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Abstract

Ensembling can improve the performance of Neural Networks, but existing approaches strug-
gle when the architecture likelihood surface has dispersed, narrow peaks. Furthermore,
existing methods construct equally weighted ensembles, and this is likely to be vulnera-
ble to the failure modes of the weaker architectures. By viewing ensembling as approxi-
mately marginalising over architectures we construct ensembles using the tools of Bayesian
Quadrature – tools which are well suited to the exploration of likelihood surfaces with dis-
persed, narrow peaks. Additionally, the resulting ensembles consist of architectures weighted
commensurate with their performance. We show empirically – in terms of test likelihood,
accuracy, and expected calibration error – that our method outperforms state-of-the-art
baselines, and verify via ablation studies that its components do so independently.

1 Introduction

Neural Networks (NNs) are extremely effective function approximators. Their architectures are, however,
typically designed by hand, a painstaking process. Therefore, there has been significant interest in the
automatic selection of NN architectures. In addition to a search strategy, this involves defining a search
space from which to select the architecture – a non-trivial which is also an active area of research. Recent
work shows ensembles of networks of different architectures from a given search space can outperform the
single best architecture or ensembles of networks of the same architecture (Zaidi et al., 2022; Shu et al.,
2022). Finding the single best architecture is typically referred to as Neural Architecture Search (NAS)
(Zoph & Le, 2016; Elsken et al., 2019; He et al., 2021). Such ensembles improve performance on a range of
metrics, including the test set’s predictive accuracy, likelihood, and expected calibration error. The latter two
metrics measure the quality of the model’s uncertainty estimates, which can be poor for single architectures
in some cases (Guo et al., 2017). Performant models in these metrics are crucial for systems which make
critical decisions, such as self-driving vehicles. Ensemble selection is an even more difficult problem to tackle
manually than selecting a single architecture, as it requires a combinatorial search over the same space.
Hence, interest in methods for automatic ensemble construction is growing. This paper targets exactly this
problem.

Conceptually, Neural Ensemble Search (NES) algorithms can be split into two stages. The first is the
candidate selection stage, which seeks to characterise the posterior distribution, p(α | D), given the training
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data D, over architectures from a given search space α ∈ A. Multiple approaches have been proposed.
One such is an evolutionary strategy which seeks the modes of this distribution (Zaidi et al., 2022). An
alternative is training a “supernet” and using it to learn the parameters of a variational approximation to
this distribution (Shu et al., 2022). This involves evaluating the likelihood of a set of architectures from
the search space, an evaluation which requires first training the architecture weights. The second stage is
ensemble selection, where the ensemble members are selected from the candidate set and each member’s
weight is chosen. Several approaches have also been suggested for ensemble selection, such as beam search
and sampling from the (approximate) posterior over architectures.

In this work, we investigate novel approaches to both stages of a NES algorithm. We view ensembling, the
averaging over architectures, as marginalisation with respect to a particular distribution over architectures.
When this distribution is the posterior over architectures, we are taking the hierarchical Bayesian approach.
The key advantage of this approach is the principled accounting of uncertainty, which also improves accuracy
by preventing overconfidence in a single architecture. Additionally, this paradigm allows us to bring the tools
of Bayesian Quadrature to bear upon the problem of Neural Ensemble Search. Specifically, the contributions
of this work are as follows:1

• We propose using an acquisition function for adaptive Bayesian Quadrature to select the candidate
set of architectures to train. It is from this candidate set that the ensemble members are later
selected.

• We show how recombination of the approximate posterior over architectures can be used to construct
a weighted ensemble from the candidate set.

• We undertake an empirical comparison of our proposals against state-of-the-art baselines. Addition-
ally, we conduct ablation studies to understand the effect of our proposals for each stage of the NES
pipeline.

2 Background

2.1 Neural Architecture Search (NAS)

NAS aims to automatically discover high-performing NN architectures and has shown promising performance
in various tasks (Real et al., 2017; Zoph et al., 2018; Liu et al., 2019a). It is typically formulated as an
optimisation problem, i.e. maximising some measure of performance f over a space of NN architectures A,

α∗ = argmaxα∈Af(α). (1)

Elsken et al. (2019) identify three conceptual elements of a NAS pipeline: a search space, a search strategy,
and a performance estimation strategy.

The first part of a NAS pipeline – the search space – is the way in which the possible space of NN architectures
is defined. In this paper, we require the search space to be such that a Gaussian Process (GP) can be defined
upon it. In particular, we focus on the two types of search space most common in the literature. The
first is a cell-based search space, which consists of architectures made by swapping out “cells” in a fixed
macro-skeleton (Pham et al., 2018; Dong et al., 2021; Liu et al., 2019b). These cells are represented as
directed acyclic graphs where each edge corresponds to an operation from a pre-defined set of operations.
Typically, the macro-skeleton will be structured so that repeating copies of the same cell are stacked within
the macro-skeleton. This structure allows for the representation of the architecture by the corresponding cell.
The second is a macro search space defined by varying structural parameters such as kernel size, number of
layers, and layer widths. An example of such a search space is the Slimmable network (Yu et al., 2019; Yu &
Huang, 2019) on the MobileNet search space (Sandler et al., 2018): the largest possible network is trained
and all other networks in the search space are given as sub-networks or “slices”.

A NAS pipeline’s second phase is the search strategy. This is a procedure for selecting which architectures to
query the performance of. All strategies will exhibit an exploration-exploitation trade-off, where exploration

1An implementation of our proposals can be found at https://github.com/saadhamidml/bq-nes.
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is covering the search space well, and exploitation is selecting architectures that are similar to the well-
performing architectures in the already queried history.

The final element of a NAS pipeline is the performance estimation strategy, which is the method for query-
ing the performance of a given architecture. Typically, this is done by training the NN weights, given the
architecture, on a training dataset, and evaluating its performance on a validation set. This demands signif-
icant computation and practically limits the total number of architecture evaluations available to the search
strategy. However, for some search spaces – where network weights are shared – performance estimation is
considerably cheaper.

There exists a large body of literature devoted to NAS, pursuing a range of strategies such as one-shot NAS
(Liu et al., 2019b; Xu et al., 2020; Chen et al., 2019; Yu et al., 2020; Bender et al., 2018), evolutionary
strategies Real et al. (2017); Liang et al. (2018); Liu et al. (2021), and Bayesian Optimisation.

2.2 Bayesian Optimisation for Neural Architecture Search

An effective approach to NAS is Bayesian Optimisation (BO) (Kandasamy et al., 2019; White et al., 2020;
Ru et al., 2021; Wan et al., 2022; Shi et al., 2020; Zhou et al., 2023). On a high level, BO models the objective
function f and sequentially selects where to query next based on an acquisition function, with the goal of
finding the optimal value of the objective function in a sample-efficient manner. Typically, the objective
function is modelled using a Gaussian Process (GP) – a stochastic process for which all finite subsets of
random variables are joint normally distributed (Rasmussen & Williams, 2006).

