
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

RecurScan: Detecting Recurring Vulnerabilities in PHPWeb
Applications
Anonymous Author(s)

ABSTRACT

Detecting recurring vulnerabilities has become a popular means of
static vulnerability detection in recent years because they do not
require labor-intensive vulnerability modeling. Recently, a body
of work, with HiddenCPG as a representative, has redefined the
problem of statically identifying recurring vulnerabilities as the sub-
graph isomorphism problem. More specifically, these approaches
represent known vulnerable code as graph-based structures (e.g.,
PDG or CPG), and then identify subgraphs within target appli-
cations that match the vulnerable graphs. However, since these
methods are highly sensitive to changes in the code graph, they
may miss a significant number of recurring vulnerabilities with
slight code differences from known vulnerabilities.

In this paper, we propose a novel approach, namely RecurScan,
which can accurately detect recurring vulnerabilities with resilience
to code differences. To achieve this goal, RecurScan works around
security patches and symbolic tracking techniques, detecting re-
curring vulnerabilities by comparing symbolic expressions and
selective constraints between the target applications and known
vulnerabilities. Benefiting from this design, RecurScan can toler-
ate the code differences arising from complex data or control flows
within the applications. We evaluated RecurScan on 200 popu-
lar PHP web applications using 184 known vulnerability patches.
The results demonstrate that RecurScan discovered 232 previously
unknown vulnerabilities, 89 of which were assigned CVE identi-
fiers, outperforming state-of-the-art approach (i.e., HiddenCPG) by
25.98% in precision and 87.09% in recall.

1 INTRODUCTION

Over the past decade, PHP web applications have become an inte-
gral part of people’s daily lives. According to the statistics [4], over
79.2% of online websites are developed using PHP, including many
well-known applications such as Facebook [5] and Spotify [7]. How-
ever, when providing various useful services, PHP web applications
are also exposed to significant security risks. It is reported that,
approximately, every 39 seconds, an attack against web applications
occurs [3]. Even worse, it is predicted that by 2025, the damages
caused by web attacks will reach a staggering 10.5 trillion USD [2].

To safeguard websites from attacks, static analysis techniques
have been commonly used to detect vulnerabilities in web applica-
tions [11, 13–15, 20, 27, 29, 39, 42]. In particular, vulnerabilities are
reported when untrusted inputs (a.k.a, sources) have undergone
sanitization along the paths leading to security-sensitive functions
(a.k.a, sinks). However, these works often require an accurate mod-
eling of the faulty sanitization logic for different vulnerability types,
which requires significant expert experience and is prone to errors
(e.g., incorrect sanitization modeling [25, 43, 44]).

To mitigate these limitations, previous works [19, 21, 24, 26,
28, 44, 45] have introduced an alternative approach. Considering
that vulnerable code frequently propagates due to the common

programming habits of developers, such as copy-and-paste pro-
gramming or making similar coding mistakes, this line of work
recasts the problem of static vulnerability identification as recur-
ring vulnerability detection. Based on this idea, these approaches
automatically extract various vulnerability causes from numerous
known vulnerabilities and then discover recurring vulnerabilities
by detecting the presence of extracted causes in target applications.
In this way, these approaches sidestep the labor-intensive task of
manually modeling while achieving good accuracy.

HiddenCPG [44], as a representative work on recurring vulner-
ability detection for PHP web applications, has successfully iden-
tified numerous severe vulnerabilities. HiddenCPG first converts
known vulnerabilities into code property graphs (𝐶𝑃𝐺vuln) by static
anlaysis [11]. Then it detects recurring vulnerabilities by strictly
requiring the CPG of the target program to include an isomorphism
subgraph of 𝐶𝑃𝐺vuln. Nevertheless, HiddenCPG might miss a sig-
nificant number of genuine recurring vulnerabilities due to its strict
isomorphic subgraph matching approach. The underlying reason
is that the CPG-based matching is highly sensitive to code differ-
ences. Usually, after copying the vulnerable code, the developer also
makes minor adjustments to fit the context of the target application.
Under these circumstances, despite two pieces of code sharing iden-
tical vulnerability causes, the slight code differences between them
will change their code graphs at various levels (e.g., the numbers
of nodes and edges), leading to failures in isomorphic subgraph
matching. Due to this limitation, HiddenCPG only achieved a recall
of 53.45% in our ground truth, which consists of 232 real-world
vulnerabilities.

In light of this, we aim to build a system to accurately detect
recurring vulnerabilities in PHP web applications. The most sig-
nificant challenge to achieve this goal is how to tolerate the code
differences between known vulnerabilities and similar vulnerable code.
On one hand, the copied code may change the implementations
of the vulnerable data flow. Thus, the ideal recurring vulnerability
detection should tolerate the different implementations of the same
vulnerable data flow. On the other hand, the copied code may intro-
duce new conditional statements, some of which perform security
checks while others serve for business logic. Ignoring newly intro-
duced security checks may falsely report protected vulnerable code
as vulnerabilities. Therefore, the ideal recurring vulnerability detec-
tion should be sensitive to the newly introduced security-related
constraints while not being corrupted by irrelevant constraints.

In this paper, we propose RecurScan, a novel approach for re-
curring vulnerability detection. Similar to most existing approaches,
RecurScan first generates signatures for known vulnerabilities and
then performs recurring vulnerability detection. To tackle the above
problems, RecurScan features two new techniques, i.e., symbolic
vulnerable data flowmatching and selective safe control flow check-
ing. First, inspired by existing researches [35, 46, 47], RecurScan
calculates the symbolic expressions of sink parameters via symbolic

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

tracking to represent the data flow cause of known vulnerabilities.
When detecting recurring vulnerabilities, RecurScan locates po-
tential vulnerability by matching the symbolic expressions for the
sinks of the same vulnerability type in the target applications. With
the symbol-based matching, RecurScan can match the same vul-
nerable data flow under different implementations. Second, given
that the constraints introduced by security patches are typically de-
signed for vulnerability fixing, RecurScan extracts safe constraints
by analyzing the patch modifications. When discovering a poten-
tial vulnerability in the target applications, RecurScan further
inspects whether the vulnerable code has been protected by safe
constraints to avoid false positives. This selective checking policy
allows RecurScan to avoid interference from security-independent
constraints in the target program. In summary, these two new tech-
niques enable RecurScan to tackle the code differences between
the vulnerable version and the target version, which improves the
effectiveness of recurring vulnerability detection.

We implemented a prototype of RecurScan targeting injection-
based vulnerabilities in PHP web applications. Before conducting
the detection, RecurScan first automatically constructed a signa-
ture database from 184 known vulnerability patches, which includes
249 vulnerable expressions and 27 safe constraints. We then ap-
plied RecurScan to 200 popular PHP web applications to evaluate
its effectiveness. It turns out that RecurScan successfully iden-
tified 232 vulnerabilities with only 19 false positives. As of now,
we have received 89 CVE identifiers. In addition, we compared
RecurScan with the state-of-the-art approach, HiddenCPG. The
results demonstrate that RecurScan outperforms HiddenCPG by
25.98% in precision and 87.09% in recall.

