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ABSTRACT

When neural networks are trained from data to model the dynamics of physical
systems, they encounter a persistent challenge: the long-time dynamics they pro-
duce are often unphysical or unstable. We analyze the origin of such unphysical
instabilities when learning linear dynamical systems, focusing on the learning dy-
namics of gradient descent. We make several analytical findings, which empirical
observations suggest extend to nonlinear dynamical systems. First, the rate of con-
vergence of the learning dynamics of gradient descent is uneven and depends on
the distribution of energy in the data. As a special case, in directions in which the
data have no energy, the true dynamics of the physical system cannot be learned.
High dimensionality also inhibits learning. Second, in the unlearnable directions,
the model dynamics produced by the neural network depend on the weight initial-
ization, and common weight initialization schemes can produce unstable model
dynamics. Third, injecting synthetic noise into the data adds damping to the learn-
ing dynamics and can stabilize the learned model dynamics, though doing so un-
desirably biases the learned model dynamics. For each contributor to unphysical
instability, we suggest mitigative strategies. We also highlight important differ-
ences between learning discrete-time and continuous-time dynamics, and discuss
extensions to nonlinear systems.

1 INTRODUCTION

The ability to accurately and efficiently predict the behavior of a dynamical system is fundamental
to science and engineering. As data have become increasingly available, machine learning has been
leveraged to learn models that can accurately and efficiently simulate the dynamics of physical sys-
tems, both in cases when the true dynamics are unknown, or when they are known but are expensive
to compute using traditional numerical methods (Pathak et al., 2018; Vlachas et al., 2018; Linot &
Graham, 2020; Karniadakis et al., 2021; Pfaff et al., 2021; Linot & Graham, 2022; Srinivasan et al.,
2022; Vlachas et al., 2022; Chen et al., 2022; Floryan & Graham, 2022). Weather forecasting offers
a prime example of this new approach, where decades of high-quality data (Hersbach et al., 2020)
have been used to develop deep learning-based forecasters with accuracy comparable to traditional
numerical weather prediction while offering significant speedups (Pathak et al., 2022; Bi et al., 2023;
Lam et al., 2023).

While accurate at short times, neural network-based physics simulators can produce unphysical
or unstable predictions at long times (Vlachas et al., 2018; Pfaff et al., 2021; Linot & Graham,
2022; Stachenfeld et al., 2022; Keisler, 2022; Chattopadhyay & Hassanzadeh, 2023). Although
certain stabilization tricks have been identified, it is unclear when they may be employed, why they
succeed, and when they may fail. There is currently no quantitative, theoretical understanding of
why neural network-based physics simulators fail at long times. Such a theory would not only reveal
the root cause of failure, but, crucially, it would also provide tremendous insight in the development
of principled mitigative strategies.

Here, we develop a theory for the learning dynamics of neural networks tasked with emulating a
dynamical system. By analyzing the learning dynamics, we identify probable culprits for the origin
of the unphysical instabilities that mar the long-time predictions of neural networks. To render the
problem analytically tractable, we consider linear dynamical systems, which can be perfectly emu-
lated by a linear single-layer neural network. This provides an important starting point for under-
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standing the learning dynamics of deep neural networks tasked with emulating nonlinear dynamical
systems, and is in keeping with approaches used for prior developments in our understanding of the
learning dynamics of neural networks (Baldi & Hornik, 1989; Fukumizu, 1998; Saxe et al., 2014;
2019; Lampinen & Ganguli, 2019; Zhang et al., 2025). Our analysis considers a prototypical neural
network training scheme, consisting of the mean squared error loss function, Glorot weight initial-
ization (Glorot & Bengio, 2010), and gradient descent to update the weights of the neural network.
We analyze discrete- and continuous-time dynamical systems in turn, highlighting important differ-
ences that arise between these two classes of dynamical systems. Our analysis focuses on the effects
of energy distribution, weight initialization, and noise on the learning dynamics. Along the way, we
propose mitigative strategies and rationalize stabilization tricks found in the literature.

