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ABSTRACT

Multi-objective reinforcement learning (MORL) has gained considerable traction
in recent years, with applications across diverse domains. However, its theoret-
ical foundations remain underdeveloped, especially for widely used but largely
heuristic deep neural network (DNN)-based actor–critic methods. This motivates
us to study MORL from a theoretical perspective and to develop DNN-based ac-
tor–critic approaches that (i) provide global convergence guarantees to Pareto-
optimal policies and (ii) enable systematic exploration of the entire Pareto front
(PF). To achieve systematic PF exploration, we first scalarize the original vector-
valued MORL problem using the weighted Chebyshev (WC) technique and lever-
aging the one-to-one correspondence between the PF and WC scalarizations. We
then address the non-smoothness introduced by WC in the scalarized problem via
a parameterized log-sum-exp softmax approximation, which allows us to design a
deep neural actor–critic method for solving the smoothed WC-scalarized MORL
problem with a global convergence rate of O(1/T ), where T denotes the total
number of iterations. To the best of our knowledge, this is the first work to es-
tablish theoretical guarantees for both global convergence and systematic Pareto
front exploration in deep neural actor–critic MORL. Finally, extensive numerical
experiments and ablation studies on recommendation system training and robotic
simulation further validate the effectiveness of our method, especially its capabil-
ity in Pareto exploration.

1 INTRODUCTION

1) Background and Motivations. Although traditional reinforcement learning (RL) has made re-
markable strides over the past few decades (Kaelbling et al., 1996; Sutton et al., 1998; Arulkumaran
et al., 2017), as the machine learning paradigms become increasingly complex, it struggles to model
some real-world scenarios that involve multiple underlying objectives. Take reinforcement learning
with human feedback (RLHF) as an example: multiple human-aligned metrics, such as helpful-
ness, verbosity, and toxicity, may conflict with each other (Ouyang et al., 2022; Wang et al., 2023;
Chakraborty et al., 2024), making it insufficient to only adopt a single reward signal to represent
them. Consequently, this has motivated the research on the multi-objective reinforcement learning
(MORL) (Gábor et al., 1998; Van Moffaert & Nowé, 2014; Yang et al., 2019), which seeks to max-
imize multiple reward functions. In MORL, due to the potentially conflicting nature of objectives,
it is generally impossible to find a single policy to maximize them simultaneously. Therefore, one
typically aims to find an optimal policy in the Pareto sense, meaning that the performance of any
single objective cannot be further improved without compromising other objectives.

As a subfield of reinforcement learning (RL), MORL problems can potentially be tackled by various
fundamental RL approaches. Among them, the actor-critic approach (Sutton et al., 1998; Konda &
Tsitsiklis, 1999) has been widely adopted, since it combines the strengths of both value-based and
policy-based RL approaches. When adopting the actor-critic framework, one needs to further find
ways to handle the multi-objective structure. Toward this end, most of the recent MORL works (e.g.,
(Nguyen et al., 2020; Chen et al., 2021; Qiu et al., 2024; Zhou et al., 2024; Ehrgott, 2005; Fliege
et al., 2019)) can be categorized into two major classes: (1) Scalarization methods (e.g., linear
scalarization (LS) and weighted-Chebyshev (WC)) that convert an MORL problem into a single-
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Figure 1: The logic of our approach.

objective RL problem; and (2) adaptive gradient methods (e.g., MGDA method (Désidéri, 2012))
that aim to find a common improving direction.

Despite its significance, the theoretical foundation of the MORL problem still remains in its infancy.
The major limitations of the existing MORL theories are three-folded: (1) Most empirical successes
in MORL are built upon complex deep neural networks (DNN) (Yang et al., 2019; Nguyen et al.,
2020; Chen et al., 2021). However, these proposed algorithms are typically of heuristic nature, and
lack theoretical finite-time convergence rate or sample complexity guarantee. (2) Some recent stud-
ies have attempted to establish theoretical foundations of MORL (Qiu et al., 2024; Zhou et al., 2024;
Wang et al., 2024). However, their analysis heavily relies on the simple linear function approxima-
tions or tabular setups, which are inapplicable to the commonly used DNN-based MORL actor-critic
framework mentioned earlier. (3) While some works guarantee the convergence to a Pareto station-
ary policy with linear approximations (Zhou et al., 2024; Hairi et al., 2025), the problem of finding a
Pareto optimal policy remains elusive, let alone systematically exploring the entire Pareto front that
consists of all Pareto optimal policies.

The limitations outlined above underscore a substantial gap between the empirical success of DNN-
based actor–critic MORL methods and the absence of a rigorous theoretical foundation for these
algorithms. This naturally raises the following question:

(Q): Can we develop efficient methods for MORL with DNN-based function approximation to 1)
achieve Pareto optimality convergence globally and 2) explore the entire Pareto optimal front?

2) Technical Challenges. Answering the above question is highly non-trivial and necessitates ad-
dressing the following key challenges:

• While the current literature offers some insights into applying actor-critic methods for solving
MORL problems, their theoretical analyses are mostly limited to linear critic approximations and
the extension to the DNN-based actor-critic frameworks for MORL remains under-explored.
With the complex computations introduced by the DNN component, whether it is possible to
obtain finite-time convergence in MORL remains an open question.

• Even with the simpler linear function approximations, existing MORL only guarantee the con-
vergence to Pareto stationary policies (which may be viewed as locally Pareto optimal), serving
merely as a necessary condition for Pareto optimality. In contrast, identifying weakly Pareto op-
timal policies remains highly challenging, as many widely used techniques (e.g., MGDA-based
MORL approaches (Zhou et al., 2024; Hairi et al., 2025)) ensure convergence only to Pareto
stationary policies, without providing any guarantees of global Pareto optimality.

• Even if a weakly Pareto optimal policy is obtained using DNN-based actor-critic method with
finite-time convergence rate guarantee, it remains unclear whether the approach can incorporate
different objective preferences to systematically explore the entire Pareto front.

3) Main Contributions. To overcome these challenges and to affirmatively answer the above ques-
tion, we develop a DNN-based actor-critic MORL method, which not only guarantees global conver-
gence to a Pareto optimal policy with finite-time convergence rate, but also systematically explores
the entire weakly Pareto optimal front. Specifically, we summarize our contributions as follows:

(1) We show that, to achieve the global convergence to Pareto optimality in MORL policy design,
the use of the weighted-Chebyshev (WC) scalarization technique is not only desirable, but also
critical. Specifically, by converting a vector-valued MORL problem into a scalar-valued RL
problem through the WC-scalarization, we are able to design Pareto optimal policies for the WC-
scalarized RL problem with global convergence guarantee. In addition, we propose a smooth ap-
proximation of the WC-scalarized problem to address the non-smoothness challenge introduced
by the “min-max” structure of the WC-scalarization.
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Table 1: Comparison of Different Algorithms.

Algorithm Model Convergence Rate Exploration
Qiu et al. (2024) Tabular Global O(T− 1

2 ) ✓
Zhou et al. (2024) Linear Stationary O(T−1) ✗
Wang et al. (2024) Linear Stationary O(T−1) ✗
Hairi et al. (2025) Linear Stationary O(T−1) ✓
Yang et al. (2019) DNN NA - ✗
Chen et al. (2021)‡ DNN NA - ✓

This Work DNN Global O(T−1) ✓

Convergence: whether the algorithm converges to Pareto stationary or optimal policies, or if no such guar-
antee exists. Rate: the convergence rate of the algorithm. Exploration: whether the algorithm can explore
the entire Pareto front. ‡: They study a different setup and do consider multiple preferences.

(2) We develop a DNN-based actor-critic algorithm for the WC-scalarized RL problem, which en-
joys a finite-time global convergence rate of O(1/T ) to a Pareto optimal policy, where T denotes
the total number of iterations. Also, thanks to the one-to-one mapping between the solution sets
of WC-scalarized RL problem and the Pareto front of the original MORL problem, our WC-
based method achieves global convergence to any point on the Pareto front of the MORL prob-
lem. To our knowledge, these theoretical guarantees are the first of their kind in the literature.

(3) To validate our algorithm, we conduct extensive numerical experiments on both recommendation
system training and multi-objective robotic simulation, which confirms that our algorithm can
efficiently explore the weakly Pareto optimal front.

