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Abstract

Large language models (LLMs) has demonstrated superior performance
on various downstream tasks. However, their practical applications are
hindered by their immense memory and computation requirements. Al-
though recent post-training quantization methods can effectively reduce
memory usage and improve computational efficiency, they often overlook
the varying sensitivity of different layer weights to bit precision. Addi-
tionally, the previous methods suffer from significant accuracy loss under
low-bit quantization (2-3 bits). To address these limitations, we propose
Adaptive Mixed Precision and Low-Rank Quantization Error Reconstruc-
tion for LLMs (AMLQ), which achieves state-of-the-art performance under
the approximate average bit precision overall. Furthermore, we introduce
the low-rank decomposition to reconstruct quantization error based on the
output features. Experimental results demonstrate that this method can
be effectively combined with various quantization techniques and bring
considerable performance gains. Our approach comprehensively consid-
ers model performance and inference efficiency, offering more than 3×
speedup over the FP16 execution.

1 Introduction

Large language models (LLMs) such as GPT-4 (Bubeck et al., 2023) and Qwen (Bai et al.,
2023), have shown excellent performance on various natural language processing (NLP)
tasks (Brown et al., 2020; Touvron et al., 2023a; Zhao et al., 2023; Feng et al., 2024). Meanwhile,
experimental evidence indicates that emergent capabilities only manifest when the model
scale is sufficiently large (typically exceeding 10B parameters) (Wei et al., 2022a). This
also results in considerable computational and memory requirements, posing significant
challenges for the practical applications in real-world scenarios. Therefore, quantization
techniques capable of mitigating computational and memory pressures exhibit excellent
prospects in the era of LLMs (Frantar et al., 2022; Dettmers et al., 2023; Xiao et al., 2023).

Quantization is often categorized into two main approaches: post-training quantization
(PTQ) and quantization-aware training (QAT). While QAT tends to maintain better experi-
mental accuracy than PTQ, its high training cost renders it less practical. Therefore, PTQ
becomes an attractive research task for reducing computational and memory cost (Dettmers
et al., 2023; Lee et al., 2023a; Shao et al., 2023; Lin et al., 2024). PTQ is a technique that
quantizes a pre-trained LLM directly, without additional training. The quantization er-
ror propagates and accumulates through the LLMs, leading to substantial task accuracy
degradation. To maintain the original model accuracy, Frantar et al. (2022) employs second-
order information to iteratively round grouped weights and correct the quantization error.
Additionally, due to the presence of magnitude outliers in the model layer weights, the
quantization process is severely affected (Wei et al., 2022b; Xiao et al., 2023). Thus, an
intuitive approach involves identifying and isolating outliers within the weight distribution.
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These outliers can then be subjected to mixed-precision quantization or weight scaling.
Specifically, certain salient weights can be retained in FP16 (half floating point) at finer
granularity while quantizing the rest to low-bit precision (Dettmers et al., 2023; Tang et al.,
2024). Alternatively, protecting the salient weights can be implemented by learning fine-
grained weight scaling (Lee et al., 2023b; Luo et al., 2023; Lin et al., 2024; Zhang et al., 2024).
Chee et al. (2024); Egiazarian et al. (2024) introduce codebook mechanism to achieve low-bit
quantization (2 to 3 bits per parameter).

Figure 1: Motivation of our proposed AMLQ. (a) The varying quantization error sensitivity
of different layer weights in LLMs. We observe that the deep layers are more sensitive than
others in quantization bit precision. (b) The introduction of the low-rank approximation
quantization error reconstruction can mitigate the significant degradation of model perfor-
mance at low-bit precision. (c) The output activation errors decomposed by our approach
are low-rank, while the layer weight errors are not low-rank.

However, empirical evidence suggests that different layers in a neural network have the
varying importance or redundancy (Han et al., 2015; Liu et al., 2019). Similarly, different
layer weights in LLMs exhibit varying sensitivity to bit precision, as illustrated in Figure 1.
Therefore, global quantization strategies often do not achieve optimal experimental results.
We expect to get the optimal bit precision combination for each layer weight. In addition,
the previous methods Frantar et al. (2022); Dettmers et al. (2023); Lin et al. (2024) suffer
from significant accuracy loss under low-bit quantization (Figure 1). Although using the
codebook can have good performance (Egiazarian et al., 2024), it is relatively slow in
inference. Zhang et al. (2024) also leverages low-rank approximation to compensate weight
errors of low-bit quantization to some extent. However, Yu & Wu (2023) proves that the
weights of transformer-based models are surprisingly not low-rank, which makes it less
effective to leverage low-rank approximation to correct quantization errors base on layer
weights. Simultaneously, this low-rank error reconstruction method is also sensitive to
different layer weights.

