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Abstract

Parameter Efficient Tuning (PET) techniques001
such as Low-rank Adaptation (LoRA) are ef-002
fective methods to adapt Large Language Mod-003
els to downstream tasks. While several prior004
works introduce dense computation where the005
trainable parameters are shared by all input006
tokens, very few previous works exploring007
the usage of sparse and dynamic computa-008
tion in PET methods. To bridge this gap, we009
propose Sparse mixture of low Rank Adap-010
tion (SiRA), leveraging the Sparse Mixture of011
Expert (SMoE) that enforces conditional com-012
putation with the top k experts routing. We013
empirically find that each expert learns a dis-014
tinct computation which facilitates better per-015
formance. SiRA is optimized through a combi-016
nation of training techniques, including an aux-017
iliary loss encouraging load balancing, a ca-018
pacity limit which restrict the maximum num-019
ber of tokens each expert can process, and a020
novel expert dropout on top of gating network.021
Through extensive experiments, we show that022
SiRA performs better than LoRA and other023
mixture of expert approaches across different024
single-task and multiple-task settings.025

1 Introduction026

Large Language Models (LLMs) have demon-027

strated impressive capabilities in a wide range of028

tasks. To adapt these general-purpose models to029

downstream low resource tasks remains important.030

To this end, parameter efficient tuning (PET) (Hu031

et al., 2021; Li and Liang, 2021; Lester et al.,032

2021; Houlsby et al., 2019; Zhang et al., 2023;033

Zaken et al., 2021; Chen et al., 2022), which intro-034

duces task specific weights to the frozen founda-035

tion model for gradient descent, has been widely036

adopted with the merit of avoiding catastrophic037

forgetting (Luo et al., 2023) of fine-tuning. How-038

ever, previous study has shown PET is more stable039

with less parameters and higher numbers of train-040

able parameters may lead to worse quality (Chen041

et al., 2022), which is aligned with our findings 042

in Figure 2 (Appendix 7.1). This poses a hidden 043

bottleneck for model quality even when we have 044

enough computation budget. Thereby it remains 045

challenging to introduce capacity under PET in a 046

more efficient way. 047

Notably previous PET approaches introduces 048

dense capacity where each trainable parameters is 049

used by every token. We challenge this assump- 050

tion in this paper inspired by recent advancements 051

of the Sparse Mixture of Experts (SMoE) (Bengio 052

et al., 2015; Shazeer et al., 2017; Lepikhin et al., 053

2020). Such conditional computation efficiently 054

scales model capacity without large increases in 055

training or inference costs. Yet the power of sparse 056

and dynamic computation is less investigated under 057

the PET scenario. Empirically it remains a question 058

what is preferred routing strategy among the wide 059

range of different flavors (Roller et al., 2021; Fe- 060

dus et al., 2022; Lepikhin et al., 2020; Zhou et al., 061

2022; Puigcerver et al., 2023); Besides, it is un- 062

clear how we could mitigate the issues of SMoE 063

like token dropping (Puigcerver et al., 2023) and 064

overfitting (Elbayad et al., 2022). 065

To this end, we present SiRA, the Sparse Mix- 066

ture of Low Rank Adaptation. SiRA is building 067

SMoE upon the state of the art PET approach 068

LoRA (Hu et al., 2021), and enforces the top k 069

experts routing. SiRA consists of three important 070

ingredients: the capacity constraint which deliber- 071

ately allows token dropping, a loss encouraging 072

equal utilization of experts, and a novel expert 073

dropout mechanism. They work together to ensure 074

the proper load balancing and address the over- 075

fitting issue. 076

We conducted extensive experiments which 077

verify that the performance of SiRA, is better 078

than LoRA (Hu et al., 2021), its MoE variants 079

Adamix (Wang et al., 2022), MoLoRA (Zadouri 080

et al., 2023) and other PET approaches across a 081

wide range of single task and multitask benchmarks. 082
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Our ablation study further confirmed the effective-083

