DKD: DIRECTIONAL KNOWLEDGE DISTILLATION FOR ONE-STEP TEXT-TO-IMAGE GENERATION

Anonymous authors

Paper under double-blind review

Figure 1: One-step generated images using our proposed method DKD (*i.e.*, SD 2.1).

ABSTRACT

Despite the impressive performance of diffusion models such as Stable Diffusion (SD) in image generation, their slow inference limits practical deployment. Recent works accelerate inference by distilling multi-step diffusion into one-step generators. To better understand the distillation mechanism, we analyze U-Net/DiT weight changes between one-step students and their multi-step teacher counterparts. Our analysis reveals that changes in weight direction significantly exceed those in weight norm, highlighting it as the key factor during distillation. Motivated by this insight, we propose the **Low**-rank **Rotation** of weight **D**irection (LoRaD). LoRaD is designed to model these structured directional changes using learnable low-rank rotation matrices. We further integrate LoRaD into Variational Score Distillation (VSD), resulting in Directional Knowledge Distillation (DKD)—a novel one-step distillation framework. DKD achieves state-of-the-art FID scores on COCO 2014 and COCO 2017 while using only approximately 10% of the trainable parameters of the U-Net. Furthermore, the distilled one-step model demonstrates strong versatility and scalability, generalizing well to various downstream tasks such as controllable generation, relation inversion, and high-resolution synthesis.

1 Introduction

Diffusion models (DMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021b) have received considerable attention for their ability to generate high-quality and diverse content. Thus, they are widely applied to tasks such as text-to-image (Rombach et al., 2022; Li et al., 2024b; Ruiz et al., 2023; Zhang et al., 2023) generation, text-to-video (Khachatryan et al., 2023; Wu et al., 2023a; Zhou et al., 2024c; Kong et al., 2024) generation, and image-to-video (Wang et al., 2025; Ni et al., 2023; Bar-Tal et al., 2024; Hu et al., 2025) generation. However, the reliance of DMs on multiple

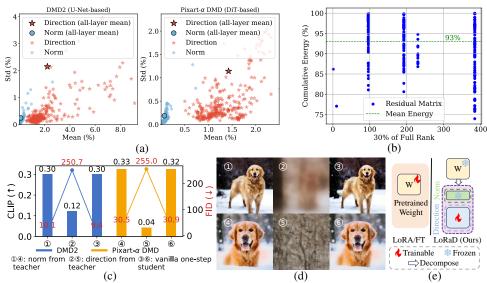


Figure 2: Motivational analysis of our method. (a) Differences in weight norm and direction between the one-step student and the teacher model. See Appendix E for details and additional examples. (b) SVD analysis of the residual matrix for DMD2. (c) Replacing the one-step model's norm with that of the multi-step model has little effect (\mathbb{D}, \mathbb{A}) ; replacing the direction severely degrades generation quality (2, 5). (d) Qualitative examples corresponding to (b). (e) Illustration of LoRaD.

sampling steps leads to high computational cost and slow inference. To address this, recent distillation methods reduce the number of steps to a few (Luo et al., 2023b; Chadebec et al., 2025) or even one (Ren et al., 2024; Lin et al., 2024; Dao et al., 2024). Interestingly, during distillation we find the weight norm remains relatively small across layers, while the direction shows larger variations when reparameterizing weights into *norm* and *direction* for both teacher and student generators.

Inspired by the weight reparameterization (Salimans & Kingma, 2016; Liu et al., 2024), we adopt a similar decomposition to analyze weight changes in diffusion distillation. To begin our analysis, we examine weight updates between state-of-the-art (SOTA) one-step models (*e.g.*, DMD2 (Yin et al., 2024a) and Pixart-α DMD (Yin et al., 2024b)) and their corresponding multi-step counterparts (*e.g.*, SD 1.5 (Rombach et al., 2022) and Pixart-α (Chen et al., 2023)). As shown in Fig. 2 (a) (left), in U-Net-based architectures the weight norm remains nearly stable across layers, with a mean and standard deviation (STD) of 0.1% and 0.2%, respectively. In contrast, the weight direction exhibits much more pronounced change, with a mean of 2.2% and STD of 2.1%, corresponding to ratios of 22× and 10× those of the norm. A similar trend is observed in DiT-based architectures (see Fig. 2 (a) (right)). These observations suggest that the weight direction may carry richer and more sensitive information than the norm in distillation. Further, if the direction indeed accounts for the primary information differences, we ask whether these differences exhibit a structured pattern. To this end, we perform SVD on the residual matrix—the difference between the one-step and multi-step direction matrices—and find that retaining 30% of its rank recovers 93% of the information, highlighting its low-rank nature (see Fig. 2 (b)).

To quantify the impact of these two components, we conduct a controlled ablation study by selectively replacing either the norm or direction of the one-step model with that from the multi-step teacher (see Fig. 2 (d)). As shown in Fig. 2 (c), substituting the norm leads to negligible performance change (e.g., DMD2: +0.7 FID, unchanged CLIP), whereas substituting the directions causes severe degradation (e.g., DMD2: +241.3 FID, -0.18 CLIP). These findings suggest that the weight direction plays a primary role in distillation, while variation in the norm appears comparatively minor. One possible explanation is that initializing the student with teacher weights aligns the initial norm, and weight decay during training further constrains norm drift (Loshchilov & Hutter, 2017); the distillation signal then acts mainly through adjustments in the weight direction to reduce representational discrepancy (Salimans & Kingma, 2016). Taken together, these results indicate that *direction reconstruction a key factor underlying performance improvement in distillation*.

The distillation methods mentioned above can be broadly categorized into two types: full fine-tuning (FT) and Low-Rank Adaptation (LoRA) (Hu et al., 2022)-based fine-tuning. However, they directly

update the model parameters while optimizing both norm and direction. The changes in norm and direction differ, with norm showing minimal variation and directions experiencing significant changes, which increases the optimization difficulty due to the strong coupling between them. Furthermore, both FT and LoRA face issues of slow convergence (Huang et al., 2024a; Dong et al., 2024), instability (Han et al., 2024; Hayou et al., 2024), and overfitting (Aghajanyan et al., 2021; Huang et al., 2025), further complicating the optimization process.

To address the above challenges, we propose Low-rank Rotation of weight Direction (LoRaD) (see Fig. 2 (e)), which adjusts the direction of pre-trained weights via learnable rotation matrices. Given the structured nature (*i.e.*, low-rank property) of directional changes, the rotation angles are parameterized as the product of two low-rank matrices to further reduce the number of learnable parameters. We integrate LoRaD into Variational Score Distillation (VSD) (Wang et al., 2023) and introduce Directional Knowledge Distillation (DKD), a novel one-step text-to-image distillation framework. Experiments on the COCO 2014 (Lin et al., 2014) and COCO 2017 (Lin et al., 2014) datasets show that DKD achieves SOTA FID scores, outperforming all existing one-step generation methods, This was accomplished by optimizing only the direction, which reduced the difficulty of distillation, while using only about 10% of the U-Net parameters as trainable components—greatly enhancing parameter efficiency. Furthermore, we apply DKD to downstream tasks including controllable generation, relation inversion, high-resolution synthesis, and image customization, demonstrating its acceleration capability and broad applicability. Our contributions are summarized as follows:

- We conduct an in-depth analysis of weight changes in U-Net between multi-step and one-step generation models, which points to weight-direction adjustment as a key driver of one-step distillation. This provides a new theoretical perspective for efficient distillation.
- We propose a novel distillation framework for one-step text-to-image generation, named DKD, which employs LoRaD to model weight directions via low-rank rotations, effectively guiding the student model to align with the teacher distribution.
- DKD is evaluated on the COCO dataset and several downstream tasks. Both qualitative and quantitative results demonstrate that DKD significantly improves inference efficiency while achieving substantial gains in image quality.

2 RELATED WORK

Diffusion models. Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2021b) excel in image generation, but pixel-space computation imposes a heavy computational burden. To improve efficiency, Rombach et al. (2022) introduced Latent Diffusion Models (LDM), shifting denoising to latent space. However, existing text-guided methods (Rombach et al., 2022; Podell et al., 2023; Li et al., 2024b; Ruiz et al., 2023; Zhang et al., 2023) are still slow due to multi-step generation. While most use a U-Net backbone, Diffusion Transformer (DiT) (Peebles & Xie, 2023) replaces it with a Transformer for better scalability, advancing text-to-image generation (Chen et al., 2023; 2024b;a; Esser et al., 2024). Despite improvements, iterative denoising remains a slow process. Recently, many acceleration methods have emerged.

Diffusion model acceleration. The existing acceleration methods can be divided into training-free and training-based approaches. *Training-free acceleration methods* for diffusion models fall into two main categories. The first method, which reduces redundant computation through caching (Ma et al., 2024; Wimbauer et al., 2024; Selvaraju et al., 2024; Li et al., 2024a), is exemplified by Faster Diffusion (Li et al., 2024a). The second method uses high-order solvers (Song et al., 2021a; Liu et al., 2022; Zhang & Chen, 2022; Lu et al., 2022a;b), such as DDIM (Song et al., 2021a) and DPM-Solver (Lu et al., 2022a;b), to reduce the number of sampling steps. However, the acceleration effects of these two methods are limited, so training-based methods have received more attention.

Training-based acceleration methods can be broadly categorized into four groups: consistency distillation (CD), progressive distillation (PD), diffusion-GAN distillation, and variational score distillation (VSD). CD (Song et al., 2023; Wang et al., 2024; Ren et al., 2024; Kim et al., 2023; Luo et al., 2023a;b) learns trajectory-level consistency for faster sampling but often suffers from low image fidelity. PD (Salimans & Ho, 2022; Ren et al., 2024) reduces steps in stages, introducing significant training overhead. Diffusion-GAN distillation (Luo et al., 2024; Lin et al., 2024; Xu et al., 2024; Kang et al., 2024), such as Diffusion2GAN (Kang et al., 2024), enhances fidelity by distilling

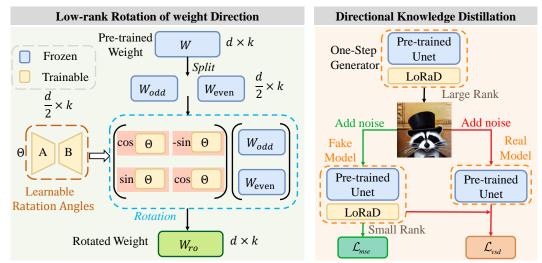


Figure 3: (Left) Detailed architecture of the Low-rank Rotation of weight Direction (LoRaD) module. The LoRaD rotates the pre-trained weight directions using learnable low-rank rotation angles. (Right) Overview of the Directional Knowledge Distillation (DKD) framework.

multi-step diffusion into a GAN. VSD adopts a dual-teacher strategy for distribution alignment (Dao et al., 2024; Nguyen & Tran, 2024; Zhou et al., 2024a; Yin et al., 2024a;b). SwiftBrush (Nguyen & Tran, 2024) achieves one-step, image-free generation. SwiftBrushv2 (Dao et al., 2024) leverages model ensembling, while DMD (Yin et al., 2024b) employs a regression loss to further improve performance. DMD2 (Yin et al., 2024a) extends VSD to few-step generation and underpins recent text-to-video acceleration frameworks (Yi et al., 2025; Shao et al., 2025).