2 DISCRETE-TIME DYNAMICAL SYSTEMS

Consider the discrete-time dynamical system

xi+1 = f(xi), xi ∈ Rn. (1)

Suppose that the dynamics f is not known explicitly, and we want to learn an accurate model f̂ :
Rn → Rn from a dataset of pairs of snapshots, {(xi, yi)}mi=1, that are generated by the dynamical
system. In our notation, xi represents the present state of the dynamical system, and yi the future
state, so that

yi = f(xi), i = 1, . . . ,m. (2)

We begin by analyzing a model consisting of a linear single-layer neural network, f̂ = Â ∈ Rn×n.
Assembling the data into the data matrices X = [x1 · · · xm] and Y = [y1 · · · ym], which are
related by Y = f(X) applied columnwise, we seek the Â that minimizes the mean squared error
loss function L,

min
Â

1

2mn
‖Y − ÂX‖2F . (3)

Here, ‖ · ‖F is the Frobenius norm, the factor of 1
2 is for convenience, and the factor of 1

mn mirrors
how this loss function is typically implemented in machine learning software packages. The mini-
mizer may not be unique. The least-squares/minimum-norm solution is Â = Y X+, where X+ is
the pseudoinverse of X . However, what is of interest here is what the gradient descent algorithm
produces.

The gradient of L with respect to Â is

∇ÂL = − 1

mn
(Y − ÂX)XT . (4)

In the limit of small learning rate, gradient descent leads to continuous-time gradient flow dynamics

d
dτ
Â = −∇ÂL, (5)

with τ being a pseudo-time variable. The learning rate is absorbed by τ .

A coordinate change will prove to be insightful. Let X = UΣV T be the full singular value decom-
position of X , and ˆ̃A = UT ÂU the weight matrix in the basis of the left singular vectors. Then the
gradient flow dynamics can be re-written as

d
dτ

ˆ̃A =
1

mn
(Ỹ V ΣT − ˆ̃AΣΣT ), (6)

where Ỹ = UTY gives the coordinates of the data vectors contained in Y in the basis of the left
singular vectors. Let Σr ∈ Rr×r be the upper-left submatrix of Σ containing all the non-zero
singular values. Then the solution to this matrix ordinary differential equation is

ˆ̃A(τ) = ˆ̃A(0)

[
exp

(
− 1
mnΣrΣ

T
r τ
)

0
0 I

]
+ Ỹ V

[
Σ−1
r − Σ−1

r exp
(
− 1
mnΣrΣ

T
r τ
)

0
0 0

]
, (7)
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where ˆ̃A(0) is the initialization of the weight matrix in the basis of the left singular vectors. This
solution provides the entire time course of learning of the weight matrix. No assumptions have been
made in arriving at this solution.

Interpretation is easier for a linear dynamical system, that is, when the true dynamics f = A ∈
Rn×n. Making the substitution Y = AX , the solution to the learning dynamics is

ˆ̃A(τ) = Ã+ [ ˆ̃A(0)− Ã] exp

(
− 1

mn
ΣΣT τ

)
. (8)

Three points of interest arise. First, columns of ˆ̃A corresponding to non-zero singular values con-
verge to the corresponding columns of Ã—that is, the true dynamics—while those corresponding
to zero singular values remain equal to their initial values. In other words, the true dynamics are
not learnable in directions in which the data have no energy (equivalently, in directions in which
the data have no variance, though we prefer to say “energy” in order to maintain the connection to
physical systems). Second, the rate of convergence depends on how energy is distributed in the data.
In directions in which the data have low energy, convergence to the true dynamics is slower. It is,
therefore, more difficult to learn the dynamics of low-energy modes. The convergence rates can be
made uniform by normalizing the data so that they have equal energy in all directions (that is, by
whitening the data). Additionally, by noting that 1

mΣΣT is the diagonalized covariance matrix of
the data X , we see that the rate of learning has a factor of 1

n , n being the dimension of the state
of our dynamical system. Therefore, learning is slower for high-dimensional systems. Third, the
initialization of the weight matrix will impact the learned dynamics in the unlearnable directions, or
in all directions if gradient descent is stopped short of convergence (which is typical).