ness of the three ingredients. We also explain the084

effectiveness of SiRA by empirically showing it085

facilitates multiple orthogonal low rank spaces to086

capture diverse knowledge.087

2 Related Work088

Several recent works have proposed mixture-of-089

expert models on top of parameter-efficient tun-090

ing. Adamix (Wang et al., 2022) randomly chooses091

an expert in training and averages all the experts092

during inference. This method is similar to check-093

point averaging (Gao et al., 2022) as the experts094

are randomly chosen and don’t learn to special-095

ize. It also empirically has significant longer train-096

ing time caused by uniform token distributing.097

MoLoRA (Zadouri et al., 2023) applies the dense098

MoE on the top of LoRA, where all experts are aver-099

aged using a learned gating. Compared to this work,100

our method can achieve better efficiency since we101

only use a subset of experts which conserves train-102

ing resources and inference computation with the103

same parameter count.104

3 Sparse Mixture of Low Rank105

Adaptation106

To increase the capacity of LoRA (Hu et al., 2021)107

using Mixture of Experts (MoE) without adding too108

much computational cost, we propose Sparse Mix-109

ture of Experts of Low Rank Adaptation (SiRA),110

which leverages multiple lightweight LoRA adap-111

tors as experts while enforcing sparsity when using112

the expert modules.113

Figure 1 shows an illustration of SiRA. The MoE114

layer for the adapter consists of E experts, each115

with their own LoRA weights, W1, ...,WE . Wk is116

the product of two low rank matrices Wk = BkAk.117

We also assume the base foundation model has118

W0 as it is frozen weight, which represents either119

query, key, value, or output projection. We replace120

the attention projection in each layer of the network121

with this computation.122

Expert Gating To reduce the computational cost,123

SiRA only activates a subset of all the expert mod-124

ules. Formally, during each forward pass, we select125

K out of E experts using the output scores of a126

gating network θg. The process is mathematically127

expressed as Equation (1) and (2), where s denote128

the token index of the sequence x and Gs,e is the129

gating network output at s-th token e-th experts.130

Attention Projection Layer

Topk 

Attention 
Projection
Weights

Weighted Sum

Add

 Used Capacity

……

LoRA weights

……

Overflow

Expert 
Dropout 

Gate

Figure 1: SiRA: Sparse Gated Mixture of LoRA.

G(xs) = TopK(softmax(θTg xs)) (1) 131

ys =

E∑
e=1

Gs,eWe(xs) +W0(xs) (2) 132

Experts Dropout To avoid the situation that cer- 133

tain experts are over or under-trained, we pro- 134

pose the gate dropout. Specifically, we introduce 135

dropout to the gating output G as shown in Equa- 136

tion 3. 137

G(xs) = TopK(Dropout(softmax(θTg xs))) (3) 138

Expert Token Capacity We enforce the capacity 139

constraints for experts following GShard (Lepikhin 140

et al., 2020). Specifically, we restrict that the num- 141

ber of tokens processed by each expert should not 142

exceed a predefined threshold. Once the capacity 143

is reached, the expert simply drops the overflow 144

tokens. If all K experts reach their token capacity 145

before all tokens in a training example is processed, 146

the rest of the tokens will only be encoded using 147

the frozen model parameter W0. 148

Auxiliary Loss We use the auxiliary loss term 149

to further encourage load balancing among differ- 150

ent experts following (Shazeer et al., 2017; Lep- 151

ikhin et al., 2020). We denote the total number 152

of tokens to be S, and there is E experts. We 153

also denote ce as the number of tokens routed 154

to expert e. By using the mean gates per expert 155

me = Means(Dropout(softmax(θTg xs))) as a 156

differentiable approximation, the aux loss could 157

be expressed in Equation 4. 158

laux =
1

E

E∑
e=1

ce
S

∗me (4) 159
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Table 1: Performance Comparison For Single Tasks

Approach δ Params FinQA (EN) ForumSum (EN) SP (SW) QA-in (SW) NER (SW) SP (BN) QA-in (BN) QA-cross (BN)

