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ABSTRACT

Curriculum learning is a powerful paradigm, yet its application to large language
model (LLM) pretraining remains underexplored, especially in scenarios where
high-quality data is limited yet crucial. Previous works have primarily focused
on applying curriculum learning to LLM pretraining by searching for better data
quality metrics. However, these approaches have yielded only marginal gains, and
curriculum-based training is still not a standard practice. In this work, we explore
the problem from the opposite perspective: if a good quality metric is available,
can current curriculum learning strategies produce better results? We diagnose a
key, yet overlooked, factor responsible for this deficiency: the interplay between
the data order and the learning rate (LR) schedule. We find that while curriculum
learning can greatly outperform pretraining with a uniform data distribution un-
der a constant LR schedule, this advantage diminishes as the learning rate decays.
Building on this observation, we propose replacing LR decay with model averag-
ing, which involves computing a weighted average of last several model check-
points. We find this strategy achieves better results than standard LR decay sched-
ules, especially in a mid-training regime where only a portion of high-quality data
is available. Furthermore, this approach reveals that model averaging is greatly
strengthened with the occurrence of curriculum learning. Finally, we propose a
co-designed strategy for curriculum-based LLM pretraining: combining a moder-
ate LR decay with model averaging. This approach allows the model to strike a
balance between learning effectively from high-quality data, reducing knowledge
forgetting, and mitigating gradient noise. We find that this combination highlights
a previously overlooked opportunity to improve pretraining by co-designing the
data curriculum, LR schedule, and model averaging.

1 INTRODUCTION

The quality and composition of pretraining data are critical for the performance and efficiency of
large language models (LLMs) (Grattafiori et al.| [2024; DeepSeek-Al et al., 2025} Yang et al., 2025
OpenAl et al.}|2024)). Researchers often enhance data quality using methods like rule-based filtering,
quality scoring, and score-based selection (Su et al.,2025; Li et al.,[2024; |Penedo et al., |2025;2024;
Weber et al.| [2024). However, they typically train on this curated data in a uniformly random order
and weight all samples equally (Li et al., 2024} |Penedo et al., |2025; |(OLMo et al., 2025). This
standard approach ignores the fine-grained quality information available in the data scores.

A natural strategy to use this quality information is curriculum learning, where the model trains
on data samples in increasing order of quality (Wettig et al.l 2024; Dai et al., |2025; |[Wang et al.,
2021). While curriculum learning traditionally refers to an easy-to-hard progression, we use the
term here for a low-to-high quality ordering. One key motivation is to mitigate catastrophic forget-
ting (McCloskey & Cohen, [1989; [Tirumala et al., 2022; |Liao et al.| 2025). By training on high-
quality data later, the model can better retain valuable information. Recent works (Yang et al., 2025
DeepSeek-Al et al. 2025} [Team et al.| 2025 |OLMo et al.| 2025)) have adopted coarse-grained cur-
ricula, such as adding high-quality domain data in a second training phase. However, fine-grained,
instance-level curricula are not yet standard practice. Previous studies on this topic have shown lim-
ited improvements and offered little insight into why they work, which has prevented their broader
adoption (Wettig et al., 2024} Dai et al., 2025; Zhang et al.| 2025; Kim & Lee} [2024).
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Figure 1: Data curriculum reveals a diminishing benefit with LR decay. We show the validation loss for dif-
ferent data curricula under different LR schedules. The data schedules include Uniform, Ascending-Order, and
Descending-Order by score ordering, and include Sorting and Folding (detailed in Section ) by arrangement
strategy. The LR schedules include constant, cosine, and WSD (Hu et al.|[2024; |Hagele et al., 2024) schedules.
For validation loss, data curriculum wins over uniform under constant schedule. The benefit of high-quality
data diminishes as the learning rate decays, like in cosine and WSD schedules.

This raises a key question: even with a good quality metric, why does curriculum learning often fail
to deliver significant gains? In this paper, we identify a critical and overlooked factor: a detrimental
coupling between the data schedule and the learning rate (LR) schedule. Standard pretraining uses
LR schedules that decay over time, such as cosine decay (Loshchilov & Hutter, [2017) or warmup-
stable-decay (WSD) (Hu et al.l 2024)). Near the end of training, the LR often drops to a very small
value, mostly at scale of 10™° and even close to zero (Li et al.,[2025b; (OLMo et al., 2025). In this
case, high-quality data in data curriculum is processed with a greatly reduced learning rate near the
end, as shown in Figure[T(d)] This small LR effectively prevents the model from learning sufficiently
from the most valuable data, which counteracts the curriculum’s intended benefit.

To resolve this tension, we propose using model averaging (Li et al., [2025¢; [Izmailov et al., 2019;
Tian et al., 2025) to decouple the data schedule from the LR schedule. Model averaging refers to
computing the weighted average of last several checkpoints, typically using moving average (Li
et al., 2025c). Model averaging reduces training noise and stabilizes final parameters, which per-
forms a similar role as a decaying LR. Crucially, in curriculum-based pretraining, it allows the
model to get rid of LR decay and keeps a peak learning rate, which allows model to take larger
update along the gradient direction by high-quality data. We call this strategy Curriculum Model
Averaging (CMA), featuring a low-to-high quality data curriculum and constant LR schedule in
training and using model average to obtain final model. Our experiments confirm that under a data
curriculum, model averaging with a high LR outperforms a standard decaying LR. This result further
validate the coupling of LR and data schedule can hurt the performance. Moreover, we find model
average with a uniform data order may not match a standard LR decay schedule. These results high-
light the importance of the robust and low-noise gradient signal from high-quality data, that allows
model averaging to effectively manage noise variance.

Based on understanding of the intricate interplay between LR and data schedules, we propose a
guideline in curriculum-based LLM pretraining: (1) use a moderate LR decay schedule (e.g., decay
to 1/3 of peak LR in WSD schedule); (2) use model average to obtain the final model. Through
experiments on different LR decay extents, we confirm the benefits of the co-design of LR and data
schedules with weight average strategy. Moreover, this combination sheds light on a previously
overlooked opportunity to improve pretraining strategy. As shown in Figure[5] previous works (Dai
et al., [2025} |Li et al., [2025c¢)) attempt to improve pretraining around an aggressive LR decay regime
with uniform-data training. But in this regime, adding data curriculum or apply additional model
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average can only produce marginal benefits, as shown in prior work (Zhang et al.| 2025} Tian et al.,
2025). In this work, we find that the benefit of data curriculum and weight average can only appear in
amoderate LR decay regime, which is non-optimal in uniform-data training and still under-explored.

We conduct extensive experiments to validate our hypothesis and the effectiveness of our strategies.
We train a 1.5B parameter model on 30B tokens and test on datasets with and without model-based
quality filtering. In summary, our contributions are threefold:

* We identify and analyze the overlooked coupling between data schedules and learning rate
schedules, which explains the limited success of prior work on quality-based curriculum
learning for LLM pretraining.

* We propose Curriculum Model Averaging (CMA), a novel strategy that combines a quality-
based curriculum with model averaging to resolve the coupling issue, and interpret the
synergy relation between model average and data curriculum.

* We propose to co-design LR and data schedules, with weight average, exhibiting an under-
explored opportunity for improving data efficiency in LLM pretraining. We also design a
theoretical demonstration to show their interplay.

2 RELATED WORK

The additional related work discussion about curriculum learning, learning rate schedules, and
model averaging can refer to Section[B] A detailed discussion on prior work for curriculum learning
in LLM pretraining can see Section

Curriculum Learning in LLM Pretraining. Currently, instance-level curricula have produced
only negligible improvements and have not been validated at a sufficient scale (Da1 et al., 2025
Zhang et al.| [2025; |Wettig et al.| [2024; |[Campos|, 2021)). [Wettig et al.| (2024) proposes to sort data
with LLM-annotated scores but reports a limited improvement and shows benefits from both as-
cending and descending quality orders, lacking a clear interpretation on the underlying mechanisms.
Campos| (2021); Kim & Lee| (2024) lacks validation experiments for curriculum benefits. [Zhang
et al.| (2025); |Dai et al.[(2025) finds very marginal improvement of vanilla data curriculum, and pro-
pose folding (Section ) or interleaved curricula to sort data within consecutive stages. However, as
shown in Section[C] the benefit of folding shows only on a smaller scale experiments with a low LR,
and the benefit diminishes and even get worse in a scaled-up and high LR regime.