2 RELATED WORK

In this section, we summarize the related works in MORL and two closely related fields: single-
objective actor-critic algorithms, and multi-objective optimization algorithms.

1) Single-Objective Actor-Critic Algorithms: The actor-critic framework, along with their vari-
ants have been one of the most widely used approaches in RL (Konda & Tsitsiklis, 1999; Peters
& Schaal, 2008; Mnih et al., 2016). Besides their empirical successes, several works have also es-
tablished rigorous theoretical finite-time convergence rate and sample complexity results (Xu et al.,
2020; Qiu et al., 2021; Cayci et al., 2024; Tan et al., 2025). Moreover, recent works have begun to
explore the DNN-based actor-critic algorithms (Wang & Hu, 2021; Gaur et al., 2024; Zhang et al.,
2025; Ganesh et al., 2025). However, the theories of DNN-based actor-critic approaches for MORL
remain largely missing in the literature.

2) Multi-Objective Optimization Algorithms: The history of Multi-Objective Optimization
(MOO) problems dates back to (Sawaragi et al., 1985), and recent years have seen increasing devel-
opment of MOO theories (Ehrgott, 2005; Gunantara, 2018; Sharma & Kumar, 2022). For example,
the theoretical understanding for MOO approaches such as weighted-Chebyshev (WC, Momma
et al. (2022); Lin et al. (2024)), multi-gradient descent algorithm (MGDA, Désidéri (2012); Xu et al.
(2025)) have been established. However, when being applied in DNN-based actor-critic MORL, the
theoretical convergence results of these MOO approaches remain unclear.

3) MORL Algorithms: Compared to the previous two areas, the theoretical studies on MORL only
started in recent years. Although several MORL algorithms have been proposed (e.g., (Yang et al.,
2019; Zhou et al., 2024; Qiu et al., 2024; Wang et al., 2024; Hairi et al., 2025)), their theoretical
convergence results remain poorly understood. In particular, most of the existing works failed to
address at least one of the following aspects: 1) the use of DNN-based models, 2) providing finite-
time global convergence guarantees, and 3) exploring the entire Pareto optimal front. In contrast, our
algorithm significantly advances MORL by simultaneously addressing all of these technical barriers.
To summarize, Table 1 highlights the strengths of our approach compared to existing methods.

3 MULTI-OBJECTIVE REINFORCEMENT LEARNING: A PRIMER

In this section, we will begin by formally formulating the MORL problem and providing several
key definitions in MORL. Next, we will introduce the DNN-based actor-critic approach for MORL.
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Finally, we propose a new smooth approximation of the WC-scalarized problem for solving DNN-
based actor-critic MORL.

3.1 THE MORL PROBLEM

Consider an m-objective Markov decision process (MOMDP): (S,A, {ri}mi=1,P, γ), where S is
the state space, A is the action space, {ri}mi=1 is the reward signal vector with ri : S × A → R for
the i-th objective, P : S × A × S → [0, 1] is the transition kernel, and γ ∈ (0, 1) is the discount
factor. Here, we adopt the so-called “restart transition kernel” that have been widely used in the
literature (e.g., (Xu et al., 2020; Chen et al., 2022)). Specifically, P is defined as P(s, a, s′) :=
γP(s′|s, a) + (1 − γ)I{s′ = s0}, where s0 denotes the initial state. An MORL policy is denoted
by πθ : S × A → [0, 1], where θ represents its parameters. Hence, for each objective i ∈ [m], we
define the cumulative discounted reward for policy πθ as Ji(θ) := Eπθ

[∑∞
t=0 γ

tri,t
]
. The MORL

problem can thus be formulated as:

max
θ

J(θ) =
[
J1(θ), . . . , Jm(θ)

]⊤
. (1)

In MORL, the vector-valued objective is usually associated with a preference weight vector p ∈ ∆+
m,

where ∆+
m := {p ∈ Rm : p ≥ 0,

∑m
i=1 pi = 1} denotes the standard m-simplex, which represents

potentially different attention on each objective. As mentioned earlier, since it is impossible to max-
imize multiple objective with a single policy πθ in general, we introduce the following optimality
criterion for solving MORL problems:
Definition 1 (Pareto Optimality). Policy πθ dominates πθ′ if and only if Ji(θ) ≥ Ji(θ

′),∀i ∈ [m],
and Ji(θ) > Ji(θ

′),∃i ∈ [m]. Policy πθ is Pareto optimal if no other policy πθ′ dominates θ. Also,
policy πθ is weakly Pareto optimal if no other policy πθ′ satisfies: Ji(θ′) > Ji(θ),∀i ∈ [m].

Clearly, Pareto optimality implies weak Pareto optimality, while the converse is not true. We can
interpret Pareto optimality as the inability to find a policy that improves the performance of each
objective simultaneously. Moreover, we also denote the set of all Pareto optimal (resp. weakly
Pareto optimal) policies as ΘP (resp. ΘWP), and the Pareto front (resp. weak Pareto front) as {F (θ) :
θ ∈ ΘP} (resp. {F (θ) : θ ∈ ΘWP}).

3.2 THE DEEP-NEURAL ACTOR-CRITIC APPROACH FOR MORL

Next, we will introduce the basics in the actor-critic approach, which is followed by the deep-neural
actor-critic approach for MORL.

1) The Actor-Critic Framework: The actor-critic framework involves two stages: First, for some
given policy, the critic component evaluates its value function, indicating the “goodness” of that
policy; Second, based on the approximated value function, the actor component updates the policy
using policy gradients. Specifically, the value function is defined as:

Vθ,i(s) = E
[ ∞∑

t=0

γtri,t

∣∣∣s0 = s, at ∼ πθ(·|st)
]
, i ∈ [m].

However, the true value of Vθ,i(s) is unknown during the MORL process. Thus, the critic component
approximates the state value function as V̂ (s;Wi) using techniques such as TD-learning, where Wi

denotes the parameters of the critic model. In this paper, Wi is assumed to be parameterized by
DNNs, which will be discussed later.

We can also define the advantage function as Advθ,i(s, a) = r(s, a)+γE
[
Vθ,i(s

′)
∣∣s′ ∼ P(·|s, a)

]
−

Vθ,i(s). The actor can compute the policy gradients by utilizing the following policy gradient theo-
rem (Xu et al., 2020; Zhang et al., 2025):
Lemma 1 (Policy Gradient Theorem). Under the restart kernel P , for any policy πθ and for any
i ∈ [m], the gradient of Ji(θ) satisfies: ∇θJi(θ) ∝ E

[
∇θ log πθ(a|s)Advθ,i(s, a)

∣∣(s, a) ∼ ν(θ)
]
,

where ν(θ) denotes the stationary distribution, which will be specified in Assumption 2.

2) Deep-Neural Actor-Critic Method for MORL: As mentioned earlier, no theoretical foundations
have been established for DNN-based actor-critic in the MORL literature. However, there do exist
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some theoretical foundations for DNN-based actor-critic approaches in single-objective RL (Cai
et al., 2019; Gaur et al., 2024; Zhang et al., 2025). Similar to these existing works, we also adopt
multi-layer perceptron architecture for DNN-based actor-critic for MORL in this paper. Specifically,
we encode each state s by some x ∈ Rd with an one-to-one mapping, where it is assumed that
∥x∥2 = 1 without loss of generality. Then, the DNN can be represented as follows:

x(0) = Ax, x(b) =
1√
w
ReLU(W (b)x(b−1)),∀b ∈ [D], y = c⊤x(D),

where A ∈ Rw×d, W (b) ∈ Rw×w,∀b ∈ [D], and c ∈ Rw are the parameters of the DNN, and
ReLU(v) := max{0,v} denotes the ReLU function. Notably, after initializing all entries of A
and W (b),∀b ∈ [D] independently following N (0, 2), and those in c independently following
N (0, 1), we only update W =

(
W (1), . . . ,W (D)

)
during training. We thus simplify the nota-

tion V̂ (x;W,A, c) to V̂ (x;W ). According to (Shen et al., 2022), we have the following universal
approximation result for the ReLU-DNN with depth D and width w:
Lemma 2 (Universal Approximation). Suppose Vθ,i(x) is Lipschitz continuous (see Assumption 3).
Then, there exists a ReLU-DNN parameterized by W , such that: maxx,i,θ

∣∣V̂ (x;W ) − Vθ,i(x)
∣∣ =

Õ
(
w− 2

dD− 2
d

)
, where Õ(·) hides the constants and logarithmic terms.