In summary, we make the following contributions in this paper:
• We propose a novel approach that can accurately detect recurring

vulnerabilities with resilience to code differences.
• We implemented a prototype of RecurScan and evaluated its

effectiveness in 200 popular PHP web applications. As a result,
we found 232 vulnerabilities with 89 CVE identifiers assigned.

• We compare RecurScanwithHiddenCPG, and the results demon-
strate that RecurScan outperforms the state-of-the-art approach
by 25.98% in precision and 87.09% in recall.

2 OVERVIEW

2.1 Problem Statement

Given that vulnerable code often propagates across applications,
many works [19, 21, 23, 24, 34, 44, 45] have been devoted to detect-
ing recurring vulnerabilities via static analysis. HiddenCPG [44] is
the state-of-the-art approach which aims to detect recurring vul-
nerabilities in PHP web applications. The core idea of HiddenCPG
is to extract vulnerability causes from known vulnerabilities and to
detect vulnerability by solving an isomorphism subgraph matching
problem. Benefiting from its novel design, HiddenCPG does not
require manual modeling of vulnerability causes, which is a great
challenge for traditional static analysis. Specifically, for a given vul-
nerable code snippet, HiddenCPG transforms it into a code property
graph (𝐶𝑃𝐺vuln). During the vulnerability detection, HiddenCPG
strictly requires the code property graph of the target program
to include the isomorphic subgraphs of 𝐶𝑃𝐺vuln to determine the
presence of recurring vulnerabilities in the target program.

Limitations: Although HiddenCPG detects many severe vulnera-
bilities with good precision, we found that it still has great limita-
tions and might miss a large number of recurring vulnerabilities. In
particular, HiddenCPG’s detection strategy requires that unknown
vulnerabilities have CPG subgraphs that strictly match those of
known vulnerabilities. Apparently, this detection strategy is very
sensitive to code changes that affect the CPG graph. That is, any
minor code difference between the known vulnerability and a re-
curring vulnerability will cause the isomorphic subgraph matching
to fail, resulting in HiddenCPG missing the recurring vulnerability.
Unfortunately, developers often make some adjustments after copy-
ing the vulnerable code, thus rendering HiddenCPG ineffective.
Examples:We take two typical scenarios of code adjustments as
examples to further specify the limitations of HiddenCPG. Figure 1
(a) depicts a piece of PHP code with an XSS vulnerability. This
code permits the untrusted variable $id to be directly embedded
into HTML content without any form of sanitization or validation,
allowing attackers to inject malicious JavaScript code and exploit
the vulnerability. Figure 1 (b) and (c) show the code snippets that
share the exactly same vulnerability logic as (a) but with slight code
differences in data-flow assignments (line 3 in (b)) or irrelevant
control-flow statements (lines 3-5 in (c)). When we input (a) as the
known vulnerable code snippet into HiddenCPG, it fails to match
the recurring vulnerability in (b) and (c) because HiddenCPG is
poorly tolerant of CPG changes. The detailed reasons are as follows:

❶ Difference introduced by different assignments. It is usual that
the sink parameters with the same vulnerable value ranges may
have different assignment statements in various programs, resulting
in significant differences in the code property graphs. As illustrated
in Figure 1 (a) and (b), the former developers chose to directly con-
catenate $id with strings and output it into the HTML content,
while the latter assigned the entire value to the $content variable
before outputting it. However, even these minor code differences
can lead to entirely different code property graphs: the simplified
code property graph of (b) contains more nodes and edges com-
pared to (a). These differences make HiddenCPG struggle to match
isomorphic subgraphs and miss obvious recurring vulnerabilities.

❷ Difference introduced by irrelevant control-flow statements. Af-
ter copying the vulnerable code, developers usually insert some new
statements that change the control flow. Even if these statements
are unrelated to the vulnerability, they would lead to significant
differences in the code property graphs. As shown in Figure 1
(c), the code snippet has exactly the same vulnerable code as (a),
without any differences. However, HiddenCPG fails to match the
vulnerability due to the code differences that result from irrelevant
control-flow statements in lines 3-5. In fact, lines 3-5 implement
an if-conditional block, which outputs a specific message when
the user inputs the value of $id as "0". These lines of code should
not be considered during the vulnerability matching because they
do not modify the values of the source $id, nor do they affect the
execution of the subsequent sink echo.

2.2 Our Idea

In summary, injection-based vulnerabilities are usually caused by
a lack of protection in two aspects of the source-to-sink path: (1)
the source lacks appropriate data-flow sanitization before reaching

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

RecurScan: Detecting Recurring Vulnerabilities in PHP Web Applications Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1

2

3

4

 <?php

 $id = $_GET['id'];

 echo '<a> current id:' . $id . '';

 ?>

 <?php

 $id = $_GET['id'];

 $content = '<a> current id:' . $id . '';

 echo $content;

 ?>

 <?php

 $id = $_GET['id'];

 if ($id === 0) {

 echo 'You are in Debug module';

 }

 echo '<a> current id:' . $id . '';

 ?>

1

2

3

4

5

1

2

3

4

5

6

7

Source SinkASSIGN

b) Target Code Snippet I a) Vulnerable Code Snippet c) Target Code Snippet II

Simplified Target CPG ISimplified Vulnerable CPG Simplified Target CPG II

Source SinkPREDICSource Sink

Figure 1: Three code snippets with exactly consistent vulnerability semantics. Note: lines on light yellow background represent

vulnerable code; the red arrows represent control-flow edges; the blue arrows represent data-flow edges;

the sink; (2) the sink lacks sufficient control-flow constraints before
execution. Thus, precisely representing the cause of known vul-
nerabilities requires considering both the data flow information of
the sink parameters and important control flow constraints before
the sink. In addition, to address the limitations of HiddenCPG, we
aim to represent and match known vulnerabilities in a way that is
tolerant to code changes. However, there are two main challenges
to achieving this.
• Challenge-I: Different implementations for the same data flow.
As mentioned earlier, the data flow of sink parameters on the
source-to-sink path is an important factor inmodeling vulnerabil-
ity causes. Many vulnerability detection approaches [22, 26, 44]
leverage graph-based structures (e.g., PDG, CPG, DDG) to rep-
resent the data flow information. However, as discussed in §2.1,
such graph-based representation is sensitive to the implemen-
tations of data flow. That is, different implementations for the
same data flow correspond to different graph-based represen-
tations, which leads to FN in recurring vulnerability detection.
As illustrated in Figure 1 (a) and (b), although the value of the
sink parameter in the target program remains unchanged, Hid-
denCPG generates different CPGs for the two pieces of code due
to the newly introduced assignment (line 3 in Figure 1 (b)), result-
ing in missing the vulnerability. Therefore we need to introduce
a new representation of data flow that will not be affected by
different implementations.