A GP is defined using a mean function m(α) that specifies the prior mean at α, and a kernel function
k(α, α′) that specifies the prior covariance between f(α) and f(α′). The posterior, conditioned on a set of
observations A = {(αi, )}N

i and y = [f(α1), . . . , f(αN )]T , is also a GP with moments

mA(·) = m(·) + K·AK−1
AA (y −m(α)) and (2)

kA(·, ·′) = K··′ −K·AK−1
AAKA·, (3)

where KXY indicates a matrix generated by evaluating the kernel function between all pairs of points in the
sets X and Y . The prior mean function m is typically set to zero.

Ru et al. (2021) showed that the Weisfeiler-Lehman graph kernel (WL kernel) (Shervashidze, 2011) is an
appropriate choice for modelling NN performance metrics on a cell-based NAS search space with a GP. To
apply the WL kernel, a cell first needs to be represented as a labelled DAG. Next, a feature vector is built
up by aggregating labels for progressively wider neighbourhoods of each node, and building a histogram of
the resulting aggregated labels. The kernel is then computed as the dot product of the feature vectors for a
pair of graphs.

A common acquisition function for BO is Expected Improvement (Garnett, 2021),

aEI(α) = Ep(f |D)

[
max

(
f(α)− f(α̂), 0

)]
(4)

where α̂ is the best architecture found so far. Using this acquisition function in conjunction with a GP using
the WL kernel was shown by Ru et al. (2021) to be effective for NAS.

2.3 Neural Ensemble Search

Neural Ensemble Search (Zaidi et al., 2022) is a method for automatically constructing ensembles of a given
size, M , from a NAS search space A. First, a candidate set of architectures, A ⊂ A, is selected using
a regularised evolutionary strategy (NES-RE), or random sampling from the search space. The authors
propose several ensemble selection methods to subsequently select a subset of M architectures AM ⊂ A. Of
particular interest in this work are Beam Search (BS) and Weighted Stacking (WS).

BS initially adds the best-performing architecture to the ensemble and greedily adds the architecture from the
candidate set (without replacement) that most improves the validation loss of the ensemble. WS optimises
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the ensemble weights over the whole candidate set on the validation loss (subject to the weights being non-
negative and summing to one). The members with the highest M weights are included in the ensemble, and
their corresponding weights renormalised. The authors compare BS to WS on the CIFAR-10 dataset, and
find performance in terms of the log-likelihood of the test set to be better for BS for small ensembles, but
similar for larger ensembles.

Neural Ensemble Search via Bayesian Sampling (Shu et al., 2022) approximates the posterior distribution over
architectures p(α | D) with a variational distribution of the form q(α) =

∏
i qi(o | θi), where i iterates over the

connections within a cell, o is the operation for connection i, and θi are the variational parameters for qi. The
form of qi is chosen to be a softmax over θi. The ensemble is then selected by using Stein Variational Gradient
Descent with Regularised Diversity to select a diverse set of M samples from (a continuous relaxation of)
the variational distribution.

DeepEnsembles (Lakshminarayanan et al., 2017) seek to approximately marginalise over the parameters of
a given NN architecture. The architecture is trained from several random initialisations, and the ensemble
makes a prediction as an equally weighted sum of these. Hyper-deep ensembles (Wenzel et al., 2020) build
on this idea by training architectures from several randomly selected hyperparameter settings. They then
construct an ensemble by using Beam Search, with replacement.

Relatedly, there has been interest in ensembling for improving uncertainty calibration in the context of Rein-
forcement Learning (Osband et al., 2018; Dwaracherla et al., 2022). Additionally, methods for marginalising
over the parameters of a fixed architecture such as Shui et al. (2018); He et al. (2020); D’Angelo & Fortuin
(2021) frequently require constructing ensembles. Such methods are orthogonal to our work, which seeks to
construct ensembles of different architectures, rather than ensembles of different parameter settings of the
same architecture.

2.4 Bayesian Quadrature

Bayesian Quadrature (BQ) (O’Hagan, 1991; Minka, 2000) is a probabilistic numerical (Hennig & Osborne,
2022) integration technique that targets the computation of Z =

∫
f(·)dπ(·) based on evaluations of the

integrand f (assuming a given prior π). Similar to BO, it maintains a surrogate model over the integrand
f , which induces a posterior over the integral value Z. BQ also makes use of an acquisition function to
iteratively select where next to query the integrand.

The surrogate model for BQ is usually chosen to be a GP, and this induces a Gaussian posterior over
Z ∼ N (µZ , σZ). The moments of this posterior are given by

µZ =
∫

K(·, X)dπ(·)K−1
XXf, and (5)

σZ =
∫

K(·, ·′)−K(·, X)K−1
XXK(X, ·)dπ(·)dπ(·′), (6)

where X is the set of query points, and f are the corresponding integrand observations. Note that the
posterior mean µZ takes the form of a quadrature rule – a weighted sum of function evaluations

∑
i wif(xi)

where wi are the elements of the vector
∫

K(·, X)dπ(·)K−1
XX .

Frequently, the integrand of interest is non-negative. Important examples of such integrands are likelihood
functions (which are integrated with respect to a prior to compute a model evidence) and predictive densi-
ties (which are integrated with respect to a posterior to compute a posterior predictive density). Warped
Bayesian Quadrature (Osborne et al., 2012; Gunter et al., 2014; Chai & Garnett, 2019) allows practitioners
to incorporate the prior knowledge that the integrand is non-negative into the surrogate model. Of particular
interest in this work will be the WSABI-L model (Gunter et al., 2014), which models the square root of
the integrand with a GP,

√
2
(
f(x)− β

)
∼ GP

(
µD(x), ΣD(x, x′)

)
. This induces a (non-central) chi-squared

distribution over f , which can be approximated with a GP, with moments

m(x) = β + 1
2µD(x)2, (7)

k(x, x′) = µD(x)ΣD(x, x′)µD(x′). (8)
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Gunter et al. (2014) established, empirically, that the uncertainty sampling acquisition function works well
for Bayesian Quadrature. This acquisition function targets the variance of the integrand

aUS(x) = ΣD(x, x)µD(x)2π(x)2. (9)

This naturally trades off between exploration (regions where ΣD(x, x) is high), and exploitation (regions
where µD(x) is high – most of the volume under the integrand is concentrated here).

Just as BO is a natural choice for NAS – an expensive black-box optimisation problem – so BQ is a natural
choice for NES – an expensive black-box marginalisation problem. It is this realisation that inspires our
proposals in Section 3.

2.5 Recombination

Typically, Neural Ensemble Search requires selecting a subset of the trained architectures to build the
ensemble, as making predictions with the whole candidate set is too computationally burdensome. To
achieve this within the Bayesian Quadrature framework will require reducing the support of the quadrature
rule. This problem is referred to as recombination (Litterer & Lyons, 2012).

Given a non-negative measure supported on N points {(wn, xn)}N
n=1 where wn ≥ 0 and

∑N
n=1 wn = 1, and

M − 1 “test” functions {ϕt(·)}M−1
t=1 , it is possible to find a subset of M < N points {xn}M

m=1 ⊂ {xn}N
n=i for

which
M∑

m=1
wmϕt(xm) =

N∑
n=1

wnϕt(xn) (10)

for all ϕt, with wm ≥ 0 and
∑M

m=1 wm = 1 (Tchernychova, 2015).

