale represent polynomial time complexity. The slopes indicate that the runtime scales quadratically
for smatch (O(N2.25)) and linearly for rematch (O(N)).

Similarity Methods STS-B SICK-R
GloVe (avg.) 58.02 53.76
RoBERTa (first-last avg.) 58.55 61.63
AMR (rematch) 66.52 67.72
SimCSE-RoBERTa 80.22 68.56

Table 3: Comparison of similarity methods (AMR and
non-AMR) on semantic consistency for the test splits of
STS-B and SICK-R datasets.

WLK trailed further behind, requiring 927, 7718,503

and 315 seconds. All metrics executed the test bed504

on a single 2.25 GHz core. Rematch, sembleu, and505

smatch needed 0.2 GB of RAM, whereas s2match506

and WLK required 2 GB and 30 GB, respectively.507

5.5 Ablation Study508

To assess the impact of the three types of rematch509

motifs — attribute, instance, and relation — on510

structural and semantic similarity, let us conduct511

an ablation study, in which we remove one or more512

types of motifs at a time. The results are pre- 513

sented in Table 5. Instance motifs have the most 514

significant influence on semantic similarity, partic- 515

ularly when combined with relation motifs. Con- 516

versely, relation motifs exert the strongest influence 517

on structural similarity, especially when comple- 518

mented by instance motifs. 519

To evaluate the overall effectiveness of motifs, 520

we also assess the performance of rematch through 521

the use of AMR labels alone. For the bottom AMR 522

in Fig. 2, the label set is {talk-01, person, 523

politics, name, ARG0, ARG1, ARG2, name, 524

-, "Helen", "Maya", polarity , op1}. Note 525

that person, name, and op1 appear only once 526

in the set. Similar to rematch motifs, we calcu- 527

late the Jaccard similarity between two AMR label 528

sets. As shown in Table 5, the decline in structural 529

consistency when using AMR labels is substantial, 530

given the absence of structural information in the 531

label sets. In contrast, the decline in semantic con- 532

sistency is relatively modest, indicating that AMR 533
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Main Reification Synonym Replace Role Confusion Avg.
STS-B SICK-R PARA STS-B SICK-R PARA STS-B SICK-R PARA STS-B SICK-R PARA

smatch 53.01 57.65 40.96 53.02 59.74 40.08 51.76 55.42 39.60 54.03 75.20 24.78 50.44
s2match 55.87 57.38 41.92 55.41 59.46 40.78 54.86 56.12 40.59 48.23 73.89 26.19 50.89
sembleu 57.02 58.76 31.95 54.73 59.92 31.92 53.42 54.66 27.95 45.69 66.74 21.36 47.01
WLK 63.68 62.32 35.18 61.31 63.03 35.65 57.90 56.60 31.43 44.72 66.39 17.46 49.64
WWLK 64.89 62.92 37.72 61.90 63.63 37.39 59.94 57.47 33.35 5.50 43.55 0.09 44.03
rematch 64.72 66.54 34.88 63.49 62.55 35.82 59.75 61.54 32.70 42.38 67.28 15.37 50.59

Table 4: Hybrid consistency of AMR similarity metrics on the test split of the BAMBOO benchmark, for the three
kinds of modifications, no modification (main) and the overall average. The best results are highlighted in bold.

RARE STS-B SICK-R
rematch 95.01 73.95 71.01
− attribute −00.85 −00.40 −00.09
− instance +00.08 −06.34 −07.12
− relation −62.30 +01.15 −01.41
− attribute, instance +01.18 −16.78 −07.32
− attribute, relation −62.55 +00.93 −01.92
− instance, relation −95.87 −37.90 −62.32
labels −72.89 −08.08 −07.30

Table 5: Ablation study of different motifs on structural
(RARE) and semantic (STS-B, SICK-R) consistency.
Dev splits of RARE and STS-B, and the trial split of
SICK-R were used. The mbse and amrbart parsers were
used for STS-B and SICK-R, respectively.

labels play a significant role in capturing semantics.534

5.6 Error Analysis535

Let us analyze a couple of examples where the536

semantic consistency of rematch significantly de-537

viates from other AMR metrics. Rematch under-538

estimates the semantic similarity between the sen-539

tences “Work into it slowly” and “You work on540

it slowly” compared to other metrics. This dis-541

crepancy arises from the AMR representation of542

the first sentence, which associates an attribute543

imperative with the verb work-01, a feature544

absent in the second sentence. Taking this attribute545

into account, rematch generates dissimilar instance546

motifs for the two AMRs.547

In contrast, rematch accurately assigns a low548

similarity between the sentences “You should do it”549

and “You should never do it,” unlike other metrics.550

It does so by capturing the negative (-) attribute551

polarity . Overall, we find that rematch’s scores552

are more conservative compared to other AMR553

metrics, particularly when dealing with negation.554

6 Conclusion 555

In this paper, we introduce rematch, a novel and 556

efficient metric for AMR similarity. Rematch lever- 557

ages semantic AMR motifs to achieve superior 558

performance compared to existing AMR metrics 559

on both semantic consistency and computational 560

efficiency. Furthermore, we introduce RARE, a 561

new benchmark specifically designed to evaluate 562

the structural consistency of AMR metrics. Using 563

this benchmark, we find that rematch also exhibits 564

strong sensitivity to structural transformations. 565

Despite its promising results, rematch has some 566

limitations that merit future investigation. First, re- 567

match only considers motifs associated with paths 568

of length one (single edges). While this approach 569

demonstrates strong performance on sentences, it 570

might not capture higher-order semantics crucial 571

for comparing AMRs derived from longer docu- 572

ments. Second, AMR-based similarity methods 573

like rematch lag behind embeddings in capturing 574

the semantic similarity of words. AMRs are limited 575

in their ability to incorporate word-level similarity 576

information, which is readily handled by embed- 577

dings. This can lead rematch to misclassify two 578

sentences with different words as dissimilar even if 579

their underlying concepts are equivalent. 580

Future research should delve deeper into the 581

expressive power of Abstract Meaning Represen- 582

tations, particularly on their potential to address 583

complex natural language understanding. Natu- 584

ral language inference (NLI) is one such task that 585

is valuable for evaluating such AMR capabilities. 586

Hybrid systems incorporating AMRs have already 587

shown promise in this domain (Opitz et al., 2023). 588

But a more intriguing avenue would be to explore 589

methods that perform NLI entirely by exploiting 590

the rich structure and semantics inherent in AMRs. 591
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