• Challenge-II: Irrelevant control-flow statements. The control flow
constraint on the sink-to-source path is another important factor
to consider when detecting recurring vulnerabilities. Though the
data flow on the sink-to-source path within the target program
is the same as that of a known vulnerability, it may have been
safeguarded by control-flow constraints (such as preventing path
traversal vulnerabilities by checking for illegal characters ".." or
"/" in the filename or path.). However, there might be many new
control flow statements around the copied vulnerable code, most
of which are irrelevant to the vulnerability cause. Thus taking all
control-flow statements along the source-to-sink path in the tar-
get program for matching recurring vulnerabilities will introduce
a lot of missing reports. In a word, filtering irrelevant control
flow statements while preserving security-relevant control flow
constraints is challenging for vulnerability matching.

Solution: To address the above challenges, we introduce two new
techniques. First, inspired by previous works [35, 46, 47], we uti-
lize symbolic tracking techniques to precisely represent the data
flow of known vulnerabilities and introduce symbolic vulnera-

ble data flow matching to detect recurring vulnerabilities. This
representation and matching scheme is not affected by different
implementations of the same data flow. Second, in light of the obser-
vation that the control flow constraints introduced by the security
patches are key to blocking the vulnerability, we propose selec-
tive safe control flow checking to check whether the vulnerable
code in the target program is blocked by control flow constraints.
The checking extracts critical constraints from the patched ver-
sion, so it is not affected by vulnerability-independent control-flow
statements. Specifically, our approach works on two main fronts:

❶ Symbolic vulnerable data flow matching. To simultaneously
achieve precision in representation and tolerance for differences,
our approach leverages forward symbolic tracking to calculate the
range of values when the source reaches the sink, represented by
expressions composed of various symbols. When a similar source-
to-sink path is identified in the target application, our approach
computes symbolic expressions for both the sink of known vul-
nerability and that of the target application and then determines
whether they match by computing the similarity of the symbolic
expressions for each sink parameter. If the symbolic expressions for
each sink parameter match, it means that the data flow cause of the
known vulnerability is present in the target program, indicating
the potential presence of a recurring vulnerability.

❷ Selective safe control flow checking. After matching a potential
vulnerability, we further inspect the control flow constraints in the
target program to determine whether the recurring vulnerability
has been fixed. To filter out the irrelevant control flow statements,
we propose a selective approach that centers on the patching behav-
iors of known vulnerabilities. In general, control-flow constraints
newly introduced in security patches are designed to fix known
vulnerabilities. Our approach extracts these constraints by ana-
lyzing patch modifications. During vulnerability detection, when
such constraints manifest on the source-to-sink paths in the target
program, it suggests that the path may remain unaffected by the
known vulnerability, and vice versa, it suggests that a recurring
vulnerability exists.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

In summary, if there exists a path within the target program that
shares similar vulnerable expressions with known vulnerabilities
and lacks any safe constraints introduced in security patches, our
approach will report it as a recurring vulnerability.

2.3 Running Example

We use a real-world example to further illustrate how RecurScan
accurately detects recurring vulnerabilities using known vulnera-
bility patches. Figure 2 depicts the overall workflow of RecurScan.
The Vulnerability: The input to RecurScan is a security patch for
CVE-2019-14530 (Figure 2 (a)), an arbitrary file read vulnerability
reported in OpenEMR 5.0.2. The root cause of the vulnerability is
that the parameter ($finalZip) of readfile() (line 11) can be con-
trolled by an attacker, allowing directory traversal (e.g., "../../")
for reading arbitrary files. The developers fixed the vulnerability
by introducing a new control-flow constraint to check whether the
user input file name contains illegal characters (lines 7-9).
Signature Generation: For the given patch, RecurScan employs
a four-step process to construct signatures for recurring vulnerabil-
ity detection. First, RecurScan identifies the vulnerability contexts
by employing various static analysis techniques on the patch modi-
fications, such as forward taint propagation and backward slicing.
This initial step effectively removes vulnerability-irrelevant code,
ensuring the accuracy of vulnerability signature generation in sub-
sequent steps (Figure 2 (b)). Second, RecurScan performs forward
symbolic tracking along the source-to-sink path to calculate the
symbolic expression for each sink parameter ($finalZip). The step
can represent $finalZip as a clear expression, thereby mitigating
the impact of code differences in data flow assignments for subse-
quent matching. Third, RecurScan collects the newly introduced
condition statements as control flow constraints by analyzing the
differences in the vulnerability context between the vulnerable
and patched versions. Finally, RecurScan normalizes the data-flow
expression and control-flow constraint to derive the vulnerability
signature (Figure 2 (c)).
Vulnerability Detection: Regarding the recurring vulnerability
detection, RecurScan primarily focuses on sinks of the same type
as the known vulnerability in the target program (e.g., readfile()
and unlink() for arbitrary file operations). In all, RecurScan lever-
ages a four-step approach to detect recurring vulnerabilities for
these potential target sinks. First, RecurScan excludes target sinks
whose parameters are constants or whose number of parameters
do not match the known vulnerability sinks. Second, for the re-
maining target sinks, RecurScan performs backward slicing on
its parameters to locate the sources and further slices the inter-
ested code contexts of the target sinks. Third, RecurScan performs
forward symbolic tracking to calculate the data-flow expressions
and control-flow constraints among these interested code contexts.
Finally, RecurScan detects recurring vulnerability by checking
whether the expressions and constraints of the target sinks satisfy
the following two conditions: (1) target expressions are sufficiently
similar to the vulnerable expressions in the signatures; (2) target
constraints do not include any safe constraints from the same vul-
nerability type within the signatures. As shown in Figure 2 (d),
RecurScan successfully matched the similar code in lh-ehr using
the vulnerable expression from the known vulnerability in Open-
EMR. However, since the target program already includes the safe

control-flow constraint (line 3) that provides the same protection
as the patch introduced, RecurScan does not report this case as
a vulnerability. On an older version (before v4.1.0) of lh-ehr, the
target sink was not protected by the constraint and our approach
successfully detects the recurring vulnerability.

3 RECURSCAN

In this section, we provide a detailed description of how RecurScan
works. Overall, RecurScan consists of the three key modules. The
Vulnerability Context Slicing (§3.1) module slices the code related
to the cause of known vulnerabilities as the vulnerability context
by analyzing the patch modifications. The Vulnerability Signature
Generation (§3.2) module constructs the signature for each vul-
nerability by calculating the data-flow expressions from the vul-
nerable version and extracting the newly-introduced control-flow
constraints from the patched version.The module helps to construct
a vulnerability signature database from a large number of known
vulnerabilities. The Recurring Vulnerability Detection (§3.3) module
leverages the signature database to accurately search unknown
recurring vulnerabilities in target applications.

