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ABSTRACT

Evaluating the veracity of everyday claims is time consuming and in some cases
requires domain expertise. In this paper, we reveal that large commercial language
models, e.g., ChatGPT or GPT4, are unable to successfully accomplish this task.
We then empirically demonstrate that the commonly used fact checking pipeline,
known as the retriever-reader, suffers from performance deterioration when it is
trained on the labeled data from one topic (or domain) and used in another topic.
Existing studies in this area mostly evaluate the transferability of fact checking
systems across various platforms, e.g., Wikipedia to scientific repositories, or from
one fact checking website to another one. Even in doing so, they do not step be-
yond pretraining models on one resource and evaluating on another resource. This
calls for developing methods and techniques to make fact checking models more
generalizable. Therefore, we delve into each component of the pipeline and pro-
pose algorithms to achieve this goal. We propose an adversarial algorithm to make
the retriever component robust against distribution shift. Our core idea is to ini-
tially train a bi-encoder on the labeled source data, and then, to adversarially train
two separate document and claim encoders using unlabeled target data. Then, we
focus on the reader component and propose to train it such that it is insensitive
towards the order of claims and evidence documents. Our empirical evaluations
support the hypothesis that such a reader shows a higher robustness against dis-
tribution shift. To our knowledge, there is no publicly available multi-topic fact
checking dataset. Thus, we propose a straightforward method to re-purpose two
well-known fact checking datasets. We, then, construct eight fact checking scenar-
ios from these datasets, and compare our model to a set of strong baseline models,
including recent models that use GPT4 for generating synthetic data. Our results
signify to the effectiveness of our model. Our code will be publicly available on
our GitHub webpage.

1 INTRODUCTION

Fact checking is the task of assigning a veracity label to a given claim (Thorne & Vlachos, 2018).
Automated fact checking can help with curbing misinformation in a timely manner, and can also
assist professional human fact-checkers (Guo et al., 2022b). Due to the growing size of the Web,
this task is increasingly becoming more challenging. The performance of fact checking systems
depends on the availability of evidence resources, and this makes the large commercial language
models, in many cases, unsuitable for the task. We demonstrate this by reporting an experiment in
Figures 1a and 1b. We see that two existing large language models, i.e., ChatGPT and GPT 4, are
unable to verify a simple claim regarding the former president of the US. At the time of carrying
out this experiment, the indictment of Donald Trump was widely being discussed on news outlets,
such as the Associate Press,1 and the social media websites. Another factor that contributes to the
difficulty of this task is the required technology to perform fact checking. More specifically, existing
automated fact checking systems rely on a pipeline of components to retrieve evidence documents
and to infer the final verdict (Guo et al., 2022b). As stated by Das et al. (2023), coordinating the
components within such a pipeline is an additional burden to carry.

Given these challenges, it is desirable to know how much a trained fact checking pipeline
generalizes across domains. To our knowledge, little to no work has been done to inves-

1Available at: https://apnews.com/article/trump-indicted-jan-6-investigation-special-counsel-
debb59bb7a4d9f93f7e2dace01feccdc
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tigate this area. There exist a few attempts (Augenstein et al., 2019; Wadden et al., 2020;
Gupta & Srikumar, 2021) that report experiments on the transferability of the fact checking
pipeline across various platforms, e.g., from Wikipedia to scientific repositories, or from a fact
checking website to another one. While these are valuable observations, these platforms, e.g.,
Wikipedia and the scientific repositories, have shared domains and topics.2 This can poten-
tially distort certain reported conclusions, particularly, the conclusions on the generalizability of
the pipeline to unseen scenarios. Additionally, the solutions proposed by existing studies to en-
hance generalization are very limited. To our knowledge, the only existing solution proposed
by these studies is to pretrain the pipeline in one domain, and then, to use it in another do-
main. This further limits the toolbox of the practitioners who intend to improve their systems.

As of my last update in September 2021, Donald Trump, the 45th 
President of the United States, had not been recently indicted. 
However, it's important to note that my information might be outdated, 
and I don't have access to real-time data. Legal situations and 
investigations can evolve over time, and new developments may have 
occurred since my last update.
For the most current information on Donald Trump's legal status or any 
potential indictments, I recommend checking reputable news sources 
or conducting an online search for recent news articles and updates.

Donald Trump was recently indicted. Is that True?

(a) ChatGPT Response

As an AI developed by OpenAI, I don't have the ability to access or 
retrieve real-time news updates. Please check the latest news online for 
the most accurate information.

Donald Trump was recently indicted. Is that True?

(b) GPT 4 Response

Figure 1: On August 2, 2023, the Associated Press (and
other news outlets) reported that Donald Trump was in-
dicted. The questions were asked from the LLMs on August
17, 2023.

In the next section, we provide a
background on the fact checking
pipeline. We then report a case study
to show that a pipeline trained on out-
of-domain data in not as competitive
as the one trained on in-domain data.
We continue our study by focusing
on the two primary components of
the pipeline, i.e., the retriever and
the reader, and propose algorithms to
enhance their performance. Particu-
larly, we use a bi-encoder dense re-
trieval model as the retriever, and pro-
pose an adversarial algorithm to en-
hance its robustness under distribu-
tion shift. We, then, exploit a pre-
viously unknown weakness of neural
networks in detecting the reversal re-
lationship between input statements,
and propose an augmentation algo-
rithm to provide the reader with more
cues. The core idea of our algorithm is to train the reader such that it is insensitive towards the order
of the input claims and documents.