em f1 bleurt rougeL f1 accuracy f1 span-f1 accuracy f1 f1

PromptTuning 0.0024% 4.0 4.0 95.80 28.94 18.90 0.22 63.93 45.01 0.76 62.83 55.07
IA3 0.0140% 1.8 2.1 96.98 32.81 23.06 21.65 72.04 86.78 22.87 69.06 64.55
LoRA 0.0419% 5.0 5.6 96.70 33.97 23.54 27.63 82.08 88.95 33.52 80.34 76.81
LoRA(R=8) 0.0838% 3.0 3.2 96.53 34.67 23.98 31.27 81.99 89.41 35.84 74.96 77.32
LoRA(R=16) 0.1676% 2.4 2.4 96.46 34.43 23.12 31.57 81.47 89.14 36.06 72.69 78.94
LoRA(R=32) 0.3353% 2.2 2.2 96.32 34.11 22.64 29.84 78.55 88.58 33.27 70.01 77.07
LoRA(R=64) 0.6706% 1.2 1.2 96.21 33.48 23.37 24.28 79.37 87.81 28.54 69.06 69.37
Adamix 0.6706% 5.6 6.0 95.95 35.10 23.88 33.22 81.24 89.00 39.03 81.70 76.07
MoLoRA 0.7264% 5.6 6.4 97.05 34.37 24.79 32.50 82.33 89.33 36.28 79.06 76.75

SiRA 0.7264% 5.8 6.6 97.14 35.67 25.83 32.52 83.00 89.95 38.61 82.10 76.93

Table 2: Performance Comparison For Multi Tasks

Approach δ params SW Multitask BN Multitask

SP(accuracy) QA-in(f1) NER(span-f1) Average SP(accuracy) QA-in(f1) QA-cross(f1) Average

PromptTuning 0.0024% 0.59 65.34 0.21 29.21 1.05 61.04 68.75 43.62
IA3 0.0140% 18.98 64.58 83.86 55.81 20.87 61.63 68.44 50.31
LoRA 0.0419% 28.06 77.71 88.28 64.69 32.06 79.27 75.03 62.12
LoRA(R=8) 0.0838% 29.71 74.13 88.69 64.17 35.65 76.17 72.17 61.33
LoRA(R=16) 0.1676% 32.52 71.55 88.92 64.33 34.41 72.69 71.70 59.60
LoRA(R=32) 0.3353% 29.08 66.48 88.39 61.32 33.87 67.16 70.49 57.17
LoRA(R=64) 0.6706% 27.11 67.29 85.09 59.83 30.28 68.37 71.39 56.68
Adamix 0.6706% 35.14 76.99 89.01 67.10 38.41 79.49 75.09 64.33
MoLoRA 0.7264% 33.44 79.91 88.92 65.66 35.98 78.14 76.37 63.49

SiRA 0.7264% 33.98 81.26 89.04 68.10 37.71 82.17 75.50 65.13

Table 3: Performance Comparison for Multilingual
Tasks with diverse LoRA variants.

Approach δ params QA-in (9) QA-cross (25)

PromptTuning 0.0024% 74.55 62.05
IA3 0.0140% 80.68 61.70
LoRA 0.0419% 85.09 69.41
LoRA(R=8) 0.0838% 85.12 69.94
LoRA(R=16) 0.1676% 84.68 69.50
LoRA(R=32) 0.3353% 82.43 66.38
LoRA(R=64) 0.6706% 80.26 64.10
Adamix 0.6706% 84.75 70.42
MoLoRA 0.7264% 85.14 70.70