Lemma 2 says that, when Vθ,i is Lipschitz continuous, as the width and depth of the DNN increase,
the approximation error vanishes at nearly a rate of 1/(wD)

2
d .

3.3 A SMOOTHED WEIGHTED-CHEBYSHEV METHOD

Weighted-Chebyshev (WC) is a scalarization method for transforming a vector-valued optimization
problem into a conventional scalar-valued optimization problem. Moreover, by varying the prefer-
ence vector the m-dimensional standard simplex, one can systematically explore the entire weakly
Pareto optimal front. To be conformal to the polarity of the standard WC-scalarization, we first
transform the “reward maximization” in MORL in Eq. (1) into a “regret minimization” form. Let
Jub
i denote an upper bound of Ji(θ). Then, we can reformulate the MORL problem as follows1:

min
θ

{Jub − J(θ)} =
[
Jub
1 − J1(θ), . . . , J

ub
m − Jm(θ)

]⊤
,

where Jub
i − Ji(θ) > 0,∀i ∈ [m], θ. For any given preference vector p ∈ ∆+

m, the WC problem
is defined as minθ g(θ | p) := ∥p ⊙ (Jub − J(θ))∥∞, where ⊙ denotes the Hadamard product.
However, the WC-scalarization is in the “min-max” form, which is non-smooth and results in ill-
defined gradient for the WC objective function. To address this challenge, we consider a smoothed
WC-scalarization defined as follows (Lin et al., 2024):

min
θ
Gµ(θ | p) := µ log

(
m∑
i=1

exp
pi(J

ub
i − Ji(θ))

µ

)
, (2)

where µ > 0 is a tunable hyperparameter. It is shown in (Lin et al., 2024) that the smooth WC
approximation can approximate the original WC-scalarization and maintain desirable properties:
Lemma 3 (Pareto Front Reconstruction). There exists some constant µ0 > 0, such that, for any
fixed µ ∈ (0, µ0], the policy θ is a weakly Pareto optimal policy if and only if it is the solution of
Eq. (2) under some preference p ∈ ∆++

m , where ∆++
m is the positive standard m-simplex.

This property highlights that, solving the smoothed WC approximation problem to optimality and
varying p across the m-simplex still allow us to explore the entire weak Pareto front. We denote
θ∗(p, µ) as the minimizer of Eq. (2). Solving the MORL problem is then equivalent to solving this
scalar-valued and smooth minimization problem, i.e., finding θ∗(p, µ) for any p ∈ ∆++

m .

4 DNN-BASED ACTOR-CRITIC ALGORITHM FOR MORL

1) Overview: Our DNN-based actor-critic algorithm, presented in Algorithm 1, solves the smoothed
WC-scalarized problem with a double-loop structure. In the inner-loop, the critic component iterates

1Note that this transformation does not lose any generality, as the Pareto fronts of these two problems have
an one-to-one correspondence.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 DNN-based Actor-Critic for MORL

1: Input: step-size αt, initial parameters θ0, initial state s0, preference p, Jub, and µ.
2: for t = 0, 1, . . . , T − 1 do
3: Let st0 , {Wi,t}mi=1 be output of Algorithm 2.
4: for l = 0, 1, . . . ,M − 1 do
5: for i ∈ [m] do
6: Observe: stl+1

and ri,tl+1
.

7: Sample: atl+1
∼ πθt(·|stl+1

).
8: Compute: ψtl = ∇θ log πθt(stl , atl).
9: Compute: δi,tl = V̂ (stl ;Wi,t)− ri,tl+1

− γV̂ (stl+1
;Wi,t).

10: for i ∈ [m] do
11: Compute: ∇̂Ji(θt) = 1

M

∑M−1
l=0 δi,tlψtl .

12: Compute: Ĵi(θt) = V̂ (s0;Wi,t).
13: Compute: dt according to Equation (3).
14: Update: θt+1 = θt − αt

dt

∥dt∥ .

15: Output: Policy θT .

Algorithm 2 DNN-Based Critic for MORL

1: Input: s0, πθt , step-size β, iteration steps K, projection radius B.
2: Initialize: B(B) = {W : ∥W (b) −W (b)(0)∥F ≤ B, ∀h ∈ [D]}. Wi(0) = Wi = W (0),∀i ∈

[m].
3: for k = 0, 1, . . . ,K − 1 do
4: Sample the tuple: (sk, ak, {ri,k+1}mi=1, sk+1, ak+1), where ak ∼ πθt(·|sk).
5: for i ∈ [m] do
6: Compute TD-error: δi,k = V̂ (sk, ;Wi(k))− ri,k+1 − γV̂ (sk+1;Wi(k)).
7: Update: W̃i(k + 1) =Wi(k)− βδi,k · ∇W V̂ (sk;Wi(k)).
8: Project: Wi(k + 1) = argminW∈B(B) ∥W − W̃i(k + 1)∥2.
9: Update: Wi =

k+1
k+2Wi +

1
k+2Wi(k + 1).

10: Output: sK−1, {Wi}mi=1.

for K steps, leveraging TD-learning method to approximate the m value functions Vθ,i for the
current policy θ with m DNNs. The outer-loop executes T rounds in total, where in each round,
the actor component approximates the gradient of Gµ using the obtained value functions, and then
updates the policy θ, which is also parameterized by a DNN with the same width and depth.

2) The Critic Component: The critic component is presented in Algorithm 2, which aims to com-
pute a value function approximation V̂ (x;Wi) for each objective i ∈ [m]. Specifically, for the
current policy θt and the i-th objective, the critic first computes the TD-error δi,k at step k, then
performs a TD update. The newly obtained parameters are then projected onto a ball centered at
W (0) with radius B, i.e., B(B). This projection ensures the non-expansive property of the convex
ball, which is useful in the subsequent analysis.

3) The Actor Component: Each actor step t begins with a Markov batch sampling with a batch-size
ofM . During this process, the algorithm maintains the score function ψtl and TD-error δi,tl for each
i ∈ [m]. Upon the completion of Markov batch sampling, we approximate each objective function
Ji(θt) and its gradient ∇Ji(θt) according to Lemma 1, leading to the approximations Ĵi(θt) and
∇̂Ji(θt), respectively. Then, we leverage these results to estimate the policy gradient ∇Gµ(θt | p)
by substituting the ground truth with our approximations, as follows:

dt = −
m∑
i=1

exp(
pi(J

ub
i −Ĵi(θt))

µ )∑m
i′=1 exp(

pi′ (J
ub
i′−Ĵi′ (θt))

µ )
pi∇̂Ji(θt). (3)

6
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Finally, the policy θt+1 is updated using a gradient descent step based on Gµ(θt | p). Three impor-
tant remarks are in order.
Remark 1. While our algorithm follows the actor-critic framework, the key novelty and difference
stem from the policy update step. Specifically, after using policy gradient theorem (i.e., Lemma 1)
to approximate ∇̂Ji(θt), we do not directly perform a gradient descent step on Ji(θt). Instead,
we utilize Ji(θt) to further approximate ∇Gµ(θt | p) and then perform a gradient update. This is
because our new objective is the smoothed WC-scalarization of the MORL problem.
Remark 2. We note that in several existing MORL works, the actor component utilizes the MGDA
technique (Zhou et al., 2024; Wang et al., 2024; Hairi et al., 2025). In particular, after approximating
∇Ji(θt) by ∇̂Ji(θt), these works solve a quadratic programming minλ ∥λ⊙∇̂Ji(θt)∥22 to determine
a common descent direction. While these MGDA-based approaches enable finite-time convergence
rate analysis (Désidéri, 2012), the inherent limitations of MGDA only guarantee a finite-time con-
vergence rate result to a Pareto stationary policy, rather than a global convergence to a Pareto optimal
policy. In contrast, through the smooth WC-scalarization problem (i.e., Problem (2), our proposed
algorithm is able to exploit the special properties of the policy gradients combined with Lemma 3,
which play a key role in ensuring global convergence to Pareto optimal policies and systematical
Pareto exploration.
Remark 3. It is worth noting that our actor-critic framework employs V -function approximation
(Chen et al., 2022; Hairi et al., 2022; Zhou et al., 2024) rather thanQ-function (Cai et al., 2019; Gaur
et al., 2024; Zhang et al., 2025). This design offers significant benefits in practical implementation.
To see this, note that in Line 12 of Algorithm 1, we need to approximate Ĵi(θt) for each objective i
(unique to the smooth WC-scalarized MORL approach and unseen in the previous literature). Using
the Q-approximation Ĵi(θt) =

∑
a Q̂(s0, a;Wi,t)πθt(a|s0) requires enumerating the entire action

space, which is impractical or even infeasible in MORL problems with large or continuous action
space (e.g., video streaming recommendation systems and LLM alignment). In contrast, our V -
approximation circumvents this difficulty and substantially enhances the capability and efficiency in
solving the MORL problem.