To evaluate our pipeline, we propose a straightforward method, using a public API, to re-purpose the
Snopes (Hanselowski et al., 2019) and the MultiFC (Augenstein et al., 2019) fact checking datasets.
We extract eight fact checking scenarios out of these two datasets, and compare our proposed com-
ponents individually to the state-of-the-art techniques, including the ones that exploit GPT 4. We
also demonstrate that our fact checking pipeline outperforms the pipelines that employ the best
available components.

2 PRELIMINARY EXPERIMENTS

Background. Existing fact checking systems (Guo et al., 2022b; Das et al., 2023) primarily rely
on two components: 1) a document retrieval model, called “retriever”, and 2) a veracity prediction
model, called “reader”. See Figure 2a for an illustration. The retriever views the input claim as a
query and returns the top evidence documents that are deemed relevant to the claim–the search is
usually performed over a pre-indexed corpus. Due to the advantages that neural text retrieval models
offer over the traditional token based models–such as a higher generalization and flexibility–the
retriever is usually a neural document ranker (Guo et al., 2022a). As the reader, existing studies
usually train a classifier over the concatenation of the retrieved documents and the given claim (Das
et al., 2023).3 As stated by Wadden et al. (2020) and Guo et al. (2022b), the veracity prediction
step resembles the natural language inference task (NLI). The output of the veracity prediction

2We borrow the word “domain” in a broad sense, and the word “topic” in a narrow sense from the domain
adaptation literature (Blitzer et al., 2007). In the domain adaptation literature “domain” (or “topic”) refers to a
particular genre (or sub-genre) of text, such as politics, business, or arts.

3Depending on the architecture, practitioners may add pre-processing steps, such as rationale extraction, or
post-processing steps, such as justification production. We focus on the essential components.
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component can be the word “Support” or the word “Refute”–depending on the system design, a
third candidate output can be also added as “Neutral”.

As it can be seen, developing, scaling up, and maintaining a fact checking system involves a lot
of expertise, time, and budget. On the other hand, when such a system is deployed, even a small
deterioration or improvement in performance can have profound impacts. Detecting an unsupported
claim early enough, and then, taking timely actions on the media can be invaluable. Therefore, it is
crucial to know if such a system is generalizable. In other words, if a model trained on the labeled
data from one domain (i.e., source domain), demonstrates the same efficacy if it is used to verify the
claims in another domain (i.e., target domain). In order to answer this question, below, we report a
case study.

Setup. We compare the performance of in-domain fact checking compared to out-of-domain fact
checking across two domains of “Miscellany” and “Politics”. The claims and their evidence docu-
ments are extracted from the dataset published by Augenstein et al. (2019). The claims in this dataset
do not have domain assignments. See Section 4 for our proposed method to automatically assign
a domain label to each claim, and also to see a description for each domain. Each domain in this
experiment has 7,900 claims, and each claim has two evidence documents. In each domain, 60% of
data was used for training and 40% for testing. The claims are labeled either as Support or Refute.

Claim Retriever

Reader
Verdict

1

2

3

4

Top K 
Docs

(a) FC Pipeline4

0.6

0.62

0.64

0.66

Misc Politics

F1

Target Domain

Misc (Source)
Politics (Source)

(b) F1 of the Pipeline

0.68

0.73

0.78

0.83

Misc Politics

N
D

C
G

@
1

0

Target Domain

Misc (Source)
Politics (Source)

(c) F1 of the Retriever

0.62

0.64

0.66

0.68

Misc Politics

F1

Target Domain

Misc (Source)
Politics (Source)

(d) F1 of the Reader

Figure 2: 2a) The commonly used fact check-
ing (FC) pipeline consists of a retrieval model
(called the retriever), and a veracity prediction
model (called the reader). 2b) The performance
(Macro F1) of fact checking pipeline across two
domains (Misc vs Politics) in two scenarios (in-
domain vs out-of-domain). 2c) The performance
(NDCG@10) of the retriever across the two men-
tioned domains. 2d) The performance (Macro F1)
of the reader across the two domains.

In this experiment, the retriever is a bi-encoder
(Karpukhin et al., 2020) pretrained using the al-
gorithm proposed by Izacard et al. (2022). The
reader is a RoBERTa-based5 model (Liu et al.,
2019) pretrained on the SNLI and MultiNLI
datasets (Williams et al., 2018). Apart from
these pretraining steps, all the models are fine-
tuned in the source domains (using the labeled
data), and then, evaluated on the target domain.
We assume the target domain has no labeled
data during the training. The target labels are
used only for evaluation. We report Macro F1
for the classification tasks and NDCG@10 for
the ranking tasks.

Observations. Figure 2b reports the perfor-
mance of the pipeline in the in-domain scenar-
ios compared to the out-of-domain scenarios.
We see that the performance in both of the out-
of-domain scenarios (i.e., Politics→Misc and
Misc→Politics) is worse than their in-domain
counterparts. This raises the question about the
root of this performance deterioration. To re-
veal the cause, we report the performance of
each underlying component in isolation. To
evaluate the performance of the reader in isola-
tion, we assume that the retriever perfectly re-
turns all the relevant evidence documents. Fig-
ures 2c and 2d report the results. We see the
same trend in both experiments. Both compo-
nents suffer from distribution shift between the
in-domain and out-of-domain training. Note that the performance numbers across the scenarios and
experiments are not directly comparable. For instance, one may be tempted to ask why the retriever
shows a higher robustness when trained on Politics and tested on Misc, compared to the opposite
scenario. Such a view may be failing to consider the properties of the claims in this dataset, such
as the informativeness or the difficultness of the claims in each domain. In the next section, we for-

4The icons used in the figure have been downloaded from www.flaticon.com.
5We also used Deberta (He et al., 2021) in the experiments, and observed similar trends. However, we

observed that this model is very unstable during the in-domain language model pretraining. Therefore, we
opted for RoBERTa as the encoder to be consistent across all the experiments.
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Figure 3: 3a) The source retriever is a bi-encoder, and uses dot product as the loss function. 3b)
We fix the parameters of the source claim encoder, and adversarialy train the target claim encoder to
mimic the source model. This step is done using unlabeled data in the two domains. 3c) Next, we fix
the parameters of the source document encoder, and advarsarialy train the target document encoder.
Similarly, this step does not need labeled data. 3d) The two trained target encoders can be used
for the retrieval task in the target domain. The components that have gray outline show the inputs,
outputs, and objective terms. The rest are neural networks. The parameters of the components that
have gray background are fixed during training.

mally describe the problem statement, and then, we propose solutions to enhance the performance
of the pipeline.

