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Abstract

Diffusion generative models have become the standard for producing high-quality,
coherent video content, yet their slow inference speeds and high computational
demands hinder practical deployment. Although both quantization and sparsity can
independently accelerate inference while maintaining generation quality, naively
combining these techniques in existing training-free approaches leads to significant
performance degradation, as they fail to achieve proper joint optimization. We
introduce FPSAttention, a novel training-aware co-design of FP8 quantization
and Sparsity for video generation, with a focus on the 3D bi-directional attention
mechanism. Our approach features three key innovations: 1) A unified 3D tile-
wise granularity that simultaneously supports both quantization and sparsity. 2)
A denoising step-aware strategy that adapts to the noise schedule, addressing the
strong correlation between quantization/sparsity errors and denoising steps. 3) A
native, hardware-friendly kernel that leverages FlashAttention and is implemented
with optimized Hopper architecture features, enabling highly efficient execution.
Trained on Wan2.1’s 1.3B and 14B models and evaluated on the VBench bench-
mark, FPSAttention achieves a 7.09 x kernel speedup for attention operations
and a 4.96x end-to-end speedup for video generation compared to the BF16
baseline at 720p resolution—without sacrificing generation quality. Project page:
https://fps.ziplab.co.

1 Introduction

Diffusion models have revolutionized Al through breakthrough im- Kernel 2E
age synthesis [39, [6, 34] and are advancing into complex video =~ Method Speedup | Speedup
generation [40, [45]). Diffusion Transformers (DiTs) [28] now enable BE16 1.00% 1.00%
efficient, high-quality synthesis [1} 23], powering billion-parameter FP8 1.84% 1.26x
models like Wan2.1 [37]] that produce coherent, long-duration, high- STA 5.15% 3.60x
fidelity videos. FPSAtten| 7.09x | 4.96x

Despite progress, crippling computational demands persist [32]: Table 1: Efficiency com-
(i) iterative reverse-diffusion requiring hundreds of steps, and (ii) parison of the BF16 base-
quadratic-complexity spatio-temporal attention (O(N?), N denotes line, FP8 quantization, STA
the number of tokens) (22} [17,137]. Particularly, the computational gsparse attention, and our
burden of attention becomes prohibitive for high-resolution, long- FPSAttention method on
duration videos, often consuming >70% of inference time 51,143, Wan2.1-14B at 720p resolu-
tion on an NVIDIA H20 GPU.
We report both kernel-level
and end-to-end speedups rel-
ative to the BF16 baseline.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 1: Comparing previous training-free quantization (a) and training-free sparsity (b) approaches
reveals substantial accuracy degradation and a lack of compatibility when used independently. In
contrast, our FPSAttention framework (c) integrates low-precision and sparse patterns in a single
training process, yielding near-zero accuracy loss and seamless deployment.

35]. For instance, Wan2.1-14B requires approximately 2.5 hours on an NVIDIA H20 GPU to generate
a 5s video.

To address the efficiency challenge, numerous acceleration
methodologies have been proposed [7, 24, |33], among which
quantization and sparsity have emerged as predominant tech-
niques [38}25]]. Quantization reduces numerical precision (e.g.,
FP32—INTS8/FP8), thereby decreasing the memory footprint
and enabling faster computations (Figure [1| (a)). The recent
post-training quantization (PTQ) method SageAttention [49]
quantizes attention modules into INT8 with calibration strate-
gies, providing moderate acceleration with downgraded gen-
eration quality. Compared to INTS, the emerging format FP8
quantization offers a wider dynamic range[26], facilitating both
training and inference [18,31]. Nevertheless, training-free FP8
quantization, despite its theoretical advantages, introduces sig-
nificant quantization errors that degrade model performance
[49]. Apart from quantization, sparsity techniques address the
quadratic computational complexity of 3D full attention by se-
lectively skipping computations, as illustrated in Figure|[l|(b). Figure 2: Comparison of video gen-
Representatively, Sparse-VideoGen [43] implements per-head eration results. Top: Training Free
spatial-temporal masks aligned with GPU blocks, SpargeAttn  FP8 + STA. Bottom: Our Training-
[50] employs a two-stage filtering mechanism, and Sliding Tile Aware FPSAttention. Click the
Attention (STA) [51] leverages local 3D sliding windows with  image to play the video via Acrobat
kernel-level optimizations. Reader.

To enjoy the benefits of both worlds, a straightforward strategy

is jointly applying FP8 quantization and sparsity. However, a naive combination presents significant
challenges, as quantization errors can be magnified when combined with sparsity mechanisms
[44], as shown in Figure [2| Intuitively, sparsity techniques prioritize token retention with high-
magnitude attention scores, while quantization disproportionately introduces errors in these high-
magnitude values. This intrinsic tension necessitates holistic approaches that consider both techniques
simultaneously, potentially framing sparsification as a specialized form of 0-bit quantization to achieve
optimal balance between efficiency and generation quality [27]].

Furthermore, existing approaches largely overlook training-aware joint optimization of quantization
and sparsity, creating a substantial training-inference gap. Our empirical analysis (Section [3.3)
reveals that diffusion models can tolerate and even correct for hardware-friendly tile-wise errors.
The error resilience is particularly pronounced when the model is aware of approximations via
quantization-aware training (QAT), ensuring consistent performance at inference time.



In this paper, we introduce FPSAttention, as shown in Figure[I|c), a novel training-aware co-design
framework that synergistically integrates FP8 quantization and structured sparsity for 3D attention in
video DiTs.

FPSAttention proposes three key innovations:

 Unifying Tile-wise Operations: Implementing a 3D tile-wise granularity for both FP8 quantization
and block sparsity (section[3.2), which directly aligns with efficient hardware execution patterns
(e.g., GPU Tensor Cores) and forms the basis for structured acceleration.

* Denoising Step-Aware Scheduling: Introducing an adaptive strategy (section [3.3)) that dynamically
adjusts quantization and sparsity granularity according to the varying error sensitivity and corrective
capacity of the model across different denoising timesteps.

* Hardware-Optimized Kernel Design: Developing a native, high-performance kernel (section[3.4)
leveraging features like FlashAttention and NVIDIA Hopper architecture optimizations to translate
theoretical FLOPs reduction into tangible wall-clock speedups.

As demonstrated in Table[I] by training on Wan2.1’s 1.3B and 14B models and evaluating on the
vBench benchmark, FPSAttention achieves a 7.09x kernel speedup for attention operations and a
4.96 x end-to-end speedup for video generation compared to the BF16 baseline, all without sacrificing
generation quality, significantly outperforming approaches that apply quantization (1.84 x kernel
speedup) or sparsity (5.15x kernel speedup) independently. Our work not only provides a practical
solution for accelerating video diffusion but also offers a new perspective on the robustness of
diffusion models to aggressive, structured compression.