3.1 Vulnerability Context Slicing

First of all, RecurScan identifies the code contexts of known vul-
nerabilities and slices related code for later analysis. In particular,
the slicing consists of the following three steps.
Step I: Patch Context Analyzing. Since the security patches tend
to enhance the protection of sinks around the vulnerable code,
RecurScan first locates the patch context for further vulnerability
context analysis. Particularly, RecurScan performs taint propa-
gation from the patch modification lines and collects all tainted
statements as patch context. RecurScan propagates the taint itera-
tively from two aspects:

• Data-flow propagation: Security patches typically sanitize the
source (i.e., untrusted input) to fix vulnerabilities, implying that
the variables modified by patches might be related to the cause
of the vulnerability. Therefore, RecurScan taints all variables
in patch modifications and collects all their usage through data
dependency analysis.

• Control-flow propagation: Another common patching behavior is
to introduce conditional statements to interrupt the malicious ex-
ecution in advance (e.g., lines 6-9 in Figure 2 (a)), thus protecting
sensitive sinks in subsequent code. As a result, RecurScan taints
the statements guarded by conditional statements introduced by
the patch through control flow analysis.

Step II: Source & Sink Locating. RecurScan proceeds to identify
the sources and sinks of known vulnerabilities from the patch
context. Drawing on previous work that models various PHP built-
in sinks for different vulnerability types [11], RecurScan employs
the same approach to identify the sinks among the patch context
code. Then, for each sink, RecurScan performs backward slicing
on its parameter until any one of the three types of variables is
reached, i.e., global variables, super-global variables, and constants.
These identified variables are then considered the sources of the
known vulnerabilities.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

RecurScan: Detecting Recurring Vulnerabilities in PHP Web Applications Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

a) Security Patch for CVE-2019-14530 of OpenEMR

1

2

3

4

5

6

7

8

9

10

11

12

13

 <?php

 $qrda_file_path = $GLOBALS['OE_SITE_DIR'] .

 "/documents/cqm_qrda/";

 $reportID = $_POST['reportID'];

 $ruleID = $_POST['ruleID'];

 $fileName = $_GET['fileName'];

 if(isset($fileName)){

+ if (preg_match('/[^A-Za-z0-9_.-]/',$fileName)) {

+ die("ERROR: invalid characters.");

+ }

 $finalZip = $qrda_file_path . $fileName;

 readfile($finalZip);

 }

 ?>

b) Vulnerability Context Slicing

 <?php

 $qrda_file_path = $GLOBALS['OE_SITE_DIR'] .

 "/documents/cqm_qrda/";

 $fileName = $_GET['fileName'];

 if(isset($fileName)){

+ if (preg_match('/[^A-Za-z0-9_.-]/',$fileName)) {

 $finalZip = $qrda_file_path . $fileName;

 readfile($finalZip);

 }

 ?> d) Similar code in lh-ehr

<?php

$fileName = $_GET['file'];

if (preg_match('/[^A-Za-z0-9_.-]/',$fileName)) {

 die("ERROR: invalid characters.");

}

$filepath = $GLOBALS['hylafax_basedir'] .

 '/recvq/' . $fileName;

...

unlink($filepath);

?>

c) Vulnerability Signature Generation

Data-flow Expression:

$GLOBALS['O...R'] . "/do...da/" . $_GET['fileName']

Control-flow Constraint:

if (preg_match('/[^A-Za-z0-9_.-]/', $var))

$Global . Constant . $Source

1

2

3

4

5

6

7

Figure 2: The running example of how RecurScan leverages security patches to detect recurring vulnerabilities. Note: the

lines on light yellow background represent vulnerable code; the lines on light green background represent security constraint.

Step III: Vulnerability Context Slicing. Finally, RecurScan
slices the context code of known vulnerability by performing for-
ward analysis from the identified sources to sinks. During this
process, RecurScan pays attention to two types of statements:
assignment statements and control-flow statements. RecurScan
takes such statements into the vulnerability context only if they
have direct or indirect data-flow dependencies on the sources. For
example, as illustrated in Figure 2, for the given patches, RecurScan
identifies lines 2, 5, 6, 10, and 11 as the vulnerability context in the
vulnerable version.

In addition, although the patch context analysis has already ex-
cluded much vulnerability-irrelevant code, the sink localization in
step II may still introduce false positives due to the conservatism of
static analysis. To eliminate such incorrect sinks, RecurScan refers
to the patched version. In particular, since the security patches only
enhance protection for real vulnerability sinks, the vulnerability
contexts sliced from the correct sink on the vulnerable version
and the patched version must be different. Therefore, for each pair
of sink and source, RecurScan performs slicing on both vulnera-
ble and patched versions and eliminates false sinks by comparing
whether the two slices are different.

3.2 Vulnerability Signature Generation

Following the idea presented in §2.2, RecurScan generates a signa-
ture for each known vulnerability by modeling both the data flow
expression and control flow constraints. In particular, the signature
generation consists of the following three steps.
Step I: Symbolic Expression Calculating. As introduced in §2.2,
RecurScan aims to represent the vulnerable data flow of the known
vulnerability (i.e., the data flow of each sink parameter) with sym-
bolic expressions. To calculate the symbolic expression for the
sink parameters, RecurScan performs symbolic tracking along
the source-to-sink path contained in the vulnerability context.
More concretely, RecurScan follows the control-flow edges from
the source-to-sink path. Once reaching an assignment statement,
RecurScan iteratively propagates the symbolic values to represent
the assigned variables through data dependency analysis. Finally,
upon reaching the sink, RecurScan calculates the symbolic ex-
pression that represents the value range for each sink parameter.
Finally, the symbolic expression only consists of the function name

and three types of symbolic variables, which are global variables,
super-global variables, and constants (i.e., the sources of the vul-
nerability). Thus, this representation method could tolerate certain
code changes (e.g., different assignment processes as shown in Fig-
ure 1 (a) and (b)) between two versions of the vulnerable code.
Step II: Safe Constraint Extracting. To accurately model the con-
trol flow constraints of a vulnerability, RecurScan only extracts the
safe control flow constraints used for security protection along the
source-to-sink path while filtering out the irrelevant ones. The in-
sight of RecurScan’s extracting is that only the constraints newly
introduced by security patches are specifically intended to fix the
vulnerabilities. In particular, RecurScan compares the vulnerabil-
ity context extracted from vulnerable and patched versions and
locates the control-flow statements introduced by the patch. For
these newly introduced control-flow statements, RecurScan col-
lects their conditional statements as safe control-flow constraints.
For instance, as shown in Figure 2 (a), RecurScan considers only
line 7 as a control-flow constraint and disregards line 6.
Step III: Signature Generation. After obtaining the symbolic
expression and safe constraints, RecurScan generates the vul-
nerability signature through normalization. In particular, for the
symbolic expressions, RecurScan normalizes its symbolic vari-
ables while retaining the function names. Specifically, RecurScan
normalizes global variables to $Global, super-global variables to
$Source, and constants to Constant. Regarding the control-flow
constraints, RecurScan only normalizes the variables in condi-
tional statements with $var while preserving constant strings, as
they may represent regular expressions or black/white lists used
for security protection. Such normalization strengthens the gener-
ality of the vulnerability signatures, making them tolerant of code
changes such as variable renaming.
Signature Database Construction: Following the signature gen-
eration method, RecurScan constructs a signature database con-
taining hundreds of known vulnerabilities. To speed up the match-
ing process, RecurScan classifies all normalized expressions and
constraints based on their vulnerability types when constructing
the database. In addition, RecurScan also removes duplicate ex-
pressions and constraints within the same vulnerability type.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