3 PROPOSED MODEL

3.1 PROBLEM STATEMENT

In the source domain S, we are given a set of labeled claims and their evidence documents denoted
by {(Cs

i , y
s
i , V

s
i )}

ns

i=1, where ns is the number of claims in this domain, Cs
i is the i-th labeled claim,

ysi is the veracity of the claim–i.e., Support, Refute, or optionally Neutral–and V s
i is the set of

evidence documents for supporting the assigned label. We denote the set of all the source claims by
Cs={Cs

i}
ns

i=1, and the set of all the evidence documents by Ds={Ds
j}

ms

j=1
, where Ds

j is j-th evidence
document, and ms is the number of evidence documents in the set. Note that V s

• ⊂Ds. In the
target domain T , we are given a set of unlabeled claims Ct={Ct

i}
nt

i=1, and a corpus of evidence
documents Dt={Dt

j}
mt

j=1
.

We opt to minimize the prediction error of the fact checking pipeline in the target domain, using the
labeled data from the source domain and the unlabeled data from the target domain. Note that there
is a distribution shift between the claims in the domains S and T. That is, the claims in these two
domains involve different topics, discuss different entities, and refer to different events. Therefore,
as we showed in the previous section, a model trained only on the out-of-domain data, usually does
not perform as competitive as a model trained on in-domain data.

Following existing studies (Guo et al., 2022b; Das et al., 2023), our model adopts the pipeline
illustrated in Figure 2a. We individually train each component using the labeled data from the
source domain and the unlabeled data from the target domain. During testing, we plug the trained
components into the pipeline to predict the veracity of the claims in the target domain. In the
next section, we discuss our algorithm for training the retriever. We, then, propose our method for
training the reader. We conclude the section by providing a summary of the entire training and
testing procedures.

3.2 ADVERSARIAL TRAINING FOR EVIDENCE RETRIEVAL

We use a bi-encoder model (Karpukhin et al., 2020) in the retriever. This model consists of two
encoders fc(•) and fd(•) to project the claims and evidence documents into low dimensional dense
vectors respectively. Figure 3a illustrates the architecture of this model. To obtain a similarity score
between a claim and evidence documents, a dot product operator is applied to the outputs of the
encoders, i.e., for a given claim C and an evidence document D we have sim(C, D)=fc(C)

⊺ · fd(D).
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To train this model in the source domain S, where labeled data is available, we can use the rele-
vant evidence documents as positive examples, and the irrelevant evidence documents as negative
examples. Then, we can minimize the negative log-likelihood loss term as follows:

Lfs=

ns∑
i=1

−log
exp(sim(Cs

i ,D
s
i+))

exp(sim(Cs
i ,D

s
i+
)) +

∑r
j=1exp(sim(Cs

i ,D
s
j,i−

))
, (1)

where, ns is the number of claims in the source domain, exp (•) is the exponential function, Cs
i

is the i-th source claim, Ds
i+ is a relevant evidence document (randomly selected from the set of

relevant documents V s
i ), and r is the number of randomly selected irrelevant documents–denoted by

Ds
•,i− . If we use stochastic gradient descent for training, we can use the irrelevant in-batch evidence

documents as negative examples. The objective term is minimized with respect to the parameters
of the two encoders fc and fd. To test the model, we can use the similarity between a given claim
and all the evidence documents, and then, can return the documents that have the highest similarity
score to the claim.

Due to the lack of labeled data, the training algorithm above is not applicable in the target domain.
Thus, we propose an approach to exploit unlabeled target data to train the claim and document
encoders for the target domain. We begin by training a bi-encoder model in the source domain, as
shown in Figure 3a. Then, we freeze the parameters of the source claim encoder, and adversarially
(Goodfellow et al., 2014; Tzeng et al., 2017) train an encoder in the target domain to mimic the
outputs of the source claim encoder, as shown in Figure 3b. We, then, repeat the same procedure to
train a target document encoder by freezing the parameters of the source document encoder–Figure
3c. Finally, the two adversarially trained target encoders can be used to calculate the similarity
between the target claims and the target evidence documents, as illustrated in Figure 3d.

The objective terms for adversarially training the target claim encoder are:
Lgc=−ECs∼Cs[log gc(f

s
c (Cs))]−ECt∼Ct

[
log (1−gc(f

t
c(Ct)))

]
, (2)

and
Lft

c
=ECt∼Ct

[
log gc(f

t
c(Ct))

]
, (3)

where gc is the discriminator classifier for the claims, and fs
c and f t

c are the source and target claim
encoders respectively. The rest of the terms were defined earlier. The two objective terms are min-
imized with respect to the parameters of gc and f t

c respectively. Thus, intuitively, the discriminator
learns to distinguish between the claims in the source and target domains, while the target claim
encoder gradually learns to produce vectors that are similar to the source vectors. Similarly, we
adversarially train the target document encoder as follows:

Lgd=−EDs∼Ds[log gd(f
s
d(Ds))]−EDt∼Dt

[
log (1−gd(f

t
d(Dt)))

]
, (4)

and
Lft

d
=EDt∼Dt

[
log gd(f

t
d(Dt))

]
, (5)

where gd is the discriminator classifier for the evidence documents, and fs
d and f t

d are the source
and target document encoders respectively.