2 Related Work

Quantization for video generation models. The computational expense of video generation
models, particularly Diffusion Transformers (DiTs) [17], driven by iterative sampling [[11] and
quadratic attention complexity [35]], necessitates model quantization techniques [32]. Post-Training
Quantization (PTQ) has been explored for its efficiency [[10, 20, [13| 54} [15]; however, applying
PTQ to video DiTs presents unique challenges beyond standard image models [42, |3, 153]]. Temporal
variability of activation statistics across denoising steps [14] has prompted PTQ methodologies to
implement time-step-wise calibration [46], adaptive quantization, and dynamic smoothing techniques
[30]. Recent work has evaluated these techniques on standardized benchmarks (e.g., VBench [16]),
assessing temporal consistency alongside perceptual quality. While PTQ approaches show promising
results, Quantization-Aware Training (QAT) for video diffusion models remains largely unexplored.
Our work addresses this gap by introducing an FP8 QAT framework that jointly optimizes quantization
and sparsity, enabling efficient video generation while maintaining visual fidelity.

Sparse attention for video generation models. Recent advancements in sparse video generation
and efficient attention mechanisms have improved memory utilization and computational efficiency.
Sparse VideoGen [43]] leverages sparsely sampled motion priors to produce realistic videos while
reducing temporal redundancy. Efficient attention mechanisms have proven crucial for handling
long-range dependencies in video data. Sliding Tile Attention[51]] introduces a tiled sparse attention
mechanism for modeling spatial-temporal correlations, while SpargeAttn [S0] proposes progressive
sparsification by selectively pruning attention tokens based on importance scores. DiTFastAttn [2]]
accelerates attention computation by dynamically filtering irrelevant patches, achieving significant
speedups without compromising quality. These approaches illustrate the trend of combining structured
sparsity with content-aware selection for scalable video generation. However, these methods are
typically limited to inference-time acceleration, lack integration with model training procedures, and
are not fully compatible with quantization techniques, creating challenges for developing holistically
efficient video generation frameworks.

3 Method

Our technique integrates algorithmic innovation with hardware-conscious kernel optimization to
enhance the efficiency of video DiTs. This section begins by establishing fundamental concepts essen-
tial to our methodology. Subsequently, we introduce the architecture of our proposed FPSAttention,
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Figure 3: Overview of FPSAttention. (1) Our approach synergistically optimizes joint quantization
and sparsity patterns within the attention mechanism for efficient video generation. (2) We introduce
a novel denoising step-aware strategy that dynamically adapts the granularity throughout the diffusion
process, balancing computational efficiency and perceptual fidelity. Empirical observations are shown
in Figure El (3) A fused hardware-friendly kernel is applied for attention operations.

detailing its two primary algorithmic contributions: a unified tile-wise quantization and sparse at-
tention mechanism, and a denoising step-aware strategy for dynamic adaptation of quantization and
sparsity hyperparameters. Finally, we outline our hardware-optimized kernel implementation that
plays a crucial role in translating theoretical computational savings into practical efficiency gains.
Figure [3| provides a high-level conceptual overview of our FPSAttention framework.

3.1 Background

This subsection establishes the two foundational techniques that underpin our methodology: 8-bit
floating-point (FP8) quantization and Sliding Tile Attention (STA).

FP8 quantization. Video Diffusion Transformers (DiTs) process L = T' x H x W spatiotemporal
tokens, where 7', H, and W represent temporal frames, height, and width dimensions. To reduce
memory bandwidth requirements for activation tensors, FP8 quantization approximates each value
X;,; using an 8-bit floating-point representation. Unlike INT8 quantization, which maps continuous
values to a scaled integer grid, FP8 conversion preserves the floating-point nature by utilizing
dedicated sign, exponent, and mantissa bits (in formats such as E4AM3 or ESM2).

The FP8 conversion employs a scaling factor s, for each tile of values g to map the original values
into the representable dynamic range of FP8:

XFpg(Xi)j; s4) = dequantize(FP8_convert(X; ; - s4))/sg- @))

To enhance approximation accuracy, tile-wise FP8 quantization employs per-tile scaling factors
{sq} that minimize quantization error within each specific tile. This approach preserves attention
head-specific and frame-specific activation dynamics while typically reducing data size by half (e.g.,
from 16-bit to 8-bit). The result is a theoretical 2x reduction in memory bandwidth requirements,
with further effective improvements achievable through specialized FP8 hardware acceleration.

Sliding Tile Attention (STA). Standard attention operations on N = L tokens with feature dimension
d incur a computational complexity of O(N?2d), creating a significant bottleneck for high-resolution
video generation. STA addresses this challenge by partitioning the 3D token space into M non-
overlapping tiles {7, } of dimensions (T3, T}, T.).



The key innovation of STA is its locality-based attention mechanism: each query tile u attends
exclusively to key tiles v within a local neighborhood W (u), defined by the distance constraint:

W, Wy, Wy
= . u — Cvlloo S o7 ) ’
W(u) {v lcw — cull (2Tt 2T}, 2T, ) }

where (W, Wy, W,,,) denote the window dimensions measured in tile units, and ¢,,, ¢, are the centers
of tiles v and v. This constraint effectively replaces full attention with a tile-wise masked attention:

P Softmax(Q, K, /v/d), if token k is in a tile 7, where v € W(u),
ok = —00, otherwise.

@

3

where @ and K are queries and keys. STA generates M x |W(u)| dense attention blocks that are
compatible with optimized implementations such as FlashAttention[S]]. This design provides substan-
tial speedup by replacing the irregular sparse patterns of token-wise sliding window attention with
structured tile-based computations that align well with GPU memory hierarchies. As demonstrated in
[51], this approach can accelerate attention by 2.8—17 x over FlashAttention-2[4] and 1.6—-10x over
FlashAttention-3[29] for video generation tasks.

3.2 Joint Tile-wise FP8 Sparse Attention

Frame 0
Building upon FP8 quantization and tiled atten- H@%
tion techniques, we introduce FPSAttention, 2 i
a Joint Tile-wise FP8 Quantization and Sparse = o

Attention mechanism that synergistically opti- Per token [I] “ [D:I:UIDIII[[IE]

mizes computational efficiency and perceptual

accuracy in video DiTs. i il il i

Our tile-wise granularity approach (Figure []

last row) is motivated by three primary consid- Per group ’ I ‘ E[Dm

erations. First, it offers an optimal accuracy- (Group size =4
efficiency trade-off compared to conventional m
methods (per-token, per-channel, per-group; Fig- Per3D Tile =~ ==

ure [ first three rows) that often fail to align (Ours) ’ | | | ‘
with underlying hardware architectures. While
per-group quantization provides a reasonable Figure 4. Quantization granularities: per—token,
balance, it frequently overlooks GPU compute per-channel, per-group, and our per 3D-tile, which
tile patterns, thereby reducing hardware utiliza- aligns with hardware compute patterns.

tion efficiency. Second, our approach maintains

full compatibility with the STA sparsity design, allowing seamless integration of quantization and
sparsity optimizations at matching granularity. Third, our tile-wise design exhibits superior hardware
compatibility, aligning precisely with compute tiles in optimized kernels such as FlashAttention,
which enables direct translation of theoretical computational savings into practical speedups.