In this paper, we address these limitations and propose adaptive mixed precision and
low-rank quantization error reconstruction for LLMs, dubbed AMLQ. The core idea of our
method is to adaptively select bit-precision and the rank of the error correction matrix for
different layer weights. First, we propose an activation-induced adaptive search method for
selecting optimal bit precision for different layer weights. Through this approach, we achieve
a relatively optimal parameter setting under a predefined average bit precision. Second, to
further correct quantization errors, we also introduce an adaptive low-rank quantization
error reconstruction based on activation. Compared to low-rank approximation applied
directly to model weights, this method demonstrates superior performance. Overall, we
keep higher-bit precision and higher-rank correction matrices for more sensitive layers,
while adopting more aggressive compression strategies for less sensitive ones. This error
reconstruction method also has the flexibility to adapt to other advanced quantization
techniques, providing plug-and-play capabilities. Our contributions are as follows:

• We propose an adaptive mixed precision and low-rank approximation quantization error
reconstruction, which allows us to automatically search for optimal parameter settings in a
discrete space.
• Experimental results demonstrate that our approach achieves state-of-the-art perfor-
mance at the approximate average bit precision. In the case of low-bit quantization, our
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approach also reaches relatively fast inference speed. Simultaneously, our proposed low-
rank quantization error reconstruction can be plugged into other advanced quantization
techniques to optimize their performance.

2 Related work

Post-Training Quantization of LLMs. The PTQ is a very practical technique for the ap-
plication of LLMs. It remains challenging due to the presence of magnitude outliers in
model weights and activations. Exiting methods can be broadly categorized into two fields:
weight-only and weight-activation quantizations. Weight-only quantization focuses on
converting weights to low-bit precision. Frantar et al. (2022) implements block-wise itera-
tive quantization error correction using grouped weights. Dettmers et al. (2023); Lee et al.
(2023a); Lin et al. (2024) emphasize that a small fraction of salient weights are much more
important for LLMs’ performance compared to others. Therefore, Dettmers et al. (2023) and
Lee et al. (2023a) employ mixed-precision quantization to safeguard vital weights, while Lin
et al. (2024) opts for channel-wise scaling to protect salient weights induced by activations.
Weight-activation quantization compresses both weights and activations, which can provide
computational improvements, but execute with large amounts of accuracy loss relative to
their uncompressed counterparts (Yuan et al., 2023; Shao et al., 2023). In this paper, we focus
on the weight-only quantization because we expect to keep the model performance as much
as possible after quantizing.

Mixed-Precision Quantization. Mixed-precision quantization refers to the process of
assigning appropriate quantization bit-widths to the weights and activations of each layer in
a model. The goal is to achieve an optimal balance between accuracy and hardware metrics
in the quantized model. Dong et al. (2019) utilizes second-order information to assess the
quantization sensitivity of each layer in the model, thus allocating the appropriate bit-width.
Wang et al. (2019) employs reinforcement learning techniques to search for the quantization
bit-widths of different layers, which incorporates feedback from hardware simulators and
achieves a hardware-aware mixed-precision strategy. Additionally, there are some methods
to implement this using training-based algorithms (Cai & Vasconcelos, 2020; Yang & Jin,
2021). However, the above methods are not yet easily adapted to quantization for LLMs.

Low-Rank Quantization Error Reconstruction. LoRA (Hu et al., 2022) leverages the concept
of low-rank matrices to make the training process of LLMs extremely efficient and fast,
which can significantly reduce the trainable parameters and GPU memory. Dettmers et al.
(2024); Li et al. (2024) introduce quantification techniques into LoRA-based tuning methods,
which are not post-training quantization method and fuse the low-rank matrices back to
original high-bit weights. Zhang et al. (2024) leverages the separated low-rank matrices to
correct the quantization weight errors. However, it ignores the fact that the quantization
weight error matrix is high-rank, even after scaling it.