However, existing training-based methods commonly use FT or LoRA, which can raise optimization difficulty. We find that directional changes are generally more influential in distillation. Therefore, we propose DKD, which leverages LoRaD to focus on modeling directional rotations.

3 METHOD

We first provide a brief overview of Variational Score Distillation (VSD) in Section 3.1, which serves as the foundation of our work. Motivated by the observation that weight direction changes play a key role in distillation, we introduce a *Low-rank Rotation of weight Direction* (LoRaD) module in Section 3.2 (See Appendix D for more theoretical explanation.). Finally, we integrate LoRaD into the VSD to form our proposed distillation framework, *Directional Knowledge Distillation* (DKD).

3.1 PRELIMINARY

Latent Diffusion Models (LDM) (Rombach et al., 2022) perform the diffusion process in a low-dimensional latent space, which improves computational efficiency. The training objective of LDM can be formulated as:

$$\mathcal{L}_{mse} = \min_{\varphi} \mathbb{E}_{t,\epsilon,c} \left\| \epsilon_{\varphi} \left(\boldsymbol{z}_{t}, \boldsymbol{c}, t \right) - \epsilon \right\|_{2}^{2}, \tag{1}$$

where $\epsilon \sim \mathcal{N}(0, I)$ is Gaussian noise, z_t is the latent variable at timestep t, and c denotes the condition (e.g., prompt) used to guide image generation. $\epsilon_{\varphi}(z_t, c, t)$ is the noise predicted by the model parameterized by φ .

Variational Score Distillation (VSD) (Wang et al., 2023) was initially proposed for text-to-3D generation to address issues such as oversaturation and reduced diversity. It was subsequently extended to 2D text-to-image generation in methods such as Swiftbrush (Nguyen & Tran, 2024), DMD (Yin et al., 2024b;a), and SiD (Zhou et al., 2024b;a), enabling one-step generation. The training objective of VSD is formulated as:

$$\nabla_{\lambda} \mathcal{L}_{vsd} = \mathbb{E}_{t,\epsilon,c} \left[\omega(t) \left(\epsilon_{\psi} \left(\boldsymbol{z}_{t}, \boldsymbol{c}, t \right) - \epsilon_{\phi} \left(\boldsymbol{z}_{t}, \boldsymbol{c}, t \right) \right) \frac{\partial G_{\lambda}(\boldsymbol{z}_{init}, \boldsymbol{c})}{\partial \lambda} \right], \tag{2}$$

where $\omega(t)$ is a time-dependent weighting term, ϵ_{ψ} is the real model parameterized by ψ , ϵ_{ϕ} is the fake model parameterized by ϕ , and G_{λ} is the one-step generator parameterized by λ , with $\boldsymbol{z}_{init} \sim \mathcal{N}(0,I)$ as its input noise. Additionally, ϵ_{ϕ} is trained using Eq. (1). VSD alternates between updating ϵ_{ϕ} and G_{λ} until convergence.

3.2 Low-rank Rotation of Weight Direction

Analyzing the weight changes between multi-step U-Net models and their one-step counterparts suggests notable directional shifts with relatively small changes in norm. Motivated by this, we propose Low-rank Rotation of weight Direction (LoRaD) (see Fig. 3 (left)), which updates weights by learning rotations that alter only their directions. Furthermore, we observe that the changes in weight direction exhibit a low-rank structure (see Fig. 2 (b)). To exploit this property and reduce the overhead of full-rank modeling, which introduces additional parameters equivalent to 50% of the original weights, we adopt the low-rank decomposition strategy of LoRA (Hu et al., 2022). Starting from the 2D case (d = 2), given a weight vector $\alpha \in \mathbb{R}^d$, we apply a 2D rotation matrix as follows:

$$\alpha_{ro} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \alpha^{(1)} \\ \alpha^{(2)} \end{pmatrix}, \tag{3}$$

where α_{ro} is the rotated weight vector. Inspired by the Rotary Position Embedding (RoPE) (Su et al., 2024), which generalizes the 2D case to any even dimension d, we apply a different rotation matrix to each column of the pre-trained weight matrix $W \in \mathbb{R}^{d \times k}$:

$$W_{ro} = \left[R_{\Theta,1}^d W_{\cdot,1}, R_{\Theta,2}^d W_{\cdot,2}, \cdots, R_{\Theta,k}^d W_{\cdot,k} \right], \tag{4}$$

where the rotation matrices $R_{\Theta} = \{R_{\Theta i}^d\}_{i=1}^k$ are defined as:

$$R_{\Theta,i}^{d} = \begin{pmatrix} \cos\theta_{1,i} & -\sin\theta_{1,i} & 0 & 0 & \dots & 0 & 0\\ \sin\theta_{1,i} & \cos\theta_{1,i} & 0 & 0 & \dots & 0 & 0\\ 0 & 0 & \cos\theta_{2,i} & -\sin\theta_{2,i} & \dots & 0 & 0\\ 0 & 0 & \sin\theta_{2,i} & \cos\theta_{2,i} & \dots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \dots & \cos\theta_{\frac{d}{2},i} & -\sin\theta_{\frac{d}{2},i}\\ 0 & 0 & 0 & 0 & \dots & \sin\theta_{\frac{d}{2},i} & \cos\theta_{\frac{d}{2},i} \end{pmatrix}, \tag{5}$$

where $\Theta = \{\theta_i\}_{i=1}^{\frac{d}{2}} \in \mathbb{R}^{\frac{d}{2} \times k}$

Given the sparsity of $R_{\Theta,i}^d$ in Eq. (5), the matrix-vector multiplication $R_{\Theta,i}^dW_{\cdot,i}\in\mathbb{R}^d$ can be computed efficiently as:

$$R_{\Theta,i}^{d}W_{\cdot,i} = \begin{pmatrix} W_{\cdot,i}^{(1)} \\ W_{\cdot,i}^{(2)} \\ W_{\cdot,i}^{(3)} \\ W_{\cdot,i}^{(3)} \\ W_{\cdot,i}^{(4)} \\ \vdots \\ W_{\cdot,i}^{(d-1)} \\ W_{\cdot,i}^{(d)} \end{pmatrix} \odot \begin{pmatrix} \cos\theta_{1,i} \\ \cos\theta_{1,i} \\ \cos\theta_{2,i} \\ \cos\theta_{2,i} \\ \cos\theta_{\frac{d}{2},i} \\ \cos\theta_{\frac{d}{2},i} \end{pmatrix} + \begin{pmatrix} W_{\cdot,i}^{(1)} \\ W_{\cdot,i}^{(2)} \\ W_{\cdot,i}^{(3)} \\ W_{\cdot,i}^{(4)} \\ \vdots \\ W_{\cdot,i}^{(d-1)} \\ W_{\cdot,i}^{(d)} \end{pmatrix} \odot \begin{pmatrix} -\sin\theta_{1,i} \\ \sin\theta_{1,i} \\ -\sin\theta_{2,i} \\ \sin\theta_{2,i} \\ \vdots \\ -\sin\theta_{\frac{d}{2},i} \\ \sin\theta_{\frac{d}{2},i} \end{pmatrix}, \tag{6}$$

where \odot denotes element-wise multiplication. This implementation leverages the sparsity of the rotation matrix, allowing the computation to be performed using only element-wise operations, thus significantly reducing the computational cost.

Furthermore, since the rotation matrices in Eqs. (5) and (6) are block-diagonal with independent 2×2 submatrices, the computation can be efficiently implemented as a parallel application of multiple 2×2 rotations across odd-even index pairs. As shown in Fig. 3 (left), we split the d-dimensional space of the pre-trained weight matrix $W \in \mathbb{R}^{d \times k}$ into $\frac{d}{2}$ subspaces and rotate each independently. By separating the odd and even rows of W, we define:

$$W_{\text{odd}} = \left(W^{(1)}, W^{(3)}, \dots, W^{(d-1)}\right)^{T},$$

$$W_{\text{even}} = \left(W^{(2)}, W^{(4)}, \dots, W^{(d)}_{.,i}\right)^{T},$$
(7)

¹We do not need to explicitly separate the norm matrix, as rotations do not affect norm.

resulting in two matrices $W_{\text{odd}} \in \mathbb{R}^{\frac{d}{2} \times k}$ and $W_{\text{even}} \in \mathbb{R}^{\frac{d}{2} \times k}$.

The resulting parallel 2×2 rotations over each odd-even row pair can be expressed compactly as:

$$W_{ro} = R_{\Theta}W = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix} \begin{bmatrix} W_{\text{odd}} \\ W_{\text{even}} \end{bmatrix}, \tag{8}$$

where $W_{ro} \in \mathbb{R}^{d \times k}$ is the rotated weight matrix, and $\Theta \in \mathbb{R}^{\frac{d}{2} \times k}$ is the learnable rotation angle parameter matrix. To further reduce the number of trainable parameters, we apply low-rank decomposition to Θ , inspired by LoRA (Hu et al., 2022), as follows:

$$\Theta = AB,\tag{9}$$

where $A \in \mathbb{R}^{\frac{d}{2} \times r}$ and $B \in \mathbb{R}^{r \times k}$ are low-rank parameter matrices with rank r. Finally, Eq. (8) can be rewritten as:

$$W_{ro} = R_{\Theta}W = R_{AB}W = \begin{bmatrix} \cos AB & -\sin AB \\ \sin AB & \cos AB \end{bmatrix} \begin{bmatrix} W_{\text{odd}} \\ W_{\text{even}} \end{bmatrix}.$$
 (10)

3.3 DIRECTIONAL KNOWLEDGE DISTILLATION

To fully leverage the directional characteristics observed in distillation, we integrate LoRaD into the VSD. This yields a direction-aware distillation framework, which we term Directional Knowledge Distillation (DKD). As illustrated in Fig. 3 (right), DKD employs a pre-trained diffusion model ϵ_{ψ} as the teacher (real model) and introduces a trainable fake model ϵ_{ϕ} (initialized from ϵ_{ψ}) to approximate the teacher's distribution. The final student model (one-step generator) G_{λ} , also initialized from ϵ_{ψ} , is trained to synthesize high-quality images in one-step. See Appendix F.3 for algorithm details.