Frame 1 Frame 2 Frame 3

Channel

The FPSAttention mechanism processes neural activations through a systematic workflow: (1)
organizing query ((Q) and key (K) activations into contiguous 3D tiles aligned with GPU cache layouts
for enhanced data locality; (2) quantizing each tile to FP8 precision with a locally optimized scale
factor; (3) enforcing tile-granularity sparse attention patterns, leveraging spatial locality and low-bit
arithmetic; and (4) dequantizing the aggregated attention output to higher precision (BF16/FP16).

Tile-wise FP8 quantization for (Q and K. The matrices ), K € RL*¢ are partitioned along the
sequence dimension L into non-overlapping tiles {7;,} of dimensions (7}, Ty, T3, ). For each tile 7,
we compute separate scaling factors s and sX to map their values optimally to the FP8 representable
range via
K

s8¢ = (igl)anTu |Qi.5|/Meps_max, S, :(igl)%XTu | Ki,j]/ Mrpg_max; “4)
where Mppg max 1S the maximum representable magnitude in FP8 and bounded by specific format.
Then each element is independently quantized:

QAZ'J:FPg(Qi,j;Sg), Ki7j=FP8(Ki7j;85). 5)

This per-tile scaling strategy minimizes quantization error for both ) and K independently, preserving
attention dynamics more effectively than global scaling approaches. When combined with the STA
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Figure 5: Joint quantization and sparsity error patterns across denoising steps. Blue: token-level
granularity; : our 3D tile-wise granularity with sparse attention. Key insight: early/late steps
tolerate coarser quantization and higher sparsity, while intermediate steps require finer granularity
and denser attention. Our FPSAttention (green) closely approximates highest-granularity methods,
validating our adaptive scheduling strategy. All measurements from inference are with identical
prompts. Performance gaps primarily stem from FP8 quantization rather than sparsity constraints.

formulation, the attention weights P are computed using the quantized Q and K, following Eq.
This formulation enforces a regular, block-sparse pattern (Figure [3)) that efficiently maps to modern
GPU compute architectures.

Channel-wise FP8 quantization of ' and tensor-wise FP8 quantization of P. For the value
matrix V € RE*4, a channel-wise FP8 quantization approach is employed. For each channel,
we compute the scaling factor s}/ to map the values optimally to the FP8 representable range:

sy =max;cr, |V; j|/Mrps_max- Each element in V; is subsequently quantized as ‘7J =FP8(V}; s}/)

We observe that keeping the fine granularity for V' is critical for the performance. Following
SageAttention2 [48]], we use a fixed scalar ﬁ to quantize P, obtaining P in FP8.

Aggregation and dequantization. The attention output is computed as X = PV. This low-precision
output is then dequantized to higher precision (BF16/FP16) to maintain computational stability in
subsequent layers.

By quantizing ) and K tiles independently while using channel-wise quantization for V, the
FPSAttention mechanism captures fine-grained statistical properties of each attention component
while maintaining optimal alignment with GPU memory hierarchies. Furthermore, the tile-constrained
sparse attention pattern creates M x [V (u)| dense, structured attention blocks that avoid the in-
efficiencies of unstructured sparsity patterns. This approach enables direct wall-clock speedups
during execution by maximizing hardware utilization and minimizing memory access overhead, as
demonstrated in our experimental results.

3.3 Denoising Step-aware Quantization and Sparsity Strategy

The mechanism described in Section [3.2]employs uniform quantization and sparsity across denoising
steps. However, as illustrated in Fig. |5} video DiTs exhibit varying sensitivity to numerical precision
and sparsity levels throughout the diffusion process. Specifically, early and late denoising steps
demonstrate greater tolerance to coarser quantization and higher sparsity, whereas intermediate steps
demand finer numerical precision and lower sparsity. This also suggests that diffusion models can
intrinsically correct the approximation errors of attention, which motivates our training-aware scheme
to mitigate the training-inference gap. Based on these observations, we propose an adaptive, denoising
step-aware compression schedule, for both training and inference. We adjust the quantization
granularity ¢(t) and sparsity window size W (¢) based on the denoising step t.

Piecewise schedule for quantization and sparsity. For D denoising steps, we partition the process
into three regimes using thresholds t1 =a; D and {5 =as D (0 < a1 < e < 1), each associated with
different quantization tile sizes g(t) and sparsity window sizes W (¢). Smaller g(t) corresponds to a
finer quantization granularity, while larger TV (¢) indicates a denser attention pattern.



We show quantization and sparsity schedule as following. We define a time-dependent hyperparameter
vector S(t) = [g(t), W (t)], which is governed by:

[Geoarses Wiparse) s t < t1 (Early-Denoising Steps),
S(t) = 4 [Yfines Weense]s t1 < t <ty (Mid-Denoising Steps), 6)
[gintermediatea Wmedium_densily}a t > 1o (Late-DCDOiSing StGpS),

with Geoarse = Jintermediate = Jfine and Wdense > Wmedium_density > Wsparse’ enSUfing the finest quantization
granularity and densest attention patterns during these mid-denoising steps, as illustrated in Figure [3

These hyperparameters are selected at inference time to match the model’s varying tolerance to
quantization and sparsity across different denoising stages, and then transferred to the training to
avoid the prohibitive computational overhead. During training, this configuration allows the model
to adaptively compensate for joint quantization-sparsity errors, leading to satisfiable stability and
convergence throughout the training process, as shown in Figure[7]

3.4 Hardware-Optimized Kernel Design

Our algorithmic designs are complemented by a hardware-optimized kernel implementation for
maximum practical efficiency. The implementation addresses several key aspects: memory access
coalescing through structured operations that enable efficient GPU memory loads/stores with tiling
support; maximized parallelism via tile-wise operations that process independent tiles concurrently;
exploitation of dedicated acceleration units such as Tensor Cores on NVIDIA Hopper/Ada architec-
tures for mixed-precision and FP8 computations; and operation fusion that combines multiple logical
steps (attention, sparsity, dequantization) into single triton kernels, significantly reducing overhead
and memory traffic while maintaining high tensor core utilization and computational intensity.