5 THEORETICAL CONVERGENCE ANALYSIS

We begin by stating some useful assumptions in this section, which will be followed by our main
theoretical results on finite-time global convergence and their further insights.
Assumption 1 (Reward). There exists some rmax > 0 such that, ri,t ∈ [0, rmax],∀t ≥ 0, i ∈ [m].
Assumption 2 (Geometric Mixing Time). For any policy πθ, there exists a stationary distribution
ν(θ) for (s, a). Moreover, for any policy πθ, there exist positive constants η and ρ ∈ (0, 1) such that
sups∈S ∥P

(
st, at

∣∣s0 = s
)
− ν(θ)∥TV ≤ ηρt,∀t ≥ 0.

Assumption 2 is standard in the literature (Zou et al., 2019b; Xu et al., 2020; Gaur et al., 2024;
Wang et al., 2024). Notably, the stationary distribution and the mixing behavior of the MOMDP can
also be equivalently ensured by assuming the irreducible and aperiodic MOMDP (Hairi et al., 2022;
Zhou et al., 2024; Zhang et al., 2025).
Assumption 3 (Lipschitz Continuity). Ji(θ) and ∇Ji(θ) are Lipschitz continuous, i.e., there exist
two positive constants LJ and MJ such that, for any i ∈ [m], and for any θ and θ′, we have:

|Ji(θ)− Ji(θ
′)| ≤ LJ∥θ − θ′∥2, ∥∇Ji(θ)−∇Ji(θ′)∥2 ≤MJ∥θ − θ′∥2.

Additionally, Vθ,i(x) is LV -Lipschitz continuous, i.e., for any x, x′, i and θ, we have:

|Vθ,i(x)− Vθ,i(x
′)| ≤ LV ∥x− x′∥2.

Assumption 3 is also commonly adopted in the literature (Wang et al., 2024; Zhou et al., 2024;
Gaur et al., 2024; Zhang et al., 2025), which i) allows us to apply the descent lemma in theoretical
convergence analysis, and ii) ensures the universal approximation result presented in Lemma 2.
Assumption 4. For any policy s, a and θ, there exist positive constantsMg and σ such that the score
function satisfies: ∥∇θ log πθ(a|s)∥2 ≤ Mg , Eν(θ)(∇θ log πθ(a|s)∇θ log πθ(a|s)⊤) ⪰ σI , where
⪰ denotes semi-positive definite.
Assumption 5. For any policy θ and for any i ∈ [m], there exists a positive constant ϵbias such that:

E
(
Advθ,i(s, a)− (1− γ)(F (θ)†∇θJi(θ))

⊤∇θ log πθ(a|s)
)2 ≤ ϵbias,
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where (s, a) ∼ ν(π∗
i ) (stationary distribution under the optimal policy π∗

i with respect to objective
i), F (θ) = ∇θ log πθ(a|s)∇θ log πθ(a|s)⊤, and † denotes the pseudo-inverse of the matrix.

Assumptions 4 and 5 are also widely used in the existing works (Liu et al., 2020; Agarwal et al.,
2021; Ding et al., 2022; Gaur et al., 2024; Zhang et al., 2025). Specifically, Assumption 5 is known
as the “compatible function approximation” condition, which ensures that the policy function class
(represented by DNNs in this paper) is sufficiently rich such that the advantage function Adv(·) can
be well approximated by the score function ψ(·).
Assumption 6. For any θ, and any p ∈ ∆++

m , the minimum singular value of H(θ | p) is strictly
positive, i.e., there exists some δ0 > 0, such that, σmin(H(θ | p)) ≥ δ0, where:

H(θ | p) =
[
∇θ

(
p1(J

ub
1 − J1(θ))

)
, . . . ,∇θ

(
pm(Jub

m − Jm(θ))
)]
.

Assumption 6, which holds as long as H(θ | p) is column full rank, ensures that the gradient matrix
is non-singular, making ∇Gµ(θ | p) tractable. With these assumptions, we are now ready to state
our main results. Due to space limitation, we relegate the proof details to Appendix A.
Theorem 1. Suppose all the assumptions hold. When selecting µ to be small enough, αt = α

t ,

α ≥ max{1, MgLJ
√
m

σδ0
+ µ logm

√
m

δ0
}, β = 1/

√
K, w = Ω(d3D− 11

2 ), B = Θ(w
1
32D−6), and

K = Ω(D4), with probability at least 1− exp−Ω(log2 w), Algorithm 1 achieves the following global
convergence guarantee for any p ∈ ∆++

m :

E
[
Gµ(θT | p)−Gµ(θ

∗(p, µ) | p)
]
= O

(
1

T

)
+O (

√
ϵbias) +O

(
M− 1

2

)
+O

(
w− 2

dD− 2
dµ−1m

1
2

)
+ Õ

(
w

1
32D− 7

2K− 1
4µ−1m

1
2

)
+ Õ

(
w− 1

24D−4µ−1m
1
2

)
.

Corollary 1. For any ϵ > 0, in order to achieve an ϵ-optimal solution, i.e., to ensure E[Gµ(θT |
p)−Gµ(θ

∗(p, µ) | p)] ≤ ϵ, we can select T = Ω(ϵ−1), M = Ω(ϵ−2), and K = Ω(m
1
2 ϵ−1). Then,

the corresponding sample complexity is T (mM +mK) = O(m
3
2 ϵ−3).

Remark 4. Theorem 1 says that Algorithm 1 efficiently solves Equation (2), and converges to
its global minimum at a rate of O(1/T ). Moreover, by Lemma 3, we know that achieving this
global minimum for Eq. (2) implies obtaining a weakly Pareto optimal policy for the original MORL
problem. Furthermore, as mentioned earlier, Algorithm 1 also explores the entire weak Pareto front
ΘWP by varying the preference vector p in the positive standardm-simplex ∆++

m . To our knowledge,
our results on finite-time global convergence, sample complexity, and Pareto front reconstruction are
the first of their kind in the DNN-based actor-critic literature for MORL.
Remark 5. Additionally, Theorem 1 not only establishes the theoretical foundation for the DNN-
based actor-critic for MORL for the first time, but also provides interesting insights into how DNNs
affect performance. Specifically, increasing the depth D of the DNNs significantly improves the
performance of Algorithm 1, whereas changes in width w have a negligible impact.
Remark 6. As shown in Appendix A, a key step in achieving global convergence in our analysis is to
verify the performance difference lemma proposed by (Kakade & Langford, 2002) compatible with
our problem context. This property, primarily applied in the single-objective scenario, heavily relies
on the well-defined gradient of the objective function. By utilizing the smoothed WC-scalarization,
we are indeed able to derive an smooth, scalar-valued objective function, and provide a variant of
this performance difference lemma tailored for MORL.

Table 2: Comparison of our method with baseline methods.

Algorithm Click↑ Like↑(e-2) Follow↑(e-4) Comment↑(e-3) Forward↑(e-3) Dislike↓(e-4) WatchTime↑
Behavior-Clone 0.534 1.231 4.608 3.225 1.119 2.304 1.285

MOAC 0.535 1.261 4.946 2.780 1.105 1.395 1.249
(Linear approx.) 0.30% 2.46% 7.33% −13.8% −1.23% −39.4% −2.84%

MOCHA 0.535 1.348 4.109 3.033 1.020 1.373 1.235
(Linear approx.) 0.15% 9.48% −10.8% −5.97% −8.86% −40.4% −3.94%

PDPG 0.539 1.228 4.828 3.165 0.919 1.140 1.308
(DNN) 1.02% −0.26% 4.78% −1.86% −17.8% −50.5% 1.74%

Ours 0.539 1.372 5.042 3.324 0.960 1.538 1.293
(DNN) 1.02% 11.47% 9.42% 3.07% −14.19% −33.24% 0.58%
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6 NUMERICAL EXPERIMENTS

6.1 SIMULATION ON RECOMMENDATION SYSTEMS

Click

Like

Follow

Comment

Forward

-Dislike

WatchTime

1.262

12.589

21.095

5.987

-12.327

36.429

1.772

Pclick

Plike

Pfollow

Pcomment

Pforward

Pdislike

Pwatchtime

Explored area
Reference point

Figure 2: Pareto exploration.