To enhance alignment with the real distribution, we apply LoRaD to both the student and fake models. Specifically, the one-step generator $G_{\lambda_{\Theta^l}}$ incorporates a high-rank rotation matrix Θ^l to better fit the teacher, while the fake model $\epsilon_{\phi_{\Theta^s}}$ uses a low-rank rotation matrix Θ^s to provide adaptive guidance. Finally, we alternate the optimization of λ_{Θ^l} and ϕ_{Θ^s} to jointly improve the quality of the generation.

Accordingly, the DKD training objective can be rewritten from Eq. (2) as:

$$\nabla_{\lambda_{\Theta^l}} \mathcal{L}_{vsd} = \mathbb{E}_{t,\epsilon,c} \left[\omega(t) \left(\epsilon_{\psi} \left(\boldsymbol{z}_t, \boldsymbol{c}, t \right) - \epsilon_{\phi_{\Theta^s}} \left(\boldsymbol{z}_t, \boldsymbol{c}, t \right) \right) \frac{\partial G_{\lambda_{\Theta^l}} (\boldsymbol{z}_{init}, \boldsymbol{c})}{\partial \lambda_{\Theta^l}} \right], \tag{11}$$

The training objective for $\epsilon_{\phi_{\Theta}s}$ can also be rewritten from Eq. (1) as:

$$\min_{\phi_{\Theta^s}} \mathbb{E}_{t,\epsilon,\boldsymbol{c}} \left\| \epsilon_{\phi_{\Theta^s}} \left(\boldsymbol{z}_t, \boldsymbol{c}, t \right) - \epsilon \right\|_2^2.$$
 (12)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Evaluation Datasets and Metrics. We systematically evaluate the zero-shot text-to-image generation capability of DKD on the COCO 2014 (Lin et al., 2014) and COCO 2017 (Lin et al., 2014) datasets, using 30k and 5k randomly sampled images, respectively. To comprehensively assess the quality of the generation, we use the Fréchet Inception Distance (FID) (Heusel et al., 2017) to measure image fidelity and the CLIP score (Radford et al., 2021) to evaluate the semantic alignment of text-image. The FID is calculated using Inception V3 (Szegedy et al., 2016) as the feature extractor, while the CLIP score is based on the ViT-G/14 (Cherti et al., 2023) model. We further adopt precision and recall (Kynkäänniemi et al., 2019) to evaluate fidelity and diversity. Finally, we also evaluate text-image alignment on the Human Preference Score v2 (HPSv2) (Wu et al., 2023b) benchmark. See Appendix G.1 for details.

Implementation Details. Following prior methods (Nguyen & Tran, 2024; Dao et al., 2024; Yin et al., 2024a;b), the student model in DKD adopts the same architecture as the teacher and is initialized with the teacher's weights. DKD is trained on 1.4 M prompts sampled from the JourneyDB (Sun et al., 2023) dataset. During training, the learning rate (LR) for the student is set to 1*e*-4, while the

Table 1: Quantitative comparison of DKD and other methods on zero-shot COCO 2014 results. * indicates our reproduced results, and ' indicates results using the official pre-trained models. '-' denotes unknown. Best and second-best scores are in **bold** and <u>underline</u>, respectively. Image-free" refers to training without supervision from real images.

Method	#Params	NFEs	Type	Trainable params	$\mathbf{FID}\downarrow$	CLIP ↑	Precision ↑	Recall \uparrow	Image-free?	Training Data
				Stable Diffusion 1.5-	based ba	ckbone				
SD 1.5 ($cfg = 3.0$)	860M	25	U-Net	860M	8.78	0.30	0.59	0.53	X	5B
LCM-LoRA?	860M	1	LoRA	67.50M	77.73	0.24	0.22	0.15		12M
InstaFlow	860M	1	U-Net	860M	13.10	0.28	0.53	0.45	×	3.2M
UFOGen	860M	1	U-Net	860M	12.78	-	-	-	×	12M
DMD	860M	1	U-Net	860M	11.49	0.32	-	-	×	3M
DMD2*	860M	1	U-Net	860M	12.96	0.30	0.60	0.47	/	1.4M
SiD-LSG*	860M	1	U-Net	860M	14.27	0.30	0.56	0.48	✓	1.4M
PCM	860M	1	U-Net	860M	17.91	0.29	-	-	X	3M
Hyper-SD [≀]	860M	1	LoRA	67.25M	22.90	0.31	0.62	0.25	Х	-
YOSO≀	860M	1	LoRA	67.25M	23.68	0.29	0.56	0.36	Х	4M
DKD	860M	1	LoRaD	83.80M	10.79	0.31	0.62	0.48	1	1.4M
				Stable Diffusion 2.1-	based ba	ckbone				
SD $2.1 (cfg = 3.0)$	865M	1	U-Net	865M	9.60	0.32	0.59	0.50	X	5B
SD-Turbo≀	865M	1	Ū-Net	865M	16.14	0.33	0.65	0.35	X	
Swiftbrush	865M	1	U-Net	865M	16.67	0.29	0.47	0.46	✓	1.4M
Swiftbrushv2*	865M	1	U-Net+LoRA	884.14M	15.98	0.33	0.58	0.47	/	1.4M
SiD-LSG*	865M	1	U-Net	865M	15.17	0.30	0.56	0.46	/	1.4M
TiUE≀	865M	1	U-Net	865M	13.49	0.31	0.59	0.48	/	1.4M
DKD	865M	1	LoRaD	94.43M	12.34	0.31	0.60	0.48	1	1.4M
				PixArt-α-based	backbor	ne				
PixArt- α (cfg = 4.5)	610.86M	20	DiT	610.86M	8.75	0.32	0.75	0.45	Х	25M
Swiftbrush*	610.86M	1	DiT	610.86M	29.89	0.28	0.50	0.26	·	1.4M
PG-SB*	610.86M	1	DiT	610.86M	25.58	0.28	0.53	0.27	/	1.4M
DKD	610.86M	1	LoRaD	81.22M	18.99	0.30	0.64	0.29	1	1.4M

fake model uses a LR of 1e-2. We use AdamW (Loshchilov & Hutter, 2019) as the optimizer, with a batch size of 128 (16 per GPU). The classifier-free guidance (CFG) scale is set to 1.5, and the training is conducted for 2 epochs. We distill student models based on three different backbones, namely SD 1.5 (Rombach et al., 2022), SD 2.1 (Rombach et al., 2022), and PixArt- α (256 × 256) (Chen et al., 2023). For SD 1.5 and SD 2.1, the LoRaD rank of the student is set to 256, while for PixArt- α , it is set to 128. The LoRaD rank for all fake models is uniformly set to 32. See Appendix F.1 for details.

4.2 Comparison with State-of-the-Art Methods

Quantitative results. We comprehensively evaluate DKD on the COCO 2014 dataset against SOTA zero-shot one-step generation methods across three backbones: SD 1.5, SD 2.1, and PixArt- α . To ensure fair comparison and considering computational constraints, we follow the setup of TiUE (Li et al., 2025) and uniformly reproduce DKD, DMD2, SiD-LSG, and SwiftBrushv2 using 1.4M prompts. As shown in Tab. 1, DKD achieves the best FID and Recall scores on all backbones, demonstrating superior fidelity and diversity. It also ranks first or second in CLIP and Precision, indicating strong text-image alignment and perceptual quality. Notably, only 9.74%, 10.92%, and 13.30% of the model parameters are trainable for SD 1.5, SD 2.1, and PixArt- α , respectively, highlighting DKD's parameter efficiency. These improvements stem from our proposed LoRaD, which reparameterizes weight updates via low-rank rotations to enable stable and efficient distillation. See Appendix F.4, G.3. Qualitative results. Fig. 4 presents a qualitative comparison of DKD with SOTA one-step generation methods based on SD 1.5 and SD 2.1 backbones. Across diverse prompts, DKD consistently produces visually coherent and semantically aligned results. For example, in the first and second rows, DKD better preserves structure and stylistic fidelity, capturing sharp features and vibrant colors without artifacts or distortions. In the third and fourth rows, it accurately follows prompts involving specific subjects (e.g., sphynx cat, corgi, shiba inu) and contexts (e.g., theater, clothing), while alternative methods often miss key attributes or yield unrealistic shapes. Notably, in the last row, DKD generates complex scenes (e.g., dog looking at TV) with consistent spatial composition and background details, demonstrating superior holistic understanding compared to other baselines. See Appendix G.5.

4.3 DOWNSTREAM TASKS

Controllable generation. ControlNet (Zhang et al., 2023) is a widely used controllable generation model that incorporates spatial conditions into SD (Rombach et al., 2022) for fine-grained control. As shown in Fig. 5, applying DKD to ControlNet significantly improves inference efficiency, reducing inference time by **86.26**% while preserving image quality, faithfully following spatial conditions, and maintaining prompt adherence comparable to ControlNet.

Figure 4: Qualitative comparison with other methods, where * indicates our reproduced results.

Figure 5: Quality results by Controlnet (Zhang et al., 2023) with with or without DKD.

Relation inversion. Reversion (Huang et al., 2024b) is the first method to guide specific object relationship synthesis in SD via relational prompts. Integrating DKD into Reversion significantly accelerates inference. As shown in Fig. 6, DKD reduces inference time by **88.89**% while producing high-fidelity images that align with the relational prompts, with quality close to that of the original multi-step Reversion. See Appendix F.2 for more results.

Table 2: Ablation study on the impact of rank in DKD (SD 1.5) on the COCO 2017 dataset. "N" and "DM" denote the norm mean and direction mean for all layers, respectively.

Туре	#Params	FID	CLIP	NM	DM
LoRA	120.9M	25.27	0.29	0.06	0.83
DoRA	121.2M	26.56	0.30	0.03	0.55
FT (DMD2)	860.0M	23.30	0.30	0.10	2.21
LoRaD	83.8M	20.86	0.31	-	2.89

Dataset Dreambooth LoRA LoRaD Figure 7: Quality results by Dreambooth with or without LoRaD.

Table 3: Ablation study on the impact of the rank on DKD (SD 1.5) on COCO 2014 dataset.