Pretraining encoders has become an integral part of dense retrieval algorithms (Karpukhin et al.,
2020; Wang et al., 2022; Dai et al., 2023). Our approach for training the target claim and document
encoders does not impose any restriction on the initialization of the encoders. Therefore, before
training the source encoders (Figure 3a), we use the T5 model (Raffel et al., 2020) to generate a
set of pseudo claims for the unlabeled evidence documents in the target domain. We, then, use this
automatically generated dataset to pretrain a bi-encoder model, to be used in the training algorithm
described in this section. See Section 4 for the implementation details of the pretraining step. In the
next section, we discuss our algorithm for training the reader.

3.3 REPRESENTATION ALIGNMENT FOR VERACITY PREDICTION

To predict the veracity of a given claim, following existing studies (Wadden et al., 2020; Wright
et al., 2022; Das et al., 2023), we can train a classifier on the concatenation of the corresponding
evidence document and the claim–resembling the natural language inference task. If multiple evi-
dence documents exist, we can take the average of the classifier outputs to make the final prediction.
In the source domain S, where labeled data is available, we can employ this method. However, it
is difficult to train such a classifier for the target domain because there is no labeled data in this
domain. Thus, we propose an approach to train such a classifier using the labeled data in the source
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domain, the unlabeled data in the target domain, and the retriever that we adversarially trained for
the target domain in the previous section.

Our model is based on the distance-based discrepancy reduction training under domain shift (Ben-
David et al., 2010; Long et al., 2015; Guo et al., 2020). It has been shown that (Ben-David et al.,
2010) the performance of a classifier in the unlabeled target domain is a function of three terms:
the performance of the classifier in the source domain, the discrepancy between the distributions
of the source and target data, and the performance of the ideal classifier in both source and target
domains–which depends on the properties of the data. Based on this, the common objective function
for training a classifier using the labeled source data and the unlabeled target data is as follows:

L =
1

ns

ns∑
i=1

J(θ(fr(Xs
i )), y

s
i ) + λD(fr(X

s), fr(X
t)), (6)

where J is the cross entropy loss, fr(•) is the data encoder, θ(•) is the classifier applied to the
output of the encoder, Xs

i is i-th labeled source example, and Xs and Xt are the sets of un-
labeled source and target examples respectively. The term D is called the alignment loss, and
reduces the discrepancy between the distributions of source and target examples after the en-
coder layer. Various terms can be used as D, such as cosine distance, Fisher linear discrimi-
nant (Hastie et al., 2001), or MMD (Long et al., 2015). λ > 0 is a penalty term. We can
see that the first part of the objective function performs the regular supervised training in the
source domain, and the second part tries to reduce the divergence between the distributions of
data in the two domains. The encoder fr appears in both parts, subjecting it to produce suit-
able features for classification in the source domain (through the first part), and also, to pro-
duce similar features for the data in the source and the target domains (through the second part).

Reader 
Encoder

Reader 
Encoder

Output Vecs Output Vecs

Classifier Alignment

T/D ‖ T/CS/D ‖ S/C

S/C ‖ S/D T/C ‖ T/D

Figure 4: The reader model.
Dashed line indicates shared
parameters. S/D, S/C, T/D,
and T/C stand for source doc-
uments, source claims, target
documents, and target claims
respectively. The symbol ∥ is
the concatenation operator.

In order to use Equation 6 for training our model, we need to for-
mulate the vectors Xs

•, Xs, and Xt. We obtain Xs
• and Xs in the

source domain by concatenating the evidence documents and their
corresponding claims. Because there are no associations between
the documents and the claims in the target domain, we propose to
use the model trained in the previous section to retrieve the top p
target documents for each target claim, and then, to consider them
as the evidence documents. These documents along their associated
claims can be used to construct the vectors Xt.

Because the trained retriever is not necessarily perfect, it may re-
trieve target documents that are irrelevant to the given claim, and
this can potentially propagate noise through the pipeline by pollut-
ing the vectors Xt. In order to give the reader more cues and also
provide it with more training data, we propose to augment the input
data with the reverse order of itself. For instance, in the case of Xs

i ,
if Xs

i=Cs
i ∥ Ds

i+ , where the symbol ∥ is the concatenation operator,
we then propose to also use the vector Xs

i=Ds
i+ ∥ Cs

i for training the
reader. The augmentation can be perfromed on all the vectors in Xs

and Xt as well. Note that in the general natural language inference task, it is not always logically
true to reverse the order of the premise and the hypothesis, however, in the fact checking tack this is
the case. Indeed, very recently, Berglund et al. (2023) showed that large language models are unable
to infer B→A from A→B.6 This further reinforces our argument presented above.

Figure 4 shows our reader. We see that the input data is augmented with the reverse vectors. The
entire model is trained using the supervised cross entropy loss and the unsupervised alignment loss.

3.4 TRAINING AND TESTING PROCEDURES

To train our fact checking pipeline, we use the labeled source data and the unlabeled target data
in the algorithm presented in Section 3.2 to train our retriever. Then we use the trained retriever
to generate pseudo-labels for the target claims. We, then, use the labeled source data along the
pseudo-labeled target data to train our reader, as stated in Section 3.3.