3 Methodology

Our method requires a small set of calibration data to measure the sensitivity of different
layers and the importance of intra-layer channels, and then adaptively selects the bit
precision of layer weights and the rank of error reconstruction matrices. Our method works
on all linear layers in LLMs except the weights of embedding and LM head. According
to the weight of the i-th layer W ∈ Rm∗c, the input activation value X ∈ Rc∗n, and the
quantized weight Wq, the final quantitative target can be denoted as:

min ∥WX − WqX∥2 (1)

3.1 Mixed-precision quantization

As mentioned above, the quantization sensitivities vary among layers and intra-layer
channels. Therefore, to achieve the predefined average bit precision (also known as BPW, bit
per weight) for the entire model, different quantization bit-widths can be used for different
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layers or channels during quantization. The sensitivity δ is measured by calculating the
output loss after quantization, which is computed as follows:

δ = ∥WX − WqX∥2
2/∥WX∥2

2 (2)

where W ∈ Rm∗c is the weight of the i-th layer, X ∈ Rc∗n is the activation of the input value,
Wq is the quantized weight. ∥ · ∥2 represents the function of ℓ2-norm. For the weight of each
layer, we will first define our quantization bit-precision candidate set B ∈ {2, 3, 4, 5, 6, 8, 16},
and then preset different proportions of mixed-precision combinations from the B set, with
a total of n possibilities. All combinations form a discrete search space Q ∈ {q1, q2, · · · , qn}.
For each combination, we can calculate the quantization loss li(qj) and the corresponding
total bit size bi(qj) for the i-th layer weights after quantization of the j-th mixed-precision
combination. Finally, our goal is to minimize the objective function L as follows:

min
{qj}n

j=1

L =
l

∑
i=1

li(qj) (3)

s.t.
l

∑
i=1

bi(qj) < Ptarget bit (4)

where l denotes the number of layers of the LLM. Ptarget bit is the predefined upper bound
on the number of bit parameters for the all model weights. This optimization process can be
viewed as an integer programming problem, and it will be very time-consuming to find the
exact global optimal solution from the whole search space Q. The sensitivity of each layer
in the model is independent of the quantization bit precision of the other layers. Therefore,
we use a greedy strategy to approximate the solution. Although our greedy strategy may
not always find the optimal configuration, it can greatly shorten the search time. In section
4, the experimental results also demonstrate that the mixed precision combination found
through this greedy strategy can achieve state-of-the-art performance.

Specifically, we obtain the quantized weight Wq in the following process. We comprehen-
sively refer to the current superior GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024)
methods. First, AWQ proposes to use the magnitude of the input activation value to help
scale the salient channel weights thereby protecting the salient weights during quantization.
We use this method to calculate the average amplitude of activation Sx = mean cout(X),
and set a searchable hyperparameter α to control the intensity of the amplitude. Hence,
the scaled weights are Ws = Sα

x ∗ W. To ensure that the output activation Y is not affected,
the input activation X also needs to be scaled to Xs = (Sα

x)
−1 ∗ X. The complete output

activation is represented as follows:

Y = WX = WsXs = (W ∗ Sα
x)((S

α
x)

−1 ∗ X) (5)

We then calculate the inverse Hessian matrix H−1 of the scaled input activation value (refer
to GPTQ). Due to our scaling of weights and activations, we do not need to compute XXT

repeatedly for reducing the amount of computation. The complete computation process is
shown in Equation 6.

H−1 = (2XsXT
s + λI)−1

= (2diag((Sα
x)

−1)XXTdiag((Sα
x)

−1)T + λI)−1
(6)

where diag(·) denotes turning the vector into a diagonal array. The H−1 will be used
to evaluate the importance of each channel within the weight. Similarly, we also group
channels and then assess the importance of weights within each group. For each group
of weights, we reorganize the order, placing the more critical groups at the forefront.
Furthermore, we introduce the idea of mixed precision, quantizing the more important
groups with higher bit precision in the predefined search space. Finally, we can refer to the
pseudocode in Algorithm 1 to calculate the quantized weight Wq.
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3.2 Quantization error reconstruction based on low-rank decomposition

For the quantized Wq, there is a quantization error ∆W with the original FP16 weight W,
which can be obtained by:

∆W = W − Wq (7)

The rank of ∆W is relatively high, as illustrated in Figure 1. There are significant errors
to decompose it into a low-rank matrix using Singular Value Decomposition (SVD) directly.
LQER (Zhang et al., 2024) introduces the scaling factor to reduce the difficulty of decom-
position and achieves good results. Moreover, we observe that the layer weights are not
low-rank but the output activation value is low-rank. Therefore, we directly decompose the
output activation error ∆Y ∈ Rm∗n using Principal Component Analysis (PCA).