3 PRELIMINARY

Learning Rate Schedule. We consider two primary types of learning rate (LR) schedules apart
from the constant LR schedule. The commonly used cosine schedule defines the LR at step ¢ as
n(t) =no (HTQ + PT“ coS ( ’%)), where 79 is the peak LR, T is the total number of training steps,
and « is the ratio of the final LR to the peak LR. A more recent alternative is the Warmup-Stable-

Decay (WSD) schedule, which consists of a linear warmup phase, a stable phase with a constant LR
7o, and a final decay phase. We use the 1-sqrt decay function, f(t) = 79 (1 — \/r(t)> + nr/r(t),

where r(t) = jt,__t% represents the progress through the decay phase, which starts at step fgecay-
lecay

The choice details are discussed in Section[Al

Model Averaging. Model averaging computes a weighted average of several model checkpoints
to produce a single, final model. We consider three common strategies. Suppose we have N
checkpoints, M, ..., My, typically the last N checkpoints collected in a fixed interval, at steps
t1,...,tny. Simple Moving Average (SMA) (Izmailov et al.l 2019) applies a uniform weight to
each checkpoint: M, = % Zszl M;. Exponential Moving Average (EMA) assigns exponen-
tially decaying weights, giving more importance to recent checkpoints. It is defined recursively:
Ma(\g =aM;+ (1 - a)le(&g_l), with Ma(vlg) = M. The hyperparameter o € (0, 1] controls the de-
cay rate; a larger « places more weight on the most recent checkpoint. Weighted Moving Average
(WMA) uses a predefined set of normalized weights w1, . .., wx (where > w; = 1) to compute the

final model as M,y,, = Zf;l w; M;. Prior work (Tian et al., |2025) proposes to derive the weights
from gradient decay schedule, w; o 1(t;) — n(t;+1) and wy < n(twN).
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Figure 2: The benefit of a data curriculum diminishes with more aggressive LR decay. The data curriculum
benefit is measured by the validation loss difference between uniform and ascending data order. Long, Mid,
Short refer to WSD schedules with decay phases covering approximately 37%, 18%, 6% of training, respec-
tively. Zero corresponds to a constant LR schedule. The plots on the right show the benefit (Luniform — LAscend)
near the training end. It reveals the curriculum’s benefit decrease as the LR decays more.

4 COUPLING BETWEEN LEARNING RATE AND DATA SCHEDULES

In this section, we analyze the critical yet often overlooked interaction between the learning rate
(LR) schedule and the data schedule. We first explain how the learning rate acts as an implicit
importance weight for each data sample. We then present empirical results to demonstrate three
key points: (1) a data curriculum can yield significant benefits over uniform data under a constant
LR schedule; (2) these benefits diminish when a conventional decaying LR schedule is applied,
particularly during the final, high-quality data regime; and (3) while adjustments to the curriculum
can mitigate this issue, the underlying conflict persists.

Analysis on Coupling between Learning Rate and Data Schedules. A key insight is that the
learning rate schedule acts as an implicit importance weight for each training sample. The param-
eter update at training step ¢ is 6,11 = 6, — 1.9, where 7, is the learning rate. The gradient g;
can be decomposed into a signal component, E[g;], which points in the direction of steady improve-
ment, and a noise component, €¢;. A decaying learning rate 7 serves two purposes: it reduces the
noise ¢, to stabilize training, but it also shrinks the update step taken in the signal direction E[g;].
While modern optimizers like Adam (Kingma & Bal [2017) use more complex update rules, the
learning rate remains a dominant factor in the update magnitude. This dual role of 7, creates a
fundamental conflict in quality-based curricula. High-quality samples are intentionally processed at
the end of training, but this is precisely when conventional LR schedules reduce 7, to its minimum.
Consequently, the decaying learning rate will diminishes the influence of the most valuable data,
counteracting the intended benefit of the curriculum.

Experiment Settings. Our experiments refer to the DataComps-LM (DCLM) framework (Li et al.,
2024) at 1B-1x scale. We adopt the Qwen2.5-1.5B model architecture (Qwen et al.|[2025) and train
models on a 30B token subset of the DCLM-Baseline dataset (L1 et al., [2024). We use the DCLM
fasttext scores as the quality metrics for data curriculum. We set peak LR at 3 x 10~% and ending
LRat1 x 1072, aligning with optimal settings found in prior work (Li et al.,|2024;|Luo et al.,|2025;
Li et al.l 2025b)). We choose a high-quality subset of DCLM-Baseline as validation set.

A Data Curriculum is Highly Effective with a Constant Learning Rate. To isolate the effect
of the data schedule from the LR schedule, we first conducted experiments using a constant learning
rate of 3 x 1073, We compared three data schedules: a uniform random baseline, a data curriculum,
and a reverse data curriculum (in high-to-low ordering), both sorted by DCLM quality scores. We
measure the training results by validation loss of high-quality dataset. As shown in Figure[I(a)} the
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Figure 3: LR decay affects the data utility and thus the validation losses of different data schedules. folding
strategy divides the data into three chunks and sorts the data within each chunk, with details in Section[d] The
score distribution of Ascend+Folding is in Figure[I(d)] In cosine LR schedule, we find Lpescend > Lascend >
AcAsccnd+Fo]ding > LDcsccnd+Folding > ﬁUniform, while in constant SChedlﬂea ﬁDcsccnd > LDcsccnd+Folding > £Uniform >
L Ascend+Folding > LAascend, the ascending-order curriculum wins back, and all-sorting curriculum benefits more.

data curriculum significantly outperforms the uniform baseline, achieving a much lower validation
loss and faster convergence. In contrast, the reverse data curriculum’s validation loss trends upward,
likely because the data distribution shifts progressively further from the high-quality validation set.
These results clearly demonstrate that a quality-based curriculum is effective when its impact is not
confounded by a decaying learning rate. We observed similar validation loss trends when using
PreSelect scores (Shum et al.,|[2025) (see Appendix Figure|3(a)).

The Curriculum’s Advantage Diminishes with a Decaying LR Schedule. In contrast to the
constant LR experiments, the advantage of data curriculum largely diminishes when we use a WSD
schedule (Figure [I(b)). Moreover, as shown in Figure [I(c)] the data curriculum even falls back
more in the cosine schedule, which decays throughout the range. To further test this relationship,
we varied the aggressiveness of the LR decay by adjusting two WSD parameters: the number of
decay steps and the final learning rate. The results in Figure [2| show a clear trend. As the decay
phase becomes longer and more aggressive, the performance benefit of the data curriculum over the
uniform baseline shrinks, eventually becoming negligible. This confirms the tight coupling between
the data curriculum and the LR schedule. The learning rate decay undermines the contribution of
high-quality in a data curriculum.

Exploring an Alternative Curriculum: Data Folding. We also investigated whether a different
curriculum design could mitigate the coupling effect. We tested a folding curriculum, inspired by
prior work (Dai et al} [2025; Zhang et al., [2025)), where the dataset is split into several chunks and
each chunk is sorted internally (see Figure[I(d)). The stage-wise design distributes high-quality data
more evenly across the training process than sorting, bridging sorting and uniform schedules. As
shown in Figure[3(a)l under a cosine schedule, the ascending-folding strategy performed better than
a simple end-to-end ascending sort but still underperformed the uniform baseline. As a comparison,
under a constant schedule, ascending-all-together schedule greatly outperforms the uniform, and
the ascending-folding results in a much limited improvement. These results further confirm our
hypothesis. Under a constant LR schedule, data schedule with higher density of high-quality data
outperform that with a lower density near the end. But when bearing lasting LR decay, uniform
baseline can distribute high-quality data evenly in high peak LR regime, and the folding strategy
can put more high-quality data in high LR regime than sorting, which may contribute to their better
utilization of high-quality data in cosine schedule, and thus better results. A similar argument holds
for descending-folding schedule under cosine schedule.

5 DECOUPLE AND CO-DESIGN SCHEDULES WITH MODEL AVERAGE

To resolve the coupling dilemma between the data schedule and the LR schedule, we turn to model
average (Izmailov et al.,[2019; |Li et al., [2025¢; [Tian et al., [2025)). We first investigate replacing LR
decay entirely with model average, which allows high-quality data to be processed with a constant
learning rate. While model average alone may not match the performance of LR decay with uniform
data, we find that combining a data curriculum with model average produces comparable or even
superior results to a standard LR decay schedule both with and without a curriculum. Furthermore,
we find that combining model average and moderate LR decay can yield even stronger results for
curriculum-based pretraining, especially in a mid-training setting where high-quality data is partic-
ularly sparse. Our results explore a previously unexplored regime for improving LLM pretraining
strategy, exhibiting the great potential of co-designing LR and data schedules, as well as model
average strategies.
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Table 1: Curriculum Model Average (CMA) exhibits advantages over standard LR decay schedule pretraining,
much better than widely used Cosine+Uniform setting. WA: Weight Average technique (Section[3). Order:
Data ordering. LRS: Learning Rate Schedule (WSD: Warmup-Stable-Decay (to 1 x 10~°), WSMD: Warmup-
Stable-Moderate Decay (to 1 x 10~2), Cos: Cosine, Const: Constant). Core: Average score on the first four,
high signal-to-noise tasks according to prior work (Heineman et al.|2025) (MMLU, ARC-c, ARC-e, CSQA).
Both the Core and Avg. scores are annotated with a subscript indicating the performance change relative to
the baseline (WSD + Uniform). Performance changes are color-coded: bold green (> 0.5 improvement), light
green (> 0 improvement), and red (decrease). Our proposed methods are highlighted in gray.

WA Order LRS MMLU ARC-c ARC-e CSQA Core OBQA PIQA SIQA Wino. Avg.