6The paper by Berglund et al. (2023) was uploaded on arXiv on Sep 21, 2023, two days before the ICLR
abstract deadline. We believe our method can be still considered novel.
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While it is tempting to improve a pipeline by individually improving each component,7 rather than
proposing end-to-end solutions, this often has a downside. When our pipeline is used for testing,
the improvement achieved by each component may not be fully carried over to the next step. For
instance, the retriever may return better results in a particular scenario, but the reader may fail to
exploit the informative evidence documents in this scenario. Another example is when the reader
can potentially perform better, but the retriever fails to return informative evidence documents. In
general, as stated by Domingos (2012), learning is a complex phenomenon. In order to potentially
dampen the undesired effect of such cases, we add an additional step during the testing. During the
testing, given an unseen target claim, the retriever is used to return the top k evidence documents,
and they are carried over to the reader. At this stage, instead of treating these documents as a set, we
use the ranking of the documents to assign a higher weight to the top documents in making the final
prediction. Therefore, instead of taking the average of the classifier to derive the prediction, we begin
from the top of the list and iterate over the ranking list to generate k subsets. The final prediction is
made by taking the average of the predictions obtained from each subset. More formally, the final
prediction is made as follows:

O =
1

k

k∑
i=1

(

∑i
j=1 θ(fr(Ct ∥ Dt

j+))

i
), (7)

where, as before, fr and θ are the reader encoder and the reader classifier, Ct is the target claim at
hand, and Dt

j+ is the j-th relevant document returned by the retriever. We see that the top evidence
documents are present in a higher number of subsets, and therefore, have a higher weight. In the
next section, we provide an overview of the experimental setup for evaluating our pipeline.

4 EXPERIMENTAL SETUP

We begin this section by providing an overview of the datasets used in the experiments. Then, we we
briefly discuss the baselines that we compare to, and finally, we present details of the experiments.
Additional information about the baselines and the training setup can be found in Appendix.

Dataset Domain Count Neutral Refute Support

MultiFC

Arts 3788 - 3434 354
Business 1943 - 1007 936
Misc 7968 - 5351 2617
Politics 9350 - 6301 3049
Sensitive 2180 - 1555 625

Snopes General 4190 755 2643 792
News 1620 348 1041 231

Table 1: The list of domains, the number of claims in each
domain, and the distribution of labels in each domain for the
MultiFC and Snopes datasets.

Datasets. We use two datasets in
our experiments, the MultiFC dataset
(Augenstein et al., 2019) and the
Snopes dataset (Hanselowski et al.,
2019). The claims in these datasets
are not categorized into domains,
therefore, we propose a straightfor-
ward method to automatically assign
a domain name to each claim. To do
so, we employ a general purpose clas-
sifier trained on a large set of cate-
gories. We opt for using the Google
Content Classifier,8 which is a multi-
class model with 1,091 class labels.
The labels assigned by the Google API are fine-grained, and in some cases, semantically close
to each other. Therefore, we use a manually-crafted chart to map the Google labels to domain
names. Curious readers can find this chart in Appendix A. We constructed five domains in Mul-
tiFC dataset and two domains in Snopes dataset. Table 1 reports a summary of the domains,
and the distribution of the labels in each domain. The claims in the Snopes dataset are catego-
rized into three veracity labels, whereas, the claims in the MultiFC dataset cover a much wider
range of 179 labels. Due to the nature of this dataset, in many cases the labels are not easily in-
terpretable. To make this dataset suitable for the regular fact checking task, we assign the label
“Support” to those claims that are labeled as “True”, and consider the rest as “Refute”. We make
all the claims, along their domain names, and their labels publicly available for full reproducibility.

7While this is admittedly subjective, it is tempting because usually the components in a pipeline employ
methods and techniques from various study areas, and then, researchers have more opportunities to explore
multiple research topics, rather than exploring a single area.

8Available at: https://cloud.google.com/natural-language/docs/classify-text-tutorial
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Arts

Business

Misc

Politics

Sensitive

(a) MultiFC Dataset

General

News

(b) Snopes Dataset

Figure 5: The 2D projection of
the claims in the MultiFC and
Snopes datasets (using t-SNE). The
vectors are the outputs of a Roberta
classifier, after being trained to predict
the domains. Figure best viewed in
color.

To qualitatively assess the domains, and to illustrate the
distribution shift between them, we report the 2D projec-
tions of the claim representations in Figures 5a and 5b.
These illustrations are the outputs of a BERT encoder
trained to project the claim representations, then further
transformed into 2D vectors using the t-SNE technique
(van der Maaten & Hinton, 2008). We observe that there
is a marked shift between the distributions of each pair
of the domains in both datasets. Curious readers can see
sample examples of the claims and the top LDA topics of
each domain in Appendix A.

Baselines. We compare our retriever with three baselines
Izacard et al. (2022), Wang et al. (2022), and Dai et al.
(2023). To evaluate our reader, show that it outperforms
a common model proposed by existing literature, which
is pretraining on the masked language model task (mlm)
in the target domain, and then, finetuning in the source
domain. Please see Appendix B for a discussion about
the baselines and their setup.

Setup. We follow the standard practice in domain adap-
tation literature (Ben-David et al., 2010) to carry out the
experiments. We take several domains as source and the
rest as the target domains. During training we assume we
don’t have access to the target labels, and use them only
for testing. In the MultiFC dataset, we use the domains
Misc and Politics as the source and the rest as target. We
select these two as source domains because they have the
highest A-distance from the rest of the domains-with 0.91 and 0.93 respectively, compared to 0.94,
0.95 and 0.96 for Business, Sensitive, and Arts respectively.9 In Snopes , we use both domains and
source and target.