For Kernel Quadrature, one can use the Nyström approximation of the kernel matrix to obtain a set of test
functions (Hayakawa et al., 2022; Adachi et al., 2022). Using a subset, S, of M−1 data points, the kernel can
be approximated k̃(x, x′) = k(x, S)k(S, S)−1k(S, x′). By taking an eigendecomposition, k(S, S) = UΛUT ,
the approximate kernel can be expressed as

k̃(x, x′) =
M−1∑

t

1
λt

(
uT

t k(S, x)
)(

uT
t k(S, x′)

)
(11)

where ui are the columns of U , and λi the diagonal elements of Λ. We can then use ϕt(·) = uT
t k(S, ·) as test

functions.

3 Bayesian Quadrature for Neural Ensemble Search

We decompose NES into two sub-problems:

1. The selection of a candidate set of architectures {αi}N
i=1 = A ⊂ A for which to train the architecture

parameters.

2. The selection of a set of M members from the candidate set to include in the ensemble, and their
weights, w ∈ RM .

We take novel approaches to each of these sub-problems, described respectively in the following two subsec-
tions. Algorithms 1, 2 and 3 summarise our propositions.

3.1 Building the Candidate Set

An ensemble’s prediction is a weighted sum of the predictions of its constituent members, AM , and this can
always be viewed as approximating an expectation with respect to a distribution, π, over architectures,

Eπ(α)
[
p(c | x, α)

]
=

∑
α∈A

p(c | x, α)π(α) ≈
∑

α∈AM

p(c | x, α)πM (α). (12)
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} +

Ensemble predictions

Final prediction

Figure 1: A schematic representation of our proposal. The plot on the left shows a Gaussian Process
modelling the likelihood over the space of architectures. The architectures to train and evaluate the likelihood
for are selected by maximising a Bayesian Quadrature acquisition function, as described in Section 3.1. One
of the algorithms described in Section 3.2 is then used to select the subset of architectures to include in the
ensemble, along with their weights. The final prediction is then a linear combination of the predictions of
each ensemble member, as shown by the bar plots on the right (where each bar indicates the probability
assigned to a particular class).

p(c | x, α, D) is the predictive probability assigned to class c ∈ {1, . . . , C} by the architecture α (condi-
tioned on the training data D) given the input x ∈ X . The expectation in Equation (12) corresponds to
a marginalisation over architectures. The set of architectures AM and their weights πM can be seen as a
quadrature rule to approximate this marginalisation. When π is the posterior over architectures p(α | D),
we are performing hierarchical Bayesian inference, and the result is the posterior predictive distribution,

p(c | x, D) =
∑
α∈A

p(c | x, α, D) p(α | D)

=
∑

α∈A p(c | x, α, D) p(D | α) p(α)∑
α∈A p(D | α) p(α) . (13)

By taking the view of ensembling as marginalisation, the practitioner has the ability to make their belief
over A explicit. As the training data is finite, it is rarely appropriate to concentrate all of the probability
mass of π on a single architecture. Arguably, π(α) = p(α | D) is the most appropriate choice of π as it is the
distribution implied by the prior and the architectures’ ability to explain the observed data. The hierarchical
Bayesian framework should offer the most principled accounting of uncertainty in the choice of architecture
(a more concentrated π should over-fit, a less concentrated π should under-fit).

From Equation (13) we see that, to compute the posterior predictive, we need to compute C sums of products
of functions of the architecture and the architecture likelihoods. Intuitively, we expect a quadrature scheme
that approximates well the sum in the denominator of (13) will also approximate the sum in the numerator
well. Therefore, we propose using a Bayesian Quadrature acquisition function to build up the candidate set,
as these architectures will form the nodes of a query-efficient quadrature scheme for (13) and so a good basis
for an ensemble.

The likelihood of an architecture p(D | α) is not typically available, as this would require marginalisation
over the NN weights, w, of the architecture. We instead approximate using the MLE, which is equivalent
to assuming the prior of the architecture weights is a Dirac delta distribution at the maximiser of the
(architecture weights’) likelihood function.

p(D | α) =
∫

p(D | w, α) p(w | α)dw ≈ p(D | ŵ, α), (14)

ŵ = argmaxwp(D | w, α)p(w | α). (15)
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Computing p(c | x, α, D) requires an analogous intractable marginalisation. We approximate it similarly,
noting that it depends only indirectly on the training data, through the optimisation procedure, i.e.

p(c | x, α, D) =
∫

p(c | x, w, α, D) p(w | α, D)dw

≈ p(c | x, ŵ, α). (16)

Concretely, we place a functional prior on the architecture likelihood surface, warped using the square-root
transform,

√
2
(
p(D | ŵ, α)− β

)
∼ GP, and use uncertainty sampling to make observations of the likelihood

at a set of architectures {αi}N
i=1 = A ⊂ A.

This provides us with an estimate of the model evidence Z =
∑

α∈A p(D | ŵ, α) p(α), which we denote Ẑ.
The computation of this estimate requires Monte Carlo sampling to approximate sums of (products of) the
WL-kernel over A. Note this is far more feasible than approximating the original sums in Equation (13)
with Monte Carlo sampling as K(αj , A) is far cheaper to evaluate than p(D | ŵ, αj) or p(c | x, ŵ, αj) – either
would require training architecture αj .

Algorithm 1 Candidate set selection algorithm using a BQ acquisition function. Returns architectures
A = {αi}N

i=1 and their corresponding likelihoods L = {p(D | ŵ, αi)}N
i=1.

A, L← sample(n,A) ▷ Initial samples.
θ ← argmaxθp(L | A, θ) ▷ Optimise WL kernel.
while i > 0 do

α← argmaxα∈Aacquisition_function(α, A, L, θ)
A← {A, α}
L← {L, p(D | ŵ, α)}
θ ← argmaxθp(L | A, θ)

end while
return A, L

3.2 Selecting the Ensemble

In principle, the ensemble can be constructed using the weights provided by the quadrature scheme, as these
weights naturally trade-off between member diversity and member performance. However, we wish to select
a subset of the candidate set for the ensemble (as it is assumed that an ensemble of the whole candidate
set is too costly to be practical for deployment). Concretely, we seek a subset AM ⊂ A, along with weights
w ∈ RM such that

p(c | x, D) ≈
N∑
n

1
Ẑ

p(D | αn) p(αn) p(c | x, αn, D) + ϵ (17)

≈
M∑
m

wmp(c | x, αm, D) + ϵ. (18)

We expect ϵ to be small if regions of high likelihood have been well-explored by the acquisition function in
the building of the candidate set. To select the weights w and the set AM we can use any recombination
algorithm, using the Nyström approximation to generate the test functions, as described in Section 2.5,
and the estimated posterior over architectures as the measure to recombine. We refer to this algorithm as
Posterior Recombination (PR).