433

434 435

436 437 438

439

440

441

442

443

444

445

446

447

448 449

450 451

452

453

454 455

456 457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473 474 475

476 477

478

479

480

481

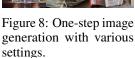
482

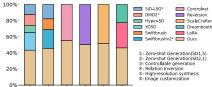
483

484

485

		Rank							
Setting		Student #Params Fake model #Params							
A	64	20.95M	32	9.38M	13.64 0.30				
В	128	41.90M	32	9.38M	$13.16 \ \overline{0.29}$				
C	256	83.80M	32	9.38M	10.79 0.31				
D	512	167.59M	32	9.38M	12.75 0.30				
E	256	83.80M	16	4.69M	17.53 0.29				
F	256	83.80M	64	18.76M	16.98 0.31				





generation with various Figure 9: User study results compared to other methods.

Image customization. Dreambooth (Ruiz et al., 2023) is a pioneering personalized text-to-image framework that binds the target subject to a rare token via FT of the U-Net. To enhance parameter efficiency, we integrate our proposed LoRaD into Dreambooth and compare it with Dreambooth (FT) and LoRA (Hu et al., 2022). As shown in Fig. 7, vanilla DreamBooth overfits by capturing the subject while memorizing training images, thus reducing prompt sensitivity. LoRA alleviates overfitting, but degrades subject identity and image fidelity. In contrast, LoRaD maintains subject fidelity while adhering to prompts, achieving a better balance. These results highlight the generalizability of LoRaD beyond distillation, motivating future applications in broader vision tasks requiring fine-tuning.

4.4 User Study

To evaluate image quality and text-image alignment, we conducted a user study with 57 participants, covering zero-shot generation and downstream tasks. As shown in Fig. 9, the results clearly demonstrate the superiority of our method over existing baselines. See Appendix F.5 for details.

4.5 ABLATION STUDIES

Tab. 2 compares the performance of four different fine-tuning types (LoRA, DoRA, FT, and LoRaD) on the COCO 2017 dataset. LoRaD attains the best scores (FID 20.86, CLIP 0.31) with the fewest trainable parameters (83.8M; 31% fewer than LoRA/DoRA and 90% fewer than FT). Moreover, LoRaD achieves the highest direction mean (2.89% vs. 2.21% for FT, 0.83%/0.55% for LoRA/DoRA), suggesting a broader and more effective update direction space under a compact parameterization. Overall, the results indicate a favorable quality-efficiency trade-off for LoRaD.

We conduct an ablation study on the COCO 2014 dataset to assess the impact of rank configuration in DKD. As shown in Tab. 3, we make three key observations: 1) Increasing student rank consistently improves performance. Raising the rank from setting A to C reduces FID from 13.64 to 10.79, indicating that higher rank enables the student to better capture the teacher's distribution and improve generation quality. 2) Increasing the rank beyond a threshold yields diminishing returns. Comparing settings C and D, further increasing the rank degrades FID (12.75 vs. 10.79) and CLIP (0.31 vs. 0.30), suggesting that overly large ranks may cause overfitting. 3) Fake model rank affects fidelity more than alignment. Varying the fake model rank (settings C, E, F) changes FID but leaves CLIP largely stable, implying fidelity is more sensitive to capacity than alignment. In summary, setting C offers a favorable trade-off between model capacity and performance, consistent with the qualitative results in Fig. 8. See Appendix G.2, G.4 for details.

CONCLUSION

This paper presents Directional Knowledge Distillation (DKD), an efficient one-step text-to-image distillation framework. Through an in-depth analysis of weight changes between multi-step and onestep models, we find that changes in weight direction serve as a key mechanism in distillation, while changes in norm play a comparatively smaller role. Based on this insight, we introduce the Low-rank Rotation of weight Direction (LoRaD) module to model directional adjustments in a parameterefficient manner. Extensive experiments demonstrate that DKD significantly outperforms existing one-step methods—such as DMD, SiD-LSG, and SwiftBrush—in both image quality and inference speed. Moreover, the distilled model can be seamlessly adapted to a wide range of downstream tasks, showcasing strong generalization and practical applicability. Our work offers a novel theoretical perspective and practical solution for efficient diffusion model distillation.

ETHICS STATEMENT

We fully recognize the potential ethical risks associated with deploying generative models, including privacy breaches, data misuse, and the amplification of biases. At the same time, we acknowledge the potential misuse of personalization and customization techniques in generating false content and disinformation. To address these concerns, we advocate for and support responsible research and application practices, strictly adhering to relevant laws, regulations, and industry guidelines, while implementing necessary technical and governance measures to minimize the risks of misuse.

REPRODUCIBILITY STATEMENT

To promote reproducibility, we will release all source code and scripts after the peer review process, enabling others to replicate the experiments. All experiments in this work were conducted using publicly available datasets.

REFERENCES

- P-A Absil, Robert Mahony, and Rodolphe Sepulchre. *Optimization algorithms on matrix manifolds*. Princeton University Press, 2008. 16
- Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the effectiveness of language model fine-tuning. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 7319–7328, 2021. 3
- Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep nets via a compression approach. In *International conference on machine learning*, pp. 254–263. PMLR, 2018. 17
- Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat, Junhwa Hur, Guanghui Liu, Amit Raj, et al. Lumiere: A space-time diffusion model for video generation. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024. 1
- Alessandro Barp, Chris J Oates, Emilio Porcu, and Mark Girolami. A riemann–stein kernel method. Bernoulli, 28(4):2181–2208, 2022. 16
- Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann, and Leonel Rozo. Reactive motion generation on learned riemannian manifolds. *The International Journal of Robotics Research*, 42(10):729–754, 2023. 16
- Nicolas Boumal. *An introduction to optimization on smooth manifolds*. Cambridge University Press, 2023. 16
- Clement Chadebec, Onur Tasar, Eyal Benaroche, and Benjamin Aubin. Flash diffusion: Accelerating any conditional diffusion model for few steps image generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 15686–15695, 2025. 2
- Junsong Chen, YU Jincheng, GE Chongjian, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis. In *The Twelfth International Conference on Learning Representations*, 2023. 2, 3, 7, 17, 18, 21, 24
- Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-σ: Weak-to-strong training of diffusion transformer for 4k text-to-image generation. In *European Conference on Computer Vision*, pp. 74–91. Springer, 2024a. 3
- Junsong Chen, Simian Luo, and Enze Xie. Pixart-δ: Fast and controllable image generation with latent consistency models. In ICML 2024 Workshop on Theoretical Foundations of Foundation Models, 2024b. 3

- Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive language-image learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2818–2829, 2023. 6
- Trung Dao, Thuan Hoang Nguyen, Thanh Le, Duc Vu, Khoi Nguyen, Cuong Pham, and Anh Tran. Swiftbrush v2: Make your one-step diffusion model better than its teacher. In *European Conference on Computer Vision*, pp. 176–192. Springer, 2024. 2, 4, 6, 17, 18, 19, 21, 22, 24
- Yanjie Dong, Haijun Zhang, Chengming Li, Song Guo, Victor Leung, and Xiping Hu. Fine-tuning and deploying large language models over edges: Issues and approaches. *arXiv* preprint *arXiv*:2408.10691, 2024. 3
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
- Yanhong Fei, Yingjie Liu, Chentao Jia, Zhengyu Li, Xian Wei, and Mingsong Chen. A survey of geometric optimization for deep learning: from euclidean space to riemannian manifold. *ACM Computing Surveys*, 57(5):1–37, 2025. 17
- Andi Han, Bamdev Mishra, Pratik Kumar Jawanpuria, and Junbin Gao. On riemannian optimization over positive definite matrices with the bures-wasserstein geometry. *Advances in Neural Information Processing Systems*, 34:8940–8953, 2021. 16
- Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning for large models: A comprehensive survey. *Transactions on Machine Learning Research*, 2024. 3
- Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics. *Advances in Neural Information Processing Systems*, 37:117015–117040, 2024. 3
- Yingqing He, Shaoshu Yang, Haoxin Chen, Xiaodong Cun, Menghan Xia, Yong Zhang, Xintao Wang, Ran He, Qifeng Chen, and Ying Shan. Scalecrafter: Tuning-free higher-resolution visual generation with diffusion models. In *The Twelfth International Conference on Learning Representations*, 2023. 18, 19, 20, 22, 30
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30, 2017. 6
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020. 1, 3
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022. 2, 5, 6, 9, 18, 22, 23
- Yaosi Hu, Zhenzhong Chen, and Chong Luo. Lamd: Latent motion diffusion for image-conditional video generation. *International Journal of Computer Vision*, pp. 1–17, 2025. 1
- Qiushi Huang, Tom Ko, Lilian Tang, and Yu Zhang. Comlora: A competitive learning approach for enhancing lora. In *The Thirteenth International Conference on Learning Representations*, 2025. 3
- Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Lazy safety alignment for large language models against harmful fine-tuning. *arXiv preprint arXiv:2405.18641*, 2, 2024a.
- Ziqi Huang, Tianxing Wu, Yuming Jiang, Kelvin CK Chan, and Ziwei Liu. Reversion: Diffusion-based relation inversion from images. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024b. 8, 18, 19, 22, 29
- Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kusner. When do flat minima optimizers work? Advances in Neural Information Processing Systems, 35:16577–16595, 2022. 17

- Minguk Kang, Richard Zhang, Connelly Barnes, Sylvain Paris, Suha Kwak, Jaesik Park, Eli Shechtman, Jun-Yan Zhu, and Taesung Park. Distilling diffusion models into conditional gans. In *European Conference on Computer Vision*, pp. 428–447. Springer, 2024. 3
 - Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are zero-shot video generators. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15954–15964, 2023. 1
 - Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode trajectory of diffusion. In *The Twelfth International Conference on Learning Representations*, 2023. 3
 - Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014. 19
 - Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative models. *arXiv preprint arXiv:2412.03603*, 2024. 1
 - Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved precision and recall metric for assessing generative models. *Advances in neural information processing systems*, 32, 2019. 6
 - Senmao Li, Taihang Hu, Joost van de Weijer, Fahad Shahbaz Khan, Tao Liu, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming Cheng, et al. Faster diffusion: Rethinking the role of the encoder for diffusion model inference. *Advances in Neural Information Processing Systems*, 37:85203–85240, 2024a. 3
 - Senmao Li, Lei Wang, Kai Wang, Tao Liu, Jiehang Xie, Joost van de Weijer, Fahad Shahbaz Khan, Shiqi Yang, Yaxing Wang, and Jian Yang. One-way ticket: Time-independent unified encoder for distilling text-to-image diffusion models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 23563–23574, 2025. 7, 18, 21
 - Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Photomaker: Customizing realistic human photos via stacked id embedding. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8640–8650, 2024b. 1, 3
 - Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion distillation. *arXiv preprint arXiv:2402.13929*, 2024. 2, 3
 - Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings, part v 13*, pp. 740–755. Springer, 2014. 3, 6, 23
 - Chang Liu and Jun Zhu. Riemannian stein variational gradient descent for bayesian inference. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018. 16
 - Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on manifolds. In *International Conference on Learning Representations*, 2022. 3
 - Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first International Conference on Machine Learning*, 2024. 2, 16, 23
 - Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for high-quality diffusion-based text-to-image generation. In *The Twelfth International Conference on Learning Representations*, 2023. 18, 21, 22, 24
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017. 2

- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019. 7, 17
 - Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural Information Processing Systems*, 35:5775–5787, 2022a. 3
 - Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver for guided sampling of diffusion probabilistic models. *arXiv preprint arXiv:2211.01095*, 2022b. 3
 - Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthesizing high-resolution images with few-step inference. *arXiv preprint arXiv:2310.04378*, 2023a. 3
 - Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module. *arXiv* preprint arXiv:2311.05556, 2023b. 2, 3, 18, 21, 23, 24
 - Yihong Luo, Xiaolong Chen, Xinghua Qu, Tianyang Hu, and Jing Tang. You only sample once: Taming one-step text-to-image synthesis by self-cooperative diffusion gans. *arXiv preprint arXiv:2403.12931*, 2024. 3, 17, 18, 19, 21, 22, 23, 24
 - Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normalization layers: Sharpness reduction. Advances in Neural Information Processing Systems, 35: 34689–34708, 2022. 16
 - Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15762–15772, 2024. 3
 - Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors adaptation of large language models. *Advances in Neural Information Processing Systems*, 37: 121038–121072, 2024. 23
 - Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with variational score distillation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7807–7816, 2024. 4, 6, 17, 18, 21, 22, 24
 - Viet Nguyen, Anh Nguyen, Trung Dao, Khoi Nguyen, Cuong Pham, Toan Tran, and Anh Tran. Snoopi: Supercharged one-step diffusion distillation with proper guidance. *arXiv preprint arXiv:2412.02687*, 2024. 18, 21, 24
 - Haomiao Ni, Changhao Shi, Kai Li, Sharon X Huang, and Martin Renqiang Min. Conditional image-to-video generation with latent flow diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18444–18455, 2023. 1
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023. 3
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. In *The Twelfth International Conference on Learning Representations*, 2023. 3
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021. 6
 - Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, XING WANG, and Xuefeng Xiao. Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. 2, 3, 17, 18, 21, 22, 23, 24

- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022. 1, 2, 3, 4, 7, 18, 21, 22, 24
- Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–22510, 2023. 1, 3, 9, 18, 19, 22, 29
- Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In *International Conference on Learning Representations*, 2022. 3
- Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. *Advances in neural information processing systems*, 29, 2016. 2, 16
- Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion distillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2024. 17, 18, 21, 23, 24
- Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward caching in diffusion transformer acceleration. *arXiv preprint arXiv:2407.01425*, 2024. 3
- Shitong Shao, Hongwei Yi, Hanzhong Guo, Tian Ye, Daquan Zhou, Michael Lingelbach, Zhiqiang Xu, and Zeke Xie. Magicdistillation: Weak-to-strong video distillation for large-scale few-step synthesis. *arXiv preprint arXiv:2503.13319*, 2025. 4
- Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International conference on machine learning*, pp. 2256–2265. pmlr, 2015. 1, 3
- Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021a. 3, 19
- Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances in neural information processing systems*, 32, 2019. 3
- Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021b. 1, 3
- Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International Conference on Machine Learning*, pp. 32211–32252. PMLR, 2023. 3
- Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024. 5
- Keqiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun Zhou, Zipeng Qin, Yi Wang, et al. Journeydb: A benchmark for generative image understanding. *Advances in neural information processing systems*, 36:49659–49678, 2023. 6, 18
- Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint arXiv:2406.06525*, 2024. 17
- Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2818–2826, 2016. 6
- Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint arXiv:2503.20314*, 2025. 1

- Fu-Yun Wang, Zhaoyang Huang, Alexander Bergman, Dazhong Shen, Peng Gao, Michael Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency models. *Advances in neural information processing systems*, 37:83951–84009, 2024. 3, 17, 18, 19, 21
- Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and Lei Li. Solo: Segmenting objects by locations. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16*, pp. 649–665. Springer, 2020. 22
- Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. *Advances in Neural Information Processing Systems*, 36:8406–8441, 2023. 3, 4
- Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models through block caching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6211–6220, 2024. 3
- Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion models for text-to-video generation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7623–7633, 2023a. 1
- Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis. *arXiv* preprint arXiv:2306.09341, 2023b. 6
- Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. Advances in Neural Information Processing Systems, 36:15903–15935, 2023. 22
- Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale text-to-image generation via diffusion gans. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8196–8206, 2024. 3, 18, 21, 24
- Hongwei Yi, Shitong Shao, Tian Ye, Jiantong Zhao, Qingyu Yin, Michael Lingelbach, Li Yuan, Yonghong Tian, Enze Xie, and Daquan Zhou. Magic 1-for-1: Generating one minute video clips within one minute. *arXiv preprint arXiv:2502.07701*, 2025. 4
- Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill Freeman. Improved distribution matching distillation for fast image synthesis. *Advances in neural information processing systems*, 37:47455–47487, 2024a. 2, 4, 6, 17, 18, 21, 22, 24
- Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6613–6623, 2024b. 2, 4, 6, 18, 21
- Lymin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3836–3847, 2023. 1, 3, 7, 8, 18, 19, 22, 23
- Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator. In *NeurIPS 2022 Workshop on Score-Based Methods*, 2022. 3, 28
- Mingyuan Zhou, Zhendong Wang, Huangjie Zheng, and Hai Huang. Long and short guidance in score identity distillation for one-step text-to-image generation. *arXiv preprint arXiv:2406.01561*, 2024a. 4, 17, 18, 19, 21, 22, 24
- Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation. In *Forty-first International Conference on Machine Learning*, 2024b. 4
- Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffusion: Consistent self-attention for long-range image and video generation. *Advances in Neural Information Processing Systems*, 37:110315–110340, 2024c. 1

Table 4: Comparison of different methods in terms of memory, number of trainable parameters, FID, CLIP score, and latency.

Туре	Memory (M)	#Train Param.	FID	CLIP	Latency
LoRA	1259	120.9M	25.27	0.29	0.11s
LoRaD	2021	83.8M	20.86	0.31	0.11s
FT (DMD2)	17397	860M	23.30	0.30	0.11s

A LIMITATIONS AND FUTURE WORK

Assuming the weight matrix $W \in \mathbb{R}^{d \times k}$, the training memory usage of full fine-tuning (FT) is $2 \times d \times k$, while that of LoRA is $2 \times (d \times r + r \times k)$. In comparison, LoRaD requires $d \times k + 2 \times (\frac{d}{2} \times r + r \times k) = d \times k + d \times r + 2 \times r \times k$, reflecting higher memory overhead than LoRA due to the need to reconstruct a full-rank rotated weight matrix during forward pass. Note that this operation is performed only in the forward pass and does not incur additional gradient storage. As shown in Tab. 4, LoRA uses $\sim 7\%$ of DMD2's memory, while LoRaD uses slightly more at $\sim 12\%$. Future work may explore more memory-efficient rotation strategies that avoid explicit construction of the full rotated matrix. Additionally, given the flexibility and generality LoRaD has demonstrated in the image customization task, we plan to further investigate its applicability to a broader range of model fine-tuning tasks.

B LLM USAGE STATEMENT

We only employed a large language model (ChatGPT) for polishing the language and improving the clarity of expression. The model was not involved in the conception or design of the research, the development or execution of methods or experiments, data processing or statistical analysis, nor in the interpretation of results or the derivation of conclusions; therefore, it had no substantive impact on the core scientific contributions of this work.

C BROADER IMPACTS

DKD compresses the inference process of diffusion models into one-step through knowledge distillation, significantly reducing computational resource consumption. At the same time, it promotes creativity among content generators and lowers the barrier to entry. However, the technology may also be misused to generate false or harmful images, thereby spreading misinformation and raising concerns related to copyright and intellectual property.

D MORE THEORETICAL EXPLANATION

While our empirical results demonstrate that knowledge distillation primarily preserves weight directions, we further provide a theoretical perspective to support this observation. When optimizing only the directional component of weights, the parameters are constrained to lie on a unit hypersphere—a compact and smooth Riemannian manifold (Absil et al., 2008; Boumal, 2023). According to manifold optimization theory (Liu & Zhu, 2018; Han et al., 2021), such geometric constraints improve gradient flow and mitigate sharp or pathological minima, thereby stabilizing training.

In addition, constraining optimization to the hypersphere reduces the degrees of freedom in parameter space, serving as an implicit regularizer. This aligns with modern generalization theory in overparameterized settings, which suggests that limiting parameter complexity improves robustness (Beik-Mohammadi et al., 2023; Barp et al., 2022). LoRaD explicitly models directional changes through learnable 2D rotations, analogous to reparameterizations used in weight normalization (Salimans & Kingma, 2016), which have been shown to accelerate convergence and enhance generalization (Salimans & Kingma, 2016; Liu et al., 2024).

Optimizing directions alone substantially reduces sensitivity to weight norm and tends to produce smoother loss landscapes (Lyu et al., 2022), favoring flatter minima—empirically associated with

better generalization (Kaddour et al., 2022; Arora et al., 2018). These effects are particularly important for robustness under distribution shifts (Fei et al., 2025). This theoretical grounding is consistent with our empirical findings, including the superior performance of LoRaD shown in Tab. 1 and its convergence behavior in Fig. 16 and Fig. 17.

E MORE DETAILS ON WEIGHT ANALYSIS

In our weight analysis, we decompose the weight matrix $W \in \mathbb{R}^{d \times k}$ into a norm vector and direction matrix as follows:

$$W = \eta \mathcal{V} \tag{13}$$

where $\eta \in \mathbb{R}^{1 \times k}$ represents the column-wise norm, and $\mathcal{V} \in \mathbb{R}^{d \times k}$ denotes the normalized direction matrix.