F1 in MultiFC F1 in Snopes

Method M→A M→B M→S P→A P→B P→S G→N N→G
cont-gpl-ft/nli-ft 0.580.02 0.593.01 0.638.01 0.579.02 0.595.01 0.629.01 0.435.02 0.403.02

cont-gpl-ft/nli-mlm-ft 0.581.03 0.593.02 0.635.02 0.600.02 0.590.01 0.620.01 0.422.04 0.416.01
cont-promp-ft/nli-ft 0.583.01 0.594.01 0.642.01 0.586.02 0.604.00 0.623.01 0.434.01 0.406.01

cont-promp-ft/nli-mlm-ft 0.589.03 0.594.02 0.638.02 0.603.02 0.589.02 0.619.02 0.423.04 0.417.01

ours 0.595.01 0.605.01 0.648.01 0.615.02 0.603.01 0.643.01 0.440.02 0.435.01

Table 2: Fact checking results. The sequence before “/” indicate the list of steps used in the re-
triever, and the sequence after “/” indicate the list of steps used in the reader. The suffix ft indicates
finetuning on the source domain. For examples, cont-promp-ft means that fist Contriever is used,
then Promptagator is used, and finally the model is finetuned on the source domain. For brevity, the
initials of the domain names are used in the column titles.

5 RESULTS AND ANALYSIS

Table 2 reports the results of the fact checking pipeline across the two datasets for our model com-
pared to the baseline methods. We observe that in all the scenarios our model is either the top
performing approach, or is on a par with the best method. Tables 3 and 4 report the performance of
the reader and the retriever models individually. To evaluate the reader in isolation, we assumed that
the retriever return all the relevant evidence documents. Again we see that in both tasks our mod-
els outperform the baseline models. We particularly see that in both tasks, our models outperform

9A-distance (Ben-David et al., 2010) is a measure of discrepancy between two domains, and can be ap-
proximated by the error rate of a classifier trained to labels the samples from the two domains (Rai et al.,
2010).

8



Under review as a conference paper at ICLR 2024

existing pretraining approaches, i.e., nli-ft and cont-ft. This confirms that our algorithms succeed in
exploiting unlabeled target data.

F1 in MultiFC F1 in Snopes

Method M→A M→B M→S P→A P→B P→S G→N N→G
nli 0.443.06 0.446.06 0.451.04 0.443.06 0.446.06 0.451.04 0.194.07 0.201.06

nli-ft 0.628.02 0.613.00 0.646.02 0.624.01 0.601.00 0.640.01 0.454.01 0.449.01
nli-mlm-ft 0.614.00 0.611.01 0.648.02 0.629.03 0.600.02 0.632.02 0.440.04 0.441.00

ours 0.637.02 0.625.01 0.662.01 0.639.01 0.611.02 0.651.01 0.466.01 0.469.01

Table 3: The performance of the reader compared to the baselines. The suffix ft indicates finetuning
on the source domain.

NDCG@10 in MultiFC NDCG@10 in Snopes

Method M→A M→B M→S P→A P→B P→S G→N N→G
bm25 0.684 0.723 0.725 0.684 0.723 0.725 0.558 0.638
cont-ft 0.673.01 0.654.01 0.707.00 0.700.00 0.663.01 0.714.01 0.577.01 0.737.00

cont-gpl-ft 0.794.00 0.734.01 0.784.00 0.801.00 0.748.00 0.788.00 0.642.00 0.769.00
cont-promp-ft 0.785.00 0.723.00 0.773.01 0.796.00 0.735.01 0.776.00 0.637.00 0.766.00

ours 0.803.00 0.747.01 0.793.00 0.810.00 0.757.00 0.797.00 0.647.00 0.773.00

Table 4: The performance of the retriever compared to the baseline models.

Method P→S N→G

Full 0.797 0.773
w/o claim enc 0.778 0.770
w/o doc enc 0.792 0.769

(a)

Method P→S N→G

Full 0.651 0.469
w/o align 0.638 0.464
w/o reverse 0.646 0.455

(b)

Method P→S N→G

Full 0.643 0.435
w/o retriever 0.640 0.432
w/o reader 0.632 0.404
w/o ranking 0.636 0.413

(c)

Table 5: Ablation studies of the proposed methods in the retriever (5a), the reader (5b), and
pipeline (5c) for a use case in the MultiFC dataset (P→S) and in the Snopes dataset (N→G) .

To better understand the properties of our model, we report a series of ablation studies in both com-
ponents of the pipeline, as well as the entire pipeline itself. In Table 5a, we report the performance
when we omit the adversarial training of the encoders individually. We observe that each step is
relatively contributing to the results. In Table 5b, we repeat the same experiment by omitting the
alignment loss term and the reversal augmentation. We see that both steps are noticeably enhance
the performance. Finally, to evaluate the components within the pipeline, in Table 5c, we report the
performance when we disable our algorithms in the retriever, in the reader, and in the ranking the
top K evidence documents. We see that each component is relatively boosting the performance,
however, as stated by Das et al. (2023), even though the retriever individually shows improvement,
when it is within the pipeline it shows less effectiveness.

6 RELATED WORK

To our knowledge, our study is the first to explore automatic fact checking under domain shift. There
exist a few studies that discuss the transferability of their models across fact checking websites (Au-
genstein et al., 2019; Wadden et al., 2020; Gupta & Srikumar, 2021). However, this can potentially
distort the conclusions drawn from their results, because these platforms may have shared genre of
documents and claims. Please see Appendix C for an extended discussion on related studies.