A second approach, which we refer to as Re-weighted Stacking (RS), is a modification of Weighted Stacking.
Similar to WS, we optimise the weights of an ensemble of the whole candidate set to minimize the validation
loss. The ensemble members are then chosen by selecting the members with the M highest weights. However,
rather than renormalising the corresponding weights, as suggested in Zaidi et al. (2022), we reallocate the
weight assigned to excluded architectures proportionally to the relative covariance between them and the
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ensemble members. Concretely, let {(αm, ωm)}M
m=1 be the ensemble members and their optimised weights,

and {(αl, ωl)}N−M
l=1 be the excluded architectures and their optimised weights. The weights of the ensemble

w ∈ RM are given by

wm = ωm +
N−M∑

l=1

k(αm, αl)∑M
m=1 k(αm, αl)

ωl. (19)

Algorithm 2 Posterior recombination.
T ← nystrom_test_functions(KAA, A) ▷ From Eq (11)
µ←

[
p(D|αn)p(αn)

Ẑ

]N

n=1
w, AM ← recombination(T, µ)

Algorithm 3 Re-weighted stacking.
ω ← argminω∈∆loss(

∑
i ωip(c | x, αn, D), Dval)

I ← select_top(M, ω) ▷ Select top M.
for m in I do

wm ← reweight(m, I, ω, k(A, A)) ▷ Eq (19).
end for

Our proposals can be combined to yield two possible algorithms. Both share the same candidate selection
strategy that uses a WSABI-L surrogate model with the uncertainty sampling acquisition function to select
the set of architectures to train (Algorithm 1). “BQ-R” then uses posterior recombination (Algorithm 2)
to select a subset of architectures from the candidate set to include in the ensemble, and choose their
corresponding weights. “BQ-S” instead uses re-weighted stacking (Algorithm 3 to select, and weight, the
ensemble members from the candidate set. Note that “BQ-R” performs approximate hierarchical Bayesian
inference using BQ, but “BQ-S” is a heuristic inspired by BQ. Figure 1 is a schematic representation of these
algorithms.

4 Experiments

We begin by performing comparisons on the NATS-Bench benchmark (Dong et al., 2021). Specifically, we
use the provided topology search space, which consists of cells with 4 nodes, 6 connections, and 5 possible
operations (including “zeroise” which is equivalent to removing a connection) in a fixed macro-skeleton. The
architecture weights are trained for 200 epochs on the CIFAR-100 and ImageNet16-120 (a smaller version of
ImageNet with 16×16 pixel input images, and 120 classes) datasets. We will compare ensemble performance
as measured by test accuracy, test likelihood, and expected calibration error on the test set for a range of
ensemble sizes. The log-likelihood of the test set measures a model’s performance both in terms of accuracy
and uncertainty calibration, as placing a very low probability on the true class (i.e. being confidently wrong)
is heavily penalised by this metric.

First, we verify that our chosen surrogate model (WSABI-L) performs well. Table 1 shows model perfor-
mance, measured by root mean square error (RMSE) and negative log predictive density (NLPD) on a test
set. The test set is selected by ranking all the architectures in the search space by validation loss, and
selecting every 25th architecture. This ensures that the test set contains architectures across the full range
of performance. We build on the results of Ru et al. (2021), who showed that a GP with a WL kernel is able
to model the architecture likelihood surface well. Our results show that WSABI-L (with a WL kernel) is a
consistently better model than an ordinary GP (with a WL kernel).

Next, we examine the effect of the candidate selection algorithm, shown in Table 2. In all cases, we use
our variant of weighted stacking, described in Section 3.2, to select and weight the ensemble members. We
compare Expected Improvement (EI) with a GP surrogate with a WL kernel, Uncertainty Sampling with a
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CIFAR-100 ImageNet16-120
Model RMSE NLPD RMSE NLPD
GP 6.165 ± 0.116 0.124 ± 0.013 9.610 ± 0.626 0.121 ± 0.012
WSABI-L 5.797 ± 0.043 -2.741 ± 0.095 4.078 ± 0.058 -3.437 ± 0.040

Table 1: The (normalised) RMSE and NLPD of a WSABI-L surrogate and a GP surrogate on the test sets.

CIFAR-100 ImageNet16-120
Algorithm Accuracy ECE LL Accuracy ECE LL
M = 3
RE 77.1 ± 0.2 0.018 ± 0.001 -4385 ± 24.89 51.9 ± 0.2 0.029 ± 0.002 -5595 ± 12.15
EI 76.1 ± 0.2 0.024 ± 0.001 -4472 ± 29.74 51.4 ± 0.2 0.034 ± 0.002 -5632 ± 11.91
US 76.6 ± 0.2 0.021 ± 0.001 -4417 ± 35.85 52.2 ± 0.1 0.029 ± 0.001 -5543 ± 10.87
M = 5
RE 78.5 ± 0.2 0.033 ± 0.001 -4013 ± 19.08 53.3 ± 0.2 0.043 ± 0.002 -5417 ± 12.90
EI 77.4 ± 0.2 0.039 ± 0.001 -4126 ± 22.25 52.6 ± 0.3 0.053 ± 0.003 -5479 ± 15.55
US 77.8 ± 0.2 0.040 ± 0.002 -4077 ± 33.60 53.6 ± 0.1 0.050 ± 0.002 -5380 ± 12.31
M = 10
RE 79.4 ± 0.1 0.053 ± 0.002 -3759 ± 16.38 54.5 ± 0.2 0.065 ± 0.002 -5280 ± 16.85
EI 78.2 ± 0.2 0.055 ± 0.002 -3889 ± 23.79 53.4 ± 0.2 0.071 ± 0.002 -5368 ± 19.47
US 78.6 ± 0.2 0.059 ± 0.001 -3843 ± 22.71 54.7 ± 0.1 0.072 ± 0.001 -5262 ± 9.964

Table 2: Test accuracy, expected calibration error, and log-likelihood on CIFAR-100 and ImageNet16-120 for
our candidate set selection method (US) and baselines. The numbers shown are means and standard error of
the mean over 10 repeats. Each candidate set selection method is initialised with 10 random architectures,
and used to build a set of 150 architectures. The ensemble is chosen and weighted using our variant of
weighted stacking. We see that the RE candidate set performs best for CIFAR-100 and in terms of ECE for
ImageNet16-120. The US candidate set performs best in terms of accuracy and LL for ImageNet16-120.

WSABI-L surrogate using a WL kernel (US), and Regularised Evolution (RE). We find that the US candidate
set performs best for ImageNet16-120 in terms of accuracy and LL, but that the RE candidate set performs
best for ECE on ImageNet16-120, and across all metrics for CIFAR-100.

We then move on to comparing the effect of the ensemble selection algorithm, shown in Table 3. In all
cases, we use uncertainty sampling with a WSABI-L surrogate to build the candidate set. We initialise
with 10 architectures randomly selected from a uniform prior over the search space, and use the acquisition
function to build a set of 150 architectures. We compare beam search (BS), weighted stacking (WS),
recombination of the approximate posterior (PR), and re-weighted stacking (RS). We find that the stacking
variants consistently perform best (with RS slightly improving upon WS) in terms of accuracy and LL, and
PR in terms of ECE for larger datasets.

We then proceed to compare the two variants of our algorithm – BQ-R and BQ-S – with several baselines.

Random The ensemble is an evenly weighted combination of M architectures randomly sampled from the
prior p(α) over the search space.

Hyper-DE The candidate set is selected by randomly sampling from the prior p(α). The ensemble is then
chosen using beam search, with replacement.

NES-RE The candidate set is selected using regularised evolution, and the ensemble members are chosen
using beam search. The ensemble members are equally weighted.