SiRA 0.7264% 86.38 70.86

4 Experiments160

4.1 Evaluation Setup161

Baselines and Experiment Configs We specif-162

ically compare our model with the Prompt Tun-163

ing (Lester et al., 2021), IA3 (Liu et al., 2022),164

standard LoRA (Hu et al., 2021), Adamix (Wang165

et al., 2022) and MoLoRA (Zadouri et al., 2023).166

Note that other adapter approaches are not comm-167

pared with as the SiRA approach is orthogonal and168

could be applied on top of them as well. We choose169

the PALM2-FLAN XXS (Passos et al., 2023) as the170

foundation model. We follow the default configu-171

rations in (Hu et al., 2021) to inject LoRA weights172

into the attention projections and set the intrinsic173

rank as 4. Larger intrinsic ranks are also applied to174

LoRA for fair comparisons. We use 16 experts by175

default across all MoE based approaches. We set176

prompt length as 25 for prompt tuning following 177

(Lester et al., 2021). For training config and model 178

selection, see Appendix 7.2. 179

Datasets and Metrics We evaluate on the fol- 180

lowing datasets:1 181

XTREME-UP (Ruder et al., 2023) is a multilin- 182

gual multitask dataset, with a focus on the scarce- 183

data scenarios of underrepresented languages. In 184

this work, we choose two of the underrepresented 185

languages—Swahili (SW) and Bengali (BN)—and 186

evaluated on several NLP tasks where these two 187

languages have training and evaluation data. We 188

follow Ruder et al. (2023) for each task’s splits and 189

evaluation metrics. 190

FinQA (Chen et al., 2021) is a QA dataset in 191

the financial domain. Complex reasoning capabili- 192

ties are needed to correctly answer these questions. 193

Note that the answers of the FinQA dataset are pro- 194

grams of a special arithmetic DSL. In this work 195

we only evaluate on metrics based on surface form 196

matching, i.e., exact match and F1 scores. 197

ForumSum (Khalman et al., 2021) is a di- 198

verse and high quality conversation summarization 199

dataset with human written summaries where the 200

conversations are collected from a wide variety of 201

internet forums. We report BLEURT (Sellam et al., 202

2020), ROUGEL, and F1 scores. 203

1Since our base model (Chung et al., 2022) had been ex-
posed to many public datasets during training, we choose
dataset that are not consumed yet.
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Table 4: Self ablations on the hyper-parameter topK(K)
and expert capacity(C) on ForumSum.

Configs bleurt rougeL f1

K=2, C=2 96.87 34.51 24.73
K=4, C=4 96.60 34.66 25.34
K=6, C=6 96.75 34.73 24.55
K=8, C=8 96.76 35.31 25.64
K=10, C=10 97.51 35.10 25.19
K=12, C=12 96.96 34.49 24.24

K=4, C=2 96.33 34.15 24.13
K=4, C=4 96.60 34.66 25.34
K=4, C=6 97.14 35.67 25.83
K=4, C=8 97.31 34.97 25.24
K=4, C=10 97.25 34.75 25.57
K=4, C=12 96.50 34.44 23.94

4.2 Performance of SiRA204

We evaluate the single tasks performance in Ta-205

ble 1. We also conducted experiments on two mul-206

titask settings on language swahili (SW) and ben-207

gali(BN), and two multiligual settings for QA in208

languages task (QA-in) and QA across languages209

task(QA-cross). We report numbers in Table 2 and210

Table 3. Results are averaged from 3 experiments.211

Prompt tuning and IA3 generally perform worse212

than LoRA based approaches with fewer param-213

eters. Actually prompt tuning failed to learn for214

Semantic paring tasks. When comparing LoRA215

with different intrinsic ranks, R = 4 achieves bet-216

ter performance for the multitask and multilingual217

settings. Although for some single tasks, R = 8218

or R = 16 achieves better results. But further in-219

creasing the R will decrease the performance for220

all cases. This suggests that more parameters does221

not necessarily mean quality gains.222

In general, the MoE based approaches can223

achieve better performance than LoRA. Notably224

when compared to MoLoRA, SiRA achieves con-225

stantly better performance among all the tasks,226

which demonstrates that “sparse" MoE is better227

than “full" MoE. Adamix shows some small advan-228

tage on the Semantic Parsing task, but overall loses229

to SiRA across all other tasks. We also empirically230

find it takes more than 10 times training time for231

convergence. For all the single tasks and multitasks232

settings, SiRA is outperforming all other baselines233

at most of the tasks. Note although SiRA is at the234

cost of more parameters, it is less than 1% extra235

parameters of the foundation model, causing only236

limited computation overhead.237

4.3 Ablation Study238

Computation Ablations We choose a simple239

config as base (k=4, C=4) and then change each of240

them while keeping the rest. We share the ablations241

on ForumSum in Table 4. An interesting finding is242

Table 5: Gating ablations on ForumSum.