To illuminate the impact of the initialization, we suppose the data are in a set that is invariant under
the dynamics of our system. This is generally true for the large class of physical systems with
energy dissipation (due to the presence of friction, for example), for which the long-time dynamics
approach an invariant manifold (Hopf, 1948; Foias et al., 1988; Temam & Wang, 1994; Doering &
Gibbon, 1995). For a linear dynamical system, the true dynamics then take the form

Ã =

[
Ã11 Ã12

0 Ã22

]
, (9)

where the upper-left submatrix gives the dynamics in the invariant subspace containing the data, and
the other columns correspond to the unlearnable directions. As τ → ∞, the learned dynamics will
be

ˆ̃A =

[
Ã11

ˆ̃A12(0)

0 ˆ̃A22(0)

]
. (10)

The eigenvalues of the learned dynamics are the union of the eigenvalues of Ã11 and the eigenvalues
of ˆ̃A22(0). If X has rank r and Â(0) is initialized using the typical Glorot normal or uniform

initializers, then as n → ∞, the distribution of the eigenvalues of ˆ̃A22(0) converges almost surely

to the uniform distribution on the disk of radius
√

n−r
n centered at the origin (Tao et al., 2010). For

finite n, however, the eigenvalues can lie outside the unit circle, as shown in Figure 1, leaving the
potential for unstable dynamics.

This point bears emphasizing. In physical systems with dissipation, the state of the system will
quickly approach an invariant set. When we collect measurements of the state, those measurements
will generally not include information outside of the invariant set due to its strong stability. Without
such information, it is impossible to learn the dynamics outside of the invariant set; the learned
dynamics in that region will depend on the initialization of the weights. Ironically, it is the strong
stability of the true dynamics that can lead to unstable learned dynamics since there is no information
available in the data to erase the memory of the potentially unstable weight initialization.

Two remedies are clear. One is to restrict the learned model to remain in the invariant set. For linear
systems, this amounts to projecting the system onto the subspace with non-zero singular values. The
second remedy is to ensure that the initialization gives stable dynamics, which requires developing
new weight initialization schemes. Gershgorin’s circle theorem provides one way to create a mostly
random matrix whose eigenvalues are guaranteed to lie inside the unit circle, thereby giving stable

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Histogram of eigenvalues of an n×n matrix whose entries are generated using the Glorot
normal initializer. 105/n realizations of the random matrix were used. The unit circle is drawn with
a dashed cyan line. φ gives the fraction of eigenvalues outside of the unit circle. The Glorot uniform
initializer produces nearly identical histograms.

Figure 2: Histogram of eigenvalues of an n×n matrix whose entries are generated using the initial-
izer based on Gershgorin’s circle theorem. 105/n realizations of the random matrix were used. The
unit circle is drawn with a dashed black line.

dynamics. For example, by drawing the entries of Â(0) from the uniform distribution on 1
n−1 [−1, 1]

and setting the diagonal entries equal to zero, the eigenvalues of Â(0) are bounded by the unit circle.
This bound is sharp (e.g., if all off-diagonal entries are equal to 1

n−1 then 1 is an eigenvalue) but
almost surely conservative, as demonstrated in Figure 2. The distribution of eigenvalues can be
expanded (but still bounded by the unit circle) by re-normalizing each row (or column) of Â(0) so
that the row (column) sums of the absolute values of the entries in each row (column) are equal to 1.