NES-BS The posterior over architectures p(α | D) is approximated using a variational distribution. The
ensemble is constructed by sampling M architectures from the variational distribution using Stein-
Variational Gradient Descent. As no implementation is publicly available, we provide our own.
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CIFAR-100 ImageNet16-120
Algorithm Accuracy ECE LL Accuracy ECE LL
M = 3
BS 75.2 ± 0.2 0.030 ± 0.002 -4500 ± 41.04 52.2 ± 0.1 0.036 ± 0.002 -5572 ± 13.17
WS 76.4 ± 0.2 0.021 ± 0.001 -4426 ± 35.87 52.1 ± 0.1 0.029 ± 0.001 -5545 ± 10.57
PR 71.9 ± 0.8 0.075 ± 0.025 -5259 ± 300.9 46.7 ± 2.3 0.052 ± 0.021 -6347 ± 480.5
RS 76.6 ± 0.2 0.021 ± 0.001 -4417 ± 35.85 52.2 ± 0.1 0.029 ± 0.001 -5543 ± 10.87
M = 5
BS 76.4 ± 0.2 0.048 ± 0.002 -4233 ± 36.48 53.4 ± 0.1 0.058 ± 0.002 -5410 ± 10.70
WS 77.7 ± 0.2 0.036 ± 0.002 -4088 ± 34.13 53.6 ± 0.1 0.049 ± 0.001 -5382 ± 12.55
PR 73.3 ± 0.9 0.040 ± 0.004 -4768 ± 174.3 50.7 ± 0.3 0.028 ± 0.004 -5647 ± 50.58
RS 77.8 ± 0.2 0.040 ± 0.002 -4077 ± 33.60 53.6 ± 0.1 0.050 ± 0.002 -5380 ± 12.31
M = 10
BS 76.9 ± 0.3 0.063 ± 0.001 -4079 ± 50.29 54.1 ± 0.1 0.076 ± 0.001 -5307 ± 9.795
WS 78.5 ± 0.2 0.055 ± 0.002 -3848 ± 23.96 54.6 ± 0.1 0.070 ± 0.001 -5264 ± 10.11
PR 75.5 ± 0.9 0.037 ± 0.002 -4309 ± 172.6 52.3 ± 0.3 0.018 ± 0.001 -5412 ± 22.96
RS 78.6 ± 0.2 0.059 ± 0.001 -3843 ± 22.71 54.7 ± 0.1 0.072 ± 0.001 -5262 ± 9.964

Table 3: Test accuracy, expected calibration error, and log-likelihood on CIFAR-100 and ImageNet16-120 for
Beam Search (BS), Weighted Stacking (WS), Posterior Recombination (PR), and Re-weighted Stacking (RS).
The numbers shown are means and standard error of the mean over 10 repeats. The candidate set selection
method is our method – Uncertainty Sampling with a WSABI-L surrogate – initialised with 10 random
architectures, and used to build a set of 150 architectures. We see that the stacking variants consistently
perform best for accuracy and LL, with RS slightly improving upon WS. For ECE, RS and WS perform well
for small ensembles, but PR works best for larger ensembles.

However, our implementation learns the variational parameters by approximating the expected log-
likelihood term of the ELBO using a subset of the search space, rather than by backpropagating
through a “supernet” as described by Shu et al. (2022). The subset we use is the 150 architectures
in the search space with the highest likelihoods on the validation set. (Of course, this is only
possible when working with a NAS benchmark.) We argue that our approximation is suitable as
most posterior mass will be concentrated on these architectures, so a good variational distribution
will concentrate mass on them as well. Additionally, our approximation is much faster as it does not
require training a supernet.

Table 4 presents the results on CIFAR-100 and ImageNet16-120 for a range of ensemble sizes. Whilst NES-
RE matches or does slightly better than our proposals in terms of accuracy and LL on CIFAR-100, we find
that both BQ-S and BQ-R often perform better in terms of expected calibration error. BQ-S achieves the
best performance on ImageNet16-120 in terms of LL across all ensemble sizes, is joint best with NES-RE in
terms of accuracy, and often outperforms NES-RE in terms of ECE.

Next, we perform a study on a larger search space defined by a “slimmable network” (Yu et al., 2019),
consisting of 614,625 architectures. Sub-networks or “slices” of this supernet constitute architectures within
this search space. The architectures are structured as a chain of 7 blocks, each of which can have up to
4 layers. These sub-networks can be represented in a 28-dimensional ordinal space (with 4 options along
each dimension). We compare the best-performing variant of our method, BQ-S, and the best-performing
baseline, NES-RE, from the smaller NATS-Bench search space. We use an RBF kernel with WSABI-L for
Uncertainty Sampling with our method BQ-S, and compare it to NES-RE. The results are shown in Table
5. We see that BQ-S consistently outperforms NES-RE in terms of the log-likelihood of the test set and, for
CIFAR-100, in terms of expected calibration error as well.

Finally, we perform experiments to examine the robustness to dataset shift. Previous work has provided
evidence that ensembling of Neural Networks provides robustness to shifts in the underlying data distribution
(Zaidi et al., 2022; Shu et al., 2022). However, these investigations have assumed the availability of a
validation set from the shifted distribution, which we argue is unrealistic in practice. Instead, we examine
the setting where only the test set is shifted, and the validation set is representative of the training set. We
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CIFAR-100 ImageNet16-120
Algorithm Accuracy ECE LL Accuracy ECE LL
Best Single 69.1 0.088 -5871 45.9 0.062 -6386
M = 3
Random 69.2 ± 1.5 0.075 ± 0.007 -5778 ± 291.3 39.7 ± 2.2 0.097 ± 0.007 -7459 ± 309.6
Hyper-DE 76.2 ± 0.2 0.030 ± 0.002 -4390 ± 20.95 51.4 ± 0.2 0.040 ± 0.002 -5659 ± 24.21
NES-RE 76.6 ± 0.2 0.026 ± 0.002 -4340 ± 19.58 52.0 ± 0.2 0.033 ± 0.002 -5582 ± 8.858
NES-BS 66.2 ± 1.5 0.073 ± 0.009 -6477 ± 203.0 45.7 ± 0.3 0.058 ± 0.003 -6403 ± 28.04
BQ-R 71.9 ± 0.8 0.075 ± 0.025 -5259 ± 300.9 46.7 ± 2.3 0.052 ± 0.021 -6347 ± 480.5
BQ-S 76.6 ± 0.2 0.021 ± 0.001 -4417 ± 35.85 52.2 ± 0.1 0.029 ± 0.001 -5543 ± 10.87
M = 5
Random 72.2 ± 0.9 0.111 ± 0.009 -5304 ± 180.9 42.7 ± 1.5 0.129 ± 0.008 -7135 ± 216.1
Hyper-DE 77.6 ± 0.1 0.048 ± 0.002 -4099 ± 12.67 52.4 ± 0.2 0.061 ± 0.001 -5535 ± 22.38
NES-RE 78.2 ± 0.1 0.042 ± 0.002 -4002 ± 17.11 53.4 ± 0.2 0.051 ± 0.001 -5404 ± 12.59
NES-BS 65.9 ± 1.5 0.073 ± 0.009 -6481 ± 208.7 45.7 ± 0.3 0.058 ± 0.003 -6403 ± 28.04
BQ-R 73.3 ± 0.9 0.040 ± 0.004 -4768 ± 174.3 50.7 ± 0.3 0.028 ± 0.004 -5647 ± 50.58
BQ-S 77.8 ± 0.2 0.040 ± 0.002 -4077 ± 33.60 53.6 ± 0.1 0.050 ± 0.002 -5380 ± 12.31
M = 10
Random 74.7 ± 0.3 0.150 ± 0.010 -5018 ± 82.21 45.1 ± 0.4 0.159 ± 0.008 -6916 ± 73.21
Hyper-DE 78.6 ± 0.1 0.066 ± 0.001 -3862 ± 9.328 53.1 ± 0.2 0.075 ± 0.002 -5466 ± 18.60
NES-RE 79.4 ± 0.1 0.060 ± 0.001 -3763 ± 15.16 54.5 ± 0.2 0.069 ± 0.001 -5269 ± 17.83
NES-BS 69.1 ± 0.4 0.085 ± 0.005 -6119 ± 36.31 45.6 ± 0.3 0.068 ± 0.004 -6442 ± 24.47
BQ-R 75.5 ± 0.9 0.037 ± 0.002 -4309 ± 172.6 52.3 ± 0.3 0.018 ± 0.001 -5412 ± 22.96
BQ-S 78.6 ± 0.2 0.059 ± 0.001 -3843 ± 22.71 54.7 ± 0.1 0.072 ± 0.001 -5262 ± 9.964