3.3 Recurring Vulnerability Detection

Considering that the same vulnerability type involves similar sink
functions, RecurScan analyzes the target program for each vul-
nerability type and detects recurring vulnerabilities belonging to
that type. For each vulnerability type, RecurScan first locates all
the potential sinks within the target applications (e.g., echo, print
or printf for XSS vulnerability) and employs backward slicing
to locate the corresponding sources. Then, RecurScan employs
a similar process as introduced in §3.2 to calculate the data-flow
expressions (𝐷target) and control-flow constraints (𝐶target) for each
source-to-sink path. Finally, RecurScan tries to match them with
the vulnerability signatures (i.e., the symbolic expressions 𝐷vuln

and the safe constraints 𝐶safe) of the same type of vulnerabilities
in the signature database.

In particular, RecurScan only reports a recurring vulnerability
if there is a known vulnerability such that the target source-to-
sink path meets the following criteria: (1) For each sink parameter,
the text similarity between the target expression 𝐷target and vul-
nerability expression 𝐷vuln is greater than a threshold 𝑇 . (2) The
control-flow constraints 𝐶target does not contain any safe con-
straints of𝐶safe. The𝑇 represents a predefined similarity threshold,
which enables RecurScan to be resilient to code differences in
the target applications while maintaining its accuracy. In this way,
RecurScan can precisely match potential recurring vulnerabilities
while also tolerating code differences.

4 EVALUATION

4.1 Experimental Setup

Prototype. We implemented a prototype of RecurScan, which
consists of 5,275 lines of Python code. The prototype is built upon
PHPJoern [11] and performs various static program analyses using
CPG queries onNeo4j [10]. TheVulnerability Context Slicingmodule
utilizes the GitPython library to identify patch modifications on
GitHub [9]. In the Recurring Vulnerability Detectionmodel, we have
set the similarity threshold to 0.95 to allow for precise matching
while also tolerating code differences.
Experiments. Our evaluation is organized by answering the fol-
lowing research questions:

• RQ1: How effective is RecurScan in automatically generating
vulnerability signatures?

• RQ2: How effective is RecurScan in detecting recurring vulner-
abilities in real-world applications?

• RQ3: How accurate is RecurScan compared to the state-of-the-
art approaches?

• RQ4: How efficient is RecurScan in performing the end-to-end
analysis?

Known Vulnerability Dataset. RecurScan requires known vul-
nerability patches as input to automatically construct the signa-
ture database for recurring vulnerability detection. To maintain
the quality of the patch collection, we follow two criteria: (1) the
known vulnerability should be of the injection-based type and have
been disclosed within the past 5 years, with corresponding security
patches available; (2) the application in which the vulnerability
is discovered should be implemented in PHP and possess a suffi-
cient level of popularity, defined as having more than 100 stars on

Table 1: The overview of signature database.

Type Classification Vuln Expressions Safe Constraints

Malicious Code Injection1 221 6
Arbitrary File Operation2 28 21

Total 249 27
1 Including XSS, SQL injection, command injection, etc.
2 Including arbitrary file inclusion, upload, write, read, and delete.

GitHub [9]. Specifically, we use a crawler with several keywords
(e.g., "PHP", "XSS" or "SQL") to search for CVEs from the NVD (i.e.,
National Vulnerability Database) [8]. As a result, we successfully
collect 228 CVEs that satisfy our criteria. Then, we manually fil-
tered out 44 CVEs for their patches that unmet the requirements
of subsequent analysis, including 31 CVEs whose patches fix the
vulnerability by modifying non-PHP files and 13 CVEs for which
PHPJoern failed to parse their patches. In all, our known vulnera-
bility dataset consists of 184 known vulnerability patches from 42
widely-used PHP applications.
Testing Dataset. Regarding the testing set, we collect the latest
version of 200 PHP web applications from GitHub. The selection
criteria are also that all of these applications should be sufficiently
popular, i.e., having at least 100 stars on GitHub. In all, the testing
set includes 92,499 PHP files and 15,334,595 line of codes.
Baselines. Given the high relevance to our work, we compare the
effectiveness and efficiency of RecurScan with HiddenCPG [6] in
detecting recurring vulnerabilities.
Environment. The experiments are run on a Ubuntu 20.04machine
with an Intel Xeon Gold 6242 processor and 245 GB memory.

4.2 Vulnerability Signatures (RQ1)

In this experiment, we break down the signature database auto-
matically constructed by RecurScan. Table 1 presents the overall
results. In all, RecurScan successfully calculates 249 vulnerable
data-flow expressions and extracts 27 safe control-flow constraints
from 173 known vulnerability patches. Notably, the patches of the
arbitrary file operation vulnerabilities introduce more safe con-
straints. This aligns with the common practice, where developers
tend to fix such vulnerabilities by implementing constraints for
filenames or path checking, while preferring to employ data-flow
sanitization for handling malicious injection vulnerabilities.

However, for the 11 patches that RecurScan failed to analyze,
we conducted a thorough investigation and found that all of them
shared the same root cause: the information provided by the patch
modifications was insufficient to help identify the sinks of vulnerabil-
ities. The details are as follows:

• Global variables modification (7 patches). Patches in this cate-
gory fixed vulnerabilities by modifying the assignment of global
variables. However, since these variables can be used anywhere
in the program without data-flow edges in CPGs provided by
PHPJoern. This made it difficult for RecurScan to identify their
patch contexts and sinks based on these limited modifications.

• Class fields modification (4 patches). Some patches fixed vulnera-
bilities bymodifying the values of class fields. Due to the inherent
challenges in the class def-use analysis, RecurScan was unable
to identify the sinks for these patches.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

RecurScan: Detecting Recurring Vulnerabilities in PHP Web Applications Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Breakdown of the detected vulnerabilities.

Baseline Type-1 Type-2 Type-3 Type-4 Total

RecurScan 0 122 106 4 232
HiddenCPG 0 122 2 0 124

4.3 Vulnerabilities Detected (RQ2)

We apply RecurScan to the testing set with the constructed sig-
nature database. In all, RecurScan reported 251 distinct potential
vulnerabilities. Next, we will discuss the quality of these reports.
Report Verification. First, we manually investigated the identi-
fied vulnerabilities to confirm their exploitability. Given that this
process requires significant efforts, three authors have participated,
each with a minimum of 3 years of expertise in web security. For
each vulnerability report, the analyst will inspect and confirm its
exploitability by writing a PoC. Overall, we confirmed that 232/251
(92.43%) reports are indeed vulnerabilities, including 171 XSS, 55
SQLi, and 6 arbitrary file operations. The attackers can exploit these
vulnerabilities to compromise the corresponding applications, in-
cluding initiating denial-of-service (DoS) attacks, stealing confiden-
tial database records, and even uploading malicious PHP webshell
files to enable remote code execution. As of now, we have reported
these severe vulnerabilities to developers and received 89 CVEs.