1) Experimental Setup: We conduct experiments
on Kuairand dataset (Gao et al., 2022), an unbiased
sequential dataset collected from the recommenda-
tion logs of a video-sharing app. It provides mul-
tiple potentially conflicting signals, which makes it
especially useful for evaluating MORL methods. To
compare with existing algorithms, we evaluate algo-
rithm performances on optimizing 7 main feedback
signals: Click, Like, Follow, Comment, Forward,
Dislike, and Watch Time. We compare our approach
with four MORL baselines: PDPG (Chen et al.,
2021), MOAC (Zhou et al., 2024), and MOCHA
(Hairi et al., 2022). Due to space limitation, the de-
tails are relegated to Appendix B.1.

2) Experimental Results: We summarize our experiment results in Table 2, where Behavior-Clone,
a supervised method that mimics real customer behavior, serves as a benchmark for all MORL
methods. We observe that (i) in general, the utilization of DNN significantly enhances overall per-
formance, highlighting the strength of DNN over linear approximation; (ii) as DNN-based methods,
our method outperforms PDPG on metric Like, Follow, and Comment, while PDPG exhibits better
results on Dislike and Watch Time. To further evaluate our method on Pareto front exploration, we
set a group of 7 preference vectors, each exhibiting a maximal preference toward a specific objec-
tive. The result is shown in Fig. 2, where the reference point is our method on the same setting as in
Table 2.

6.2 EXPERIMENTS ON BI-OBJECTIVE ROBOTIC SIMULATION

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Forward Reward (×1e3)

0.0

−8.0

−6.0

−4.0

−2.0

2.0

4.0

C
on

tro
l C

os
t (

×1
e2

)

Figure 3: Our method’s Pareto front.

1) Experimental Setup: We also validate our algo-
rithm on a robotic simulation task within MoJoCo-
Walker-2d-v5 environment (Towers et al., 2024).
Here, we consider a bi-objective problem, where the
forward reward encourages the walker to move for-
ward, and the control cost aims to minimize con-
trol efforts. To validate the systematical Pareto
exploration capability of our approach, we set
the preference vector to various values, such as
[0.1, 0.9]⊤, [0.2, 0.8]⊤, etc. Due to space limitation,
the detailed setups are relegated to Appendix B.2.

2) Experimental Results: In Fig. 3, each point represents the rewards of two objectives under a
fixed preference vector p. The red curve, which can be interpreted as the Pareto front, clearly illus-
trates the trade-off between these two objectives. This demonstrates the efficiency of our algorithm
in Pareto exploration. We also conduct ablation studies within this Walker environment to demon-
strate how parameters impact the algorithm. Due to space limitation, we relegate these results to
Appendix B.2.

7 CONCLUSION

We studied the MORL problem in this paper and proposed a DNN-based actor-critic algorithm
utilizing the smoothed weighted-Chebyshev (WC) technique. Our algorithm achieves global opti-
mality and facilitates systematical Pareto front exploration. Moreover, we proved that the algorithm
converges to the global optima at rate of O(1/T ) along with a sample complexity of O(m

3
2 ϵ−3), es-

tablishing the first theoretical guarantees for DNN-based actor-critic approaches in MORL. Numer-
ous experiments on recommendation system training and multi-objective robotic simulation further
verified the efficiency of our proposed algorithm.
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APPENDIX

A THEORETICAL PROOF OF THEOREM 1

Proof. The proof can be divided into three steps. First, we apply the descent lemma to control
the dynamic Gµ(θt | p) for each t, leading to an iteration result. Second, we demonstrate that
the approximations in Algorithm 1 carefully control each term in the obtained result. Finally, we
combine all the components to complete the analysis.

Step A. Apply Descent Lemma and Iterate on Gµ(θ | p).
We begin by stating the following important lemma.

Lemma 4. For any κ ≥ 0, and for any p ∈ ∆++
m , µ, denoting C(p, µ) =

Mg

σ LJ + µ logm +

maxi
(
pi(J

ub
i − Ji(θ

∗(p, µ)) +
√
ϵbias

1−γ )
)
, we have:

Gµ(θ | p) ≤ C(p, µ),

where we simply denote ∥ · ∥2 as ∥ · ∥ in the sequel.

Proof. According to Kakade & Langford (2002); Ding et al. (2022); Gaur et al. (2024); Zhang et al.
(2025), under Assumptions 4 and 5, for any policy θ and any i ∈ [m], it holds that:

Ji(θ
∗(p, µ))− Ji(θ) ≤

√
ϵbias

1− γ
+
Mg

σ
∥∇θJi(θ)∥.

Thus, denoting hi(θ | p) = pifi(θ), we can reformulate this result to further obtain:

Ji(θ
∗(p, µ))− Jub

i + Jub
i − Ji(θ) ≤

√
ϵbias

1− γ
+
Mg

σ
∥∇θJi(θ)∥,

=⇒ fi(θ)−
Mg

σ
∥∇fi(θ)∥ ≤ Jub

i − Ji(θ
∗(p, µ)) +

√
ϵbias

1− γ
,

=⇒ hi(θ | p)−
Mg

σ
∥∇hi(θ | p)∥ ≤ pi

(
Jub
i − Ji(θ

∗(p, µ)) +

√
ϵbias

1− γ

)
.

On the one hand, according to Assumption 3, we know that ∥∇hi(θ | p)∥ ≤ piLJ ,∀i ∈ [m], θ. On
the other hand, the property of “Log-Sum” inequality ensures that Gµ(θ | p) ≤ maxi

(
pifi(θ)

)
+

µ logm. Hence, we combine these results to get:

Gµ(θ | p) ≤ max
i

(
pifi(θ)

)
+ µ logm

= max
i
hi(θ | p) + µ logm

≤ max
i

(
Mg

σ
∥∇hi(θ | p)∥+ pi

(
Jub
i − Ji(θ

∗(p, µ)) +

√
ϵbias

1− γ

))
+ µ logm

≤ Mg

σ
LJ + µ logm+max

i

(
pi

(
Jub
i − Ji(θ

∗(p, µ)) +

√
ϵbias

1− γ

))
≤ C(p, µ),

holds for any κ ≥ 0, which ends the proof.

Notably, this is an extension of the performance difference lemma (Kakade & Langford, 2002),
indicating that the objective function Gµ(θ | p) derived from smooth WC technique still retains this
important property: we can quantify the optimality of any policy θ by evaluating the value C(p, µ).
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Now, we consider the sequence {θt}T−1
t=0 , where θt+1 = θt − αt

dt

∥dt∥ by Algorithm 1. According to
descent lemma, we have:

Gµ(θt+1 | p) ≤ Gµ(θt | p) +∇Gµ(θt | p)⊤(θt+1 − θt) +
Lµ

2
∥θt+1 − θt∥2

= Gµ(θt | p)− αt
∇Gµ(θt | p)⊤dt

∥dt∥
+
Lµα

2
t

2

≤ Gµ(θt | p)− αt∥∇Gµ(θt | p)∥+ 2αt∥dt −∇Gµ(θt | p)∥+
Lµα

2
t

2
,

where the last inequality can be derived from the following argument with v = ∇Gµ(θt | p) − dt
and d = dt:

0 ≤ ∥v∥ · ∥d∥+ v⊤d,

⇐⇒ ∥v∥ · ∥d∥+ ∥d∥2 ≤ ∥d∥2 + 2∥v∥ · ∥d∥+ v⊤d,

=⇒ ∥d∥ · ∥v + d∥ ≤ ∥d∥2 + 2∥v∥ · ∥d∥+ v⊤d,

⇐⇒ − (v + d)⊤d

∥d∥
≤ 2∥v∥ − ∥v + d∥.