Table 4: Test accuracy, expected calibration error (ECE), and log-likelihood (LL) on CIFAR-100 and
ImageNet16-120 for our proposals (BQ-R and BQ-S) and baselines. For reference, we also include the
performance of the best architecture (measured by validation loss) on the test set (labelled Best Single).
The numbers shown are means and standard error of the mean over 10 repeats. Where applicable, the
candidate set selection method is initialised with 10 random architectures and used to build a set of 150
architectures. For ImageNet16-120 we see that BQ-S performs best across ensemble sizes in terms of LL,
and joint best with NES-RE in terms of accuracy. For CIFAR-100 we find that NES-RE performs best in
terms of accuracy and LL. Particularly for larger ensembles, BQ-R performs best in terms of ECE.

CIFAR-10 CIFAR-100
Algorithm Accuracy ECE LL Accuracy ECE LL
M = 3
NES-RE 93.8 ± 0.0 0.029 ± 0.001 -1165 ± 5.602 74.2 ± 0.2 0.072 ± 0.004 -5136 ± 61.49
BQ-S 93.7 ± 0.1 0.030 ± 0.000 -1152 ± 5.215 74.4 ± 0.1 0.063 ± 0.002 -5021 ± 22.71
M = 5
NES-RE 93.8 ± 0.0 0.030 ± 0.001 -1165 ± 5.503 74.3 ± 0.2 0.071 ± 0.004 -5134 ± 60.72
BQ-S 93.7 ± 0.1 0.032 ± 0.000 -1113 ± 4.123 74.5 ± 0.1 0.055 ± 0.002 -4897 ± 25.66
M = 10
NES-RE 93.8 ± 0.0 0.030 ± 0.001 -1159 ± 5.959 74.3 ± 0.2 0.069 ± 0.004 -5083 ± 58.42
BQ-S 93.8 ± 0.0 0.031 ± 0.000 -1098 ± 3.752 74.7 ± 0.1 0.045 ± 0.001 -4766 ± 15.89

Table 5: Test accuracy, expected calibration error (ECE), and log-likelihood (LL) on CIFAR-10 and CIFAR-
100 for BQ-S (our proposal) and NES-RE (the strongest baseline) for the “Slimmable Network” search space.
We see that BQ-S consistently outperforms NES-RE in terms of ECE and LL, whilst maintaining the same
accuracy.

use the benchmark established by Hendrycks & Dietterich (2019) to generate shifted datasets by applying
one of 30 corruption types to each image for CIFAR-10 and CIFAR-100. Each corruption type has a severity
level on a 1 − 5 scale. Table 6 shows a comparison between NES-RE and BQ-S in this setting (on the
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Severity Level 1
CIFAR-10 CIFAR-100

Algorithm Accuracy ECE LL Accuracy ECE LL
M = 3
NES-RE 86.20 ± 0.04 0.046 ± 0.001 -59259.6 ± 595.907 62.36 ± 0.08 0.151 ± 0.004 -169235 ± 1632.43166
BQ-S 86.26 ± 0.08 0.036 ± 0.001 -54283.4 ± 642.383 62.52 ± 0.10 0.093 ± 0.002 -149022 ± 364.57480
M = 5
NES-RE 86.25 ± 0.04 0.046 ± 0.001 -59178.3 ± 851.719 62.36 ± 0.09 0.155 ± 0.003 -169999 ± 1553.96433
BQ-S 86.16 ± 0.06 0.032 ± 0.001 -52173.6 ± 202.350 62.58 ± 0.09 0.103 ± 0.004 -152466 ± 1249.96873
M = 10
NES-RE 86.26 ± 0.04 0.043 ± 0.001 -57010.4 ± 722.311 62.46 ± 0.07 0.145 ± 0.002 -164816 ± 975.78975
BQ-S 86.22 ± 0.05 0.029 ± 0.001 -50504.6 ± 443.984 62.54 ± 0.08 0.093 ± 0.002 -149022 ± 364.57480

Severity Level 3
CIFAR-10 CIFAR-100

Algorithm Accuracy ECE LL Accuracy ECE LL
M = 3
NES-RE 73.16 ± 0.08 0.147 ± 0.002 -133205 ± 1537.15 49.18 ± 0.07 0.235 ± 0.005 -270710 ± 2628.75462
BQ-S 73.31 ± 0.12 0.131 ± 0.002 -123113 ± 1498.55 49.45 ± 0.12 0.193 ± 0.007 -250337 ± 3304.95
M = 5
NES-RE 73.18 ± 0.09 0.148 ± 0.002 -133239 ± 1904.50 49.20 ± 0.09 0.239 ± 0.004 -272004 ± 2482.09961
BQ-S 73.23 ± 0.07 0.125 ± 0.001 -118756 ± 614.899 49.57 ± 0.09 0.175 ± 0.005 -241407 ± 2438.78
M = 10
NES-RE 73.23 ± 0.08 0.143 ± 0.002 -128663 ± 1664.07 49.29 ± 0.07 0.227 ± 0.003 -263639 ± 1596.01214
BQ-S 73.39 ± 0.11 0.120 ± 0.002 -114613 ± 1247.44 49.57 ± 0.06 0.163 ± 0.003 -235152 ± 881.120