Approach bleurt rougeL f1

SiRA 97.14 35.67 25.83
- aux loss 96.37 35.09 25.11
- Expert Dropout 97.09 34.73 24.55
+ SMoE-Dropout 96.30 34.24 24.32

Table 6: Diversity of Low Rank Spaces

Approach Cosine Similarity

Adamix 0.23500
MoLoRA 0.00700
SiRA 0.00028

that increasing the number of experts or the capac- 243

ity per expert will not always increase the scores, 244

which justifies why the full MoE based approach 245

is not as good as SiRA. SiRA enjoys the benefit of 246

adjusting the K and C to better fit the tasks. 247

Gating ablations We compare SiRA with 3 248

more cases: 1) removing the aux loss, 2) removing 249

the gate dropout, and 3) using a static routing based 250

dropout SMoE-Dropout (Chen et al., 2023a) in- 251

stead. Results in Table 5 suggested that the learned 252

gating is still better than a static one, and both the 253

gate dropout and aux loss help the performance. 254

4.4 Analysis of Expert Weights 255

We analysis the orthogonality of expert weights fol- 256

lowing recent works (Wang et al., 2023). In each 257

layer we measure the absolute value of average co- 258

sine similarity between each pair of expert weights. 259

We compute each expert weight by multiplying the 260

low rank matrices to produce We = Ae ∗Be. We 261

share the cosine similarity in Table 6. The cosine 262

similarity averaged over the layers for SiRA is sig- 263

nificant lower than other MoE based approaches 264

and pretty close to 0. This indicates that the experts 265

have more orthogonal weights in our method than 266

other MoE based approaches, which facilitates a 267

more diverse low rank spaces to learn diverse in- 268

formation which is beneficial as Liu et al. (2023) 269

show. Interestingly, we also found the SiRA does 270

not learn to specialize experts based on task IDs. 271

We provide further analysis in Appendix 7.3. 272

5 Conclusion 273

This paper introduced SiRA, a Sparse Mixture 274

of Expert variant of LoRA. By leveraging sparse 275

and dynamic computation with a few training opti- 276

mizations, SiRA achieved better performance than 277

LoRA and other baselines across different tasks. 278

Our analysis suggested that SiRA provides more 279

orthogonal low rank sub-spaces than others. 280
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6 Limitation281

Although benefit from conditional computation,282

SiRA still has extra memory and computation over-283

head from using more parameters compared to284

LoRA. Our future work will be addressing how285

to improve the training and serving efficiency of286

this approach.287
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7 Appendix459

7.1 Effect of LoRA rank460

We investigate the effect of LoRA rank in Figure 2.461
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Figure 2: SiRA vs LoRA on ForumSum Task. We in-
crease the rank of LoRA (rank=4, 8, 16, 32, 64, 128)
and report the RougeL as a metrics. Notably increas-
ing the rank does does not help the performance. SiRA
(rank=4) can achieve higher quality by leveraging the
sparse mixture of experts.

7.2 Training and Model selection462

During supervised finetuning, SFT, we use 8 Tensor463

Processing Units (TPU) V3 chips for fine-tuning.464

The batch size is 64, and the maximum training step465

is 30000. We use the Adafactor optimizer (Shazeer466

and Stern, 2018) with a learning rate of 0.0005.467

Both the input and output sequence lengths are set468

to match the dataset requirements. The training469

dropout rate is 0.05. The expert dropout rate is470

set to 0.5. We did hyper-parameters search to find471

the best model configurations. We decode on the472

validation sets of each task every 100 steps. And473

we report test results from the best checkpoints474

according to the validation scores. For multitask475

results, the checkpoint is picked on the average476

each tasks metrics. For the reported numbers in477

section 4.2, we use topk K = 4 as default. Yet478

we found K = 8 is better for BN multitask and479

QA (in-lang) multilingual setting, and K = 12480

better for QA (cross-lang) experiments. Capacity481

wise, C = K yield constant good results across482

experiments, yet C = K+2 achieves better results483

for ForumSum.484

7.3 Does the gate learn task specifies485

We use the Swahili multitask experiment to study486

what the gate is learning. We measure the aver-487

age entropy of each gate weight distribution before488

TopK is applied. The average entropy for the QA489

(in language) task decreases from 1.6 to 1.13 nats 490

during training. This indicates that the model learns 491

to give certain gates more weight as it trains. 492

We also measure the average correlation coeffi- 493

cients between each task index and each gate index 494

similar to (Chen et al., 2023b). We convert the task 495

index to a one hot encoding for this. At the end 496

of training, the average correlation was about .025, 497

which is not significant. The correlation between 498

gates and languages in the multilingual experiment 499

is not significant either. This suggests that our gat- 500

ing mechanism does not learn to route different 501

tasks to different gates. 502
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