To quantify the difference between the multi-step and one-step U-Net weights, we compute the mean and standard deviation (STD) of the changes in their norm and direction:

• Changes in the mean norm:

$$\Delta \eta_{\text{mean}} = \frac{1}{k} \sum_{i=1}^{k} \frac{\left| \eta_{\text{one-step}}^{i} - \eta_{\text{multi-step}}^{i} \right|}{\eta_{\text{multi-step}}^{i}}$$
(14)

• Changes in the mean direction:

$$\Delta V_{\text{mean}} = \frac{1}{k} \sum_{i=1}^{k} \sqrt{\sum_{j=1}^{d} \left(\mathcal{V}_{\text{one-step}}^{i,j} - \mathcal{V}_{\text{multi-step}}^{i,j} \right)^2}.$$
 (15)

• Changes in the STD norm:

$$\Delta \eta_{\text{std}} = \sqrt{\frac{1}{k} \sum_{i=1}^{k} \left(\frac{\left| \eta_{\text{one-step}}^{i} - \eta_{\text{multi-step}}^{i} \right|}{\eta_{\text{multi-step}}^{i}} - \Delta \eta_{\text{mean}} \right)^{2}}$$
 (16)

• Changes in the STD direction:

$$\Delta \mathcal{V}_{\text{std}} = \sqrt{\frac{1}{k} \left(\sum_{i=1}^{k} \sqrt{\sum_{j=1}^{d} \left(\mathcal{V}_{\text{one-step}}^{i,j} - \mathcal{V}_{\text{multi-step}}^{i,j} \right)^2} - \Delta \mathcal{V}_{\text{mean}} \right)^2}$$
 (17)

As shown in Fig. 10, Fig. 11, Fig. 12, and Fig. 13, we also provide more visualization results including Swiftbrush (Nguyen & Tran, 2024), Hyper-SD (Ren et al., 2024), SD-Turbo (Sauer et al., 2024), YOSO (Luo et al., 2024), SiD-LSG (Zhou et al., 2024a), Swiftbrushv2 (Dao et al., 2024), and PCM (Wang et al., 2024), etc. with SD 1.5, SD 2.1 or Pixart- α as the backbone. Similar conclusions can be drawn as in Sec. 1.

F IMPLEMENTATION DETAILS

F.1 TRAINING AND INFERENCE DETAILS

Zero-shot generation. 1) We implement DKD using PyTorch and optimize it with the AdamW (Loshchilov & Hutter, 2019) optimizer ($\beta_1 = 0.9$, $\beta_2 = 0.999$). LoRaD is applied to all linear layers in the U-Net/DiT architecture, including the feedforward layers, time_emb_proj layers, projection layers, and Q, K, V, out layers. Although we observe similar directional changes in convolutional layers, applying LoRaD to them introduces additional parameter overhead and lacks generality, as architectures like DiT (Chen et al., 2023) and autoregressive (Sun et al., 2024) models are primarily composed of linear layers. Notably, applying LoRaD solely to linear layers is sufficient to achieve SOTA performance. 2) We reproduce DMD2 (Yin et al., 2024a), SiD-LSG (Zhou et al.,

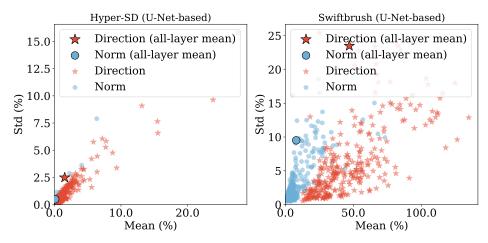


Figure 10: Visualization of changes in weight norm and direction (Hyper-SD (Ren et al., 2024) and Swiftbrush (Nguyen & Tran, 2024)).

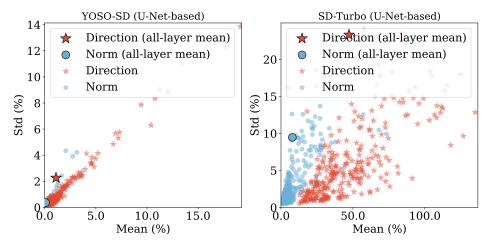


Figure 11: Visualization of changes in weight norm and direction (YOSO (Luo et al., 2024) and SD-Turbo (Sauer et al., 2024)).

2024a), SwiftBrush (Nguyen & Tran, 2024), and PG-SB (Nguyen et al., 2024), following the default hyperparameter settings reported in their respective papers, except for using JourneyDB (Sun et al., 2023) as the training dataset. Specifically, our reproduction of DMD2 adopts the image-free variant without the second-stage GAN loss. For SiD-LSG, the guidance scales k_1 , k_2 , k_3 , k_4 are set to 1.5.

Baselines. We conduct DKD evaluations against a range of baselines on different model backbones. For the SD 1.5-based (Rombach et al., 2022) backbone, we select LCM-LoRA (Luo et al., 2023b), InstaFlow (Liu et al., 2023), UFOGen (Xu et al., 2024), DMD (Yin et al., 2024b), DMD2 (Yin et al., 2024a), SiD-LSG (Zhou et al., 2024a), PCM (Wang et al., 2024), Hyper-SD (Ren et al., 2024), and YOSO (Luo et al., 2024) as baselines. For the SD 2.1-based (Rombach et al., 2022) backbone, we compare with SD-Turbo (Sauer et al., 2024), SwiftBrush (Nguyen & Tran, 2024), SwiftBrushv2 (Dao et al., 2024), SiD-LSG (Zhou et al., 2024a), and TiUE (Li et al., 2025). For the DiT-based (Chen et al., 2023) backbone, SwiftBrush (Nguyen & Tran, 2024) and PG-SB (Nguyen et al., 2024) are chosen as baselines. In addition, we apply DKD to four downstream tasks, including controllable generation, relation inversion, high-resolution synthesis, and image customization. For these tasks, we use ControlNet (Zhang et al., 2023), Reversion (Huang et al., 2024b), ScaleCrafter (He et al., 2023), DreamBooth (Ruiz et al., 2023), and LoRA (Hu et al., 2022) as baselines.

Downstream tasks. For all tasks except image personalization, we replace the original multi-step U-Net with our distilled one-step DKD model to accelerate inference. For image customization,

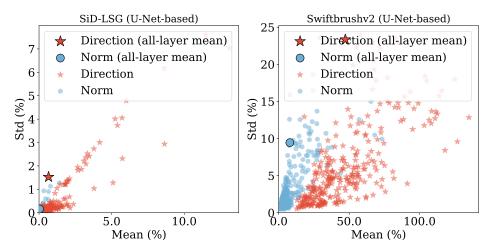


Figure 12: Visualization of changes in weight norm and direction (SiD-LSG (Zhou et al., 2024a) and Swiftbrushv2 (Dao et al., 2024)).

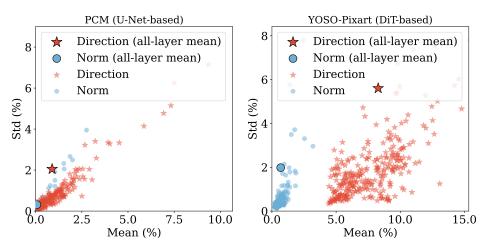


Figure 13: Visualization of changes in weight norm and direction (PCM (Wang et al., 2024) and YOSO-Pixart (Luo et al., 2024)).

we apply LoRaD during fine-tuning. 1) During inference with ControlNet (Zhang et al., 2023), Reversion (Huang et al., 2024b), ScaleCrafter (He et al., 2023), and DreamBooth (Ruiz et al., 2023), we use the DDIM (Song et al., 2021a) scheduler with 50 inference steps. 2) In implementing DreamBooth, LoRA, and LoRaD, we adopt the prior-preservation loss with a weight factor of 1.0, and use the Adam (Kingma & Ba, 2014) optimizer. The number of class-conditioned images is set to 200. For DreamBooth, the learning rate (LR) is set to 5e-6 with 800 training steps. For both LoRA and LoRaD, the LR is set to 1e-4, the number of training steps is 1500, and the rank is set to 64.

F.2 More descriptions of downstream tasks.

Controllable generation introduces structured control signals (e.g., edge maps, human pose, or depth maps) into text-to-image models to guide the generation process toward producing images that not only match the textual description but also conform to specific spatial or semantic constraints. By incorporating external structural priors, controllable generation enables fine-grained manipulation of object layout, shape, and orientation—capabilities that are difficult to achieve with pure text prompts alone. Controllable generation plays an important role in tasks such as conditional image synthesis and creative visual design, where strict adherence to user-provided structure is crucial for usability and reliability.

Figure 14: Quality results by ScaleCrafter (He et al., 2023) with DKD.

Relation inversion aims to learn specific relational patterns (e.g., handshake, back-to-back, hugging) from a few input images and encode them into relation prompts, which can then be generalized to novel subjects, poses, and styles. Instead of focusing on individual object identity or appearance, relation inversion captures the spatial and semantic relationships between multiple entities, allowing the model to reproduce similar interactions under new contexts. Relation inversion enables controllable multi-subject generation and relational transfer.

High-resolution synthesis aims to generate high-resolution images (e.g., 512×512 or higher) with both strong global coherence and rich local detail. Compared to low-resolution generation, this task presents greater challenges in terms of spatial consistency, object fidelity, and fine-grained texture reconstruction. High-resolution synthesis requires the model to capture long-range dependencies across the image while preserving subtle local variations such as edges, patterns, and shading. Despite these challenges, it plays a crucial role in applications such as photo-realistic content creation and artistic image generation.

Image customization aims to learn the visual concept of a specific subject from a few example images and generalize it to new images. Specifically, it involves fine-tuning a pre-trained model to capture and retain the subject's distinctive visual features, enabling the model to generate personalized images that preserve the subject identity when given new text prompts. This capability is particularly valuable in applications such as creative design, personalized content generation, and artistic image synthesis.

High-resolution synthesis. ScaleCrafter (He et al., 2023) enables variable-resolution image generation in SD without retraining, which is accomplished by adjusting receptive fields within the pre-trained U-Net. To address the fixed-resolution limitation inherited from SD 1.5/2.1, we integrate DKD with ScaleCrafter. As illustrated in Fig. 14, this combination allows DKD to generate high-fidelity images at varying resolutions, demonstrating strong scalability.

F.3 PSEUDO TRAINING CODE

As shown in Algorithm 1, we provide the pseudocode for DKD to clearly outline the key steps of the algorithm.