2.1 NOISY DATA

Curiously, it has been observed that injecting synthetic noise into the data during training can help
stabilize neural network-based physics simulators (Vlachas et al., 2018; 2020; Sanchez-Gonzalez
et al., 2020; Pfaff et al., 2021; Stachenfeld et al., 2022; Su et al., 2022). To understand this empirical
observation, we consider how the addition of noise to the data affects the learning dynamics.

Suppose our measurements are noisy, so that the data matrices areX+Nx instead ofX , and Y +Ny
instead of Y . Nx and Ny are random matrices of noise, with all entries assumed to be independent
random variables with zero mean and variance σ2, and independent of the noise-free data. It is likely
that many columns of Ny are the same as columns of Nx, but shifted over one column in location,
since data are often gathered from long trajectories that provide many data. We proceed with the
case where the true dynamical system is linear. With noisy data, the gradient of the loss function
with respect to Â is

∇ÂL = − 1

mn
[(A− Â)(X +Nx) +Ny −ANx](X +Nx)T . (11)

4
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In the basis of the left singular vectors of the noise-free data X , the learning dynamics give

ˆ̃A(τ) = Ã+ [ ˆ̃A(0)− Ã] exp

(
− 1

mn
(ΣV T + UTNx)(ΣV T + UTNx)T τ

)
+

1

mn
(UTNy − ÃUTNx)(V ΣT +NT

x U)

(
− 1

mn
(ΣV T + UTNx)(ΣV T + UTNx)T

)−1

×
[
exp

(
− 1

mn
(ΣV T + UTNx)(ΣV T + UTNx)T τ

)
− I
]
, (12)

where we have assumed that (ΣV T + UTNx)(ΣV T + UTNx)T is invertible, which is generally
true for m ≥ n. In the limit τ →∞,

ˆ̃A = Ã+ (UTNy − ÃUTNx)(V ΣT +NT
x U)

(
(ΣV T + UTNx)(ΣV T + UTNx)T

)−1
, (13)

which converges in probability to

ˆ̃A = Ã[I −mσ2(ΣΣT +mσ2I)−1]. (14)

Rewriting the above expression provides clarity:

ˆ̃A = Ã



σ2
1

σ2
1+mσ2

. . .
σ2
r

σ2
r+mσ2

0
. . .


. (15)

We see that when the data or noisy, ˆ̃A is a biased version of Ã. In particular, columns of ˆ̃A corre-
sponding to non-zero singular values converge to the corresponding columns of Ã, but biased by a
multiplicative factor σ2

i /(σ
2
i + mσ2) ≤ 1, where σi is the ith singular value of X . This bias factor

can be written as SNRi/(1 + SNRi), where SNRi = σ2
i /mσ

2 is the signal-to-noise ratio in the
direction of the ith singular vector. This is analogous to the attenuation bias in ordinary least squares
regression due to classical errors-in-variables (Wooldridge, 2010, Ch. 4.4.2). In contrast, without
noise, these columns of ˆ̃A converge to the true columns of Ã. The columns corresponding to zero
singular values converge to zero, while they stayed equal to their initialization when there was no
noise. In equation 12, we see that the noise adds damping to the learning dynamics, erasing the
memory of the initialization in the unlearnable directions and replacing it with dynamics that are
strongly stable. This is a highly desirable effect since, as previously explained, in physical systems
with dissipation, the stabilizing effect of dissipation is what makes those directions unlearnable.

How fast is the memory of the weight initialization erased by the noise? The corresponding eigen-
values of the gradient flow dynamics are, in expectation, equal to −σ2/n. The rate of convergence
depends on the strength of the noise and the dimension of the system, with weak noise and a large
dimension of the system leading to slow convergence.

There is a tradeoff between the desirable and undesirable effects of noise: noise stabilizes a learned
physics simulator, with stronger noise stabilizing the learned system more quickly, but stronger
noise also leads to greater bias. This is illustrated in Figure 3 for a three-dimensional system, along
with the effect of energy distribution. It may be possible to obtain stability while avoiding bias by
selectively applying noise only in the unlearnable/zero-energy directions.