X Uniform  Cos 30.49 38.13 59.47 49.14  4431_199 4220 71.87 4519 5651 49.13_; .43

X Ascend  Cos 30.80 39.80 59.12 51.27  4525_p96 42.60 7155 4565 57.06 49.73_(s3

X Uniform WSD  30.77 42.14 61.05 50.86  46.21 4520 7242 4575 5627 50.56
X Ascend WSD  31.58 38.80 61.05 5037 4545_g76 4580  71.82 46.01 5730 50.34_(.22

WMA Uniform Const 30.87  37.12 5895 5324 45.04_,., 4340 7176 4626 57.38 49.87 oo
SMA  Uniform Const 3122  36.12  59.82 5397 4528 4¢3 4340 7198 4642 57.85 50.10_g.46
EMA Uniform Const 3139 3645  59.82 5348 4529 (g0 4240 72.14 4632 5754 49.94 ;.
WMA Ascend Const 31.67  39.80 6140 53.07 4649 ... 4500 7193 4545 57.14 50.68., 1,
SMA  Ascend Const 3228  40.80 6211 5291 47.02.05  44.80 7160 4580 57.22  50.94. 15
EMA  Ascend Const 32.17 4080 6175  53.07 4695.7  44.80 7155 4585 57.62 50.95.(.0

5.1 MODEL AVERAGE CAN HELP DATA CURRICULUM

CMA: Replacing Learning Rate Decay with Model Average. To address the coupling between
data and LR schedules, we propose to decouple the data schedule from the side effects of LR an-
nealing by replacing LR decay with model average. During the training process, we replace the
decaying LR schedule with a constant LR and perform model averaging to compute a weighted
average weights of last several checkpoints of training process. We call this strategy Curriculum
Model Averaging (CMA), detailed in Algorithm [T] In default setting, v = 0.2 and average over
the last 6 checkpoints, typically 0.2B interval with 30B tokens in total. Weight average strategies
include Simple Moving Average (SMA), Exponential Moving Average (EMA) and Weighted Mov-
ing Average (WMA) introduced in Section [3] The standard LR schedule pretraining includes the
most widely used cosine schedules and recent emerging WSD schedules (introduced in Section [3).
Best result of both LR schedules and both data schedules serves as our evaluation baseline (WSD +
Uniform). The downstream task performances are reported in Table[I]

The Synergy of Data Curriculum and Model Average. The results in Table [I] lead to several
key observations: (1) The combination is more effective than its parts. The combination of a data
curriculum and model average (e.g., EMA + Ascend) outperforms models trained with a standard LR
decay schedule (e.g., WSD schedule + Uniform, or WSD schedule + Ascend). It also consistently
outperforms model average on models trained with a uniform data order (e.g., EMA + Uniform).
The model average strategy shows a comparable and even better results than the standard LR decay
practice, wins over the traditional cosine schedule training paradigm by a great margin. (2) The
synergy is important: other combinations produce only limited improvement. Model averaging
with a uniform data order (e.g., EMA + Uniform) under a constant learning rate, does not fully match
to a standard LR decay schedule (e.g., WSD schedule + Uniform). In addition, combining a standard
LR decay with a data curriculum yields only limited gains and can even get worse (WSD schedule
+ Ascend), confirming the detrimental coupling we identified. The results reveal the necessity to
combine both data curriculum and weight average in LLM pretraining, which is largely ignored by
prior work. They either focus on weight average side (Tian et al.,[2025}; [Yang et al.||2024)), or focus
on curriculum side (Dai et al., [2025). (3) Aligning checkpoint weights with the data schedule is
beneficial. EMA puts more weights on later checkpoints and SMA puts weight evenly while WMA
assigns decreasing weights to later (and thus higher-quality) checkpoints. Under data curriculum,
EMA and SMA outperform WMA overall, revealing benefits of non-decreasing checkpoint weights.

Interpretation: Synergy Relation Comes from Decoupling LR Schedules from Data Schedules.
We try to explain the synergy of data curriculum and model average from the loss landscape view.
We focus on the intricate interplay of two factors: (1) Learning Rate: The learning rate determines
update step size and affects the noise level, with a lower LR leading to lower noise. (2) Data
Quality: The quality of data influences the gradient’s direction and variance, with high-quality data
providing a better signal-to-noise ratio. Weight average may not be able to reduce noise at the same
level as an aggressive LR decay, thus may not reduce noise sufficiently to match LR decay under
a uniform data ordering. Under a curriculum, the high-quality data presented at training end offers
a better gradient direction. Hence, weight average can update more along signal direction than
aggressive LR decay and bother less about noise under a data curriculum. It is possible for model
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Figure 4: An interpretation of interplay between data ordering and LR schedules. We assume the gradient
update can be decomposed as a signal direction and a noise direction. The data quality variation is interpreted
as the signal-to-noise ratio. Uniform+Decay features consistent progress direction and final decay can reduce
the noise; Ascending+Decay starts with much noise, but the step-size decays too fast to utilize the good signal
by high-quality data near the end; Ascending+EMA also starts with great noise, but it keeps forward and can
take advantage of good signal near the end, and use model average to sufficiently reduce noise. The cross
sections of last 8 steps for these cases are integrated and presented on the right side.

average to reach a better balance between progress and noise reduction than LR decay under a data
curriculum. A visualization of our interpretation is presented in Figure |4] and we also propose a
simple theoretical model to make the interpretation more clear and tractable in Section [6]

5.2 RESULTS ON MID-TRAINING WITH MIXED QUALITY DATA

Table 2: The benefit of CMA becomes more prominent in mid-training setting. WA: Weight Averaging
technique (Section [3). Order: Data ordering in two phases (U: Uniform, A: Ascend). A-T (All-Together)
sorts data samples in both phases as a whole. LRS: Learning Rate Schedule (WSD: decay to 1 x 1075,
Const: Constant LR). Core: Average score on the first four, high signal-to-noise tasks (MMLU, ARC-c, ARC-
e, CSQA). Both the Core and Avg. scores are annotated with a subscript indicating the performance change
relative to the baseline (WSD + U,U). Performance changes are color-coded: bold green (> 0.5 improvement),
light green (> 0 improvement), and red (decrease). Our proposed methods are highlighted in gray.

WA Order LRS MMLU ARC-c ARC-e CSQA Core OBQA PIQA SIQA Wino. Avg.
X UU WSD 2923 33.78 53.86  49.55 41.61 4040  71.87 4478 5643 4749
X UA WSD 2944 34.45 52.63 50.12  41.66.05 41.00 71.76 44.42 56.75 47.57 .08
X AA  WSD 3022 33.11 56.84 4734 41.88.0.7 3940 7155 4478 56.67 47.4900

X A-T  WSD 29.93 37.12 54.39 4947 427312 39.00 7220 45.14 56.83 48.01.9s2

EMA UU Const 29.84 32.78 52.28 51.52  41.60_p01 4200 71.60 44.68 56.99 47.71 4
EMA UA  Const 29.75 35.12 51.75 48.57 4130931 4220 70.51 4483 5691 47.45_ (o4
EMA AA Const 3031 36.45 5754  50.12  43.61.200 4140 72.14 4509 56.43 48.69.120
EMA A-T Const 30.81 36.29 57.89 50.29  43.82,511 4450 70.62 44.68 54.46 48.69.12
SMA  A-T  Const 30.65 36.79 57.37 50.78  43.90,2.9 43.60  70.89 4473 5474 48.69.1.2

CMA Helps More in Mid-Training. Mid-training is a recently emerging practice in LLM pre-
training (Yang et al.| [2025; [OLMo et al., [2025} |[Hu et al., 2024). Mid-training uses average-quality
data in the stable phase and incorporates high-quality data in the decay stage of WSD schedule.
This experiment serves as a more practical setting: where most pretraining data is limited, while a
small portion of data is of high quality. The experiment settings are detailed in Section[A] As shown
in Table 2] CMA exhibits a larger benefit margin in the mid-training setting than the experiments
over high-quality data (Detailed in Section[5.1)). The CMA results (e.g., EMA + A-T) shows advan-
tages over WSD schedule results (e.g, WSD + A-T, or WSD + U,U) on both Core scores or average
scores in Table[2] by a margin. The margin is surprising given there is no filtering or other fantastic
processing on data. An explanation of increasing benefit is that, the high-quality is sparse but can
offer a more valuable direction for parameter update in this setting.

A Practical and Simplified Strategy also Works Well. In practice, it may not be feasible to sort
the whole data corpus globally according to a unified quality metric. As an alternative, we can shuffle
data in each phase in ascending order separately (A4,A in Table[2)). The benefits of our approach over
LR decay mostly persist. But only applying data curriculum over the high-quality regime is not
enough for better results (e.g, EMA + U,A). Forgetting of some extremely low-quality data in the
first phase can contribute to A,A benefits over U,A. Moreover, model average with uniform data and
data curriculum with LR decay both produce a relatively marginal improvement compared to their
combination. This result further confirms the synergy between model average and data curriculum.
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Figure 5: Combined performance comparison of different strategies on average scores. We identify an un-
derexplored Optimal Area through a combination of moderate LR decay and weight average with curriculum
learning. EMA compute the EMA of last 6 checkpoints from WSD training.