Algorithm 1 DKD: Directional Knowledge Distillation

- 1: **Require:** Pretrained real model ϵ_{ψ} , fake model $\epsilon_{\phi_{\Theta^s}}$, one-step generator $G_{\lambda_{\Theta^l}}$, learning rates γ_1 and γ_2 , initial timestep t_{init} , time-dependent weight function $\omega(t)$, prompts dataset \mathcal{D} , maximum number of timesteps T_{\max} and scheduler schedule $\{(\alpha_t, \sigma_t)\}_{t=1}^{t=T}$
- 2: Initialize: $\phi_{\Theta^s} \leftarrow \psi$, $\lambda_{\Theta^l} \leftarrow \psi$, $\gamma_1 = 1e 4$, $\gamma_2 = 1e 2$, $t_{\text{init}} = 999$
- 3: repeat

1080

1082

1084

1086

1087

1088

1089

1090

1091

1093

1094 1095

1099

1100 1101

1102

1103

1104

1125

1126

1127

1128

1129

1130

1131

1132

1133

- Sample input noise $z \sim \mathcal{N}(0, I)$ and prompt $c \sim \mathcal{D}$ 4:
- 5: Generate one-step output $x_0 = G_{\lambda_{\Theta^l}}(z, c, t_{\text{init}})$
- 6: Sample timestep $t \sim \mathcal{U}(0.02T_{\text{max}}, 0.98T_{\text{max}})$ and noise $\epsilon \sim \mathcal{N}(0, I)$
- 7: Compute noisy latent code $x_t = \alpha_t x_0 + \sigma_t \epsilon$
- Update $G_{\lambda_{\Theta^l}}$ with $\lambda_{\Theta^l} \leftarrow \lambda_{\Theta^l} \gamma_1 \left[\omega(t) \left(\epsilon_{\psi} \left(\boldsymbol{x}_t, \boldsymbol{c}, t \right) \epsilon_{\phi_{\Theta^s}} \left(\boldsymbol{x}_t, \boldsymbol{c}, t \right) \right) \frac{\partial \boldsymbol{x}_0}{\partial \lambda_{\Theta^l}} \right]$ 8:
- Sample another timestep $\tilde{t} \sim \mathcal{U}(0.02T_{\text{max}}, 0.98T_{\text{max}})$ and noise $\tilde{\epsilon} \sim \mathcal{N}(0, I)$ 9:
- 10: Compute noisy latent code $x_{\tilde{t}} = \alpha_{\tilde{t}} x_0 + \sigma_{\tilde{t}} \tilde{\epsilon}$
- 11: Update $\epsilon_{\phi_{\Theta^s}}$ with $\Theta^s \leftarrow \Theta^s \gamma_2 \nabla_{\phi_{\Theta^s}} \| \epsilon_{\phi_{\Theta^s}} (\boldsymbol{x}_{\tilde{t}}, \tilde{t}, \boldsymbol{c}) \tilde{\epsilon} \|^2$ 12: **until** processing 1.4M prompts or training budget is exhausted
- 13: **return** Trained one-step generator $G_{\lambda_{\Theta^l}}$

COMPARISON OF TRAINING AND INFERENCE TIME

Table 5: Comparison of inference and training times of our method vs. other methods on the zero-shot benchmark of COCO 2014. * indicates our reproduced results, and ? indicates results using the official pre-trained models. '-' denotes unknown. Best and second-best scores are in **bold** and underline, respectively.

Method	NFEs	Type	Trainable params	FID ↓	CLIP ↑	Image-free?	Inference	A100 Days	
		Stable Diff	usion 1.5-based backb	one					
SD 1.5 ($cfg = 3.0$) (Rombach et al., 2022)	25	U-Net	860M	8.78	0.30	Х	1.11s	4783	
LCM-LoRA (Luo et al., 2023b) ²	1	LoRA	67.50	77.73	0.24	X	0.11s	1.3	
InstaFlow (Liu et al., 2023)	1	U-Net	860M	13.10	0.28	×	0.11s	183.2	
UFOGen (Xu et al., 2024)	1	U-Net	860M	12.78	-	X	-	-	
DMD (Yin et al., 2024b)	1	U-Net	860M	11.49	0.32	X	0.11s	108	
DMD2 (Yin et al., 2024a)*	1	U-Net	860M	12.96	0.30	✓	0.11s	5.1	
SiD-LSG (Zhou et al., 2024a)*	1	U-Net	860M	14.27	0.30	✓	0.11s	6.4	
PCM (Wang et al., 2024)	1	U-Net	860M	17.91	0.29	X	-	unk	
Hyper-SD (Ren et al., 2024) ²	1	LoRA	67.25M	22.90	0.31	X	0.11s	33.3	
YOSO (Luo et al., 2024) ²	1	LoRA	67.25M	23.68	0.29	×	0.11s	20	
DKD	1	LoRaD	83.80M	10.79	0.31	1	0.11s	2.1	
		Stable Diffi	usion 2.1-based backb	one					
SD 2.1 (cfg = 3.0) (Rombach et al., 2022)	25	U-Net	865M	9.60	0.32	Х	1.04s	8332	
SD-Turbo (Sauer et al., 2024) ²	1	U-Net	865M	16.14	0.33	X	0.11s	-	
Swiftbrush (Nguyen & Tran, 2024)	1	U-Net	865M	16.67	0.29	✓	0.11s	4.1	
Swiftbrushv2 (Dao et al., 2024)*	1	U-Net+LoRA	884.14M	15.98	0.33	✓	0.11s	24.1	
SiD-LSG (Zhou et al., 2024a)*	1	U-Net	865M	15.17	0.30	✓	0.11s	6.4	
TiUE (Li et al., 2025) ¹	1	U-Net	865M	13.49	0.31	✓	0.16s	3.9	
DKD	1	LoRaD	94.43M	12.34	0.31	/	0.11s	2.1	
PixArt- α -based backbone 256×256									
PixArt- α (cfg = 4.5) (Chen et al., 2023)	20	DiT	0.6B	8.75	0.32	Х	0.59s	753	
Swiftbrush (Nguyen & Tran, 2024)*	1	DiT	0.6B	29.89	0.28	✓	0.05s	2.6	
PG-SB (Nguyen et al., 2024)*	1	DiT	0.6B	25.58	0.28	✓	0.05s	2.6	
DKD	1	LoRaD	81.22M	18.99	0.30	✓	0.05s	1.6	

We compared the performance of DKD with other state-of-the-art (SOTA) methods on the zero-shot benchmark of COCO 2014. As shown in Tab. 5, DKD demonstrates excellent inference efficiency, with an inference time of 0.11 seconds on both the SD 1.5 and SD 2.1 backbones, making it one of the fastest methods. In terms of training, DKD completes distillation in only 2.1 A100 GPU days, significantly outperforming methods like InstaFlow (Liu et al., 2023) and DMD (Yin et al., 2024b), which require much longer training times. DKD achieves SOTA FID (10.79) and competitive CLIP score (0.31), striking a strong balance between speed and performance, particularly in image-free settings. This makes DKD an efficient distillation solution, especially in environments with limited computational resources.

We measured the inference time of the models on a server equipped with an NVIDIA A40 GPU, using a batch size of 1. The experiments were conducted with PyTorch 2.4.0 and Hugging Face

Please select the result that matches "the mona lisa" and has the best quality.

Please select the result that matches "Dog inside bucket" and has the best quality.

Figure 15: User study examples.

Table 6: Quantitative comparison of DKD and other methods on HPSv2 results. * indicates our reproduced results, and \(^1\) indicates results using the official pre-trained models. '-' denotes unknown. Best and second-best scores are in **bold** and underline, respectively.

Method	Anime	Photo	Concept Art	Paintings	Average			
Stable Diffusion 1.5-based backbone								
SD 1.5 (Rombach et al., 2022)	26.51	27.19	26.06	26.12	26.47			
InstaFlow (Liu et al., 2023)	26.10	26.62	<u>25.92</u>	<u> </u>	26.15			
DMD2 (Yin et al., 2024a)*	25.65	26.13	24.98	25.22	25.49			
SiD-LSG (Zhou et al., 2024a)*	26.24	26.46	25.88	25.86	26.11			
Hyper-SD (Ren et al., 2024) ⁷	27.37	27.59	27.13	27.15	27.31			
YOSO (Luo et al., 2024) ²	26.24	26.26	<u>25.92</u>	25.79	26.05			
DKD	<u>26.39</u>	<u>26.80</u>	25.79	25.81	<u>26.20</u>			

Diffusers 0.25.0, with the inference time including the computation of the text encoder and latent decoder.

F.5 USER STUDY DETAILS

This study recruited 57 volunteers from our university to participate in a questionnaire-based evaluation. The questionnaire consisted of 44 questions, each presenting several images—one generated by our DKD method and the others by alternative approaches, including SiD-LSG (Zhou et al., 2024a), DMD2 (Yin et al., 2024a), Hyper-SD (Ren et al., 2024), YOSO (Luo et al., 2024), Swift-Brush (Nguyen & Tran, 2024), SwiftBrushv2 (Dao et al., 2024), ControlNet (Zhang et al., 2023), Reversion (Huang et al., 2024b), DreamBooth (Ruiz et al., 2023), LoRA (Hu et al., 2022), and ScaleCrafter (He et al., 2023). An example of the questionnaire is shown in Fig. 15.

G ADDITIONAL RESULTS

G.1 RESULTS FOR HPSv2

Table 6 presents a quantitative comparison of DKD with other SOTA methods on the HPSv2 benchmark. With an average score of 26.20, DKD outperforms several competitive methods, including SiD-LSG (Zhou et al., 2024a) (26.11) and YOSO (Luo et al., 2024) (26.05). Notably, DKD excels in the photo category, achieving a score of 26.80, demonstrating its strong text-to-image alignment capability. It is worth noting that Hyper-SD (Ren et al., 2024) achieves SOTA performance across all metrics, thanks to its use of the aesthetic predictor of LAION dataset, the ImageReward (Xu et al., 2023) aesthetic preference reward model, and the SOLO (Wang et al., 2020) visual perception model, which guide the optimization process through multiple supervision signals.

Table 7: Ablation experiments on the impact of LoRaD application layer types.

Туре	#Trainable Params	FID	CLIP
Linear Linear + Conv	83.8M 174.89M	10.79 16.42	0.31 0.30

Table 8: Ablation experiments on LoraD initialization strategy.

Initialization	FID	CLIP
A = 0, B = Xavier A = Xavier, B = Xavier	10.79 18.41	0.31 0.31

G.2 ADDITIONAL ABLATION STUDIES

In our main experiments, we apply LoRaD only to linear layers to achieve a better trade-off between performance and parameter efficiency. As shown in Tab. 7, extending LoRaD to convolutional layers leads to a performance drop, suggesting that LoRaD already possesses sufficient representational capacity. Extending to more layers increases parameter count and may introduce overfitting.

To ensure the student initially matches the teacher, we initialize the student network with teacher weights. Specifically, in LoRaD, we set the low-rank matrix A=0 and initialize B with Xavier, resulting in AB=0 at the start of training—thus applying no rotation and preserving the teacher's parameter directions. As shwon in Tab. 7, we also experimented with Xavier initialization for both A and B, which led to a significantly worse FID (10.79 \rightarrow 18.41), indicating degraded convergence. This may be because non-zero initialization perturbs the pretrained model and causes optimization to converge to a suboptimal region, thereby affecting final performance.