Then, according to Assumption 6, we have the following result:

∇Gµ(θ | p) =
m∑
i=1

exp(hi(θ|p)
µ )∑m

i′=1 exp(
hi′ (θ|p)

µ )
∇hi(θ | p) =

(
H(θ | p)

)
λ(θ, p, µ),

=⇒ ∥∇Gµ(θ | p)∥ ≥ σmin

(
H(θ | p)

)
∥λ(θ, p, µ)∥ ≥ δ0√

m
,

where we denote:

λi(θ, p, µ) =
exp(hi(θ|p)

µ )∑m
i′=1 exp(

hi′ (θ|p)
µ )

, λ(θ, p, µ) = (λ1(θ, p, µ), . . . , λm(θ, p, µ))⊤.

Hence, we apply Lemma 4 to further get:

Gµ(θ | p)− κ∥∇Gµ(θ | p)∥ ≤ C(p, µ)− κ∥∇Gµ(θ | p)∥ ≤ C(p, µ)− κ
δ0√
m
.

Thus, the aforementioned result obtained by the descent lemma can be handled as follows:

Gµ(θt+1 | p)

≤Gµ(θt | p)− αt∥∇Gµ(θt | p)∥+ 2αt∥dt −∇Gµ(θt | p)∥+
Lµα

2
t

2

≤
(
1− αt

κ

)
Gµ(θt | p) + 2αt∥dt −∇Gµ(θt | p)∥+

Lµα
2
t

2
+
αt

κ

(
C(p, µ)− κ

δ0√
m

)
,

which, according to Fatkhullin et al. (2023); Gaur et al. (2024); Zhang et al. (2025), and by selecting
αt =

α
t and α ≥ κ, further implies:

Gµ(θt+1 | p) ≤ 1

t
Gµ(θ2 | p) + 2α

t

t∑
τ=2

∥dτ −∇Gµ(θτ | p)∥+
C(p, µ)− κ δ0√

m

κ
+
Lµα

2

2t
.

14
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Note that the property of “Log-Sum” inequality also ensures that maxi
(
pifi(θ)

)
≤ Gµ(θ | p).

Hence, when selecting κ = max{1, MgLJ
√
m

σδ0
+ µ logm

√
m

δ0
}, we have:

C(p, µ)− κ δ0√
m

κ
=

Mg

σ LJ + µ logm+maxi
(
pi(J

ub
i − Ji(θ

∗(p, µ)) +
√
ϵbias

1−γ )
)

κ
− δ0√

m

≤ 1

κ
·
(
Gµ(θ

∗(p, µ) | p) +
√
ϵbias

1− γ
+
Mg

σ
LJ + µ logm

)
− δ0√

m

≤ Gµ(θ
∗(p, µ) | p) +

√
ϵbias

1− γ
.

Finally, we combine these results to get:

Gµ(θt+1 | p)−Gµ(θ
∗(p, µ) | p)

≤ 1

t
Gµ(θ2 | p) + 2α

t

t∑
τ=2

∥dτ −∇Gµ(θτ | p)∥+ Lµα
2

2t
+

√
ϵbias

1− γ
.

(4)

Then, we need to control each term in the RHS of Equation (4) to guarantee the convergence perfor-
mance.

Step B. Control ∥dt −∇Gµ(θt | p)∥.

For each t, we first add and subtract one term as follows:

∥dt −∇Gµ(θt | p)∥2 ≤ 2∥dt −H(θt | p)λ̂(θt, p, µ)∥2︸ ︷︷ ︸
At

+2∥H(θt | p)λ̂(θt, p, µ)−∇Gµ(θt | p)∥2︸ ︷︷ ︸
Bt

.

We also introduce the following notations:

λ̂i(θ, p, µ) =
exp(

pi(Ĵ
ub
i −Ĵi(θ))
µ )∑m

i′=1 exp(
pi′ (Ĵ

ub
i′−Ĵi′ (θ))

µ )
, λ̂(θ, p, µ) = (λ̂1(θ, p, µ), . . . , λ̂m(θ, p, µ))⊤.

Therefore, for At, we have:

At
♭
= 2∥

m∑
i=1

λ̂i(θt, p, µ) · pi
(
∇Ji(θt)− ∇̂Ji(θt)

)
∥2

†
≤ 2

m∑
i=1

λ̂i(θt, p, µ)∥pi
(
∇Ji(θt)− ∇̂Ji(θt)

)
∥2

‡
≤ 2max

i
∥∇̂Ji(θt)−∇Ji(θt)∥2,

where ♭ is due to the definition of dt according to Equation (3), † is due to λ̂(θt, p, µ) ∈ ∆++
m and

convexity of ∥ · ∥2, and ‡ is due to p ∈ ∆++
m .

In order to further bound At, we leverage the following fact according to Cai et al. (2019); Zhang
et al. (2025) to show the optimality of critic after update. Notably, the original results are primarily
established for the Q function, whereas it is not difficult to verify that the same arguments also yield
parallel results for the V function.

Fact 1 (Cai et al. (2019)). Let locally linear approximated V-function for any parameter W be:

V̂0(x;W ) = V̂ (x;W (0)) + ⟨∇W V̂ (x;W (0)), (W −W (0))⟩,

and corresponding TD-error be:

δ0(x, r, x
′;W ) = V̂0(x;W )− r − γV̂0(x

′;W ).
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If W ∗ satisfies:

Es∼ν

(
(δ0(x, r, x

′;W ∗) · ⟨∇W V̂0(x;W
∗)), (W −W ∗)⟩

)
≥ 0,∀W ∈ B(B),

where, with a slight abuse of notation, ν here denotes the stationary distribution for state space
(under the transition of the restart kernel and some policy πθ), then we say W ∗ is a stationary
point (since there is no descent direction at W ∗). Then, for any A, W (0) and c, there exists some
stationary point W ∗, and V̂0(·;W ∗) is the unique, global optimum of the minimization problem for
policy θ:

min
W

Ex∼ν(θ)

[
(V̂ (x;W )−ΠFB,w

T πθ V̂ (x;W ))2
]
,

where FB,w = {V̂ (x;W (0))+⟨∇W V̂ (x;W (0)), (W−W (0))⟩ :W ∈ B(B)}, and ΠFB,w
denotes

the projection operation to the function class FB,w.

Thus, for each i ∈ [m], we can reformulate the desired term as:

∥∇̂Ji(θt)−∇Ji(θt)∥2

≤ 3∥∇̂Ji(θt)− ∇̂Ji(θt; δ(W ∗
i,t))∥2︸ ︷︷ ︸

At,1

+3∥∇̂Ji(θt; δ(W ∗
i,t))− Âdv(θt; δ(W ∗

i,t))∥2︸ ︷︷ ︸
At,2

+3∥Âdv(θt; δ(W ∗
i,t))−∇Ji(θt)∥2︸ ︷︷ ︸
At,3

,

where:

∇̂Ji(θt; δ(W ∗
i,t)) :=

1

M

M−1∑
l=0

δi,tl(W
∗
i,t)ψtl ,

Âdv(θt; δ(W ∗
i,t)) := E

(
Adv(s, a;W ∗

i,t)ψθt(s, a)
)
,

where δi,tl(W
∗
i,t) = V̂ (stl ;W

∗
i,t) − ri,tl+1

− γV̂ (stl+1
;W ∗

i,t) adopts the stationary W ∗
i,t for policy

θt, and ψθt(s, a) = ∇θ log(πθt(s, a)). Hence, we next show that At,1, At,2, At,3 and Bt can be
controlled, respectively.