Regarding the remaining 19 false positives, we break down the
reasons as follows: (1) 14 false positives were found in the dead
code of the target applications. Although these cases indeed exist
recurring vulnerabilities, they were not exploitable for being inac-
cessible in a running system; (2) 4 false positives that could only
be exploited under specific configuration (e.g., debug mode); (3) 1
false positive occurred where the developer modified the HTTP
request headers using the header() function, causing the access
to the vulnerable page to be treated as a file download, which in
turn prevented the exploitation of the vulnerability. In essence, all
of these false positives stem from the inherent challenges of static
analysis and may only be removed via dynamic analysis.
Clone Types. Clone type [1, 24, 26, 44, 45] is an important metric
used to evaluate the ability of an approach to tolerate code dif-
ferences when detecting recurring vulnerabilities. In general, it
categorizes recurring vulnerabilities into the following four types
based on their code differences compared to known vulnerabilities:
• Type 1: Exact copy, only differences in white space and comments.
• Type 2: Same as type 1, but also variable renaming.
• Type 3: Same as type 2, but changing or adding a few statements.
• Type 4: Semantically identical, but not necessarily same syntax.
Therefore, we further analyzed the clone types of vulnerabilities de-
tected by RecurScan. Table 2 presents the clone types of identified
recurring vulnerabilities. The results demonstrate that RecurScan
effectively identifies vulnerabilities that fall into Type-2, Type-3,
and Type-4. The absence of Type-1 lies in RecurScan both con-
structs signatures and detects vulnerabilities in real-world applica-
tions. The source code of these applications indeed exhibits certain
syntax differences. However, we believe that if Type-1 were to oc-
cur, RecurScan would easily identify them based on its excellent
performance in detecting instances of other types.

Note that detecting Type-3 and Type-4 vulnerabilities is known
for its significant technical challenges [19, 24, 44, 45]. RecurScan

Table 3: Effectiveness comparison.

Baseline TP FP FN Prec(%) Recall(%)

RecurScan 232 19 0 92.43 100.00
HiddenCPG 124 45 108 73.37 53.45

successfully detected 106 Type-3 clones and 4 Type-4 clones. This
achievement can be attributed to the symbolic and selective com-
parison method, which enables RecurScan to tolerate the code
changes while precisely matching the recurring vulnerabilities.

4.4 Comparison (RQ3)

In this experiment, we compared the effectiveness of RecurScan
and HiddenCPG in detecting recurring vulnerabilities. To ensure
fairness, both of them are applied to the testing set using the same
known vulnerability dataset. We compared their accuracy with two
metrics: precision and recall.
Ground Truth. Comparing the accuracy of each work requires a
comprehensive enumeration of all vulnerabilities within the testing
set, which is infeasible. Therefore, to ensure a fair comparison, we
construct a ground truth by aggregating all vulnerabilities detected
by both RecurScan and HiddenCPG in our testing set. Note that
each vulnerability involved in the ground truth was meticulously
examined by manually analyzing reported potential vulnerabilities
and confirming them as true positives. In total, the ground truth
consists of 232 vulnerabilities. It is worth noting that RecurScan
can detect all of these cases, showcasing its remarkable capability
in detecting recurring vulnerabilities.
HiddenCPG Setup. We follow the guidance and run HiddenCPG
with three steps. First, we use the command “python mkcpg.py
<Code> <CPG>” to convert the code of known vulnerabilities and
target programs into CPGs. Second, we use the command “python
Extractor.py <𝐶𝑃𝐺vuln> <vulnerable path>” to eliminate irrele-
vant nodes from vulnerable CPGs. Finally, we leverage HiddenCPG
to identify recurring vulnerabilities by using the command: “python
hiddencpg.py <𝐶𝑃𝐺target> <𝐶𝑃𝐺vuln>”.
Results Overview. The comparison results between RecurScan
and HiddenCPG are presented in Table 3. Overall, RecurScan
outperforms HiddenCPG by 25.98% in precision and 87.09% in
recall. Within the ground truth consisting of 232 vulnerabilities,
RecurScan accurately identifies all of them and reports only 19
false positives. While HiddenCPG, limited by strict graph matching,
detected only 124 true positives but also reported 45 false posi-
tives. This clearly demonstrates the advantages of RecurScan in
accurately detecting recurring vulnerabilities.
False Positive Analysis. Given that HiddenCPG works on strict
graph matching, we were surprised by the high number of false
positives it reported, specifically 45 cases. After a rigorous analysis,
we identified that apart from 19 cases also reported by RecurScan,
HiddenCPG additionally detected 26 more false positives. The main
reason for this is that HiddenCPG uses the CPG of known vulner-
able code print_r($_GET["a"]) for isomorphic subgraph match-
ing. As a result, HiddenCPG could match many target codes like
print_r($_GET["a"], true) and report them as potential XSS vul-
nerabilities. In reality, though the code property graphs of these
target codes include the isomorphic vulnerable subgraphs, they
are not exploitable by attackers. The reason lies in that print_r

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

function has a "return" parameter, and when set to "true", the func-
tion returns the output $_GET["a"] as a string instead of printing
it, rendering it non-exploitable by attackers. Note that RecurScan
does not report these false positives because it compares each ex-
pression of the sink parameters in target applications with known
vulnerabilities.
False Negative Analysis. For 108 false negatives, we provide the
reasons why HiddenCPG failed to detect them. As illustrated in Ta-
ble 3, these false negatives consist of 104 Type-3 and 4 Type-4 clones,
exhibiting certain code differences compared to known vulnerabili-
ties. Blamed for the low tolerance to differences in subgraph match-
ing, HiddenCPG is unable to detect these vulnerabilities. In contrast,
RecurScan will not suffer from these false negatives thanks to the
symbolic and selective comparison method.

4.5 Efficiency (RQ4)

We evaluated the efficiency of RecurScan across the entire test-
ing set. In total, RecurScan took approximately 20 days and 14
hours to complete the task of vulnerability detection in 200 PHP
web applications. That is, each application took about 2.5 hours
to analyze on average. The primary time cost was attributed to
the analysis of symbolic tracking. More specifically, RecurScan
needs to calculate the symbolic expressions for all the potential
sink functions in the target program. However, such a heavy and
accurate analysis also enables RecurScan to tolerate the code dif-
ferences in the target applications, which finally achieves a superior
performance in detecting Type-3&4 recurring vulnerabilities.