Severity Level 5
CIFAR-10 CIFAR-100

Algorithm Accuracy ECE LL Accuracy ECE LL
M = 3
NES-RE 55.49 ± 0.08 0.285 ± 0.002 -239927 ± 2187.24 34.04 ± 0.06 0.339 ± 0.005 -415182 ± 3710.25
BQ-S 55.67 ± 0.14 0.265 ± 0.003 -226433 ± 2523.79 34.24 ± 0.11 0.291 ± 0.008 -385063 ± 5355.88
M = 5
NES-RE 55.53 ± 0.08 0.286 ± 0.003 -240154 ± 2835.89 34.04 ± 0.07 0.344 ± 0.005 -417110 ± 3476.95
BQ-S 55.51 ± 0.05 0.260 ± 0.002 -220196 ± 1198.20 34.35 ± 0.10 0.270 ± 0.006 -371575 ± 4083.67
M = 10
NES-RE 55.54 ± 0.08 0.279 ± 0.002 -233441 ± 2474.23 34.11 ± 0.07 0.331 ± 0.003 -405068 ± 2327.88
BQ-S 55.61 ± 0.11 0.254 ± 0.003 -214126 ± 2030.20 34.35 ± 0.07 0.257 ± 0.003 -361876 ± 1666.07

Table 6: Test accuracy, expected calibration error (ECE), and log-likelihood (LL) on CIFAR-10 and CIFAR-
100 for NES-RE (the strongest baseline), and BQ-S (our strongest proposal) using the “Slimmable Network”
search space for a range of corruption severities. We see that BQ-S is more robust than NES-RE to dataset
shift, especially in terms of LL and ECE.

slimmable network search space). We see that, whilst our proposal performs similarly in terms of accuracy,
it produces ensembles that perform significantly better in terms of expected calibration error and test set
log-likelihood. This trend holds across corruption severity levels.

5 Discussion and Future Work

We proposed a method for building ensembles of Neural Networks using the tools provided by Bayesian
Quadrature. Specifically, by viewing ensembling as approximately performing marginalisation over architec-
tures, we used the warped Bayesian Quadrature framework to select a candidate set of architectures to train.
We then suggest two methods of constructing the ensemble based upon this candidate set: one based upon
recombination of the approximate posterior over architectures (BQ-R), and one based upon optimisation of
the ensemble weights (BQ-S) using a validation set. BQ-R approximately performs hierarchical Bayesian
inference using BQ, whereas BQ-S is a heuristic inspired by BQ. The discrepancy in performance is likely
due to the fact that BQ-R does not make use of the validation set, as it takes the Bayesian perspective
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and performs hierarchical inference over both architecture weights and architectures using the training set.
(In principle, BQ-R can use the union of the training and validation sets to perform hierarchical inference.
However, we did not run experiments in this setting as it would obviously allow BQ-R significantly more
compute than the alternative methods.) For the same reason, BQ-R is more sensitive to any errors intro-
duced by approximating the architecture likelihood using MLE (or any other approximation). BQ-S (and all
the baselines), however, make use of a separate validation set to select the ensemble weights. We additionally
show that BQ-S outperforms state-of-the-art baselines when the search space is large, and on the largest
datasets for smaller search spaces. This is likely because it is more exploratory than alternative methods,
and so less likely to become stuck near local minima of the architecture likelihood. Lastly, we demonstrated
that BQ-S is more robust to dataset shift than state-of-the-art baselines.

A limitation of our proposals is that they do not outperform existing methods in some cases, notably on
the CIFAR-100 dataset for the NATS-Bench search space. Additionally, it will be challenging to scale our
proposals to larger evaluation budgets (greater than 1000) as the computational burden of inverting the GP’s
covariance matrix will become too large. An interesting direction for future work is to examine the effect of
marginalising over architecture weights as well as over architectures.

We introduce a general-purpose method, so its societal impacts will depend on the specific tasks to which
it is applied. We find it difficult to anticipate what those tasks will be, and even more difficult to speculate
meaningfully about any societal impacts will be.
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A Computational Complexity

The computational complexity of candidate set selection strategies that require a GP surrogate (such as our
proposals) is dominated by the cost of inverting the kernel matrix, which is, at each iteration, cubic in the size
of the candidate set O(|A|3). The complexity of re-weighted stacking is O

(
|A| log(|A|) + |AM |(|A| − |AM |)

)
.

The first term is due to the sorting of candidate set, and the second to the computation the relevant
covariances. The complexity of posterior recombination is dominated by the eigendecomposition of the
kernel matrix, O(|A|3).

Table 7 compares the run-time of our proposals against the most performant baseline on the NATS-Bench
topology search space. Note that all architecture-related evaluations are cached (i.e. the trained weights
are loaded from the NATS-Bench API, and the logits for the forward pass through the train/validation set
are loaded from disk). The key reason that NES-RE is slower than our proposals is the iterative nature
of Beam Search (required at each step of candidate set selection and then for ensemble selection). Recall
that it greedily builds up the set of parent candidates (resp. final ensemble) by iterating through the whole
pool (resp. population). Each iteration requires loading a set of logits from disk which, whilst cheaper than
loading and performing a forward pass through the architecture, still incurs significant computational cost
in aggregate.

Note that, for most search spaces, the computational cost of Neural Ensemble Search is dominated by the
cost of evaluating the likelihoods of the architectures for the candidate set. For some spaces, such as those
defined by a supernet, this cost is lower as the supernet is only trained once. However, this initial training is
still computationally intensive. Therefore, in either case, the computation related to training and evaluating
architectures is likely to be significantly larger than the computation required for the Neural Ensemble Search
method.

B Further Analysis of Results

Our results over the NATS-Bench topology search space show that NES-RE performs best for the CIFAR-
100 dataset, and BQ-S performs best for ImageNet16-120 (see Table 4). The ablation study in Tables 2
and 3 suggest that this is due to the candidate selection strategy. Recall that NES-RE uses regularised
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Algorithm CIFAR-100 ImageNet16-120
NES-RE 24236.3 ± 109.551 12020.6 ± 98.1485
BQ-R 308.872 ± 7.05121 258.444 ± 3.76138
BQ-S 348.650 ± 11.7402 280.689 ± 9.76650

Table 7: The runtime of our proposals, BQ-R and BQ-S, against the most competitive (in terms of perfor-
mance) baseline on CIFAR-100 and ImageNet16-120 over the NATS-Bench topology search space. The total
evaluation budget is 150 architectures, and we select ensembles of size 5. We report the means and standard
error of the means over 3 runs. All architecture-related evaluations are cached (i.e. the trained weights are
loaded from the NATS-Bench API, and the logits for the forward pass through the train/validation set are
loaded from disk).

evolution for candidate set selection and beam search for ensemble selection, whereas BQ-S uses uncertainty
sampling with a WSABI-L surrogate and re-weighted stacking. Table 2 suggests that (for a fixed ensemble
selection strategy) regularised evolution is the best method for CIFAR-100 but that uncertainty sampling
with a WSABI-L surrogate is the best method for ImageNet16-120. Table 3 shows that re-weighted stacking
consistently outperforms beam search given a fixed candidate set. From these results, we can infer that
regularised evolution is a better candidate selection strategy for CIFAR-100 and uncertainty sampling is
better for ImageNet16-120. This must be due to the nature of the architecture likelihood surfaces for each
dataset. As these surfaces are defined over an input space of architectures, they are difficult to visualise. One
possible method is shown in Figure 2. We consider the 500 architectures with the highest likelihood. We
then visualise the covariance matrix between them using the WL kernel of a trained GP. The architectures
are sorted using the GP’s estimate of the likelihood (to smooth out noise). We observe larger clusters of
architectures along the diagonal of the covariance matrix for CIFAR-100. This means that they covary
strongly and have similar likelihoods. Further, note that these clusters covary strongly with each other. This
provides some evidence that the peaks of the CIFAR-100 likelihood surface are broader and closer together
(based on the metric implied by the WL kernel) than those for the ImageNet16-120 likelihood surface. On
this basis, we suggest that uncertainty sampling with a WSABI-L surrogate is better suited to architecture
likelihood surfaces with dispersed, narrow peaks and regularised evolution is better suited to architecture
likelihood surfaces with wider peaks.