∆Y = WX − WqX = ∆WX (8)

We regard ∆Y as n instantiations of the random eigenvector y (each in Rm), and then
compute the covariance matrix between them as follows:

Cov(y) = E[yyT ]− E[y]E[y]T (9)

where E[·] denotes the function of calculating expectation. Since Cov(y) is a positive semi-
definite matrix, its eigenvalue decomposition (i.e., PCA) is

Cov(y) = USUT (10)

We extract the first k columns of U ∈ Rm∗m and get Uk ∈ Rm∗k,UkUT
k ≈ I, hence

y − E[y] ≈ UkUT
k (y − E[y]) (11)

y ≈ UkUT
k y − UkUT

k E[y] + E[y] (12)

Therefore, the quantization error ∆Y can be represented as

∆Y ≈ UkUT
k ∆WX − UkUT

k E[y] + E[y] (13)

Let Uk and UT
k ∆W form two low-rank matrices B ∈ Rm∗k and A ∈ Rk∗c respectively,

E[y]− UkUT
k E[y] is superimposed on the bias b of the original model. Therefore, the output

feature Y of a linear layer consists of the following parts:

Y = WqX + BAX + b (14)

The layer weight W ∈ Rm∗c is usually a large matrix. For instance, in the case of Llama2-
70B (Touvron et al., 2023a), the minimum dimensions for {m, c} are {8192, 8192}. Addi-
tionally, the newly added two parameters {A, B} will increase the average bit precision of
k∗(m+c)∗16

m∗c . When k ≈ 64, it will only increase the average bit precision by less than 0.2. For
the unbiased linear layer, our method adds m additional parameters, which are only about
0.02% of the W parameters, almost negligible.

As mentioned above, the quantization sensitivity of each layer is different. It can also be
observed in Figure 1 that the rank of the quantization error of each layer is also varying.
Therefore, we adopt the concept of adaptive search to determine the rank in the quantization
error reconstruction process. The rank in low-rank decomposition is predefined in the set
r ∈ {0, 32, 64, 96, 128}. Additionally, we combine it with our adaptive mixed-precision
quantization. The whole optimization process is

min
{qj}n

j=1,{rk}5
k=1

L =
l

∑
i=1

li(qj, rk) (15)

s.t.
l

∑
i=1

bi(qj, rk) < Ptarget bit (16)

where li(qj, rk), bi(qj, rk) denote the quantization error and the total number of bit parameters
at the i-th layer choosing k j as rank and qj as quantization bit precision. Ptarget bit can be
obtained by multiplying the number of model parameters by the predefined average bit
precision. We can get a sub-optimal solution in a short time using the same greedy strategy.
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Algorithm 1 AMLQ
1: procedure QUANTONELAYER(W, X, Groupsize, Qparams, Rank, Gridα)
2: Sx = average(X, dim = 1)
3: for α,qj,rk in zip(Gridα,Qparams,Rank) do
4: Ws = W ∗ Sα

x
5: Xs = (Sα

x)
−1 ∗ X

6: H−1 = Cholesky((2XsXT
s + λI)−1)T

7: WR
s , gidx = reorder(Ws, H−1)

8: Wq = reorder(quant(WR
s , Groupsize, qi), gidx)

9: ∆Y = (W − Wq)X
10: B, A, b = decompose(∆Y, rk)
11: Quantloss = ∥WX − (WqX + BAX + b)∥2

2/∥WX∥2
2

12: Losslist.append(Quantloss, α, qj, rk)
13: end for
14: Return Losslist
15: end procedure
16:
17: procedure QUANTMODEL(Layers, Groupsize, Qparams, Rank, Ptarget bit, Gridα)
18: for W, X in Layers do
19: Losslist.extent(QuantOneLayer(W, X, Groupsize, Qparams, Rank, Grdα))
20: end for
21: BestModel = greedy search(Losslist, Ptarget bit)
22: end procedure

3.3 Inference performance

In the inference stage, we design a special CUDA operator for mixed-precision weights
to perform high-performance inverse quantization and calculation processes. We also
provide pseudocode in Algorithm 1. By reading the low-bit weights in one go using the
INT4 vector type, the calculation intensity is increased, the memory access bottleneck is
overcome, and the generation speed of the model decoding phase is improved. Compared
to the FP16 model, the speedup can be more than 3 times. For the introduced low-rank
error reconstruction module, we refer to Punica (Chen et al., 2023) to implement the bgmv
operator, and the overall generation speed is only reduced by 5%.