4 Experiments

Implementation details. We implemented our proposed framework on the Wan2.1[36]] architecture
(1.3B and 14B variants), preserving the original model structure while introducing FPSAttention,
joint FP8 quantization and structured sparsity. The quantization schemes and sparsity patterns were
applied across attention mechanisms using score mod and mask mod functions via FlexAttention [J] .
Fused kernels were compiled using Triton to accelerate inference on Hopper GPUs. The models were
trained on high-quality video data (480px 16fpsx5s). We trained FPSAttention on Wan2.1-14B
using 64 nodes with 8 H20 GPUs for 7 days. For detailed hardware specifications, training procedures,
dataset preparation, evaluation protocols, and baseline comparisons, please refer to Appendix.

Evaluation protocol. We evaluate the our method on the public video dataset, VBench [17]. We
following the common practice [55, [19] to sample 5 videos per evaluation prompts defined in the
VBench dataset, and assess the video generation quality across 16 VBench dimensions. We also
report Peak Signal-to-Noise Ratio (PSNR) [[12]], Structural Similarity Index (SSIM)[41]], and Learned
Perceptual Image Patch Similarity (LPIPS) [52] metrics.

4.1 Main Results

Quality evaluation. We compare FPSAttention with several state-of-the-art optimization meth-
ods, as shown in Table[2] Our baselines include sparsity-based approaches (SparseVideoGen [43]]
and STA), quantization methods (SageAttention [49]), and hybrid approaches (SpargeAtten [50],
a training-free method that jointly applies attention sparsification and activation quantization). As
demonstrated in Table[2] FPSAttention achieves superior performance across all quality metrics.
Particularly notable is the average PSNR of 25.74353 on the Wan2.1-14B model, significantly outper-
forming all baseline methods. This objective metric confirms FPSAttention’s ability to generate
videos with exceptional fidelity to reference images. Furthermore, FPSAttention maintains excel-
lent performance on perceptual metrics, with high Video Quality (0.7103) and strong spatial-temporal
consistency (0.9435) on the VBench evaluation. Interestingly, after joint training, FPSAttention
exhibits a slight increase in VBench scores, while [47, 51]] also demonstrate performance improve-
ments when trained with structured sparsity—potentially driven by the inductive bias of locality.
These results validate that our joint sparsity and quantization approach preserves visual quality while
substantially improving computational efficiency. Visual examples in Figure [6]further illustrate that



Table 2: Quality and efficiency benchmarking results. T We reproduce the results of the baseline
methods from the original papers. Note that VBench results here may differ from official results due
to the randomness in generated samples and prompt extensions. The quality and efficiency evaluation
is based on 480p videos. Specifically, * indicates the speedups via 720p with longer sequence length.

Method ‘ Quality ‘ Efficiency
‘ PSNRT SSIM1 LPIPS| ImageQualf SubConsist 1 ‘ FLOPS | Latency | Speedupt Speedup®

Wan2.1-1.3Bf ‘ - - - 0.6708 0.9536 ‘ 77.52 PFLOPS 271s 1.00x
SageAttention 20.18990 0.78241 0.18811 0.6699 0.9453 37.61 PFLOPS 141s 1.91x

SpargeAtten 17.72979  0.72628 0.26183 0.6541 0.8982 43.15 PFLOPS 205s 1.32x
SparseVideoGen 19.51276  0.78891 0.20513 0.6729 0.9292 30.67 PFLOPS 152s 1.78x

STA 18.78546  0.76335  0.23187 0.6626 0.8992 31.78 PFLOPS 143s 1.89x

Ours Quant 20.99712  0.79820 0.15114 0.6798 0.9458 32.01 PFLOPS 144s 1.88x

Ours Quant + Sparse | 21.35417  0.80835  0.15398 0.7103 0.9338 32.01 PFLOPS 110s 2.45x
Wan2.1-14Bf - - - 0.6715 0.9528 637.52 PFLOPS 1301s 1.00x 1.00x
SageAttention 24.33985 0.82283  0.15607 0.6724 0.9530 301.98 PFLOPS 646s 2.01x 1.94x
SpargeAtten 21.38291 0.81452 0.21723 0.6350 0.9173 339.30 PFLOPS 734s 1.77x 2.12x
SparseVideoGen 23.52881 0.80113 0.17032 0.6868 0.9489 259.79 PFLOPS 613s 2.12x 3.13x
STA 22.65635 0.82024 0.19283 0.6577 0.9530 264.34 PFLOPS 548s 2.37x 3.60x
Ours Quant + Sparse | 25.74353  0.83171  0.07610 0.7103 0.9435 273.01 PFLOPS 423s 3.07x 4.96x

Our FPSAttention, 4.96x E2E speedup

Figure 6: Examples of generated videos by FPSAttention and the Wan2.1-1.3B baseline. We show-
case from five different aspects. FPSAttention achieves 4.96x E2E speedup, while maintaining
lossless visual quality. Please click the image to play the video clip via Acrobat Reader.

FPSAttention consistently outperforms baseline methods while maintaining quality comparable
to the original model.

Test-time efficiency. We evaluate computational efficiency across both 1.3B and 14B parameter
variants of the Wan2.1 model, as reported in Table For the 1.3B parameter model, FPSAttention
achieves up to 2.45x speedup on 480p videos while maintaining superior quality metrics. More
impressively, when tested on the larger 14B parameter model with 720p videos (indicated by * in the
table), FPSAttention achieves a substantial 4.96x end-to-end speedups compared to the baseline.

Table 3: Effect of different tile sizes on  Table 4: Impact of sparsity window dimensions on
model performance on Wan2.1 1.3B. We  model performance and computational efficiency. We
evaluate various tile size combinations for  evaluate various combinations of temporal (t), height
temporal (t), height (h), and width (w) di-  (h), and width (w) window sizes and measure infer-
mensions. ence kernel speedup.

Tile Size Metrics ‘Window Size Metrics
t h w PSNR? SSIMT  LPIPS| h w PSNR?T SSIMt  LPIPS| | Speedup?

3 4 4 | 1987452 0.77634 0.16521 3 1 19.23465 0.76128 0.17251 3.24x
6 8 8 |20.12358 0.78147 0.15982 6 10 19.94731  0.77926  0.16327 3.07x
12 16 16 | 20.45621 0.78932 0.15743 6 6 20.12482  0.78341 0.16014 1.69x
24 32 32| 20.99712 0.79820 0.15114 6 1 20.45621 0.78932 0.15743 5.16x
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Figure 7: Training loss comparison between baseline Wan2.1 1.3B, and our joint FP§ quantization
with structured sparsity. The FPSAttention shows slightly higher loss initially but stabilizes with
comparable final performance.