7 CONCLUSIONS

We studied automatic fact checking under domain shift. We showed that the large language models
are unable to do the task in certain cases. Then we empirically showed that the common fact check-
ing pipeline suffer from distribution shift, when it is trained in one domain and tested in another
domain. We, then, proposed two algorithms to enhance the performance of the entire pipeline. We
evaluated our model in eight scenarios and showed that in the majority of the cases our model is the
top performing algorithm.
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Dataset Mapped Domain Google Content Classification Labels

MultiFC

Arts /Arts & Entertainment

Business
/Finance
/Business
/News/Business News

Politics
/Law & Government
/News/Politics

Sensitive /Sensitive Subjects
Misc The Rest Of The Labels

Snopes News

/News/Politics/Other
/News/Politics/Campaigns & Elections
/Law & Government/Government/Executive Branch
/Law & Government/Public Safety/Crime & Justice
/News/Other

General The Rest Of The Labels

Table 6: The chart used for mapping the Google content classification labels to the domain names
in each dataset.

Dataset Domain Claim Example

MultiFC

Arts Jennifer Lopez, Alex Rodriguez Marrying In The Spring?
Business For the first time in history the North Atlantic is empty of cargo

ships in-transit
Misc Samuel Adams Set to Release New Helium Beer
Politics Hillary Clinton wore a secret earpiece during the first presiden-

tial debate of 2016
Sensitive A man died in a meth lab explosion after attempting to light his

own flatulence

Snopes

General The modern image of Santa Claus was created by the Coca-Cola
Company

News Donald Trump personally sent out an airplane to bring home
U.S. military members stranded in Florida

Table 7: Randomly selected claims from each domain of the MultiFc and Snopes datasets.

A COMPLEMENTARY REPORTS ABOUT THE DATASETS

In Table 6, we report the chart that we used to map the Google labels to the domain names in
MultiFC and Snopes datasets. In Table 7, we report a set of randomly selected claims from each
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Dataset Domain Most Probable Topic

MultiFC

Arts fight, Matthew, Sarah, Jessica, Parker
Perry, Katy, Bloom, Orlando, Smith

Business tax, home, state, $, trust
pension, fund, work, one, say

Misc page, prayer, base, Disney, elect
turn, charge, improve, form, 2015

Politics Meghan, Markle, Prince, Governor, political
public, day, school, record, voting

Sensitive Shooting, wear, agree, Pat
involve, media, crash, car, send

Snopes
General announce, plan, California, group, Airline

document, series, Google, movie, mosque

News Donald, Trump, use, U.S., President
Clinton, Hillary, e-mail, WikiLeaks, Trump

Table 8: Top two LDA topics for each domain of the MultiFc and Snopes datasets.

domain of the two datasets. Table 8 reports the top two topics extracted from the claims of each
domain using the Latent Dirichlet Allocation algorithm (Blei et al., 2003).

B COMPLEMENTARY INFORMATION ABOUT THE TRAINING SETUP

Baselines. We evaluate our retriever from two aspects: first, we show that it is able to offer improve-
ment over common pretraining techniques in dense retrieval for domain adaptation, and second, we
show that it outperforms state-of-the-art dense retrieval methods for domain adaptation in the fact
checking task. As the pretraining method, we use the model proposed by Izacard et al. (2022),
called Contriever. This model is an unsupervised method based on contrastive learning by cropping
spans of texts from documents and taking them as positive samples. Additionally, we compare to the
models proposed by Wang et al. (2022) and Dai et al. (2023), called GPL and Promptagator. GPL
uses a query generator, pretrained on the MSMarco dataset, to generate pseudo-queries for the target
documents. These pseudo-queries are used to pretrain the dense retrieval model. Promptagator, is
a prompt-based model that uses a large language model to generate pseudo-queries for the target
documents to be used for finetuning. To have a fair comparison between the models, all of them
employ an identical underlying architecture (a bi-encoder) and pre-training steps (using Contriever).
The encoder in Contriever is a BERT-sized transformer-based language model, which is used in all
the models. Promptagator uses a large language model for generating pseudo-labels. We use GPT
4 to generate this data. We follow the instructions stated by Dai et al. (2023) and generate 5,000
pseudo-labels for each domain, to be used for pretraining in this model. In addition to these baseline
models, we also compare our model to the traditional BM25 model.

We follow the same protocol for evaluating the reader. We show that it is able to offer improve-
ment over a relevant general domain pretraining task. For this purpose, we use the Roberta model
(base variant) (Liu et al., 2019) pretrained on two NLI datasets, i.e., SNLI and MultiNLI datasets
(Williams et al., 2018). Then, we also show that it outperforms a common model proposed by exist-
ing literature, which is pretraining on the masked language model task (mlm) in the target domain,
and then, finetuning in the source domain. To evaluate the entire fact checking pipeline, we compare
our model to the pipelines that are constructed by cross connecting two top retrievers to two top
readers.

Setup. Our model has a few hyper-parameters. One for the coefficient of the alignment loss, and
another one for the coefficient of the reverse terms–both subjects were discussed in Section 3.3.
We used the domains Misc and Politics in MultiFC , and searched for the best values between
{0.1,0.3,0.5,0.7,0.9}. The best values for both is 0.1. We set the value of K in the reader to 10
across all the experiments–K is the top documents returned by the retriever. As the alignment loss
term–introduced in Equation 6, we use a metric called correlation alignment (Sun & Saenko, 2016),
which measures the distance between the second-order statistics of the source and target data. For
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pretraining our retriever, we use a T5 model trained on the MS-Marco dataset and generate 3 pseudo
claims for each evidence document and pretrain the retriever for three epochs. We set the batch size
in the retriever to 70, and in the reader to 50. We set the max sequence size for the claims to 50,
and for the documents to 200. We use Adam optimizer in all the experiments. We also use gradient
check-pointing for compression. We repeat all the experiments five times, and report the average
results.

