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Abstract

Parameter Efficient Tuning (PET) techniques
such as Low-rank Adaptation (LoRA) are ef-
fective methods to adapt Large Language Mod-
els to downstream tasks. While several prior
works introduce dense computation where the
trainable parameters are shared by all input
tokens, very few previous works exploring
the usage of sparse and dynamic computa-
tion in PET methods. To bridge this gap, we
propose Sparse mixture of low Rank Adap-
tion (SiRA), leveraging the Sparse Mixture of
Expert (SMoE) that enforces conditional com-
putation with the top k experts routing. We
empirically find that each expert learns a dis-
tinct computation which facilitates better per-
formance. SiRA is optimized through a combi-
nation of training techniques, including an aux-
iliary loss encouraging load balancing, a ca-
pacity limit which restrict the maximum num-
ber of tokens each expert can process, and a
novel expert dropout on top of gating network.
Through extensive experiments, we show that
SiRA performs better than LoRA and other
mixture of expert approaches across different
single-task and multiple-task settings.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive capabilities in a wide range of
tasks. To adapt these general-purpose models to
downstream low resource tasks remains important.
To this end, parameter efficient tuning (PET) (Hu
et al., 2021; Li and Liang, 2021; Lester et al.,
2021; Houlsby et al., 2019; Zhang et al., 2023;
Zaken et al., 2021; Chen et al., 2022), which intro-
duces task specific weights to the frozen founda-
tion model for gradient descent, has been widely
adopted with the merit of avoiding catastrophic
forgetting (Luo et al., 2023) of fine-tuning. How-
ever, previous study has shown PET is more stable
with less parameters and higher numbers of train-
able parameters may lead to worse quality (Chen

et al., 2022), which is aligned with our findings
in Figure 2 (Appendix 7.1). This poses a hidden
bottleneck for model quality even when we have
enough computation budget. Thereby it remains
challenging to introduce capacity under PET in a
more efficient way.

Notably previous PET approaches introduces
dense capacity where each trainable parameters is
used by every token. We challenge this assump-
tion in this paper inspired by recent advancements
of the Sparse Mixture of Experts (SMoE) (Bengio
et al., 2015; Shazeer et al., 2017; Lepikhin et al.,
2020). Such conditional computation efficiently
scales model capacity without large increases in
training or inference costs. Yet the power of sparse
and dynamic computation is less investigated under
the PET scenario. Empirically it remains a question
what is preferred routing strategy among the wide
range of different flavors (Roller et al., 2021; Fe-
dus et al., 2022; Lepikhin et al., 2020; Zhou et al.,
2022; Puigcerver et al., 2023); Besides, it is un-
clear how we could mitigate the issues of SMoE
like token dropping (Puigcerver et al., 2023) and
overfitting (Elbayad et al., 2022).

To this end, we present SiRA, the Sparse Mix-
ture of Low Rank Adaptation. SiRA is building
SMOoE upon the state of the art PET approach
LoRA (Hu et al., 2021), and enforces the top k
experts routing. SiRA consists of three important
ingredients: the capacity constraint which deliber-
ately allows token dropping, a loss encouraging
equal utilization of experts, and a novel expert
dropout mechanism. They work together to ensure
the proper load balancing and address the over-
fitting issue.

We conducted extensive experiments which
verify that the performance of SiRA, is better
than LoRA (Hu et al., 2021), its MoE variants
Adamix (Wang et al., 2022), MoLoRA (Zadouri
et al., 2023) and other PET approaches across a
wide range of single task and multitask benchmarks.



Our ablation study further confirmed the effective-
ness of the three ingredients. We also explain the
effectiveness of SiRA by empirically showing it
facilitates multiple orthogonal low rank spaces to
capture diverse knowledge.