3 CONTINUOUS-TIME DYNAMICAL SYSTEMS

Important differences arise in continuous-time dynamics. Consider the linear continuous-time dy-
namical system

d
dt
x = Ax, x(t) ∈ Rn, A ∈ Rn×n. (16)

5
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Figure 3: Learning dynamics for a three-dimensional discrete-time system. The real parts of the
eigenvalues of the learned dynamical system are shown as learning progresses. The high-energy
mode converges more quickly (blue; in time τenergy1 ∼ 1/σ2

1) than the low-energy mode (red; in
time τenergy2 ∼ 1/σ2

2). Noise stabilizes the unlearnable and otherwise unstable mode (green; in time
τnoise ∼ 1/σ2), but biases the learnable dynamics.

As in the discrete-time case, suppose thatA is not known explicitly, and we want to learn an accurate
model Â ∈ Rn×n from a dataset of pairs of snapshots separated by a time ∆t, {(x(ti), x(ti +
∆t))}mi=1 = {(xi, yi)}mi=1, that are generated by the dynamical system, so that

yi = eA∆txi, i = 1, . . . ,m. (17)

This learning problem is the same as that of neural ODEs (Chen et al., 2018). Assembling the data
into data matrices as before, we seek the Â that minimizes the mean squared error L,

min
Â

1

2mn
‖Y − eÂ∆tX‖2F . (18)

Due to the presence of the matrix exponential, there is no simple expression for the gradient of
L with respect to Â, and the learning dynamics are highly nonlinear in Â. To gain insight, we
expand the matrix exponential to O(∆t)—equivalent to solving the dynamics using the forward
Euler method, making the learning problem equivalent to learning a residual network (scaled by ∆t)
(He et al., 2016). Under this approximation, the gradient of the loss function is

∇ÂL = −∆t2

mn
(A− Â)XXT , (19)

equal to that in the discrete-time setting but scaled by a factor ∆t2. The conclusions made in the
discrete-time setting therefore extend to the continuous-time setting, but for the following excep-
tions.

First, the factor of ∆t2 in the gradient changes the rate of convergence of the learning dynamics.
Small ∆t could lead to very slow convergence.

Second, for continuous-time dynamics, an instability arises when the real part of any eigenvalue of
Â is positive. When Â(0) is created using the Glorot initializer, each of its eigenvalues will have a
positive real part with probability 1

2 . The continuous-time problem is therefore more susceptible to
instability. Gershgorin’s circle theorem can again be used to create a stable mostly random matrix
by having the Gershgorin disks lie in the left half of the complex plane (or within the stable region of
the numerical integrator begin used; for example, if using a residual network, the Gershgorin disks
should be made to lie within the stability boundary of the forward Euler method).

Finally, the effects of measurement noise differ in the details. With noisy data, the gradient is

∇ÂL = −∆t2

mn
(A− Â)(X+Nx)(X+Nx)T − ∆t

mn
(Ny−Nx)(X+Nx)T +

∆t2

mn
ANx(X+Nx)T .

(20)
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In the basis of the left singular vectors of the noise-free data X , the learning dynamics give

ˆ̃A(τ) = Ã+ [ ˆ̃A(0)− Ã] exp

(
−∆t2

mn
(ΣV T + UTNx)(ΣV T + UTNx)T τ

)
+

∆t

mn
[UTNy − (I + Ã∆t)UTNx](V ΣT +NT

x U)

×
(
−∆t2

mn
(ΣV T + UTNx)(ΣV T + UTNx)T

)−1

×
[
exp

(
−∆t2

mn
(ΣV T + UTNx)(ΣV T + UTNx)T τ

)
− I
]
. (21)

In the limit τ →∞,

ˆ̃A = Ã+
1

∆t
[UTNy−(I+Ã∆t)UTNx](V ΣT +NT

x U)
(
(ΣV T + UTNx)(ΣV T + UTNx)T

)−1
,

(22)
which converges in probability to

ˆ̃A = Ã[I −mσ2(ΣΣT +mσ2I)−1]− mσ2

∆t
(ΣΣT +mσ2I)−1. (23)

Rewriting the above expression provides clarity:

ˆ̃A = Ã



σ2
1

σ2
1+mσ2

. . .
σ2
r

σ2
r+mσ2

0
. . .