C COMPLEMENTARY RELATED WORK

There exist a few studies that investigate the transferability of the fact checking models across fact
checking websites (Augenstein et al., 2019; Wadden et al., 2020; Gupta & Srikumar, 2021). Au-
genstein et al. (2019) compose a data set called MultiFC. This dataset was collected across multiple
fact checking websites, which the authors call them “sources/domains”. Their model is the standard
retriever-reader pipeline, and their experiments are carried out within each website individually.
Their model relies on meta-data collected from webpages. They propose no algorithm for training
a model on one domain and testing on another domain. Wadden et al. (2020) compose a dataset
called SciFact, collected from scientific repositories. Their model is the standard retriever-reader.
To evaluate the tranferibility of their pipeline, they pretrain the pipeline on the claims extracted
from wikipedia and then test it on their dataset. Thus, their solution for domain adaptation is to
pretrain the pipeline on one resource and then test it on another resource; beyond this, they propose
no domain adaptation method. Their study also has a shortcoming: the wikipedia claims that they
use to pretrain their pipeline, may share some knowledge with the claims in their dataset. This can
potentially distort their conclusions. Gupta & Srikumar (2021) compose a multilingual fact check-
ing dataset. This dataset consists of claims, and evidence documents retrieved from Google. They
use the standard pipeline, and similar to the second study, they evaluate the transferability of their
pipeline by training on the data from one website and testing it on another website. Beyond this,
they propose no additional solution for domain adaptation. As opposed to these studies, we delve
into the two primary components of the fact checking pipeline, i.e., the retriever and the reader,
and propose algorithms to enhance their robustness. Furthermore, to evaluate our model, we do not
rely on comparing the results across fact checking websites, instead, we evaluate the transferability
across genres of claims.

Automatic fact checking is a very active research area, interested reader can see numerous surveys
published in recent years, such as the works by Oshikawa et al. (2020), Zhou & Zafarani (2021),
Zeng et al. (2021), Guo et al. (2022b), Chen & Shu (2023), and Das et al. (2023). In this study,
our goal is not to present an overview of existing fact checking methods, but to focus on a rather
unexplored aspect of this subject, i.e., the transferability of common fact checking tools across
domains. Previous studies focus on other aspects of the fact checking pipeline. For instance, Zhou
et al. (2019) and Liu et al. (2020) exploit the unstructured nature of the evidence documents and
propose to use graph networks for modeling the relationship between the documents. Jiang et al.
(2021) concatenate all the evidence documents and use a T5 network to model the final step in the
pipeline as a sequence-to-sequence problem. They report that introducing noise to the training of T5
enhances the robustness of the pipeline. Chen et al. (2022) enhance the first component of the fact
checking pipeline—i.e., the retriever—by proposing a generative model to produce document titles
(instead of retrieving them) to be used for retrieving evidence sentences.

There are also an overwhelming number of studies on dense text retrieval published in recent years,
see the surveys by Zhao et al. (2022) and Shen et al. (2022). The method proposed by Xin et al.
(2021) relies on a model called domain classifier to push the representations of source and target data
points close to each other. However, as they state, because the transformation happens concurrently
to the training of the retrieval encoders, it causes instability in the training. Therefore, they cache the
representations of the vectors in the previous steps, and include them in their loss function. The most
promising methods for domain adaptation in recent years have been those based on pseudo-query
generation, such as the methods by Wang et al. (2022) and Dai et al. (2023). The first method (Wang
et al., 2022) uses a pretrained model to generate pseudo-queries in the target domain. The second
study (Dai et al., 2023) uses a large language model for achieving the same goal.
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D COMPLEMENTARY EXPERIMENTS

In this section, we report two complementary experiments. First we report a comparison between
our method and a fact checking pipeline that does not use any domain adaptation technique. This
model is finetuned on the source domain, and then, tested on the target domain. Table 9 reports the
results. We observe that in all the scenarios our model outperforms the mentioned baseline model,
in some cases such as M→S and G→N by a large margin.

F1 in MultiFC F1 in Snopes

Method M→A M→B M→S P→A P→B P→S G→N N→G
W/O DA 0.590 0.583 0.607 0.610 0.573 0.605 0.383 0.391

ours 0.595 0.605 0.648 0.615 0.603 0.643 0.440 0.435

Table 9: Comparison between our model and a pipeline that does not employ domain adaptation
techniques.

Second we report a comparison between our model and GPT-3. In Section 1, we empirically showed
that large language models are not suitable for every day fact checking tasks, because their corpus
is not regularly updated. However, it is still informative to see how these models perform on our
datasets. Please note that a direct comparison between our model and a large language model is
not fair, because our model requires much less hardware than these models. On the other hand,
one may argue that our model has access to evidence documents. Nevertheless, given the large
pretraining corpus of these models, it is also very likely that these models are pretrained directly on
fact checking websites. This means that they may already have access to the ground-truth labels of
the datasets in their parametric knowledge. Considering all these caveats, we report the comparison
in Table 10.

F1 in MultiFC F1 in Snopes

Method M→A M→B M→S P→A P→B P→S G→N N→G
GPT-3 0.456 0.536 0.530 0.456 0.536 0.530 0.302 0.304
ours 0.595 0.605 0.648 0.615 0.603 0.643 0.440 0.435

Table 10: Comparison between our model and GPT-3. We use in-context learning to obtain the
results of GPT-3. For each label in the datasets, we use two randomly selected claims along with
one evidence document for each one as the in-context examples. This results in four examples in the
MultiFc dataset, and six examples in the Snopes dataset. We instruct the model to return the exact
labels. In the cases that the returned string is not interpretable, we assume the claim is categorized
as false.
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