4 Experiments

4.1 Experimental Settings

Quantization. We experiment with weight-only quantization. The default settings are
INT4/INT3/INT2 per-channel weight quantization, with an average bit precision (or BPW)
of about 2.3 to 4.3. Group-wise weight quantization is represented by ‘g’, whose sizes are
set from {32, 64, 128} in our adaptive mixed precision method. We set the group size to
128 in other methods. Our grid size of α is set to 20 following Lin et al. (2024). The search
space for the rank of the low-rank approximation matrices is set from {0, 32, 64, 96, 128}.
When the rank of a layer is set to 0, this means that two matrices of low-rank decomposition
are not added. Following Shao et al. (2023), our calibration dataset is sampled from the
WikiText2 (Merity et al., 2017) dataset, which contains 128 samples of 2048 tokens.

Baselines. We conduct experiments on the currently most influential open-source LLMs of
different scales, such as Llama (Touvron et al., 2023a), Llama-2 (Touvron et al., 2023b), and
Qwen (Bai et al., 2023). We compare our approach with FP16 model, GPTQ (Frantar et al.,
2022), AWQ (Lin et al., 2024), OmniQuant (Shao et al., 2023), QUIP# (Tseng et al., 2024), and
LQER (Zhang et al., 2024) at the different BPW settings. OmniQuant and QuiP# are further
optimized at low-bit precision quantization and QuiP# is the most effective quantization
method at present. However, their actual inference efficiency is still low. Compared to
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AMLQ, our proposed AMQ denotes the approach that uses only mixed precision and does
not introduce low-rank error reconstruction.

Evaluation. Following previous methods (Frantar et al., 2022; Xiao et al., 2023; Lin et al.,
2024; Zhang et al., 2024), we profiled the quantized models on language modeling tasks and
downstream tasks. Specifically, we report the perplexity (PPL) on WikiText-2 (Merity et al.,
2017) and the accuracy on ARC (easy) (Clark et al., 2018), ARC (challenge) (Clark et al.,
2018), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021), CEval (Huang et al., 2023), GSM8K (Cobbe
et al., 2021), and HumanEval (Chen et al., 2021).

4.2 Main Results

We firstly compare the performance of the quantization models by perplexity on the
WikiText-2 dataset. The results of llama-7b, llama-13b, llama2-7b, llama2-13b, and llama2-
70b quantized by AWQ, OmniQuant, Quip#, L2QER, AMQ, and AMLQ respectively, are
shown in Table 1. We also report the final average bit precision w for each method. We can
observe that the low-rank quantization error reconstruction module adds about 0.2 BPW
at different bit precision. At almost all model sizes, AMLQ achieves better results than
AWQ and OmniQuant. AWQ and OmniQuant deal with outliers heuristically, while LQER
uses an error reconstruction method. We observe that AMQ shows a significant accuracy
degradation at 2-bit precision, but with the introduction of the error reconstruction, AMLQ
outperforms OmniQuant. Quip# achieves the best quantization performance by codebook.
However, its inference efficiency is slow and it is difficult to be applied in practical applica-
tions. In contrast, our proposed AMLQ, empowered by the CUDA operator, can achieve
about 6 times the inference speed of Quip#.

Method Q Config LLaMA LLaMA-2 Avg.
∆ PPL (↓)

Avg.
w bit7b 13b 7b 13b 70b

FP16 - 5.68 5.09 5.47 4.88 3.32 - 16

AWQ INT4, g128 5.81 5.20 5.62 4.97 - 0.12 4.1
OmniQuant INT4, g128 5.77 5.17 5.58 4.95 3.40 0.08 4.1
QuiP# INT4 5.76 5.17 5.56 4.95 3.38 0.07 4.0
LQER INT4, g128 5.89 5.20 5.58 4.96 - 0.12 4.3
AMQ Dynamic 5.79 5.18 5.57 4.96 3.40 0.09 4.1
AMLQ Dynamic 5.77 5.17 5.56 4.95 3.39 0.08 4.3