In contrast, HiddenCPG completed the vulnerability detection
on the entire testing set in about 12 days and 2 hours (i.e., 1.5 hours
per application). Although HiddenCPG is a little more efficient than
RecurScan, RecurScan detects significantly more vulnerabilities
than HiddenCPG. Considering that vulnerability detection is usu-
ally an offline task, we believe a stronger capability in vulnerability
detection is more favorable.

5 DISCUSSION

Trade-off. To balance the pros and cons of complex control flows in
recurring vulnerability matching, we choose a trade-off approach.
Nevertheless, in the case of limited patches set, the constraints
automatically extracted by RecurScan may not be comprehensive
enough to cover all security measures, potentially leading to false
positives in vulnerability detection. However, this limitation can be
addressed in the future as the scale of patches continues to expand.
Vulnerability Scope. Although the prototype of RecurScan tar-
gets injection-based vulnerabilities, we argue that it could also be ap-
plied to other types of vulnerabilities. The workflow of RecurScan
revolves around the sources and sinks, which are most commonly
found in the causes of injection-based vulnerabilities but also occur
in some cases of broken access control. There have been several
existing work [30, 38] that model security-sensitive operations
as sinks (e.g., mysql_query) and analyze whether the sources are
properly checked when reaching these sinks. Such types of source-
to-sink vulnerabilities could also be included in our analysis scope.
Generalization. Our prototype of RecurScan is designed for PHP
applications. Nonetheless, note that source-to-sink vulnerabilities
can also arise in non-PHP web applications (e.g., Java and Node.js).

Therefore, the general approach for detecting recurring vulnerabili-
ties can be applied seamlessly to these systems. For the adaptation,
the end-users could re-implement all three modules with the corre-
sponding static analysis frameworks (e.g., Soot [41] for Java).

6 RELATEDWORK

Web Vulnerabilities Detection. In recent years, numerous tech-
niques have been proposed to automatically detect vulnerabilities
within web applications. A commonly used technique is static anal-
ysis [11, 13–15, 20, 27, 29, 31, 37, 39, 42], but it relies on expert-level
programming to represent various vulnerability patterns, which
is labor-intensive and prone to errors. Another well-known tech-
nique is dynamic analysis [16–18, 32, 33, 36, 40], which employs
crawling and fuzzing techniques to identify web vulnerability in a
black-box fashion. However, these approaches are often limited by
code coverage, which can result in many false negatives.
Vulnerable Code Clone Detection. There are a lot of existing
work focused on identifying recurring vulnerabilities by vulnerable
code clone detection. Zhou et al. [28] proposed CP-Miner to detect
bugs caused by inconsistent identifier renaming in code clones.
Jang et al. [19] introduced a token-based approach called ReDeBug
to locate unpatched code clones at the line-level granularity. Kim et
al. [24] presented VUDDY, a scalable approach for detecting vulner-
able code clones using several vulnerability-preserving abstraction
techniques. However, these works are primarily suited for detect-
ing Type-1 or Type-2 clones. While for Type-3 clones, Li et al. [26]
and Wi et al. [44] introduced CBCD and HiddenCPG, respectively.
These approaches detect vulnerabilities by solving a subgraph iso-
morphism problem. However, due to the inherent challenges of
subgraph matching, both of them still face numerous false posi-
tives and false negatives when matching the vulnerabilities. Xiao
et al. [45] proposed MVP, like RecurScan, takes security patches
as input and focuses on the differences between the vulnerable and
patched versions. However, its scope is limited by function-level
analysis, making it difficult to apply for inter-procedural detection.
The last one is Tracer [21], which is equipped with an existing
static analyzer [12]. To detect vulnerable code at the semantic level,
Tracer designs a series of low- and high-level features to represent
the characteristics of known vulnerabilities. However, as it is tai-
lored for C-based programs, adapting it for PHP web applications
can be less effective. Unlike these works, thanks to the symbolic
tracking and selective matching techniques, RecurScan can excel
in Type-3 but also some Type-4 clone detection.

7 CONCLUSION

In this paper, we proposed RecurScan, a novel approach designed
for accurately detecting recurring vulnerabilities with resilience to
code differences. RecurScan centers around security patches and
symbolic tracking techniques, matching recurring vulnerabilities
by comparing symbolic expressions and selective constraints with
known vulnerable code. This approach proves effective in tolerating
code differences while achieving precise matching results. Overall,
RecurScan successfully identified 232 recurring vulnerabilities
among 200 popular PHP applications, outperforming the state-of-
the-art approach by 25.98% in precision and 87.09% in the recall.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

RecurScan: Detecting Recurring Vulnerabilities in PHP Web Applications Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] 2014. The Practical-guide-to-code-clones. https://www.cqse.eu/en/news/blog/
practical-guide-to-code-clones-part1/.

[2] 2021. Cybercrime To Cost The World $10.5 Trillion Annually By 2025. https:
//cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021.

[3] 2021. Cybersecurity: A Global Priority and Career Opportunity. https://ung.edu/
continuing-education/news-and-media/cybersecurity.php.

[4] 2023. Companies Using PHP by Domain. https://www.softkraft.co/companies-
using-php.

[5] 2023. Facebook. https://www.facebook.com.
[6] 2023. HiddenCPG Source Code. https://github.com/WSP-LAB/HiddenCPG.
[7] 2023. Spotify. https://open.spotify.com.
[8] 2023. The National Vulnerability Database. https://nvd.nist.gov/.
[9] 2023. The Official Website of Github. https://github.com/.
[10] 2023. The Official Website of Ne04j. https://neo4j.com/.
[11] Michael Backes, Konrad Rieck,Malte Skoruppa, Ben Stock, and Fabian Yamaguchi.

2017. Efficient and Flexible Discovery of PHP Application Vulnerabilities. In 2017
IEEE european symposium on security and privacy (EuroS&P). IEEE, 334–349.

[12] Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic Program
Verifier for Memory Safety of C Programs. In NASA Formal Methods Symposium.
Springer, 459–465.

[13] Johannes Dahse and Thorsten Holz. 2014. Simulation of Built-in PHP Features
for Precise Static Code Analysis.. In NDSS, Vol. 14. 23–26.

[14] Johannes Dahse and Thorsten Holz. 2014. Static Detection of Second-order
Vulnerabilities in Web Applications. In Proceedings of the 23rd USENIX Security
Symposium (USENIX Security). 989–1003.

[15] Johannes Dahse, Nikolai Krein, and Thorsten Holz. 2014. Code Reuse Attacks in
PHP: Automated POP Chain Generation. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 42–53.

[16] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna.
2012. Enemy of the State: A State-Aware Black-Box Web Vulnerability Scanner.
In Proceeding of the 21st USENIX Security Symposium (USENIX Security). 523–538.

[17] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2023. ReScan: A Middle-
ware Framework for Realistic and Robust Black-box Web Application Scanning..
In NDSS.

[18] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. 2021. Black
Widow: Blackbox Data-drivenWeb Scanning. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 1125–1142.

[19] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: Finding Un-
patched Uode Clones in Entire OS Distributions. In Proceedings of the 33rd IEEE
Symposium on Security and Privacy.