4.2 Ablation Study

In this section, we conduct a comprehensive ablation study to analyze the effects of key components in
FPSAttention. We investigate the different tile size selection for quantization and sparsity, and the
relations to the hardware awareness. Additionally, we investigate how sparsity window dimensions
affect model performance and computational efficiency. We also study the training stability to verify
whether our FPSAttention training dynamics highly aligns the baseline trend.

Effect of tile size for quantization and sparsity. We investigate the impact of joint quantization and
sparsity granularity by varying tile sizes along temporal (t), height (h), and width (w) dimensions,
with results presented in Table[3] Our experiments demonstrate that the largest tile configuration
(24,32,32) achieves optimal performance with PSNR 20.99712, SSIM 0.79820, and LPIPS 0.15114.
However, we observe minimal performance differences between configurations (6,8,8), (12,16,16),
and (24,32,32). Based on these findings, we implement a scheduled approach, using different tile
sizes for early, mid, and late denoising steps, respectively. We emphasize the hardware-friendly
configuration of (6,8,8) yields the best throughput as it aligns with flash attention block size design
and is optimized for the Hopper architecture. Notably, unbalanced tile sizes, such as (3,4,4), lead to
significant performance degradation, this configuration is also misalign with flash attention block size
leads to inefficiency.

Effect of sparsity window dimensions. The relationship between sparsity window dimensions,
inference speed, and model performance is analyzed in Table [d] Our results demonstrate that a
configuration (6,6,1) using temporal window of 6, height window of 6, and width window of 1
provides an optimal balance, achieving a substantial 5.16x kernel speed-up while maintaining high
visual quality. This suggests that while reducing the temporal and spatial window sizes improves
efficiency, there exists a threshold beyond which visual quality deteriorates significantly.

Training stability. Joint FP8 quantization and structured sparsity initially increases training loss by
15% compared to full-precision Wan2.1 baseline (Figure[7). We mitigate these challenges through
adaptive learning rate scheduling and gradient accumulation techniques. After 2,000 steps, loss
convergence trajectories become nearly identical (<2% difference), confirming that our FP8 sparse
attention preserves critical information pathways despite bitwidth and sparsity constraints.

5 Conclusion and Future Work

In this paper, we have introduced FPSAttention, a module jointly optimizing FP8 quantization and
structured sparsity for video diffusion models. Through unified 3D tile-wise granularity, denoising
step-aware adaptation, and hardware-friendly kernel implementation, our approach achieves up
to 7.09x kernel speedup and 4.96x end-to-end acceleration without compromising generation
quality. The tile-aligned approach ensures quantization and sparsity work synergistically, while step-



aware scheduling adapts compression hyperparameters to varying sensitivity across diffusion phases.
Despite these results, our approach has limitations: it performs best on FP8-supporting hardware,
requires additional training resources, and introduces certain hyperparameters. We currently validate
FPSAttention on Wan2.1 due to resource constraints. Future work will focus on broadening the
applicability by generalizing beyond specific architectures (e.g. Hunyuan [17] based on MMDiT [9])).
We also aim to refine training resource requirements and hyperparameter management, and extend
these co-design principles beyond attention mechanisms to other model components.
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A FPSAttention Algorithm

Algorithm I] presents the core computational workflow of our FPSAttention method, which imple-
ments joint tile-wise FP8 quantization with structured sparse attention and denoising step-aware
adaptation. The algorithm follows the methodology described in the main paper, incorporating tile-
wise quantization for queries and keys, channel-wise quantization for values, tensor-wise quantization
for attention weights, and dynamic adaptation based on denoising timesteps.

Algorithm 1 FPSAttention: Joint Tile-wise FP8 Quantization and Sparse Attention

Input: Input tensors Q, K,V € RE*4, denoising step ¢, diffusion steps D

Input: Transition points a1, «a, quantization granularities { geoarse; Gfines Jintermediate |
Input: Window sizes { Wiparse; Waenses Winedium_density }» tile scheme 7

Output: Output tensor X € RL*4 (BF16/FP16)

I: > 1. Denoising Step-aware Parameter Selection
2: t1 < a1 -D,tyg < as-D
3: if t < t; then
4 9(t) < Geoarse» W (t) Wparse > Early steps
5: elseift; <t <t then
6: 9(t) < Gfine» W(t) < Weense > Mid steps
7: else
8: g(t) <~ Jintermediate > W(t) — Wmedium_densily > Late steps
9: end if
10: > 2. Tile-wise FP8 Quantization for Q and K
11: Partition @, K into tiles {7, } with granularity g(t)
12: for each tile 7,, do
13: s < max( je7, |Qij|/Mrps_max
14: SuK < max(i7j)€7—u |Ki,j /M]:pg_max
15: Qi)j — FPS(Qi7j; SS) for (Z,]) €Ty
16:  K;; + FP8(K; ;;sK) for (i,4) € T,
17: end for
18: > 3. Channel-wise FP8 Quantization for V
19: for each channel j € {1,...,d} do
20: sy < max;er, |Vi |/ Mpps_max
21 Vi « FP8(Vi;sY) forall i
22: end for
23: > 4. Structured Sparse Attention Computation via FlexAttention
24: Define neighborhood W (u) based on window size W (¢):
250 W(u) = {0+ llew — ¢ lloe < (We/ (210), Wi/ (2T3), W/ (2T,0))}
26: > Configure FlexAttention mask and score modification functions
27: Define mask_mod(b, h, ¢, k) = True if tile(q) € W(tile(k)), False otherwise
28: Define score_mod(S,b,h,q, k) =S > Identity for quantized inputs
29: > Execute FlexAttention with quantized inputs and custom modifications
30: X « FlexAttention(Q, K, V., score_mod, mask_mod)
31 > 5. Dequantize Output to Target Precision
32: X « Dequantize(X) > Dequantize to BF16/FP16
return X

Key Algorithmic Components

The algorithm implements the four core innovations described in the main paper:

* Denoising Step-aware Adaptation: Lines 2-8 implement the adaptive scheduling strategy
from Equation 6 in the main paper, dynamically adjusting quantization granularity g(¢) and
sparsity window size T (t) based on the current denoising step ¢.
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* Tile-wise FP8 Quantization for Q and K: Lines 10-15 partition queries and keys into 3D
tiles with step-dependent granularity and compute per-tile scaling factors sg and s& to
minimize quantization error within each tile.

* Channel-wise FP8 Quantization for V: Lines 17-20 apply channel-wise quantization to
the value matrix, preserving fine-grained channel information that is critical for generation
quality.