5.3 OVERLOOKED BENEFIT: CO-DESIGN OF DATA CURRICULUM, LR SCHEDULE, AND
WEIGHT AVERAGE

CDMA: CMA with Moderate LR Decay Provides an Additional Optimization Opportunity.
A natural question is whether combining a moderate LR decay with model averaging under an
ascending-order data curriculum can yield further improvements. We conduct series of experiments
to ablate ending learning rates, when fixing decay steps of WSD schedules. The ending learning
rates range from 3 x 1072 to 2.5 x 1073. Then for each run, we compute EMA of the last several
checkpoints to get the final results. This process is a combination of LR decay and CMA. As shown
in Figure [5] the combination can achieve a stable and optimal results with a moderate LR-decay
(much higher ending LR than standard practice). Data curriculum with a moderate LR decay can
also perform a close-to-optimal results, but can not fully match, especially when ending LR is close
to the peak LR. In contrast, the strategies of LR decay and weight average on uniform data, can not
match data curriculum results. This result motivate the following guideline for curriculum-based
pretraining: use a moderate LR decay (e.g., decay to 1/3 of a tuned peak LR), and adopt model
average over last several checkpoints. To tell from CMA, we call this strategy Curriculum with LR
Decay Model Averaging (CDMA). From the landscape view, we hypothesize that this combination
can strike a better balance between noise reduction, maintaining a sufficient update magnitude and
memorizing more knowledge.

Discussion: Why is the Combination Under-Explored? The CDMA strategy is straightforward
and easy-to-implement. Tuning ending LR can also improve the result. This raises the question:
why is the combination under-explored? A possible explanation is that prior works focus on an
aggressive LR decay regime which stuck the discovery of a more satisfying pretraining approach.
As show in Figure 3] this regime achieves best results for decay-only strategy under the uniform data
scenario and there is a clean trend favoring a close-to-zero ending LR. This observation aligns with
previous work (L1 et al., [2025b). However, a best regime for uniform data may not be the best for
other settings. For example, previous works (Zhang et al., [2025) focus on curriculum design around
this regime, and thus may deduce a marginal or disappointing result about curriculum-based LLM
pretraining. Moreover, prior work (Tian et al., [2025) suggests that LR decay and model averaging
are mutually exclusive under a standard LR schedule, which aligns with our results in this regime.
But in a moderate LR decay regime, it is probably beneficial to introduce weight average. Currently
we only ablate on ending LR and fix others. This suggests an under-explored optimization space of
pretraining involving LR schedules, data curricula, and model averaging strategies. More extensive
experiments and the design of more sophisticated strategies are promising directions for future work.

6 A THEORETICAL DEMONSTRATION SKETCH

As we reported and discussed above, the benefit of curriculum learning emerges when we apply a
weight averaging manner or moderate LR decay instead of a LR schedule with excess decaying,
such as Cosine or WSD schedule in practical pretraining. In the following, we present a simple
theoretical model that recovers the above empirical insight. A full theoretical demonstration is
shown in Section[D] The main proof of this section can be found in Section [E]

Problem Setup. We consider a quadratic loss function £(w) = i|lw — w*||3, where w =

(wy,ws) € R? represents the trainable parameter, and w* denotes the ground truth, which is set
to (0,0). We use Stochastic Gradient Descent (SGD) to optimize. We denote the one-sample loss
for the t-th iteration as /;(w) := ||w — x;||3, where data point x; is from some given dataset
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Figure 6: Visualization of the simulation experiments of theoretical example. The mean trajectory is averaged
over R = 20 runs. The yellow star marks the global optimal, and w, represents a signal direction and w2
represents a noise direction. The data samples are distributed evenly along the signal direction and randomly
locate along noise direction. Ascend+WSMD and Ascend+EMA wins by sufficient progress along signal direc-
tion; Uniform+WSD fails for inconsistent signal and thus large variance along signal direction; Ascend+WSD
fails for early-decay, resulting in insufficient update along the signal direction.

D = {zW 2@ ... 23D Thus, the SGD update rule is w;, = w;_; — 7,V (w,_1), where
the 7, denotes the learning rate in the ¢-th iteration and w; = (wt(l), w§2)). The initial parameter
wo = (Md, 0). We denote learning rate schedule by E := {n1,7n2,...,n }. Was,g is the distribu-
tion of wj;. The randomness within wj,; comes from the random draw of the distribution in SGD.

The expected loss is £(M; E) := Ewpy, 5 [L(w)].

Then considering a training dataset D, which consists of M different data points with varying data
qualities. Data point 2(*) = (x(li),xgi)) satisfy that :cgi) = (i — 1)d and zgi) ~ Uniform(—L, L),
where d = L/M. x(*) provides signal in first dimension and introduce noise in the second dimen-
sion. Next, we consider two sampling strategies for each iteration of SGD: (1) sample one data
point uniformly from Uniform(D); (2) sample one data point from D in an ascending order. Then
in ¢-th iteration, &, = ™ ~**+1) € D. See Figure @for visualization of optimization trajectories in
simulation experiment.

Uniform Sampling + Learning Rate Schedule. SGD acts as an exponential averaging of the
current parameter and the sampled data point. For uniform sampling, the parameter would approx-
imately oscillate from 0 to (m — 1)d with a large variance along x-axis and the expected loss for

uniformly sampling SGD has a lower bound
mEinE(M;E) = Q(L?). (1)

Ascending Data-Ordering + Practical WSD Schedule. For an ascending order from D) to
D), following a WSD schedule with substantial decay, the expected loss be
L(M;E) = 0(L?).

Ascending Data-Ordering + WSMD Schedule. For a Warmup-Stable-Moderate-Decay
(WSMD) schedule (denoted as E*) with less decay and a larger ending learning rate can better
utilize the ascending data-ordering and break through the above lower bound,

L(M;E*) = ©(M~3L?). )

Ascending Data-Ordering + Stochastic Weight Averaging (SWA). With a constant learning
rate, a sample SWA surpasses the aforementioned lower bound. SWA can both get accumulation
towards the ground truth and reduce noise.

Theorem 6.1. Given a learning rate ng < 1, the parameter derived by the averaging on the last n
weights wy = L Z?;Ol way_y, where n = (M 3) such that the expected loss

E[L(war)] = O(M 3L,
where O( -) hides log factors and constants independent of L and M.
7 CONCLUSION

In this paper, we investigate the interplay between data scheduling and learning rate (LR) schedules.
We identify a key conflict in curriculum learning: placing high-quality data towards the end of
training is beneficial, but its impact is severely limited by the decayed learning rate at that stage.
To address this, we demonstrate that replacing sharp LR decay with model averaging can achieve
comparable or even superior results when combined with a data curriculum, especailly in a mid-
training setting. Building on this, we propose an approach that integrates model averaging with a
moderate LR decay, and discover an under-explored optimization regime for pretraining strategy.
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A EXPERIMENTS DETAILS

Pretraining Setting. Our experiments refer to the DataComps-LM (DCLM) framework (L1 et al.,
2024) at 1B—-1x scale. We adopt the Qwen2.5-1.5B model architecture (Qwen et al., [2025) and
train models on a 30B token subset of the DCLM-Baseline dataset (L1 et al., 2024). The architecture
incorporates modern advancements such as SwiGLU activation functions, Grouped-Query Attention
(GQA). We use the DCLM fasttext scores as the quality metrics and sort data in ascending-order
(AO) to create a data curriculum. The reverse data curriculum will sort data in descending-order
(DO). We moderately tune the key parameters, and set peak learning rate to 3 x 1072, and use a
sequence length of 4096 with a batch size of 512, which we found provides a good trade-off between
throughput and training stability. For LR decay schedules in the experiment, we set the final learning
rate to 1 x 10~°, which aligns with optimal settings found in prior work (Li et al., 2024; |Luo et al.,
20255 |Li et al., 2025b). To ensure reproducibility of our findings, we provide a detailed list of the
model and optimizer hyperparameters in Table [3]

Evaluation Setting. To compare methods, we track validation loss during training and evaluate
performance on a suite of downstream tasks. Since the data distribution shifts throughout a cur-
riculum, a fixed validation set drawn randomly from the entire dataset may not be representative.
To ensure a consistent and meaningful measure of progress, we created a dedicated high-quality
validation set. This set consists of 100k documents with the highest scores, drawn from a disjoint
partition of the DCLM-Baseline dataset from our training data. For downstream evaluation, we use
the OLMES benchmark (Gu et al., 2025]), which is well-suited for evaluating models at our scale. For
evaluation, we report performance on MMLU (Hendrycks et al.,[2021), ARC-easy/challenge (Clark:
et al.l [2018)), CommonSenseQA (CSQA) (Talmor et al., 2019), OpenBookQA (Mihaylov et al.,
2018)), PIQA (Bisk et al., [2019), Social IQa (Sap et al., [2019), and WinoGrande (Sakaguchi et al.,
2019)), covering the evaluation of world knowledge, common sense, and understanding capabilities.
Within them, we select MMLU (Hendrycks et al, [2021), ARC-easy/challenge (Clark et al., 2018]),
and CSQA (Talmor et al., |2019) as Core benchmarks. According to recent work (Heineman et al.,
2023)), these tasks feature a higher signal-to-noise ratio to distinguish performances of different mod-
els (Heineman et al., [2025)). Moreover, as shown in Figure the average downstream scores show
a strong correlation with the validation loss, especially the experiments on DCLM Baseline dataset
with data ordered by DCLM fasttext scores.
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Data Scoring. Raw web data must pass through a processing pipeline before it is used for pre-
training. The raw data first go through heuristic-filtering rules. Afterwards, in model-based filtering
phase, a scorer model assigns a quality score to each data sample. For example, the DCLM Baseline
dataset uses scores from a fasttext model (Joulin et al. [2016) measuring similarity to high-quality
sources like OpenHermes 2.5 (Teknium, 2023) and top posts from the ELIS subreddit. Another
approach, PreSelect (Shum et al., 2025), scores data based on its similarity to downstream tasks.
Typically, these scores are used to filter the dataset by removing samples below a certain quality
threshold. In contrast, our work does not discard data; instead, we use these quality scores to define
the data ordering for curriculum learning.