− 1

∆t



mσ2

σ2
1+mσ2

. . .
mσ2

σ2
r+mσ2

1
. . .


. (24)

As in the discrete-time setting, noise creates a multiplicative bias factor. Additionally, there is an
additive bias that can be substantial for small ∆t. The columns corresponding to zero singular values
converge to columns whose only non-zero entries are along the diagonal and are equal to −1/∆t.
Noise again erases the memory of the weight initialization in the unlearnable directions and replaces
it with stable dynamics, with smaller ∆t leading to more stable dynamics. In addition to the tradeoffs
noted in the discrete-time setting, in the continuous-time setting ∆t also has a tradeoff: smaller ∆t
creates more stable dynamics but greater bias.

4 DISCUSSION

Despite the importance of the long-term stability of learned physics simulators, theoretical insight
into this issue is conspicuously missing. Our findings for linear dynamical systems constitute an
important step towards a general theory, buoyed by nonlinear analogs with strong empirical support.

In the linear case, we showed that it is more difficult to learn low-energy dynamics due to the asso-
ciated slower rates of convergence in the learning dynamics, and that learning is also more difficult
in high-dimensional systems. This seems to hold for nonlinear systems as well, for which it has
been empirically observed that it is difficult to learn the dynamics of high wavenumbers in physi-
cal systems, which have characteristically low energy (Chattopadhyay & Hassanzadeh, 2023; Lippe
et al., 2024). Although the difficulty to learn the dynamics of high wavenumbers has previously been
attributed to the spectral bias of neural networks (Chattopadhyay & Hassanzadeh, 2023; Xu et al.,
2019; Rahaman et al., 2019), recent work on multi-stage neural networks supports that non-uniform
distribution of energy and spectral bias both contribute to slow convergence (Wang & Lai, 2024).
The non-uniformity of energy could be addressed by first transforming the variables to a space in
which the data are distributed isotropically, then learning the dynamics of the transformed variables.

We then showed that dynamics off of the data subspace cannot be learned, and what is learned in
the complement of the data subspace depends on the weight initialization. This obviously holds for
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nonlinear systems, where the dynamics off of the data submanifold cannot be learned. What is less
clear is whether a non-trivial weight initialization scheme can be designed so that the default dynam-
ics are stable, as we have done here for linear dynamical systems. In the linear case, an alternative
is to project the system onto the data subspace. In the nonlinear case, manifold learning methods
can be used to project the system onto the data submanifold; doing so has, indeed, been found to
stabilize the learned dynamics (Linot & Graham, 2022; Chen et al., 2022; Floryan & Graham, 2022).
Another alternative is to add global damping to the system (Vlachas et al., 2018; Linot & Graham,
2022; Linot et al., 2023), though it is unclear how strong it should be.

Finally, we noted the empirical success of noise injection as a stabilizer when learning nonlinear
dynamical systems, and showed why it works when learning linear dynamical systems. Adding
noise to the data adds damping to the learning dynamics. Damping is a generic mechanism that
is likely to extend to the learning dynamics of nonlinear systems. Furthermore, we showed that
there is a tradeoff between the stabilization and bias that noise creates, and this tradeoff can be seen
in empirical results for nonlinear systems (Sanchez-Gonzalez et al., 2020). The agreement with
empirical results for nonlinear systems suggests that we have identified the correct mechanisms.
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