[20] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities. In 2006 IEEE Sym-
posium on Security and Privacy (S&P’06). IEEE, 6–pp.

[21] Wooseok Kang, Byoungho Son, and Kihong Heo. 2022. TRACER: Signature-based
Static Analysis for Detecting Recurring Vulnerabilities. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security.

[22] Jinhyun Kim, HyukGeun Choi, Hansang Yun, and Byung-Ro Moon. 2016. Mea-
suring Source Code Similarity by Finding Similar Subgraph with An Incremental
Genetic Algorithm. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016. 925–932.

[23] Seulbae Kim and Heejo Lee. 2018. Software systems at risk: An empirical study
of cloned vulnerabilities in practice. Computers & Security 77 (2018), 720–736.

[24] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
Scalable Approach for Vulnerable Code Clone Discovery. In Proceedings of the
38th IEEE Symposium on Security and Privacy.

[25] Soyoung Lee, Seongil Wi, and Sooel Son. 2022. Link: Black-Box Detection of
Cross-Site Scripting Vulnerabilities Using Reinforcement Learning. In Proceedings
of the ACM Web Conference 2022. 743–754.

[26] Jingyue Li and Michael D Ernst. 2012. CBCD: Cloned Buggy Code Detector. In
2012 34th International Conference on Software Engineering (ICSE). IEEE, 310–320.

[27] Penghui Li and Wei Meng. 2021. Lchecker: Detecting Loose Comparison Bugs
in PHP. In Proceedings of the Web Conference 2021. 2721–2732.

[28] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale Software Code. IEEE Trans-
actions on software Engineering 32, 3 (2006), 176–192.

[29] Changhua Luo, Penghui Li, and Wei Meng. 2022. TChecker: Precise Static
Inter-Procedural Analysis for Detecting Taint-Style Vulnerabilities in PHP Ap-
plications. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security.

[30] Maliheh Monshizadeh, Prasad Naldurg, and VN Venkatakrishnan. 2014. MACE:
Detecting Privilege Escalation Vulnerabilities inWebApplications. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
690–701.

[31] Benjamin Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019. Nodest:
Feedback-Driven Static Analysis of Node.js Applications. In Proceedings of the
27th Joint Meeting on Foundations of Software Engineering (FSE). https://doi.org/

10.1145/3338906.3338933
[32] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian

Rossow. 2017. Deemon: Detecting CSRF with Dynamic Analysis and Property
Graphs. In Proceedings of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[33] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian Rossow.
2015. jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applica-
tions. In Proceedings of the 18th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID). 295–316.

[34] Nam H Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N Nguyen.
2010. Detection of Recurring Software Vulnerabilities. In Proceedings of the 25th
IEEE/ACM International Conference on Automated Software Engineering. 447–456.

[35] Weizhong Qiang, Yuehua Liao, Guozhong Sun, Laurence T Yang, Deqing Zou,
and Hai Jin. 2017. Patch-related Vulnerability Detection based on Symbolic
Execution. IEEE Access 5 (2017), 20777–20784.

[36] Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer, Michalis
Papaevripides, and Elias Athanasopoulos. 2021. WebFuzz: Grey-Box Fuzzing for
Web Applications. In Proceedings of the 26th European Symposium on Research in
Computer Security (ESORICS). 152–172.

[37] Prateek Saxena, David Molnar, and Benjamin Livshits. 2011. SCRIPTGARD: Au-
tomatic Context-Sensitive Sanitization for Large-Scale Legacy Web Applications.
In Proceedings of the 18th ACM conference on Computer and communications
security. 601–614.

[38] Sooel Son, Kathryn SMcKinley, and Vitaly Shmatikov. 2013. Fix Me Up: Repairing
Access-Control Bugs in Web Applications. In NDSS. Citeseer.

[39] Fangqi Sun, Liang Xu, and Zhendong Su. 2011. Static Detection of Access Control
Vulnerabilities in Web Applications. In Proceedings of the 18th ISOC Network and
Distributed System Security Symposium (NDSS).

[40] Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, Giovanni Vigna, Christo-
pher Kruegel, Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé.
2023. Toss a Fault to Your Witcher: Applying Grey-box Coverage-Guided Muta-
tional Fuzzing to Detect SQL and Command Injection Vulnerabilities. In 2023
IEEE Symposium on Security and Privacy (SP). IEEE, 2658–2675.

[41] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot: A Java Bytecode Optimization Framework. In
Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON). 13.

[42] Gary Wassermann and Zhendong Su. 2007. Sound and Precise Analysis of
Web Applications for Injection Vulnerabilities. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 32–
41.

[43] Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter, Richard
Shin, and Dawn Song. 2011. An Empirical Analysis of XSS Sanitization in
Web Application Frameworks. In European Conference on Research in Computer
Security (ESORICS).

[44] Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son. 2022. HiddenCPG:
Large-Scale Vulnerable Clone Detection using Subgraph Isomorphism of Code
Property Graphs. In Proceedings of the ACM Web Conference 2022.

[45] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, Wei Zou, et al. 2020. MVP: Detecting Vulnera-
bilities using Patch-Enhanced Vulnerability Signatures. In 29th USENIX Security
Symposium.

[46] Fang Yu, Muath Alkhalaf, Tevfik Bultan, and Oscar H Ibarra. 2014. Automata-
based Symbolic String Analysis for Vulnerability Detection. Formal Methods in
System Design 44 (2014), 44–70.

[47] Qianchong Zhao, Cheng Huang, and Liuhu Dai. 2023. VULDEFF: Vulnerability
detectionmethod based on function fingerprints and code differences. Knowledge-
Based Systems 260 (2023), 110139.

9

https://www.cqse.eu/en/news/blog/practical-guide-to-code-clones-part1/
https://www.cqse.eu/en/news/blog/practical-guide-to-code-clones-part1/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021
https://ung.edu/continuing-education/news-and-media/cybersecurity.php
https://ung.edu/continuing-education/news-and-media/cybersecurity.php
https://www.softkraft.co/companies-using-php
https://www.softkraft.co/companies-using-php
https://www.facebook.com
https://github.com/WSP-LAB/HiddenCPG
https://open.spotify.com
https://nvd.nist.gov/
https://github.com/
https://neo4j.com/
https://doi.org/10.1145/3338906.3338933
https://doi.org/10.1145/3338906.3338933

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem Statement
	2.2 Our Idea
	2.3 Running Example

	3 RecurScan
	3.1 Vulnerability Context Slicing
	3.2 Vulnerability Signature Generation
	3.3 Recurring Vulnerability Detection

	4 Evaluation
	4.1 Experimental Setup
	4.2 Vulnerability Signatures (RQ1)
	4.3 Vulnerabilities Detected (RQ2)
	4.4 Comparison (RQ3)
	4.5 Efficiency (RQ4)

	5 Discussion
	6 Related Work
	7 Conclusion
	References