Table 3: Model and optimizer hyperparameters for our Qwen2.5-1.5B experiments.

Hyperparameter Value
Model Configuration

Sequence Length 4096

Hidden Size 1536

FFN Intermediate Size 8960

Number of Layers 28

Number of Attention Heads 12

Number of Key-Value Heads (GQA) 2

Vocabulary Size 151936
Optimizer Configuration

Optimizer AdamW (FP32 State)

Weight Decay 0.1

Adam (4 0.9

Adam f5 0.95

Adam € 1.0 x 1078

Gradient Clipping 1.0

LR schedule Choice Ablation. The decay phase of WSD schedule can use various functions.
Adapted from prior work (Hagele et al., 2024; Luo et al.,|2025), we find that the 1-sqrt decay func-

tion, f(t) =no (1 - \/r(t)> + np+/r(t), and the sqrt-cube function, f(t) = o (1 — r(¢))"®, pro-

duce strong, comparable results, as shown in Table Here, r(t) = %ﬁ“y represents the progress
through the decay phase, which starts at step fgecay. Both functions outperform simpler alternatives
like linear decay. In this work, we use the 1-sqrt function due to its wide adoption (Hagele et al.,
2024; Tian et al.l [2025). In addition, Figure[T|adopts 37% decay ratio, and all other experiments set
decay ratio between 15% to 20% aligning with optimal decay ratios reported in prior work (Higele

et al., 2024; Hu et al.| |[2024).

Table 4: models trained under WSD schedules under 1-sqrt and sqrt-cube decay functions produce
similar results.
Dataset Schedule MMLU ARC-¢c ARC-e CSQA OBQA PIQA SIQA Wino. Avg.

Random 1-sqrt 26.60 27.42 42.28  42.26 3720 67.85 42.02 5130 42.12
Filtered 1-sqrt 26.97 30.10 44.04 4472 36.20  69.15 4258 51.78 43.19
Random  sqrt-cube 26.62 27.42 4228 4242 35.00 6828 43.65 51.70 42.17
Filtered  sqrt-cube 26.70 31.10 44.04  42.59 36.60 68.44 4289 5217 43.07

Table 5: Model Checkpoint Weights
Checkpoint Index 3725 3750 3775 3800 3825 3843
Weight 0.4249 0.1760 0.1350 0.1138 0.1003 0.0500

18



Under review as a conference paper at ICLR 2026

Task Score vs Loss Task Score vs Loss

. D' Label Type . Label Type
50 A‘\\ ° e Ascending 5.0 N e Ascending
° ‘\\o . Descending ° \\\0 © . b Descending
5 Sse e e Uniform 549 BN K Uniform
4 49 N ° == Overall Trend @ ° Sso == Overall Trend
% Seao % N
~
g \\\ g 4.8 \\!\
~
£ 18 N E Sl
° e © 4.7 N
& ~ 5 ~
=] ~ B N
%] ~ %] ~
g \\\ g e o \\
£ 47 SN Z46 ° RN
A < A Sl
~o ~
Overal .858 Ss, 45 i g
46 Overall R*: 0.737 Overall R*: 0.667 s

2.45 2.50 2.55

Validation Loss

2.60 2.65

(a) DCLM scores on DCLM Baseline dataset.

2.45 2.50 2.55 2.60 2.65

Validation Loss

2.70 2.75

(b) Different scores on different dataset.

2.80

Figure 7: Pearson correlation coefficient () and R-square value (R?) between downstream task
scores and validation losses. (a) Select experiments that ordering data samples from DCLM Base-
line dataset by DCLM fasttext scores. (b) Include experiments that uses PreSelect scores and use
WebOrganizer Dataset.
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Figure 8: The benefits of data curriculum by PreSelect score also diminish. We show the validation
loss curves of constant and WSD LR schedules, under different data schedules, including uniform,
ascending, and descending order by PreSelect scores. The ascending curriculum can win over uni-
form data under constant schedule but can not match the constant schedule in WSD LR schedule.

Table 6: The folding strategy may be effective when peak LR is relatively low, but the benefit can
vanish in a high peak LR regime, which is supposed to closer to an optimal setting.

Order Strategy Peak LR MMLU ARC-c ARC-e CSQA OBQA PIQA SIQA Wino. Avg.
Uniform - 1x 1074 25.70 28.43 37.72 3432 3020 61.81 4099 50.83 38.75
Ascend  Sorting 1x107% 26.57 28.76 3842  35.63 28.80 6197 4140 5036 38.99
Ascend  Folding 1x107* 25.69 29.43 38.77  35.22 3220 6143 4099 50.04 39.22
Uniform - 3x1073 28.68 33.78 50.35  45.95 36.60 68.66 43.65 5335 45.13
Ascend  Sorting 3x1073 27.78 37.12 47.89 4447 3740 67.85 4330 5580 45.20
Ascend  Folding 3 x 1073 28.33 33.11 48.25  43.82 38.80 69.21 43.76  52.88 44.77

The Mid-Training Experiment Setting. Mid-training is a recently emerging practice in LLM
pretraining (Yang et al., [2025; |OLMo et al., 2025} |Hu et al., 2024). Mid-training incorporates high-
quality data in the decay stage of WSD schedule. In our mid-training experiments, first stable phase
includes 29B tokens of data from the WebOrganizer (Wettig et al.l [2025), as the low-quality data,
and the second decay phase selects roughly 5B tokens from DCLM-Baseline (Li et al.| [2024), as
the high-quality data. The WebOrganizer data has not gone through model-filtering process to sieve
the low-quality data inside dataset while the DCLM-Baseline keeps top 10% high-quality data from
base dataset, whose distribution is similar to the WebOrganizer. The LR decays to to 1 x 107°
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within the the high-quality regime. This experiment serves as a more practical setting: where most
pretraining data is limited, while a small portion of data is of high quality. The experiments include
ablations on 3 variables: (1) we consider the data schedules where data order is phase-wise, like
uniform in the first phase and in ascending-order in the second phase (that is, (U,A) in Table EI),
and ascending all-together (A-T)) experiment, sort data samples from both phases in a whole; (2)
we conduct experiments on both standard WSD schedules and CMA, over different data schedule
settings; (3) we try both SMA and EMA to validate the robustness of weight averaging strategy.

Score Sanity Check: Reverse Data Curriculum Results in Poor Performance. We also exam-
ine the results of reverse data curriculum that sort data samples in the descending-order of quality
metric. As shown in Table[/] we find that the descending order results consistently get worse than
uniform order or ascending order. It indicates that the data scoring is self-consistent, that memo-
rizing high-score data samples helps and memorizing low-score data samples hurts. As a contrast,
some prior work (Wettig et al.|2024) reports improvement from both forward and reverse data cur-
riculum, which may indicates inconsistency between quality metrics and evaluation benchmarks.

Table 7: Comparison of Learning Rate Schedules (Constant, Cosine, WSD) and Data Orders (Uni-
form, Ascend, Descend) on various benchmark tasks. All scores are reported in percentage points.

LR Schedule Order MMLU ARC-c ARC-e CSQA OBQA PIQA SIQA Wino. Avg.

Uniform 30.30 30.43 55.61 49.80 44.60 7029 45.19 56.20 47.80
Constant Ascend 31.14 39.46 6123  49.96 43.00 70.51 43.14 5651 49.37
Descend 29.43 33.11 4596 4521 41.00 69.86 4498 56.75 45.79

Uniform 30.49 38.13 59.47  49.14 4220 71.87 45.19 5651 49.13
Cosine Ascend 30.80 39.80 59.12  51.27 42.60 71.55 45.65 57.06 49.73
Descend 29.51 34.11 5298  48.81 42.60 7242 4545 55.17 47.63

Uniform 30.77 42.14 61.05  50.86 4520 7242 4575 5627 50.56
WSD Ascend 31.58 38.80 61.05  50.37 45.80 71.82 46.01 5730 50.34
Descend 29.56 40.13 5439  50.70 4320 7296 4596 56.75 49.20

Table 8: Downstream performance for experiments with pre-selected ascending data. WA: Weight
Averaging (EMA: Exponential, SMA: Simple). LRS: Learning Rate Schedule (WSD: decay to
1 x 1072, Const: Constant LR, WSMD: WSD with moderate decay to 1 x 10~3). Core: Average
score on the first four, high signal-to-noise tasks (MMLU, ARC-c, ARC-e, CSQA). Both Core and
Avg. scores are annotated with a subscript indicating the performance change relative to the baseline
(first row). Subscripts in bold green indicate an improvement of > 0.5, light green an improvement
of > 0, and red a decrease. Our proposed methods (using WA) are highlighted in gray.