AWQ INT3, g128 6.46 5.51 6.24 5.32 - 0.60 3.1
OmniQuant INT3, g128 6.15 5.44 6.03 5.28 3.78 0.44 3.1
QuiP# INT3 5.98 5.31 5.79 5.10 3.56 0.26 3.0
AMQ Dynamic 6.13 5.40 6.01 5.20 3.66 0.38 3.1
AMLQ Dynamic 6.04 5.38 5.82 5.13 3.64 0.33 3.3

AWQ INT2, g128 2.6e5 2.8e5 2.2e5 1.2e5 - 2.2e5 2.1
OmniQuant INT2, g128 9.72 7.93 11.06 8.26 6.55 3.81 2.1
QuiP# INT2 6.86 5.97 6.66 5.74 4.16 0.99 2.0
AMQ Dynamic 15.19 8.73 15.03 8.68 8.53 6.34 2.3
AMLQ Dynamic 7.81 6.49 7.68 6.34 4.64 1.70 2.5

Table 1: A comparison of perplexity (↓) on WikiText-2. The highest value per column
group is in bold and the second highest value is underlined. Partial results are from their
original papers. AMLQ outperforms AWQ, OmniQuant, LQER, and AMQ. Most methods
suffer significant performance degradation at low-bit quantization, but our approach is on
par with QUIP# which is specifically optimized for the low-bit setting, while providing
substantially higher inference efficiency.
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Size Method WinoGrande PiQA HellaSwag ArcE ArcC Avg. accuracy (↑)

13B FP16 72.14 79.16 60.06 79.46 48.38 67.84

13B Quip# 72.61 79.05 59.47 78.62 46.59 67.10
13B GPTQ 72.14 78.24 59.50 78.54 47.10 67.10
13B AWQ 72.69 78.67 60.12 78.91 47.10 67.49
13B AMLQ 72.30 79.05 59.92 79.25 47.35 67.57

70B FP16 78.06 82.15 64.77 82.74 54.44 72.43

70B Quip# 77.74 82.43 64.45 82.28 54.52 72.28
70B GPTQ 77.51 81.72 64.17 82.70 53.69 71.95
70B AWQ 78.22 81.83 64.59 82.58 54.12 72.18
70B AMLQ 78.22 81.99 64.52 83.08 54.39 72.44

Table 2: A comparison of five downstream task % accuracy (↑) with INT4 quantization on
LLaMA-2 models. Bold text indicates the best results. Compared with the strong baselines,
AMLQ achieves the best average accuracy.

Size Method MMLU CEval (val) GSM8K HumanEval Avg. accuracy (↑)

14B GPTQ 62.46 69.43 61.41 40.24 58.38
14B AWQ 64.56 69.09 63.22 52.43 62.32
14B AMLQ 64.21 70.49 64.21 53.61 63.13

72B GPTQ 72.82 79.01 75.95 59.87 71.91
72B AWQ 73.23 78.74 75.36 62.13 72.38
72B AMLQ 74.00 78.5 77.33 62.19 73.00

Table 3: A comparison of downstream task % accuracy (↑) with INT4 quantization on
Qwen-Chat. AMLQ also achieves the best accuracy among all Qwen models.

Table 2 shows the performance of AMLQ, GPTQ, AWQ and Quip# on the zero-shot down-
stream tasks, which are evaluated using the lm-eval-harness1. We can observe that AMLQ
achieves the most favorable results across all five tasks. The comparative analysis between
AMLQ, GPTQ ans AWQ on the Qwen model is further illustrated in Table 3. The open-
source qwen-gptq-int4 is employed as a benchmark. AMLQ also shows a significant accuracy
improvement over GPTQ.

4.3 Ablation Studies

4.3.1 Adaptation of the low-rank quantization error reconstruction.

Our proposed error reconstruction based on low-rank quantization stands as orthogonal to
the existing quantization techniques, illustrating its potential as an integrable enhancement
module for various methods. Table 4 delineates the ∆perplexity measurements of the model
on the WikiText-2 dataset at low bits quantization(INT2/3). The values of ∆perplexity
represent the relative reduction in perplexity. The low-rank error reconstruction method
marginally enhances all methods at 3-bit quantization. Moreover, it significantly amelio-
rates the performance of OmniQuant at 2-bit quantization, and even achieves a modest
improvement on the Quip# method. It demonstrates the effectiveness of the low-rank error
reconstruction approach in acting as a supplementary plug-in module and augmenting the
capabilities of the underlying methods.