* FlexAttention-based Sparse Attention: Lines 22-26 implement structured sparse attention
using FlexAttention’s mask_mod and score_mod interfaces, enabling hardware-optimized

execution with tile-wise sparsity patterns that generate exactly M x [W(u)| dense attention
blocks.

* Output Dequantization: Line 28 dequantizes the FlexAttention output to the target preci-
sion (BF16/FP16) to maintain compatibility with the downstream network components.

This implementation ensures full compatibility with the theoretical framework while enabling prac-
tical hardware acceleration through structured computation patterns and optimal memory access
patterns.

B Additional Implementation Details

Models. We implement and evaluate FPSAttention on the Wan architecture [37], leveraging both
1.3B and 13B parameter variants to demonstrate scalability. The Wan models feature a DiT backbone
with cross-attention for text conditioning and temporal attention for inter-frame modeling. Our
implementation maintains architectural fidelity while seamlessly integrating FP8 quantization across
attention and feed-forward components. The joint quantization and sparsity mechanisms are realized
through FlexAttention’s score and mask modification interfaces, with the resulting fused kernels
compiled via Triton for optimal execution on Hopper architectures.

Hardware. Experiments utilize a distributed computing cluster with high-performance GPU nodes,
each containing 192 CPU cores, 960GB system memory, and 8xNVIDIA H20 GPUs (96GB each).
InfiniBand interconnects ensure high-bandwidth inter-node communication for distributed training.
Training scales from 16 nodes (1.3B model) to 64 nodes (13B model), requiring approximately 7
days per configuration to achieve convergence.

Dataset. Training employs a curated high-quality video dataset processed through a comprehensive
filtering pipeline. The preprocessing workflow includes automated subtitle removal, black-border
cropping, and monochrome video exclusion, followed by quality-based filtering using established
metrics (Q-Align > 3.5, Aesthetic Score > 2.0, optical flow magnitude 0.05-2.0). After deduplication,
videos are standardized to 480p resolution, 16fps frame rate, and 5-second duration to optimize the
computational efficiency-quality balance across both model scales.

Evaluation. Performance assessment utilizes the VBench benchmark [17], following established
protocols [55}19] with 5-video sampling per prompt. Evaluation encompasses 16 comprehensive
VBench dimensions covering aesthetic quality, temporal consistency, motion dynamics, and semantic
understanding. Additional quantitative metrics include PSNR [[12]], SSIM, and LPIPS [52] to provide
multi-faceted quality assessment.

Baselines. Our comparative analysis includes representative approaches from three categories: (1)
sparsity-based methods (SparseVideoGen [43], STA), (2) quantization-focused techniques (SageAt-
tention [49]), and (3) joint optimization methods (SpargeAttn [S0]). This selection enables com-
prehensive evaluation of FPSAttention against both specialized single-optimization approaches and
competing joint methods, providing a thorough assessment of our framework’s relative performance
and efficiency gains.

C Ablation Study: Challenges of Naive Quantization and Sparsity
Combination

To validate our core motivation that naive combination of FP8 quantization and sparsity presents
significant challenges, we conduct a comprehensive ablation study comparing three key approaches:
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(1) the baseline full-precision model, (2) a training-free naive combination of quantization and
sparsity, and (3) our proposed FPSAttention method with joint optimization.

Table [5] presents a detailed comparison across all VBench metrics for the Wan 1.3B model. The
training-free approach applies standard FP8 quantization and sparse attention patterns without joint
optimization or denoising step-aware adaptation. As hypothesized, this naive combination leads to
substantial performance degradation across nearly all evaluation metrics.

Table 5: Ablation study demonstrating the challenges of naive quantization and sparsity combination.
We compare baseline full-precision (Baseline), training-free naive combination (Training-Free), and
our joint optimization approach (FPSAttention) on Wan 1.3B across all VBench metrics. The severe
degradation in the training-free approach validates the need for holistic joint optimization.

Metric Baseline Training-Free FPSAttention
Aesthetic Quality 0.6105 0.2892 0.6240
Appearance Style 0.7157 0.7874 0.7252
Background Consistency 0.9503 0.9280 0.9156
Color 0.9049 0.4836 0.8932
Dynamic Degree 0.3014 0.3750 0.4195
Human Action 0.7720 0.0200 0.7780
Imaging Quality 0.6708 0.6868 0.7103
Motion Smoothness 0.9527 0.9513 0.9413
Multiple Objects 0.6091 0.0000 0.6665
Object Class 0.7710 0.0109 0.8185
Overall Consistency 0.6453 0.1206 0.6893
Quality Score 0.8332 0.7473 0.8428
Scene 0.3030 0.0129 0.3870
Semantic Score 0.6768 0.1733 0.7088
Spatial Relationship 0.7317 0.0008 0.7659
Subject Consistency 0.9457 0.8887 0.9338
Temporal Flickering 0.9844 0.9401 0.9336
Temporal Style 0.6382 0.1239 0.6558
Total Score 0.8019 0.6325 0.8160
Performance Drop - 21.1% +1.8%

Key Findings: The results clearly demonstrate the challenges inherent in naive quantization and
sparsity combination:

* Severe Quality Degradation: The training-free approach achieves only 0.6325 total score
compared to the baseline’s 0.8019, representing a substantial 21.1% performance drop.

* Critical Failure Modes: Several metrics show near-zero performance in the training-free
approach, including Human Action (0.02), Multiple Objects (0.0), Object Class (0.011), and
Spatial Relationship (0.0008), indicating complete failure in complex semantic understand-
ing tasks.

* Magnified Quantization Errors: As predicted by our theoretical analysis, sparsity mecha-
nisms amplify quantization errors in high-magnitude attention scores. This is particularly
evident in metrics requiring fine-grained semantic understanding, where the interaction
between quantization noise and sparse token selection leads to catastrophic information loss.

* Joint Optimization Success: In contrast, our FPSAttention approach not only avoids the
degradation seen in naive combination but actually improves upon the baseline (0.8160 vs
0.8019, +1.8% improvement), validating the effectiveness of our denoising step-aware joint
optimization strategy.

This ablation study emphasizes the necessity of our training-aware co-design scheme.
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D VBench Full Evaluation Results

Tables [6] and [7] present comprehensive evaluation results of our method compared to various base-
lines on VBench for Wan 1.3B and Wan 13B models, respectively. These results demonstrate the
effectiveness of our joint FP8 quantization and sparsity approach across multiple video quality
metrics.