WA Order LRS MMLU ARC-c ARC-e CSQA Core OBQA PIQA SIQA Wino. Avg.

X Ascend  WSD 31.12 35.79 57.89  48.81 43.40 41.00 71.82 46.21 5841 48.88
EMA Ascend Const 31.85 37.46 61.05 4939 449454 3840 7051 4534 5533 48.67 .21
EMA Ascend WSMD  31.98 39.80 61.93 4939 4577537 39.60 70.78 4560 5596 49.38.9s0
SMA Ascend WSMD  31.99 39.46 62.11 50.04 4590.25 3940 71.06 46.06 55.96 49.51.063

Weight Computation of WMA. The computation of WMA follows Tian et al.[(2025). We first
assume the equivalent LR schedule is WSD schedule, with ending LR as 0.05 of peak LR, with
1-sqrt decay function. We suppose 71, . . ., 7y are normalized LR values, thus ; = 1. We compute
the weights by w; = 1; — 1;4+1 and wy = 7. In this way, Zfil w; = 11 = 1. The resulting
weights are shown in Table 3]

Curriculum Model Averaging (CMA) Pipeline. First, in the data scheduling stage, the entire
training dataset is sorted in ascending order based on a data quality score. Second, during the
training stage, we employ a warmup-constant LR schedule. This schedule consists of a standard
linear warmup phase followed by a high, constant learning rate for the remainder of training, with
no subsequent decay. Finally, instead of reducing the learning rate for stabilization, we perform
model averaging. We compute a weighted average of model weights from several checkpoints
saved during the latter stages of training to produce the final model.
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Table 9: Downstream performance for experiments on WebOrganizer dataset (Wettig et al., [2025).
WA: Weight Averaging (EMA: Exponential, SMA: Simple). LRS: Learning Rate Schedule (WSD:
decay to 1 x 102, Const: Constant LR, WSMD: WSD with moderate decay to 1 x 1073). Core:
Average score on the first four, high signal-to-noise tasks (MMLU, ARC-c, ARC-e, CSQA). Both
Core and Avg. scores are annotated with a subscript indicating the performance change relative to the
baseline (first row). Performance changes are color-coded: bold green (> 0.5 improvement), light
green (> 0 improvement), and red (decrease). Our proposed methods (using WA) are highlighted in

gray.
WA  Order LRS MMLU ARC-c ARC-e CSQA Core OBQA PIQA SIQA Wino. Avg.
x Uniform  WSD 2892 3445 4772 4783 39.73 36.60 72.03 4376 56.67 46.00

Ascend  WSD  29.09 3278  51.58 4742 4022, 3800 7214 4473 5509 46350

EMA Uniform WSMD 2828 3411  47.89 4881 39.77.00: 3920 71.65 4376 5556 46.16.0.

EMA Ascend WSMD 2856 3110  50.88 4889 39.86.0:; 39.60 7144 4411 5675 46.42.0.

EMA Uniform Const  28.03 3344 4772 4742 3915 55 40.60 70.78 43.65 5572 45.92_q.0s

EMA Ascend Const 2932 3311 5509 4889 41.60.15 3840 7100 4529 5541 47.06.10

Additional Interpretation of CMA. This approach allows the model to learn effectively from
high-quality data with a consistent learning rate, while model averaging ensures the convergence
and stability of the final parameters. The constant learning rate ensures that high-quality data has
a significant impact, preventing the information loss caused by LR decay. Meanwhile, model aver-
aging improves stability and mitigates the risks associated with the absence of learning rate decay.
These two components have a synergistic relationship, producing a combined effect that is greater
than the sum of its parts.

Algorithm 1 Curriculum Model Averaging (CMA)

1: Input: Unsorted dataset D, quality scoring function Q(-), training steps 7', warmup steps T,
peak learning rate 7,¢q%, number of checkpoints to average k, averaging decay hyperparameter
«, checkpointing interval s. ~

2: QOutput: Final model parameters Gy

e

# Stage 1: Data Scheduling
Sort dataset D to create Dyor¢eq Where for any samples x;, x;, if i < j, then Q(z;) < Q(z;).

&

# Stage 2: Warmup-Constant LR Training
Initialize model parameters 6.
fort =1to 7T do
if t <7T,, then
9: M Npeak * (t/Tw) > Linear warmup
10: else
11: Nt 4 Tpeak > Constant LR
12: end if
13: Fetch next data batch B; from D, eq-
14: 0, < OptimizerUpdate(0;_1,7:, Bt) >e.g., Adam
15: ifte{T - (k-1)s,...,T—s,T} then
16: Save checkpoint ;.
17: end if
18: end for

19: # Stage 3: Model Averaging, e.g., EMA or SMA.
20: Let the set of saved checkpoints be {GT,is};:Ol.

_ k—1 i ) B o1 .
21: EMA: Bfipal El;ﬁ# > SMA: Ogpa < de)%
_ =0
22: return Og,,

Quality Metric Choice. We use the DCLM fasttext score (Li et al.,2024) as our quality metric, as
it is a well-validated indicator of data quality for filtering and selection. A significant practical ad-
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vantage is that these scores are often pre-computed during data preprocessing, allowing our method
to be integrated into existing pipelines without additional computational cost. We also use PreSelect
score (Shum et al., [2025)) in our ablation experiments.

Model Averaging Technique. As formalized in Algorithm |1} we employ a Exponential Moving
Average (EMA) over the final k& checkpoints, which are saved at a regular interval s. The averaged
parameters By, are computed as:
>ico 07—

i o
where 07 _; is the checkpoint saved at step T' — is, k is the number of checkpoints, s is the check-
pointing interval, and « € (0, 1] is a decay hyperparameter. This formulation assigns exponentially
higher weights to more recent checkpoints, which are trained on higher-quality data. Thus, this tech-
nique focuses the final model on high-quality signals while smoothing the parameter variance that
can result from training with a high, constant learning rate. Additionally, we also run experiments
with Simple Moving Average (SMA) as

Bﬁnal =

Zf;()l BTfis
k b
for its simplicity and effectiveness (Izmailov et al., [2019).

Oﬁnal <~

Practical Implementation. The initial data sorting is a one-time, offline process. We perform this
step efficiently using Apache Spark, whose sorting algorithms are highly optimized for large-scale
datasets. The computational overhead of this step is therefore minimal compared to the overall cost
of pretraining, making CMA a practical approach. Additionally, the approach can share the quality
metric scores with the model-filtering process, saving the cost of another scoring process.

B ADDITIONAL RELATED WORK

B.1 CURRICULUM LEARNING

Curriculum learning, which guides a model to learn from easy to hard samples, is a widely used
technique in deep learning (Bengio et al.,[2009). In language modeling, this principle is adapted to
arrange data from simple to complex to stabilize training and improve convergence (Campos, [2021).
For LLM pretraining, this often translates to ordering data by quality, from low to high. The goal
is to leverage the model’s tendency to better remember later data, ensuring it retains high-quality
information while mitigating catastrophic forgetting (Wettig et al.l 2024 |Dat et al.| 2025} [Tirumala
et al.| [2022; [Liao et al.| [2025).

Research in this area has followed two main directions: (1) developing better quality metrics to
ensure high-quality data is placed at the end of training (Wettig et al., [2024; |Dai et al., 2025)), and
(2) exploring alternative data orderings, such as folded or interleaved curricula that sort data within
distinct stages (Dai et al., 2025} Zhang et al., 2025). However, these instance-level curricula have
produced only negligible improvements and have not been validated at a sufficient scale (Dai et al.,
2025} [Zhang et al., 2025} [Wettig et al., [2024; |Campos)|, |2021). |Wettig et al.|(2024) proposes to sort
data with LLM-annotated scores but reports a limited improvement and shows benefits from both
ascending and descending quality orders, lacking a clear interpretation on the underlying mecha-
nisms. Campos| (2021); [Kim & Lee| (2024) lacks validation experiments for curriculum benefits.
Zhang et al. (2025); Dai et al.| (2025) finds very marginal improvement of vanilla data curriculum,
and propose folding (Section ) or interleaved curricula to sort data within consecutive stages. How-
ever, as shown in Section[C] the benefit of folding shows only on a smaller scale experiments with
alow LR, and the benefit diminishes and even get worse in a scaled-up and high LR regime. More
detailed discussions are left in Section [C] Consequently, fine-grained curricula are rarely used in
practice (Yang et al.| 2025; DeepSeek-Al et al., [2025}; |Grattafiori et al., [2024). Instead, some recent
models adopt a coarse, two-stage curriculum: they first train on a large, low-quality dataset and then
refine the model on a smaller, high-quality corpus (Hu et al.l 2024 OLMo et al.| 2025).