Step B.1. For At,1, we have:

At,1 = 3∥ 1

M

M−1∑
l=0

δi,tlψtl −
1

M

M−1∑
l=0

δi,tl(W
∗
i,t)ψtl∥2

= 3∥ 1

M

M−1∑
l=0

(
δi,tl − δi,tl(W

∗
i,t)
)
ψtl∥2

≤ 3max
l

∥
(
δi,tl − δi,tl(W

∗
i,t)
)
ψtl∥2

≤ 3M2
g max

l

(
δi,tl − δi,tl(W

∗
i,t)
)2
,

where the last inequality is due to Assumption 4. For each i ∈ [m], we can further get:∣∣δi,tl − δi,tl(W
∗
i,t)
∣∣

=
∣∣∣V̂ (stl ;Wi,t)− γV̂ (stl+1

;Wi,t)− V̂ (stl ;W
∗
i,t) + γV̂ (stl+1

;W ∗
i,t)
∣∣∣

≤
∣∣∣V̂ (stl ;Wi,t)− V̂ (stl ;W

∗
i,t)
∣∣∣+ γ

∣∣∣V̂ (stl+1
;Wi,t)− V̂ (stl+1

;W ∗
i,t)
∣∣∣,

where the equality is due to the definition of TD-errors, and the inequality comes from the triangle
inequality. Then, we take expectation, and follow the parallel results in Cai et al. (2019); Zhang
et al. (2025) to get that:

E
[∣∣δi,tl − δi,tl(W

∗
i,t)
∣∣] = O

(
(BD

5
2K− 1

4 +B
4
3w− 1

12D4) · log
3
2 w log

1
2 K

)
,

holds with probability at least 1−exp(−Ω(log2 w)), when selecting β = 1/
√
K, w = Ω(d3D− 11

2 ),
B = Θ(w

1
32D−6), and K = Ω(D4). Then, this implies:

E(At,1) = O
(
(B2D5K− 1

2 +B
8
3w− 1

6D8) · log3 w logK
)
. (5)
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Step B.2. For At,2, we have:

At,2

3
=
∥∥∥ 1

M

M−1∑
l=0

δi,tl(W
∗
i,t)ψtl − E

(
Adv(s, a;W ∗

i,t)ψθt(s, a)
)∥∥∥2

=
1

M2

M−1∑
l=0

∥∥∥δi,tl(W ∗
i,t)ψtl − E

(
Adv(s, a;W ∗

i,t)ψθt(s, a)
)∥∥∥2

+
1

M2

∑
u̸=v

⟨δi,tu(W ∗
i,t)ψtu − E

(
Adv(s, a;W ∗

i,t)ψθt(s, a)
)
, δi,tv (W

∗
i,t)ψtv − E

(
Adv(s, a;W ∗

i,t)ψθt(s, a)
)
⟩.

We take expectation on both sides. Then, We first control the first term in the last equation as follows.
For each l ∈ {0, . . . ,M − 1}, we have:

E
∥∥∥δi,tl(W ∗

i,t)ψtl − E
(

Adv(s, a;W ∗
i,t)ψθt(s, a)

)∥∥∥2
≤2E

[
∥δi,tl(W ∗

i,t)ψtl∥2 + ∥E
(
Adv(s, a;W ∗

i,t)ψθt(s, a)
)
∥2
]

≤2E
[
|δi,tl(W ∗

i,t)|2 · ∥ψtl∥2
]
+ 2E

[
|Adv(s, a;W ∗

i,t)|2 · ∥ψθt(s, a)∥2
]

≤2M2
gE|δi,tl(W ∗

i,t)|2 + 2M2
gE|Adv(s, a;W ∗

i,t)|2

≤4M2
g max

l
E|δi,tl(W ∗

i,t)|2

=4M2
g

(
(
1 + γ

1− γ
+ 1)rmax + 2Õ

(
w− 2

dD− 2
d

))2
=O(1),

where the second last equation is due to the definition of TD-errors and Lemma 2, and the last
equation holds because of the bounded reward. Then, we consider the second term. Without loss of
generality, we assume u < v. Besides, we consider taking expectations conditioned on the filtration
Ft, where Ft denotes the samples up to iteration t. According to Hairi et al. (2022); Zhou et al.
(2024) the following results hold due to Assumption 2:

E
[
⟨δi,tu(W ∗

i,t)ψtu − E
(
Adv(s, a;W ∗

i,t)ψθt(s, a)
)
, δi,tv (W

∗
i,t)ψtv − E

(
Adv(s, a;W ∗

i,t)ψθt(s, a)
)
⟩
∣∣∣Ft

]
=2
(
(
1 + γ

1− γ
+ 1)rmax + 2Õ

(
w− 2

dD− 2
d

))
· E

[∥∥∥E (Adv(st,lv , at,lv ;W
∗
i,t)ψθt(s, a)

∣∣Ft,lu

)
− E

(
Adv(s, a;W ∗

i,t)ψθt(s, a)
) ∥∥∥∣∣∣∣∣Ft

]

=2Mg

(
(
1 + γ

1− γ
+ 1)rmax + 2Õ

(
w− 2

dD− 2
d

))2
· ηρv−u.

Hence, we can further get:

E(At,2) = O
(

1

M

)
+O

(
1

M2
·M ηρ

1− ρ

)
= O

(
1

M

)
. (6)
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Step B.3. For At,3, according to Lemma 2, we have:

At,3 =
∥∥∥E(Adv(s, a;W ∗

i,t)ψθt(s, a)
)
− E

(
Advθt,i(s, a)ψθt(s, a)

)∥∥∥2
=
∥∥∥E[(Adv(s, a;W ∗

i,t)− Advθt,i(s, a)
)
ψθt(s, a)

]∥∥∥2
≤M2

g

(
E
∣∣Adv(s, a;W ∗

i,t)− Advθt,i(s, a)
∣∣)2

=M2
g

(
E
∣∣γE(V̂ (s;W ∗

i,t))− V̂ (s;W ∗
i,t)− γE(Vθt,i(s)) + Vθt,i(s)

∣∣)2
≤ 4M2

g

(
E
∣∣V̂ (s;W ∗

i,t)− Vθt,i(s)
∣∣)2

≤ 4M2
gE
(
V̂ (s;W ∗

i,t)− Vθt,i(s)
)2

= Õ
(
w− 4

dD− 4
d

)
.

(7)

Step B.4. As for Bt, we can obtain:

Bt = 2∥H(θt | p)
(
λ̂(θt, p, µ)− λ(θt, p, µ)

)
∥2

= 2∥
m∑
i=1

(
λ̂i(θt, p, µ)− λi(θt, p, µ)

)
· pi∇Ji(θt)∥2

†
≤ 2

m∑
i=1

pi∥
(
λ̂i(θt, p, µ)− λi(θt, p, µ)

)
· ∇Ji(θt)∥2

‡
≤ 2L2

J

m∑
i=1

pi
(
λ̂i(θt, p, µ)− λi(θt, p, µ)

)2
≤ 2L2

J max
i

(
λ̂i(θt, p, µ)− λi(θt, p, µ)

)2
.

where † is due to p ∈ ∆++
m and convexity of ∥ · ∥2, and ‡ is due to Assumption 3.

This implies that, for any i ∈ [m], we need to consider
(
λ̂i(θt, p, µ) − λi(θt, p, µ)

)2
. To this end,

we first consider the following bias arising from approximations:

E
∣∣Ĵi(θt)− Ji(θt)

∣∣
=E

∣∣∣V̂ (s0;Wi,t)− Vθt,i(s0)
∣∣∣

≤E
∣∣∣V̂ (s0;Wi,t)− V̂ (s0;W

∗
i,t)
∣∣∣+ E

∣∣∣V̂ (s0;W
∗
i,t)− Vθt,i(s0)

∣∣∣
=O

(
(BD

5
2K− 1

4 +B
4
3w− 1

12D4) · log
3
2 w log

1
2 K

)
+ Õ

(
w− 2

dD− 2
d

)
.

Let Ji(θ) = pi
Jub
i −Ji(θ)

µ and Ĵi(θ) = pi
Jub
i −Ĵi(θ)

µ . Then, we can get:

E
∣∣Ĵi(θt)−Ji(θt)

∣∣ = O
(
(BD

5
2K− 1

4 +B
4
3w− 1

12D4) · log
3
2 w log

1
2 Kµ−1

)
+Õ

(
w− 2

dD− 2
dµ−1

)
.