2 Related Work

Several recent works have proposed mixture-of-
expert models on top of parameter-efficient tun-
ing. Adamix (Wang et al., 2022) randomly chooses
an expert in training and averages all the experts
during inference. This method is similar to check-
point averaging (Gao et al., 2022) as the experts
are randomly chosen and don’t learn to special-
ize. It also empirically has significant longer train-
ing time caused by uniform token distributing.
MoLoRA (Zadouri et al., 2023) applies the dense
MOoE on the top of LoRA, where all experts are aver-
aged using a learned gating. Compared to this work,
our method can achieve better efficiency since we
only use a subset of experts which conserves train-
ing resources and inference computation with the
same parameter count.

3 Sparse Mixture of Low Rank
Adaptation

To increase the capacity of LoRA (Hu et al., 2021)
using Mixture of Experts (MoE) without adding too
much computational cost, we propose Sparse Mix-
ture of Experts of Low Rank Adaptation (SiRA),
which leverages multiple lightweight LoRA adap-
tors as experts while enforcing sparsity when using
the expert modules.

Figure 1 shows an illustration of SiRA. The MoE
layer for the adapter consists of E experts, each
with their own LoRA weights, W1, ..., Wg. Wy is
the product of two low rank matrices Wy = By Ay.
We also assume the base foundation model has
Wy as it is frozen weight, which represents either
query, key, value, or output projection. We replace
the attention projection in each layer of the network
with this computation.

Expert Gating To reduce the computational cost,
SiRA only activates a subset of all the expert mod-
ules. Formally, during each forward pass, we select
K out of E experts using the output scores of a
gating network ¢,. The process is mathematically
expressed as Equation (1) and (2), where s denote
the token index of the sequence x and G ¢ is the
gating network output at s-th token e-th experts.
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Figure 1: SiRA: Sparse Gated Mixture of LoRA.

G(zs) = TopK (softmax(0; z)) (1)

E
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Experts Dropout To avoid the situation that cer-
tain experts are over or under-trained, we pro-
pose the gate dropout. Specifically, we introduce
dropout to the gating output G' as shown in Equa-
tion 3.

G(z,) = TopK(Dropout(softmax(f; 5)))  (3)

Expert Token Capacity We enforce the capacity
constraints for experts following GShard (Lepikhin
et al., 2020). Specifically, we restrict that the num-
ber of tokens processed by each expert should not
exceed a predefined threshold. Once the capacity
is reached, the expert simply drops the overflow
tokens. If all K experts reach their token capacity
before all tokens in a training example is processed,
the rest of the tokens will only be encoded using
the frozen model parameter Wj.

Auxiliary Loss We use the auxiliary loss term
to further encourage load balancing among differ-
ent experts following (Shazeer et al., 2017; Lep-
ikhin et al., 2020). We denote the total number
of tokens to be .S, and there is F experts. We
also denote c. as the number of tokens routed
to expert e. By using the mean gates per expert
me = Means(Dropout(softmax(@?xs))) as a
differentiable approximation, the aux loss could
be expressed in Equation 4.
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Table 1: Performance Comparison For Single Tasks

Approach |6 Params|FinQA (EN) ~ ForumSum (EN)  SP (SW) QA-in (SW) NER (SW) SP (BN) QA-in (BN) QA-cross (BN)

| [em  fl  |bleurt rougel. fl |accuracy| fl | span-fl |accuracy | fl | fl
PromptTuning |0.0024% [4.0 4.0 [95.80 28.94 18.90| 0.2 63.93 45.01 0.76 62.83 55.07

0.0140% 1.8 2.1 96.98 32.81 23.06| 21.65 72.04 86.78 22.87 69.06 64.55
LoRA 0.0419% (5.0 5.6 [96.70 3397 23.54| 27.63 82.08 88.95 33.52 80.34 76.81
LoRA(R=8) [0.0838% (3.0 3.2 [96.53 34.67 23.98| 31.27 81.99 89.41 35.84 74.96 77.32
LoRA(R=16) [0.1676% |24 2.4 |96.46 3443 23.12| 31.57 81.47 89.14 36.06 72.69 78.94
LoRA(R=32) [0.3353% (2.2 2.2 ]96.32 34.11 22.64| 29.84 78.55 88.58 33.27 70.01 77.07
LoRA(R=64) |0.6706% (1.2 1.2 |96.21 33.48 23.37| 24.28 79.37 87.81 28.54 69.06 69.37
Adamix 0.6706% (5.6 6.0 [95.95 35.10 23.88| 33.22 81.24 89.00 39.03 81.70 76.07
MoLoRA 0.7264% 5.6 6.4 |97.05 3437 24.79| 32.50 82.33 89.33 36.28 79.06 76.75
SiRA 10.7264% 5.8 6.6 |97.14 35.67 25.83| 3252 | 83.00 | 8995 | 3861 | 8210 | 7693