Our work diagnoses a key reason for these limited results: the detrimental interaction between
data schedules and learning rate schedules commonly used in prior work. Commonly used LR
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schedules typically include an aggressive decay phase, such as the cosine schedule (Wettig et al.,
2024} Dai et al.l 2025; Zhang et al., [2025). We show that a data curriculum can be beneficial
when this interaction is removed. We then investigate this coupling and demonstrate that it leads
to insufficient learning from high-quality data, and we explain the benefit of folding strategy in
previous studies through this lens.

B.2 LEARNING RATE SCHEDULE

The learning rate (LR) schedule is a critical component of model training. Traditional schedules
like cosine decay require a fixed number of training steps, which limits their flexibility (Singh et al.,
2025)). The recently proposed Warmup-Stable-Decay (WSD) schedule offers superior performance
without needing a predefined training budget (Hu et al., 2024;|Hégele et al.,[2024)). Subsequent work
has validated the effectiveness of WSD through the lens of scaling laws (Tissue et al., 2024; |Luo
et al.| 2025} ILi et al., 2025a).

In this work, we use the WSD schedule with a 1-sqrt decay function. Its clear separation between a
stable-LR phase and a decay phase allows us to isolate and study the effect of LR decay on different
data schedules. The WSD schedule produces a characteristic loss curve: the loss stays high during
the stable phase and drops sharply during the decay phase. To explain this phenomenon, |Wen et al.
(2025) proposed a “river valley” loss landscape. They hypothesize that optimization involves a
“river” direction corresponding to meaningful progress and a “valley” direction corresponding to
noise. Our analysis builds on a similar intuition, emphasizing the role of data samples, on progress
direction and on noise scale.

B.3 MODEL AVERAGING

Model averaging is a technique that combines the parameters of multiple checkpoints to create a
single, improved model (Izmailov et al., 2019; |Jin et al.| 2023} |Yang et al., 2024)). This technique has
been used in LLM pretraining to accelerate convergence (Kaddour,2022) and boost performance (L1
et al., [2025c), and was reportedly used in training models like LLaMA (Grattafiori et al., [2024)).
Notably, [Tian et al.|(2025) combined model averaging with a decay-free LR schedule and claimed
it surpasses the standard WSD schedule (Hu et al., [2024).

Despite these advances, the interaction between data quality, model averaging, and learning sched-
ules remains under-explored. Prior work has often shown model averaging to be only comparable to
LR decay (L1 et al.l [2025c)) or slightly better than a WSD schedule with a short decay phase (Tian
et al., 2025). The latter comparison may be unfair, as it potentially underestimates the full benefit
of a properly configured WSD schedule. Our work specifically investigates the interaction between
model averaging and data quality, a crucial factor that these studies did not isolate.

C ADDITIONAL EXPERIMENTS AND DISCUSSION

Ablation Study. To validate our understanding and approaches can be generalized, we conduct
experiments on other quality metrics and pretraining dataset. (1) Quality metrics: We ablate on
PreSelect score as the data quality metric and sort data in ascending order of PreSelect score. As
shown in in Table@ we find that over the ascending-order of PreSelect score, both CMA and CDMA
performs better than standard WSD schedule and WSMD performs better on average scores. In
addition, we find that ordering by PreSelect score is slightly worse than that by DCLM score on
average, which may need further exploring. We conjecture that it is because the base dataset is
filtered with DCLM fasttext score in model-filtering process, while sorted in PreSelect, resulting
in a inconsistent quality arrangement. (2) Pretraining Dataset: Previously, we have validated our
results on DCLM-Baseline and a mixture of DCLM-Baseline and WebOrganizer. We further check
our approach is applicable to WebOrganizer alone. As shown in Table 0] we find that the using
model average with data curriculum, can generate better results in weborganizer dataset than a LR
decay approach. In this setting, weight average without decay shows a larger benefit than that with
moderate decay, possibly indicating the potential benefit of a high LR when high-quality data is
extremely sparse.
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Detailed Comparison with Related Works about Curriculum Learning. In previous works of
curriculum learning in LLM pretraining, the impact of LR schedules are largely overlooked. Cosine
schedules are common practices for these works, and typically with a peak LR at scale of 10~* (Wet-
tig et al.,[2024; [Dai et al., 2025} Zhang et al., |2025; |[Kim & Lee, 2024} (Campos| |2021). Among them,
we will focus on discussion about the works with positive validation experiments (Wettig et al.,[2024;
Dai et al.| 2025} Zhang et al.| 2025). QuRating (Wettig et al., 2024)) mainly focus on their quality
metric and test it on the curriculum learning setting. They reports 0.6% average improvement on
downstream tasks for low-to-high quality ordering. As a comparison, our best result (Const+SMA)
achieves over 2.7% improvement on the same baseline (Cos+Uniform). Although the downstream
tasks are not exactly the same, we achieve our results on a slightly larger scale and on a high-quality
dataset, which is typically more challenging to improve performance, and we do not optimize the
quality metric and use the existing DCLM fasttext scores as quality metrics (L1 et al.| 2024; Wettig
et al., [2025). Moreover, Qurating reports a 0.5% improvement on a decreasing order curriculum,
which is paradoxical over the advantage of curriculum learning. In contrast, we find a consistent
performance drop for reverse data curriculum in our experiments, as shown in Table[/|and discussed
in Section@ Recent works (Dati et al.| [2025; Zhang et al.l [2025)) also test the curriculum learning.
Dai et al.| (2025) reports a negligible benefit from curriculum when not optimizing quality metric,
and a higher benefit when optimizing the quality metric, but a limited scale. [Zhang et al.| (2025)) re-
ports a slight benefit of curriculum at a scale of 1B model and 10B data. They concurrently propose
a folding strategy, use interleaved data curriculum, that is to sort data in several consecutive stages,
to improve the performance. However, in our replication experiments detailed in Section [C] we find
the benefit reveals when peak LR is at 1 x 10~ to follow prior works, but the benefit diminishes in
a higher and better peak LR regime, around 3 x 1073 in our setting. These results shows that the
folding strategy may not be adapted to a near-optimal hyperparameter regime, at least in our exper-
iment setting. In our experiments, we use DCLM fasttext score and focus on LR schedule ablation,
and a more sophisticated quality metric may additionally contribute to the boost in prior work.

Folding Experiment: Low Peak LR vs High Peak LR. Prior works (Zhang et al., 2025} Dai
et al., [2025)) report the advantage of folding on both sorting and uniform, differing from our results.
We conduct experiment, and deduce the reason that our experiments use well-tuned hyperparame-
ters on model-filtered dataset, where a high peak LR can improve data efficiency without inducing
spikes. Better data efficiency can contribute to more improvement for uniform baseline than folding.

To align with the previous works (Dai et al.| 2025} |[Zhang et al [2025), we run experiments on
models with roughly 0.6B parameters, trained on about 30B tokens. We conduct experiments on 3
kinds of data schedules: Uniform, Ascend + Sorting, Ascend + Folding. The introduction of folding
strategy can refer to Section 4] Then we set peak LR to two scales: 1 x 1074, aligning with Dai
et al.[(2025)); Zhang et al. (2025)), and 3 x 1073 used in our experiment setting. The fold number
follows|Dai et al.[(2025)), and is set to 3. The downstream results are reported in Table@ When peak
LR is 1 x 10™%, folding strategy performs best, and sorting is slightly better than uniform. However,
when peak LR is 3 x 103, the order changes, that Ascend + Sorting outperforms the other two and
Ascend + Folding can even not match Uniform. We conjecture that, the high peak LR can accelerate
the convergence process, thus may outweighs the role of forgetting, especially when we set ending
LR as 1 x 10~° by default, which may not fully utilize the utility of high-quality data in folding and
sorting.

Discussion: Correlation between Downstream Performance and Validation Loss. The valida-
tion loss evaluation and downstream scores may exhibits some consistency, like Figure 2] suggesting
best results in an aggressive regime, but a moderate ending LR is better in Figure[5] This observa-
tions are related to Figure[7(b)] where we find ascending order training can achieve a slightly higher
downstream task score on average. The validation loss reveals an average prediction capability on
a high-quality dataset, while the data near the end can be more informative and aligned with task,
helps model be accurate on this local part of data distribution. We deduce our results from a com-
prehensive analysis on both evaluation results and is validated across different settings, which can
reduce the misalignment between these evaluations.
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D A FULL THEORETICAL DEMONSTRATION

As we reported and discussed above, the benefit of curriculum learning emerges when we apply a
weight averaging manner instead of a learning rate schedule with excess decaying, such as Cosine
or WSD schedule in practical pretraining. In the following, we present a simple theoretical model
that recovers the above empirical insight. The main proof of this section can be found in Section [E]

Problem Setup. We consider a quadratic loss function £L(w) = i|jw — w*||3, where w =
(w1, w2) € R? represents the trainable parameter, and w* denotes the ground truth, which is set
to the original point (0,0). We use Stochastic Gradient Descent (SGD) to optimize this problem.
We denote the one-sample loss used to calculate the gradient for the ¢-th iteration as ¢;(w) :=
|lw — 2|2, where data point x; is sampled from some given dataset D = {z(1) (2 ... ()},
Therefore, we have the SGD update rule for the ¢-th iteration as w; = wy—1 — 7V (wy—1), where
the 7; denotes the learning rate in the ¢-th iteration. We initialize the parameter as wy = (Md, 0).