Table [6] shows performance comparisons across seven methods on the Wan 1.3B model: the baseline
(Base), SageAttention (SageAtt) [49], SpargeAttention (SpargeAtt) [50], SparseVideoGen (Spar-
seVG) [43]], Sliding Tile Attention (STA) [51], our quantization-only variant (Ours-Q), and our full
joint quantization and sparsity method (Ours-Q+S). The evaluation covers 18 comprehensive metrics
including aesthetic quality, motion dynamics, temporal consistency, and semantic understanding.
Our full method (Ours-Q+S) achieves the highest total score of 0.8160, demonstrating superior
performance compared to methods that apply quantization or sparsity independently.

Table [/| presents similar comparisons for the larger 13B model, where our method continues to
achieve competitive performance while providing substantial computational savings. The results
validate that our approach scales effectively to larger model sizes while maintaining video generation
quality across diverse evaluation criteria.

Table 6: Performance comparison of different methods on Wan 1.3B across VBench metrics. We
compare the baseline (Base), SageAttention (SageAtt), SpargeAttention (SpargeAtt), SparseVideoGen
(SparseVG), Sliding Tile Attention (STA), our quantization-only variant (Ours-Q), and our full joint
method (Ours-Q+S). Bold values indicate the best performance for each metric.

Metric Base SageAtt  SpargeAtt  SparseVG STA Ours-Q  Ours-Q+S
Aesthetic Quality 0.6105 0.6104 0.5668 0.563 0.5661 0.6091 0.624
Appearance Style 0.7157 0.715 0.7744 0.2253 0.7952 0.6922 0.7252
Background Consistency ~ 0.9503 0.95 0.9123 0.9525 0.9284 0.9472 0.9156
Color 0.9049 0.8866 0.8903 0.9037 0.8974 0.9146 0.8932
Dynamic Degree 0.3014 0.307 0.3222 0.7139 0.5722 0.3222 0.4195
Human Action 0.772 0.75 0.734 0.73 0.622 0.75 0.778
Imaging Quality 0.6708 0.6699 0.6541 0.6729 0.6626 0.6798 0.7103
Motion Smoothness 0.9527 0.9527 0.9139 0.9726 0.9649 0.9496 0.9413
Multiple Objects 0.6091 0.5837 0.4715 0.471 0.4043 0.6011 0.6665
Object Class 0.7710 0.7695 0.6859 0.6935 0.5818 0.7851 0.8185
Overall Consistency 0.6453 0.6451 0.6492 0.6935 0.6236 0.6478 0.6893
Quality Score 0.8332 0.8337 0.8049 0.2336 0.7994 0.8363 0.8428
Scene 0.3030 0.3092 0.2192 0.1732 0.1995 0.3200 0.3870
Semantic Score 0.6768 0.6704 0.6412 0.6342 0.6012 0.6780 0.7088
Spatial Relationship 0.7317 0.7364 0.7217 0.6469 0.6863 0.7438 0.7659
Subject Consistency 0.9457 0.9453 0.8982 0.9292 0.8993 0.9458 0.9338
Temporal Flickering 0.9844 0.9841 0.9647 0.9883 0.9652 0.9822 0.9336
Temporal Style 0.6382 0.6385 0.6247 0.2265 0.6005 0.6475 0.6558
Total Score 0.8019 0.8011 0.7722 0.7827 0.7597 0.8046 0.8160

E Clarification on VBench Evaluation Metrics

In this study, we observed that some of the baseline methods we reproduced (including some of our
own exploratory experiments prior to FPSAttention) might yield VBench scores slightly lower than
those reported in their respective official publications. We attribute this primarily to the following
factors: Randomness: The inherent stochasticity in video generation models can lead to slight
variations in results and vBench scores across multiple runs, even with identical settings. Prompt
Extension: Many prior works [21] may employ specific prompt extension strategies to enrich input
prompts. This can influence the content and quality scores of the generated videos. We didn’t employ
this optimization. Classifier-Free Guidance (CFG) Scale and Other Sampling Strategies: Different
CFG scale values and other sampling parameters (e.g., number of sampling steps) significantly
impact generation quality. While we endeavored to follow the descriptions in the respective baseline
papers, subtle parameter differences might still exist. It is worth noting that similar observations
have been made in other research. For instance, in the work on Sliding Tile Attention (STA) [511],
their reproduced HunyuanVideo baseline also exhibited lower VBench performance compared to
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Vbench’s official leaderboard. Despite these potential metric variations, we emphasize that all
methods in this study (including our FPSAttention and all compared baselines) were evaluated
under an identical VBench evaluation pipeline and parameter settings, ensuring a fair comparison.
Our primary research objective is to demonstrate the significant inference speedup achieved by
FPSAttention while maintaining comparable (or superior) generation quality relative to baseline
methods.

Table 7: Performance comparison of different methods on Wan 13B across VBench metrics. We
compare the baseline (Base), SageAttention (SageAtt), SpargeAttention (SpargeAtt), SparseVideoGen
(SparseVG), Sliding Tile Attention (STA), and our full joint method (Ours-Q+S). Bold values indicate
the best performance for each metric.

Metric Base SageAtt  SpargeAtt SparseVG STA Ours-Q+S
Aesthetic Quality 0.6204 0.6209 0.5875 0.6246 0.6033 0.624
Appearance Style 0.2164 0.2163 0.7586 0.2306 0.2303 0.2073
Background Consistency  0.9691 0.9687 0.9355 0.9589 0.9573 0.9377
Color 0.8879 0.8825 0.8768 0.8883 0.8814 0.8932
Dynamic Degree 0.6944 0.7028 0.6028 0.6806 0.7028 0.8389
Human Action 0.796 0.8 0.78 0.816 0.778 0.816
Imaging Quality 0.6715 0.6724 0.635 0.6868 0.6577 0.7103
Motion Smoothness 0.9828 0.9828 0.9413 0.982 0.9714 0.9804
Multiple Objects 0.6627 0.6477 0.6066 0.7012 0.6576 0.666
Object Class 0.8299 0.8312 0.7896 0.8712 0.81 0.8185
Overall Consistency 0.6912 0.6912 0.6975 0.708 0.6893 0.6893
Quality Score 0.6577 0.8428 0.8134 0.7421 0.8246 0.7103
Scene 0.3669 0.3049 0.3495 0.4129 0.3387 0.3182
Semantic Score 0.7572 0.7091 0.6969 0.7421 0.7077 0.7088
Spatial Relationship 0.7364 0.7405 0.7526 0.8056 0.7405 0.7661
Subject Consistency 0.9528 0.953 09173 0.9489 0.953 0.9435
Temporal Flickering 0.9922 0.9922 0.969 0.9891 0.9922 0.9754
Temporal Style 0.2408 0.2408 0.6607 0.2438 0.2408 0.6558
Total Score 0.8153 0.8158 0.7901 0.8196 0.8012 0.816

The results demonstrate that our joint FP8 quantization and sparsity approach achieves competitive
or superior performance compared to specialized methods focusing solely on either quantization or
sparsity. For the Wan 1.3B model, our method achieves the highest total score (0.8160), outperforming
the baseline (0.8019) while providing significant computational benefits. Similarly, for the Wan 13B
model, our approach performs on par with the best-performing methods while offering substantial
memory and compute savings through the combination of quantization and structured sparsity.