Table 2: Performance Comparison For Multi Tasks

Approach |6 params| SW Multitask BN Multitask

| |SP(accuracy) QA-in(f1) NER(span-f1)|Average||SP(accuracy) QA-in(fl) QA-cross(fl)|Average
PromptTuning|0.0024% 0.59 65.34 0.21 29.21 1.05 61.04 68.75 43.62
IA3 0.0140% 18.98 64.58 83.86 55.81 20.87 61.63 68.44 50.31
LoRA 0.0419% 28.06 77.71 88.28 64.69 32.06 79.27 75.03 62.12
LoRA(R=8) [0.0838% 29.71 74.13 88.69 64.17 35.65 76.17 72.17 61.33
LoRA(R=16) [0.1676% 32.52 71.55 88.92 64.33 34.41 72.69 71.70 59.60
LoRA(R=32) [0.3353% 29.08 66.48 88.39 61.32 33.87 67.16 70.49 57.17
LoRA(R=64) [0.6706% 27.11 67.29 85.09 59.83 30.28 68.37 71.39 56.68
Adamix 0.6706% 35.14 76.99 89.01 67.10 38.41 79.49 75.09 64.33
MoLoRA 0.7264% 3344 79.91 88.92 65.66 35.98 78.14 76.37 63.49
SiRA |0.7264%|  33.98 81.26 89.04 | 68.10 || 37.71 82.17 7550 | 65.13

Table 3: Performance Comparison for Multilingual
Tasks with diverse LoRA variants.

Approach | 0 params | QA-in (9) | QA-cross (25)
PromptTuning | 0.0024% 74.55 62.05
1A3 0.0140% 80.68 61.70
LoRA 0.0419% 85.09 69.41
LoRA(R=8) 0.0838% 85.12 69.94
LoRA(R=16) 0.1676% 84.68 69.50
LoRA(R=32) 0.3353% 82.43 66.38
LoRA(R=64) 0.6706% 80.26 64.10
Adamix 0.6706% 84.75 70.42
MoLoRA 0.7264% 85.14 70.70
SiRA | 0.7264% | 86.38 | 70.86
4 Experiments
4.1 Evaluation Setup
Baselines and Experiment Configs We specif-

ically compare our model with the Prompt Tun-
ing (Lester et al., 2021), IA3 (Liu et al., 2022),
standard LoRA (Hu et al., 2021), Adamix (Wang
et al., 2022) and MoLoRA (Zadouri et al., 2023).
Note that other adapter approaches are not comm-
pared with as the SiRA approach is orthogonal and
could be applied on top of them as well. We choose
the PALM2-FLAN XXS (Passos et al., 2023) as the
foundation model. We follow the default configu-
rations in (Hu et al., 2021) to inject LORA weights
into the attention projections and set the intrinsic
rank as 4. Larger intrinsic ranks are also applied to
LoRA for fair comparisons. We use 16 experts by
default across all MoE based approaches. We set

prompt length as 25 for prompt tuning following
(Lester et al., 2021). For training config and model
selection, see Appendix 7.2.

Datasets and Metrics We evaluate on the fol-
lowing datasets:'

XTREME-UP (Ruder et al., 2023) is a multilin-
gual multitask dataset, with a focus on the scarce-
data scenarios of underrepresented languages. In
this work, we choose two of the underrepresented
languages—Swahili (SW) and Bengali (BN)—and
evaluated on several NLP tasks where these two
languages have training and evaluation data. We
follow Ruder et al. (2023) for each task’s splits and
evaluation metrics.