1https://github.com/EleutherAI/lm-evaluation-harness
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Method Q Config LLaMA LLaMA-2 Avg. w bit
7b 13b 7b 13b 70b

FP16 - 5.68 5.09 5.47 4.88 3.32 16

QuiP#+ INT3 0.01 0.02 0.00 0.02 0.00 3.2
AWQ+ INT3, g128 0.10 0.04 0.23 0.04 - 3.3
OmniQuant+ INT3, g128 0.01 0.01 0.02 0.02 0.03 3.5

QuiP#+ INT2 0.02 0.04 0.01 0.02 0.02 2.2
OmniQuant+ INT2, g128 0.17 0.27 0.34 0.26 0.14 2.5

Table 4: Our proposed low-rank error reconstruction is orthogonal to other advanced quan-
tization techniques. + denotes the introduction of our low-rank error reconstruction based
on the original methods. It further closes the performance gap under low-bit quantization
(INT2/3) when combined with AWQ and OmniQuant. Results are WikiText-2 ∆perplexity
of LLaMA models.

4.3.2 Impact of the low-rank error quantization reconstruction

We can achieve almost arbitrary bit quantization due to our mixed-precision strategy. Table 5
reports the perplexity of the llama2-7B model at different BPW. Our model performance
shows a significant degradation below 3-bit precision without the use of low-rank error
reconstruction. By introducing the low-rank error reconstruction method, the loss of the
model performance can be effectively reduced at low-bit precision. When the BPW is lower,
the effect of the error reconstruction method is more significant.

AMQ AMLQ ∆PPL ∆BPW

15.03 7.68 7.35 2.3→2.5
10.46 6.92 3.54 2.5→2.7
9.48 6.27 3.21 2.7→2.9
6.42 5.98 0.44 2.9→3.1
6.01 5.82 0.19 3.1→3.3
5.86 5.73 0.13 3.3→3.5
5.79 5.66 0.13 3.5→3.7
5.7 5.61 0.09 3.7→3.9

5.66 5.57 0.09 3.9→4.1
5.57 5.56 0.01 4.1→4.3

Table 5: Perplexity on WikiText-2 aross a range of average bit precision settings. The ∆PPL
represents the gains from our proposed low-rank error reconstruction. The ∆BPW column
denotes the changes in BPW after the introduction of low-rank error reconstruction. We can
observe that this method achieves significant gains under the low-bit quantization precision
setting.

4.4 Quantitative Analysis

Given these overall performance improvements, we further analyze whether performance
improvements are reflected in the selection of better bit precision and rank in each layer (as
shown in Figure 2). We use the q proj layer in the llama2-13b model as an example, which
demonstrates the final selection of our proposed adaptive mixed precision quantization and
low-rank error reconstruction in different blocks. Similar to the model sensitivity analysis,
the higher average bit precision is used to quantize the more sensitive layers in the middle
part, thus reducing the quantization error. We also observe that the ultra-low ranks are
chosen to reconstruct the quantization error within those blocks with the highest precision
such as 28 to 36, and even some layers choose not to reconstruct the error. The reason for
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this phenomenon comes from the presence of low quantization errors after the high-bit
precision quantization. However, it will lead us to prefer the extreme rank (0 or 128) due to
the effect of our search strategy.

Figure 2: Quantitative analysis of AMLQ’s selection of average bit precision and the rank of
correction matrices in different layers.

5 Conclusions

In this work, we propose Adaptive Mixed Precision and Low-Rank Quantization Error
Reconstruction (AMLQ), an efficient quantization method for weight-only LLM compression
within low-bit or high-bit precision. AMLQ is mainly based on the observation that different
layer weights have varying sensitivity to quantization bit precision. Therefore, we design
an adaptive search algorithm to obtain the optimal combination of bit widths. Furthermore,
the performance of most quantization techniques degrades significantly at low-bit precision
and thus we introduce adaptive low-rank approximation to reconstruct quantization errors.
Combining both the adaptive methods, our approach ultimately achieves the balance
between performance and inference efficiency at low or high bit precision. Compared to the
FP16 model, the speedup can be more than 3 times with almost no performance loss. This
will further promote the practical applications of LLMs in real-world scenarios.
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