C Additional Uncertainty Metrics

To verify that the quality of the uncertainty is well measured by the expected calibration error we check that
it correlates well with the calibration AUC (Kivlichan et al., 2021; Rožanec et al., 2023). These results are
shown in Table 8 (for the same experimental setup as in Table 4). Note that well-calibrated uncertainty is
indicated by high calibration AUC but low expected calibration error. The correlation between the (means
of the) two metrics is -0.71 for CIFAR-100 and -0.20 for ImageNet16-120. They are, therefore, generally in
agreement about the quality of a model’s calibration estimates.

D Architecture Likelihood Approximation

We examine the impact of the approximations suggested in Equations 15 and 16 by comparing their per-
formance to an alternative – Stochastic Weight Averaging (Gaussian) (Maddox et al., 2019). This instead
approximates the posterior over architecture weights using a diagonal Gaussian, whose moments are the
empirical mean and variance of several SGD iterates, obtained by continuing training. The results are shown
on CIFAR-100 for the NATS-Bench search space in Table 9. We see significant improvements across all
metrics when using the SWAG approximation, suggesting that there is much to be gained by marginalising
over both architecture weights and architectures. This would be a promising direction for future work.
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(a) CIFAR-100 (b) ImageNet16-120

Figure 2: Visualisation of the (WL) covariance matrix for the 500 architectures with the highest likelihoods
in the search space for each dataset, sorted by (a smoothed estimate, using a GP, of the) likelihood. The
colour scale varies from 1 (yellow) to 0 (blue). We observe larger blocks of architectures within the top
500 that covary strongly for CIFAR-100 than for ImageNet16-120, which implies that the modes of the
architecture likelihood surface are wider for CIFAR-100. This suggests that a more exploratory strategy will
do better on ImageNet16-120, and a more exploitative strategy for CIFAR-100.

E Experimental Setup

The codebase uses PyTorch (Paszke et al., 2019) to handle deep learning and backpropagation. Except where
otherwise stated, the experimental results report means and standard error of the mean over 10 repeats.
Where applicable, each candidate selection method is initialised with 10 architectures randomly selected
from the search space, and allowed to select an additional 140.

Our proposal over the cell-based search space uses the WL kernel, with its level hyperparameter chosen from
{1, 2} using the GP’s marginal likelihood. For the macro-based search space, our proposal uses an ARD
RBF kernel, whose hyperparameters are optimised using LBFGS. The lengthscales are constrained between
the minimum and maximum distances between observations along the relevant dimensions. Architecture
likelihoods are normalised so that the maximum observed is 1 before modelling with the GP surrogate. The
noise hyperparameter is also selected to optimise the probability density assigned to the observed data under
the GP prior. It is constrained in the range [10−5, 10−1]. The acquisition function is always optimised using
an evolutionary strategy, using a pool size of 1024. Per iteration, we allow 128 mutations, of which 16 are
modifications of the architecture with the highest acquisition value, and the remainder are selected uniformly
at random from the pool.
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CIFAR-100 ImageNet16-120
Algorithm ECE C-AUC ECE C-AUC
M = 3
NES-RE 0.026 ± 0.002 0.873 ± 0.002 0.033 ± 0.002 0.823 ± 0.002
NES-BS 0.073 ± 0.009 0.848 ± 0.003 0.058 ± 0.003 0.809 ± 0.003
BQ-R 0.075 ± 0.025 0.866 ± 0.002 0.052 ± 0.021 0.815 ± 0.003
BQ-S 0.021 ± 0.001 0.874 ± 0.001 0.029 ± 0.001 0.824 ± 0.002
M = 5
NES-RE 0.042 ± 0.002 0.875 ± 0.001 0.051 ± 0.001 0.826 ± 0.002
NES-BS 0.073 ± 0.009 0.848 ± 0.003 0.058 ± 0.003 0.809 ± 0.003
BQ-R 0.040 ± 0.004 0.871 ± 0.001 0.028 ± 0.004 0.820 ± 0.002
BQ-S 0.040 ± 0.002 0.877 ± 0.001 0.050 ± 0.002 0.825 ± 0.002
M = 10
NES-RE 0.060 ± 0.001 0.877 ± 0.001 0.069 ± 0.001 0.825 ± 0.001
NES-BS 0.085 ± 0.005 0.848 ± 0.001 0.068 ± 0.004 0.808 ± 0.002
BQ-R 0.037 ± 0.002 0.872 ± 0.001 0.018 ± 0.001 0.819 ± 0.002
BQ-S 0.059 ± 0.001 0.879 ± 0.001 0.072 ± 0.001 0.826 ± 0.002

Table 8: Expected calibration error (ECE) and calibration AUC (C-AUC) on CIFAR-100 and ImageNet16-
120 for our proposals (BQ-R and BQ-S) and baselines. Well-calibrated uncertainty is indicated by high
calibration AUC but low expected calibration error. We see that the two metrics are generally in agreement
about the quality of a model’s uncertainty estimates.

CIFAR-100
Algorithm Accuracy ECE LL
M = 3
BQ-R (MLE) 71.9 ± 0.8 0.075 ± 0.025 -5259 ± 300.9
BQ-R (SWAG) 75.1 ± 0.6 0.035 ± 0.007 -4516 ± 140.2
BQ-S (MLE) 76.6 ± 0.2 0.021 ± 0.001 -4417 ± 35.85
BQ-S (SWAG) 77.4 ± 0.3 0.022 ± 0.000 -4345 ± 38.19
M = 5
BQ-R (MLE) 73.3 ± 0.9 0.040 ± 0.004 -4768 ± 174.3
BQ-R (SWAG) 75.0 ± 1.1 0.039 ± 0.012 -4335 ± 133.4
BQ-S (MLE) 77.8 ± 0.2 0.040 ± 0.002 -4077 ± 33.60
BQ-S (SWAG) 78.8 ± 0.4 0.033 ± 0.001 -3944 ± 25.47
M = 10
BQ-R (MLE) 75.5 ± 0.9 0.037 ± 0.002 -4309 ± 172.6
BQ-R (SWAG) 77.9 ± 0.2 0.063 ± 0.006 -3964 ± 8.734
BQ-S (MLE) 78.6 ± 0.2 0.059 ± 0.001 -3843 ± 22.71
BQ-S (SWAG) 79.9 ± 0.1 0.053 ± 0.001 -3680 ± 18.40

Table 9: Test accuracy, expected calibration error (ECE), and log-likelihood (LL) on CIFAR-100 for BQ-R
and BQ-S with MLE and SWAG approximations for the architecture likelihood. Note that, due to their
computation expense, results for the SWAG approximations are means and standard error of the mean over
2 runs. For the MLE approximations, we report the mean and standard error of the mean over 10 runs.
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