We denote the learning rate schedule by E := {n1,72,...,n }. We denote w; = (wil), wt(z)). We
define W).g to be the distribution of w);. The randomness Withip w)y comes from the random
draw of the distribution in SGD. We further define the expected loss L(M; E) := Eqyoyy, 5 [L(w)].

In the following, we consider the training dataset D, which consists of M different data points
with varying data qualities. Specifically, data point z(?) = (a;&”, xgz)) satisfy that xgl) =(i—1)d
and xél) ~ Uniform(—L, L), we further set d = L/M. x¥) provides signal in first dimension
and introduce noise in the second dimension. Next, we consider two sampling strategies for each
iteration of SGD: (1) We sample one data point uniformly from Uniform(D); (2) we sample one
data point from D in an ascending order. In other word, in ¢-th iteration, x; = zM~-t+1) € D The

visualization of optimization trajectories in simulation experiment can refer to Figure 6]

Uniform sampling + Learning rate Schedule. SGD acts as an exponential averaging of the cur-
rent parameter and the sampled data point. Once we uniformly sample data points with no ordering,
then on the x-axis, the parameter would approximately oscillate from 0 to (m — 1)d with a large
variance. We can prove that given any data schedule F starting with some 7; < 1, the expected loss
for uniformly sampling SGD has a lower bound

ménZ(M;E) = Q(L?). 3)

This lower bound is derived from the loss on the x-axis. When we apply the uniform sampling, SGD
cannot get enough signal towards the right direction; instead, the SGD optimizer would approach to
the mean of zgl), x(12), .. ,ng) in expectation.

Ascending Data-Ordering + Practical WSD Schedule. Next, we sample data in an ascend-
ing order from D) to D), using the following WSD learning rate schedule E such that 7; =
1forl <t <[0.9M],and 7 = m for [0.9M | +2 <t < M, where To = M — [0.9M |.
In this learning rate schedule, we follow a practical setting, where we decay 10% of the total itera-
tions. We then show that for this learning rate schedule F, the expected loss still cannot break the
lower bound

L(M;E) = 0(L?).

Ascending Data-Ordering + WSMD Schedule. In the above, we show that even using an as-
cending data-ordering, the loss lower bound does not improve if we decay too much in the learning
rate schedule. Next, we show a Warmup-Stable-Moderate Decay (WSMD) schedule with less decay
and a larger ending learning rate can better utilize the ascending data-ordering and get a smaller loss.
Specifically, do a modification of the above WSD schedule, setting Tp = ©(M 3 ). WSMD schedule
can break through the above lower bound, denoted as £*

L(M;E*) =©(M~5L?). @)

Ascending Data-Ordering + Stochastic Weight Averaging (SWA). Despite the failure of the
practical WSD learning rate schedule, we demonstrate that with a constant learning rate, a sample
SWA surpasses the aforementioned lower bound. The reason is that: (1) First, along the x-axis,
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with a constant learning rate, the updated parameter gets a larger gradient accumulation towards the
ground truth compared with the practical WSD with 10% decay, which is too much to get enough
loss reduction. (2) Second, the SWA allows appropriate averaging along the y-axis and results in
noise reduction, thus leading to smaller loss, as the WSMD schedule does.

Theorem D.1. Given a learning rate ng < 1, the parameter derived by the averaging on the last n
weights wy = + E?:_Ol Wy, where n = O(M3) such that the expected loss

E[L(wy)] = O(M ™5 L?),

where O() hides log factors and constants independent of L and M.

E PROOFS IN SECTION|[6G]

In Section[6] we analyze the bounds of expected loss under four different optimization cases:

1. Uniform sampling + Learning rate Schedule.

2. Ascending data-ordering + Practical WSD schedule.

3. Ascending data-ordering + WSMD schedule.

4. Ascending data-ordering + Stochastic Weight Averaging (SWA).
In the following, we give the proof of their corresponding theoretical claims we mentioned in Sec-
tion [6] one by one.

Lemma E.1. Consider the uniform sampling, for any learning rate schedule E such that 0 < n; <
1, and the parameter initialized at (L, 0), it holds that

m}én L(M;E) = Q(L?).

Proof. We first consider the update rule of SGD in the optimization process on the x-axis as
1 1 1 1
wi? = wit —n(wi — ).
Then, taking the expectation over the randomness in SGD and the data generation gives

ElwM] = (1 - n)E[w™)] + nElz,]

M(M —1)d

=(1- nt)E[wwgljl] + Uti( 5 )
M(M - 1)d
> —

Thus, we write out the lower bound for the expected loss
E[£(w,)] = Elw, w] > Elw{"wj"] > Eluw{"] > E[w;"] = 0(L?).

The above equation completes the proof. O

For Case 2 and Case 3, we give a more general lemma, for which the conclusions for Case 2 and
Case 3 are direct corollaries.

Lemma E.2. Consider the Ascending data-ordering, and a class of WSD learning rate schedules
with the following formula

: {770 for1<t<M-Ty+1
.

o Jor M =Ty +2<t<M,

where Ty = w (1) and ny = % it holds for any learning rate schedule E with the above formula
that

_ - L?
L(M;E)=6 (TO%F + ) :
To
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Proof. We write out the update rule on the x-axis in the Ascending data-ordering case

1 M—t+1
wi = (1= ey + et Y.

Using the above update rule, we can get the expression of wg\/[) as

M
1
wg\d) = H(l - nt + Z H "7] ml‘M) i1
t=1 i=1 j=i+1

Then, plugging in the formula of the learning rate schedule gives

To—1 1

w = x + —=—w .
M E M 1 _ To+1
T() P i+ 2To 1

The above equation uses the following fact
1 1 1 1
1— =) (1-— (1= .
(=7 (= )
TO -1 Tp—2 i 1 1
To To—-1 i+1 i Ty
where 2 < ¢ < Tj Also notice that Ty = w(1), then we have

To—1 To—1 1
(1) (1) (1) (1), (1)
Wy = ? Z —i+1 + 2T0 1 Z 2T0 i1 Tpf— i+1 + 2Mw Wy

1 log(]\/fd) 1 ”

W 1
TO ;IM z+1+2T0 1 ; 9To— z+1xM 1+1(1+0(1))

To—1
1
T Z xSVI) i+1 1t 0(d)

To—1

Z 2§y (L+o(1)).

Thus, the expected loss on the axis follows
T() 1
1) (1)
Elei ] = e 2 (M — i+ )i = O((T)%d").

Similarly, we write out the expected loss on the y-axis
To—1

Ez()2()) = QZE e (L o(1))

2

- %(1 +o(1))

The above equation completes the proof. Specifically, taking 7y = [0.9M | and Tp = ©O(M %) gives
the results in Equation (3) and Equation (@). O

In the end, we show how a simple SWA method can beat the practical WSD schedule, which is
stated in Theorem [D.1

Proof of Theorem|[D.1] We first write out the expression for the parameter after a rescaled SWA as
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Then, plugging in the constant learning rate schedule gives

n i—1 n—1

lBMZZZ 1—770]1:14-22 o)t~ "w+21— Y M iy

i=1 j=0 i=n+1 j=0

We then decouple the parameter into the x-axis component and the y-axis component as wy; =

1 (2 n _

(wy, ,wy, ). For the x-axis, we have 7"’ = 0, thus we can rewrite theabove equation in the x-axis

_ %) @
wg\}[) = ;nomg ) + 1o ( (1 —mo) —l-a) xé ) + 10 (?0(1 —10)” + (1 —10) +a> xgl)

n—2
+o (040(1 —mo)" M Ha) (1- Uo)i> )

=0

+ZZ ]Jrzn(l)

i=n+1 j= O

+> (1- o)™ .
i=1

We then take oy = 77% and « = 1, then we recursively have

(7)) 1
—No = —
n n
. J=1 ) 1
1 —no)’ 1—no)| == foralll<j<n-—1
<ao( 10) +a§( 770)) ~ foralll<j<n
n—1
o j+i—n 1 i—n .
—(1—mno)’ =—(1-mn) foralll <j<n-—1.
n n
7=0

=1 1= n+1 1=1
log(Md)
= Zw”+ > - L (1= o) ma{ (14 o(1)
i=n+1
1n+10g(Md)
<— Y w1t 5)

i=1
Thus, we give the upper bound for the component of expected loss on the x-axis
Efw)w)] = O (n?d?) = O (M~31?).
Similarly, for the y-axis, we have
n+log(md)

ST 2P +o(1)). ©6)

=1

w(? <

3=

Notice that the only difference between the derivation of Equation (6)) and the derivation of Equa-
tion (5)) is we cannot replace o with ¢ since x§2) is not the constant 0, but the difference (cvop—a)ways

can be obviously merged into the main term 1 Zn+10g(md) 52). And then we get

(L2 /s
Ejw@w®] =0 (n> =0 (ML),

Finally, notice that the rescale constant « can be merged into the O notation, thus we complete the
proof. O
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