Then, we denote J (θ) = (J1(θ), . . . ,Jm(θ))⊤, and Ĵ (θ) = (Ĵ1(θ), . . . , Ĵm(θ))⊤. For conve-
nience, we also denote ϕi(J (θ)) = exp(Ji(θ))∑

j exp(Jj(θ))
. Then, according to Mean value theorem, we

know that there exists some c ∈ Rm, such that:∣∣∣ϕi(J (θ))− ϕi(Ĵ (θ))
∣∣∣2 =

∣∣∣∇ϕi(c)⊤(J (θ)− Ĵ (θ)
)∣∣∣2

≤ ∥∇ϕi(c)∥21∥J (θ)− Ĵ (θ)∥2∞

≤ 1

4
max

i

∣∣∣Ĵi(θt)− Ji(θt)
∣∣∣2,
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which implies that:

E
(
λ̂i(θt, p, µ)− λi(θt, p, µ)

)2
=E
(
ϕi(J (θt))− ϕi(Ĵ (θt))

)2
≤E
[1
4
max

i

(
Ĵi(θt)− Ji(θt)

)2]
≤1

4
E
[ m∑

i=1

(
Ĵi(θt)− Ji(θt)

)2]
=O

(
(B2D5K− 1

2 +B
8
3w− 1

6D8) · log3 w logKµ−2m
)
+ Õ

(
w− 4

dD− 4
dµ−2m

)
,

holds with probability at least 1 − exp(−Ω(log2 w)) when selecting parameters as shown before.
These results indicate that:

E(Bt) = O
(
(B2D5K− 1

2 +B
8
3w− 1

6D8) · log3 w logKµ−2m
)
+ Õ

(
w− 4

dD− 4
dµ−2m

)
. (8)

Step C. Complete the Proof.

Combining Equations (5) to (8), we know that the following result holds with probability at least
1− exp(−Ω(log2 w)) when selecting parameters as shown before:

∥dt −∇Gµ(θt | p)∥ = O
(
(BD

5
2K− 1

4 +B
4
3w− 1

12D4) · log
3
2 w log

1
2 Kµ−1m

1
2

)
+ Õ

(
w− 2

dD− 2
dµ−1m

1
2

)
+O

(
M− 1

2

)
.

Then, we substitute this back to Equation (4) to obtain the following result:

Gµ(θt+1 | p)−Gµ(θ
∗(p, µ) | p)

≤1

t
Gµ(θ2 | p) + 2α

t

t∑
τ=2

∥dτ −∇Gµ(θτ | p)∥+ Lµα
2

2t
+

√
ϵbias

1− γ

=O
(
1

t

)
+O (

√
ϵbias) +O

(
M− 1

2

)
+ Õ

(
w− 2

dD− 2
dµ−1m

1
2

)
+O

(
(BD

5
2K− 1

4 +B
4
3w− 1

12D4) · log
3
2 w log

1
2 Kµ−1m

1
2

)
Therefore, be selecting αt = α

t , α ≥ max{1, MgLJ
√
m

σδ0
+ µ logm

√
m

δ0
}, β = 1/

√
K, w =

Ω(d3D− 11
2 ), B = Θ(w

1
32D−6), and K = Ω(D4), with probability at least 1 − exp−Ω(log2 w),

Algorithm 1 has the following global convergence guarantee for any p ∈ ∆++
m :

E
[
Gµ(θT | p)−Gµ(θ

∗(p, µ) | p)
]

=O
(
1

T

)
+O (

√
ϵbias) +O

(
M− 1

2

)
+O

(
w− 2

dD− 2
dµ−1m

1
2

)
+ Õ

(
w

1
32D− 7

2K− 1
4µ−1m

1
2

)
+ Õ

(
w− 1

24D−4µ−1m
1
2

)
,

which ends the proof.

B SETUPS AND ADDITIONAL RESULTS OF NUMERICAL EXPERIMENTS

In this section, we provide the detailed setups of our numerical experiments along with some addi-
tional results.
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B.1 SIMULATION ON RECOMMENDATION SYSTEMS

Detailed Setup. We conduct experiments on the Kuairand dataset (Gao et al., 2022), an unbiased se-
quential recommendation dataset collected from the recommendation logs of a video-sharing mobile
app. It provides rich feedback of 12 distinct signals (e.g. click, like, view time, follows, comments)
together with timestamps, user and item features, and over 30 side-features. Its unbiased exposure
mechanism makes it especially useful for evaluating debiasing and causal recommendation methods.

To compare with existing algorithms, we evaluate algorithm performances on optimizing 7 main
feedback signals: click, like, follow, comment, forward, dislike, view time, and compare our ap-
proach with several baselines (Chen et al., 2021; Zhou et al., 2024; Hairi et al., 2022). To ensure a
fair comparison, for DNN based methods (i.e., Chen et al. (2021), our work), we implement them us-
ing the same network architecture of a 3-layer perceptron each with ReLU as activation function for
both critic and actor networks. For methods utilizing linear approximation, i.e., Zhou et al. (2024);
Hairi et al. (2025), we keep both critic and actor networks as single linear layer for linear approxima-
tion. In addition, for methods with preference vector as input (i.e., Hairi et al. (2025), our work), we
set a unified preference vector for all objectives. We note here that the reward optimization among
objectives could still be biased even with unified preference vector, given that different feedback
signals have very different density in this data, e.g., the density of signal “forward” is 0.076% in
all 7 signals so there is very limited customer feedback can be learned. Finally, we benchmark all
methods on metric normalized capped importance sampling (NCIS) (Zou et al., 2019a).

B.2 EXPERIMENTS ON BI-OBJECTIVE ROBOTIC SIMULATION

1) Detailed Setup. In MoJoCo-Walker-2d-v5 environment (Towers et al., 2024), we aim to control
a walking robot (walker) to move forward. The basic setups are detailed as follows:

• Episode. In each episode, there are at most T = 500 time steps. Every episode ends once
the walker falls down (referred to as the walker becoming “unhealthy”) or when the maximum
number of steps is reached, and a new episode is then initialized. Every experiment consists of
a total of 1, 000, 000 time steps.

• State Space. The state space has a dimension of 17, with each component representing either
the position or velocity of a walker’s body part. Among these, the first dimension, the position
of the “z-coordinate”, determines the walker’s health: it’s healthy only if this value lies within
the interval [0.8, 1.0].

• Action Space. The action space has a dimension of 6, with each component representing torque
added to a specific body part of the walker. The transition kernel follows the laws of mechanics.

• Reward Signals. We consider two types of reward signals as follows. First, forward reward
represents the velocity along the forward axis, encouraging the walker to move forward as
quickly as possible. Second, control cost is proportional to ∥a∥22, i.e., the squared norm of the
taken action a, implying that the controller is supposed to minimize the interference. Obviously,
these two kinds of reward signals conflict with each other, motivating us to formulate this
robotic simulation task as a bi-objective problem. Besides, an additional reward of 1 is added
each time step if the walker remains healthy.

• Preference. We consider multiple preference vectors in this experiment to evaluate the perfor-
mance of our algorithm. Specifically, for exploring the Pareto front in Figure 3, we set a diverse
set of preference vectors as follows:

p ∈ {[1, 0], [0.9, 0.1], [0.8, 0.2], [0.7, 0.3], [0.5, 0.5], [0.3, 0.7], [0.2, 0.8], [0.1, 0.9], [0, 1]}.
For the ablation studies shown in Figure 4, we fix the preference vector to p = [0.9, 0.1], and
modify other hyperparameters.

• Others. We also enumerate the default setting of other aforementioned parameters here. The
discounted factor is set to γ = 0.99. The DNNs we utilized are with width of 256 and depth of
2. The smoothing parameter is set to µ = 0.05. The upper bound is set to Jub = {2000, 1000}.
The learning rates are set to αt = α = 3× 10−4, and β = 10−3.

In addition to the Pareto exploration results, we also implement the ablation studies to demonstrate
how parameters impact the performance of our approach, as listed below:
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(a) Varying depth D.
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(b) Varying width w.

Figure 4: Performance under different depth D and hidden width H under preference [0.9,0.1].
Each curve is smoothed using a moving average over 500 steps.

• Depth D. We consider the DNN with different depths: D ∈ {1, 2, 4}.
• Width w. We apply the DNN with different widths: w ∈ {64, 128, 256}.

2) Additional Results. Figure 4 provides the ablation studies by showing the forward reward curves
under the default setup while varying a single hyperparameter.

As illustrated in Figure 4a, the reward returns consistently increase as the depth D of the DNN
increases. This suggests that the deeper DNN achieves better performance, which aligns with our
theoretical results. Figure 4b considers the effect of the width w of the DNN. While larger widths
yield slightly better performance, the differences across settings are relatively not significant, which
is also consistent with our theoretical analysis.
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