FinQA (Chen et al., 2021) is a QA dataset in
the financial domain. Complex reasoning capabili-
ties are needed to correctly answer these questions.
Note that the answers of the FinQA dataset are pro-
grams of a special arithmetic DSL. In this work
we only evaluate on metrics based on surface form
matching, i.e., exact match and F1 scores.

ForumSum (Khalman et al., 2021) is a di-
verse and high quality conversation summarization
dataset with human written summaries where the
conversations are collected from a wide variety of
internet forums. We report BLEURT (Sellam et al.,
2020), ROUGEL, and F1 scores.

!'Since our base model (Chung et al., 2022) had been ex-
posed to many public datasets during training, we choose
dataset that are not consumed yet.



Table 4: Self ablations on the hyper-parameter topK(K)
and expert capacity(C) on ForumSum.

Configs | bleurt | rougelL | fI |
K=2,C=2 96.87 | 34.51 | 24.73
K=4,C=4 96.60 | 34.66 | 25.34
K=6, C=6 96.75 | 34.73 | 24.55
K=8, C=8 96.76 | 35.31 | 25.64
K=10, C=10 | 97.51 35.10 25.19
K=12,C=12 | 96.96 34.49 24.24
K=4,C=2 96.33 | 34.15 | 24.13
K=4,C=4 96.60 | 34.66 | 25.34
K=4, C=6 97.14 35.67 25.83
K=4, C=8 97.31 | 3497 | 25.24
K=4, C=10 97.25 34.75 25.57
K=4, C=12 96.50 | 34.44 | 2394

4.2 Performance of SiRA

We evaluate the single tasks performance in Ta-
ble 1. We also conducted experiments on two mul-
titask settings on language swahili (SW) and ben-
gali(BN), and two multiligual settings for QA in
languages task (QA-in) and QA across languages
task(QA-cross). We report numbers in Table 2 and
Table 3. Results are averaged from 3 experiments.

Prompt tuning and IA3 generally perform worse
than LoRA based approaches with fewer param-
eters. Actually prompt tuning failed to learn for
Semantic paring tasks. When comparing LoRA
with different intrinsic ranks, R = 4 achieves bet-
ter performance for the multitask and multilingual
settings. Although for some single tasks, R = 8
or R = 16 achieves better results. But further in-
creasing the R will decrease the performance for
all cases. This suggests that more parameters does
not necessarily mean quality gains.

In general, the MoE based approaches can
achieve better performance than LoRA. Notably
when compared to MoLoRA, SiRA achieves con-
stantly better performance among all the tasks,
which demonstrates that “sparse” MoE is better
than “full" MoE. Adamix shows some small advan-
tage on the Semantic Parsing task, but overall loses
to SiRA across all other tasks. We also empirically
find it takes more than 10 times training time for
convergence. For all the single tasks and multitasks
settings, SiRA is outperforming all other baselines
at most of the tasks. Note although SiRA is at the
cost of more parameters, it is less than 1% extra
parameters of the foundation model, causing only
limited computation overhead.

4.3 Ablation Study

Computation Ablations We choose a simple
config as base (k=4, C=4) and then change each of
them while keeping the rest. We share the ablations
on ForumSum in Table 4. An interesting finding is

Table 5: Gating ablations on ForumSum.

Approach | bleurt | rougeL | fl
SiRA 97.14 | 35.67 | 25.83
- aux loss 96.37 | 35.09 | 25.11
- Expert Dropout 97.09 | 34.73 | 24.55
+ SMoE-Dropout | 96.30 | 34.24 | 24.32

Table 6: Diversity of Low Rank Spaces

Approach | Cosine Similarity |

Adamix 0.23500
MoLoRA 0.00700
SiRA 0.00028

that increasing the number of experts or the capac-
ity per expert will not always increase the scores,
which justifies why the full MoE based approach
is not as good as SiRA. SiRA enjoys the benefit of
adjusting the K and C to better fit the tasks.