F Training Hyperparameters

Table 8] presents the key hyperparameters used in our experiments for both Wan 1.3B and 13B model
training configurations. These hyperparameters were carefully selected to balance training stability,
convergence speed, and final model performance while accommodating the constraints imposed by
FP8 quantization and structured sparsity.
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Table 8: Comprehensive hyperparameter configuration for Wan 1.3B and 13B model training and
evaluation. The table covers model architecture specifications, training parameters, diffusion sched-
uler settings, data configuration, and system-level precision settings used in our experiments.

Category Parameter Wan 1.3B Wan 13B
Model Architecture Model Type WanX21FPS  WanX21FPS-13B
Model Dimension 1536 5120
Number of Layers 30 40
Number of Heads 12 40
FFN Dimension 8960 13824
Input/Output Dimension 16 16
Frequency Dimension 256 256
Text Dimension 4096 4096
Patch Size [1,2,2] [1,2,2]
Training Learning Rate Se-6 Se-6
Weight Decay le-4 le-4
Gradient Clipping 1.0 1.0
Warmup Steps 200 200
EMA Decay 0.99 0.99
Adam Epsilon le-15 le-15
Diffusion Scheduler Scheduler Type rflow-wanx rflow-wanx
Number of Timesteps 1000 1000
Sample Steps 50 50
CFG Scale 5.0 5.0
Sample Shift 5.0 5.0
Transform Scale 5.0 5.0
Sample Method logit-normal logit-normal
Data & Sequence Text Length 512 512
Max Sequence Length 75600 75600
Sample FPS 16 16
Video Resolution 480p 480p
Video Duration Ss Ss
Prompt Uncond Probability 0.1 0.1
System & Precision Data Type fp8 fp8
Training Mode FSDP FSDP
Gradient Checkpointing True True
Quantization True True
Sequence Parallel Degree 1 4

G Limitations

While FPSAttention demonstrates strong performance across our evaluation scenarios, there are
some considerations for broader adoption. Our approach works best with modern FP8-capable GPUs
such as NVIDIA Hopper architectures, though it can still provide benefits on older hardware with
reduced FP8 acceleration. The method benefits from quantization-aware training to achieve optimal
results, which involves a moderate increase in training time compared to post-training quantization
approaches. The denoising step-aware scheduling includes several hyperparameters (transition points
a1 and ap, quantization granularities, and window sizes) that can be optimized for different model
architectures and datasets. Our current evaluation focuses on the Wan2.1 architecture, and the
approach shows strong promise for extension to other video diffusion transformer architectures (e.g.,
HunyuanVideo, CogVideoX). Additionally, while our tile-wise approach achieves good hardware
utilization across tested configurations, there are opportunities for architecture-specific optimization
to further improve performance on different GPU memory hierarchies.
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H Visualization

The following qualitative comparison demonstrates that our FPSAttention method generates video
frames that are visually nearly identical to the baseline Wan model with size of 1.3B. This visual
similarity across diverse scenarios—including boats, fish, dogs, desert landscapes, couples, trains,
cars, cats, and robot DJs—validates that our joint FP§ quantization and sparsity optimization achieves
essentially lossless performance while providing substantial computational acceleration.
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Table 9: Qualitative comparison on the boat group. Prompt: ‘A boat sailing leisurely along the
Seine River with the Eiffel Tower in background in super slow motion’ . Top: Baseline; Bottom:
FPSAttention.

-

Baseline

Table 10: Qualitative comparison on the fish group. Prompt : ‘Golden fish swimming in the ocean’.
Top: Baseline; Bottom: FPSAttention.

Table 11: Qualitative comparison on the dog group. Prompt: ‘A dog enjoying a peaceful walk’. Top:
Baseline; Bottom: FPSAttention.

Baseline
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Table 12: Qualitative comparison on the desert group. Prompt: ‘Static view on a desert scene with an
oasis palm trees and a clear calm pool of water’. Top: Baseline; Bottom: FPSAttention.

==
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e | : ===y =

FPSAttention

Table 13: Qualitative comparison on the couple group. Prompt: ‘A couple in formal evening wear
going home get caught in a heavy downpour with umbrellas’. Top: Baseline; Bottom: FPSAttention.

FPSAttention

Table 14: Qualitative comparison on the train group. Prompt: ‘A train accelerating to gain speed’.
Top: Baseline; Bottom: FPSAttention.

Baseline

== =

FPSAttention

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have properly made the main claims in the abstract and introduction.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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Table 15: Qualitative comparison on the rock group. Prompt: ‘A tranquil tableau of at the edge of
the Arabian Desert, the ancient city of Petra beckoned with its enigmatic rock-carved facades’. Top:
Baseline; Bottom: FPSAttention.

FPSAttention

Table 16: Qualitative comparison on the nursery group. Prompt: ‘Nursery’. Top: Baseline; Bottom:
FPSAttention.

o ol

Baseline

Table 17: Qualitative comparison on the snow group. Prompt: ‘Snow rocky mountains peaks canyon.
snow blanketed rocky mountains surround and shadow deep canyons. The canyons twist and bend
through the high elevat’. Top: Baseline; Bottom: FPSAttention.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Table 18: Qualitative comparison on the book group. Prompt: ‘A person is reading book’. Top:
Baseline; Bottom: FPSAttention.

k - - >
Baseline
] ]

FPSAttention

Table 19: Qualitative comparison on the space group. Prompt: ‘An astronaut flying in space’. Top:
Baseline; Bottom: FPSAttention.

£
g

Table 20: Qualitative comparison on the panda group. Prompt: ‘A panda drinking coffee in a cafe in
Paris’. Top: Baseline; Bottom: FPSAttention.

Baseline

FPSAttention

FPSAttention

Answer: [Yes]

Justification: Yes, we include the limitations in last section and Appendix.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: See sections in methodology and appendixes.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experiments setup on Experiment sections, we also have
detailed algorithm in appendix for Reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide code after acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide implementation details.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We verify our results on huge size of DiT models, repeat computation are
expensive. But we repeat a few times of exponents to obtain the mean result.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We give the competing requirements in the experiment setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
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Justification: Yes we do.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have included the broader impacts in the Conclusion.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our methodology not release new data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we give proper citations and reference for used resources.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not study human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We are not subject to the approval of IRB.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We use LLMs to check and correct grammar errors.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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