Gating ablations We compare SiRA with 3
more cases: 1) removing the aux loss, 2) removing
the gate dropout, and 3) using a static routing based
dropout SMoE-Dropout (Chen et al., 2023a) in-
stead. Results in Table 5 suggested that the learned
gating is still better than a static one, and both the
gate dropout and aux loss help the performance.

4.4 Analysis of Expert Weights

We analysis the orthogonality of expert weights fol-
lowing recent works (Wang et al., 2023). In each
layer we measure the absolute value of average co-
sine similarity between each pair of expert weights.
We compute each expert weight by multiplying the
low rank matrices to produce W, = A, * B.. We
share the cosine similarity in Table 6. The cosine
similarity averaged over the layers for SiRA is sig-
nificant lower than other MoE based approaches
and pretty close to 0. This indicates that the experts
have more orthogonal weights in our method than
other MoE based approaches, which facilitates a
more diverse low rank spaces to learn diverse in-
formation which is beneficial as Liu et al. (2023)
show. Interestingly, we also found the SiRA does
not learn to specialize experts based on task IDs.
We provide further analysis in Appendix 7.3.

5 Conclusion

This paper introduced SiRA, a Sparse Mixture
of Expert variant of LoRA. By leveraging sparse
and dynamic computation with a few training opti-
mizations, SiRA achieved better performance than
LoRA and other baselines across different tasks.
Our analysis suggested that SiRA provides more
orthogonal low rank sub-spaces than others.



6 Limitation

Although benefit from conditional computation,
SiRA still has extra memory and computation over-
head from using more parameters compared to
LoRA. Our future work will be addressing how
to improve the training and serving efficiency of
this approach.
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7 Appendix

7.1 Effect of LoRA rank
We investigate the effect of LoRA rank in Figure 2.
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Figure 2: SiRA vs LoRA on ForumSum Task. We in-
crease the rank of LoRA (rank=4, 8, 16, 32, 64, 128)
and report the RougeL as a metrics. Notably increas-
ing the rank does does not help the performance. SiRA
(rank=4) can achieve higher quality by leveraging the
sparse mixture of experts.

7.2 Training and Model selection

During supervised finetuning, SFT, we use 8 Tensor
Processing Units (TPU) V3 chips for fine-tuning.
The batch size is 64, and the maximum training step
is 30000. We use the Adafactor optimizer (Shazeer
and Stern, 2018) with a learning rate of 0.0005.
Both the input and output sequence lengths are set
to match the dataset requirements. The training
dropout rate is 0.05. The expert dropout rate is
set to 0.5. We did hyper-parameters search to find
the best model configurations. We decode on the
validation sets of each task every 100 steps. And
we report test results from the best checkpoints
according to the validation scores. For multitask
results, the checkpoint is picked on the average
each tasks metrics. For the reported numbers in
section 4.2, we use topk K = 4 as default. Yet
we found K = 8 is better for BN multitask and
QA (in-lang) multilingual setting, and K = 12
better for QA (cross-lang) experiments. Capacity
wise, C' = K yield constant good results across
experiments, yet C' = K + 2 achieves better results
for ForumSum.

7.3 Does the gate learn task specifies

We use the Swahili multitask experiment to study
what the gate is learning. We measure the aver-
age entropy of each gate weight distribution before
TopK is applied. The average entropy for the QA

(in language) task decreases from 1.6 to 1.13 nats
during training. This indicates that the model learns
to give certain gates more weight as it trains.

We also measure the average correlation coeffi-
cients between each task index and each gate index
similar to (Chen et al., 2023b). We convert the task
index to a one hot encoding for this. At the end
of training, the average correlation was about .025,
which is not significant. The correlation between
gates and languages in the multilingual experiment
is not significant either. This suggests that our gat-
ing mechanism does not learn to route different
tasks to different gates.
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