Our zero initialization follows recent work. For example, both LoRA (Hu et al., 2022) and DoRA (Liu et al., 2024) set at the beginning of training, making the model initially equivalent to the pretrained weights, thus avoiding disruption of the original model behavior. Similarly, ControlNet Zhang et al., 2023 initializes the image-conditional branch to output zero, ensuring that the initial behavior remains consistent with the base model and allowing conditional control signals to be gradually introduced through training. This prevents training instability or performance degradation caused by the premature influence of untrained control branches. We believe that pretrained weights provide a strong anchor for distillation models, making optimization more stable and convergence easier. In addition, recent work PiSSA (Meng et al., 2024) is the first to apply SVD to the original model, leveraging principal singular values and vectors to initialize the adapter for fine-tuning. This approach further accelerates LoRA's convergence and improves its performance. These observations collectively highlight the crucial role of good initialization in achieving both fast convergence and strong final performance. Motivated by this, we plan to further investigate initialization strategies for LoRaD in future work.

G.3 More quantitative results

We compare DKD with representative distillation methods on COCO2014 (Lin et al., 2014), and further evaluate its generalization on COCO2017 (Lin et al., 2014). As shown in Tab. 9, DKD consistently achieves strong performance across three backbone models: SD 1.5, SD 2.1, and PixArt- α . Specifically, DKD achieves the best or second-best results in both FID and CLIP scores across all settings, and strikes a favorable balance between precision and recall, demonstrating strong capability in image quality and semantic alignment. Notably, DKD is distilled using only 1.4M text prompts, yet outperforms or matches methods that rely on over 3M prompts, such as LCM (Luo et al., 2023b) (12M) and YOSO (Luo et al., 2024) (4M). This highlights both the efficiency of DKD under low-resource settings and the effectiveness of its distillation mechanism. In contrast to methods like Hyper-SD (Ren et al., 2024), YOSO (Luo et al., 2024), and SD-Turbo (Sauer et al., 2024), DKD requires no real images and is trained via prompt-only distillation, enhancing its practicality and scalability.

Table 9: Quantitative comparison of DKD and other methods on zero-shot COCO 2017 results. * indicates our reproduced results, and ' indicates results using the official pre-trained models. '-' denotes unknown. Best and second-best scores are in **bold** and underline, respectively.

Method	#Params	NFEs	Type	Trainable params	FID ↓	CLIP ↑	Precision ↑	Recall ↑	Image-free?	Training Data
Stable Diffusion 1.5-based backbone										
SD 1.5 ($cfg = 3.0$) (Rombach et al., 2022)	860M	25	U-Net	860M	19.80	0.31	0.64	0.60	Х	5B
LCM-LoRA (Luo et al., 2023b) ⁷	860M	ī -	LoRA	67.50M	89.65	0.24	0.22	0.24	· ×	12M
InstaFlow (Liu et al., 2023)	860M	1	U-Net	860M	23.49	0.31	0.53	0.46	×	3.2M
UFOGen (Xu et al., 2024)	860M	1	U-Net	860M	22.50	0.31	-	-	×	12M
DMD2 (Yin et al., 2024a)*	860M	1	U-Net	860M	23.30	0.30	0.60	0.49	/	1.4M
SiD-LSG (Zhou et al., 2024a)*	860M	1	U-Net	860M	24.22	0.30	0.60	0.52	✓	1.4M
Hyper-SD (Ren et al., 2024) ²	860M	1	LoRA	67.25M	32.49	0.31	0.52	0.33	×	-
YOSO (Luo et al., 2024) ²	860M	1	LoRA	67.25M	33.54	0.29	0.50	0.44	×	4M
DKD	860M	1	LoRaD	83.80M	20.86	0.31	0.63	0.54	/	1.4M
			Stable Di	iffusion 2.1-based bac	kbone					
SD 2.1 ($cfg = 3.0$) (Rombach et al., 2022)	865M	25	U-Net	865M	19.66	0.32	0.66	0.57	Х	5B
SD-Turbo (Sauer et al., 2024) ²	865M	1	U-Net	865M	26.36	0.34	0.69	0.47	×	
Swiftbrush (Nguyen & Tran, 2024)	865M	1	U-Net	865M	26.87	0.32	0.61	0.44	/	1.4M
Swiftbrushv2 (Dao et al., 2024)*	865M	1	U-Net+LoRA	884.14M	25.96	0.33	0.65	0.45	✓	3.3M
SiD-LSG (Zhou et al., 2024a)*	865M	1	U-Net	865M	25.02	0.30	0.62	0.51	✓	1.4M
DKD	865M	1	LoRaD	94.43M	22.62	0.31	0.65	0.53	1	1.4M
PixArt-α-based backbone										
PixArt- α (cfg = 4.5) (Chen et al., 2023)	0.6B	20	DiT	0.6B	20.85	0.27	0.65	0.59	Х	25M
Swiftbrush (Nguyen & Tran, 2024)*	0.6B	<u>I</u> -	− − − DiT − − −	0.6B	41.07	<u>0.28</u>	0.53	0.35	7	1.4M
PG-SB (Nguyen et al., 2024)*	0.6B	1	DiT	0.6B	35.84	0.28	0.57	0.36	✓	1.4M
DKD	0.6B	1	LoRaD	81.22M	28.91	0.30	0.62	0.37	/	1.4M

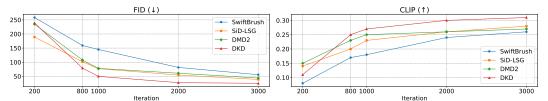


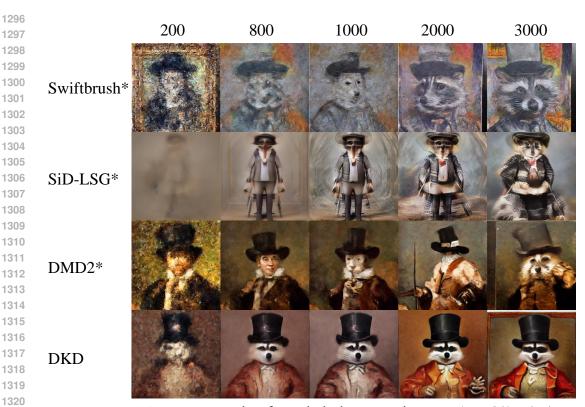
Figure 16: Convergence analysis of DKD and other methods. * indicates our reproduced results.

G.4 Convergence analysis

Fig 16 presents the convergence analysis of DKD compared to other SOTA one-step distillation models, including SwiftBrush (Nguyen & Tran, 2024), SiD-LSG (Zhou et al., 2024a), and DMD2 (Yin et al., 2024a). The plot shows that DKD achieves faster convergence, with both FID and CLIP scores improving consistently across iterations. DKD demonstrates superior performance in terms of FID reduction, reaching a lower value than the other models by the end of the training. In terms of CLIP, DKD maintains a steady and significant increase, outperforming SwiftBrush (Nguyen & Tran, 2024) and SiD-LSG (Zhou et al., 2024a) in the later stages. This highlights DKD's efficiency in both training stability and perceptual alignment, which aligns with the qualitative results in Fig. 17.

G.5 More visualization results

Fig. 18 to Fig. 25 present the sampling results of DKD (based on SD 1.5), the sampling results of DKD (based on PixArt- α), additional qualitative comparisons, visualizations of ControlNet-DKD and Reversion-DKD, qualitative results of DreamBooth-LoRaD, and extended visualizations of ScaleCrafter-DKD, further demonstrating the generality and adaptability of our approach across diverse tasks.



"A racoon wearing formal clothes, wearing a tophat. Oil painting in the style of Rembrandt"

Figure 17: Iteration qualitative results. "* indicates our reproduced results"

Figure 18: One-step generated images using our proposed method DKD (SD 1.5).

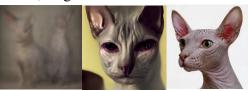
Figure 19: One-step generated images using our proposed method DKD (PixArt- α 256 \times 256).

SD 1.5-based Methods

LCM-LoRA InstaFlow DKD

A hyperrealistic photo of a fox astronaut, perfect face, artstation

Masterpiece color pencil drawing of a horse; bright vivid color



Highly detailed mysterious egyptian (sphynx cat), skindentation: 1.2

Cute small Corgi sitting in a movie theater eating popcorn

Half-length head portrait of the goddess of autumn with wheat ears on her head, depicted as dreamy and beautiful, by wlop

SD 2.1-based Methods

Elon Musk dressed as a medieval-style king.

A dog is reading a thick book.

Portrait of a woman with freckles and a necklace on her neck lightly smiling at the camera

a shiba inu wearing a beret.

Large dog looking at television show in living room.

Figure 20: Qualitative comparison with other methods.

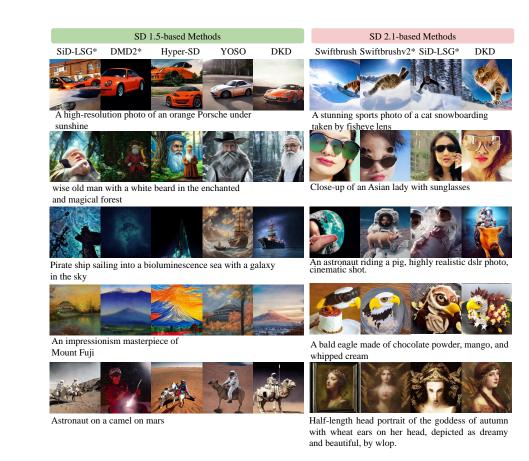


Figure 21: Qualitative comparison to state-of-the-art one-step distillation models. * indicates our reproduced results.

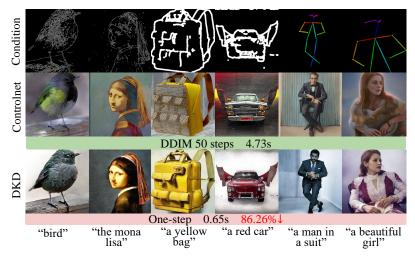


Figure 22: Quality results by Controlnet (Zhang & Chen, 2022) with or without DKD.

Figure 23: Quality results by Reversion (Huang et al., 2024b) with or without DKD.

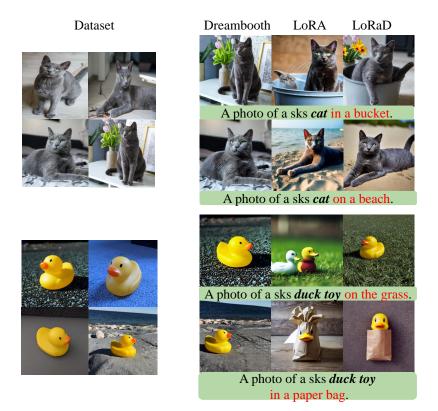


Figure 24: Quality results by Dreambooth (Ruiz et al., 2023) with or without LoRaD.

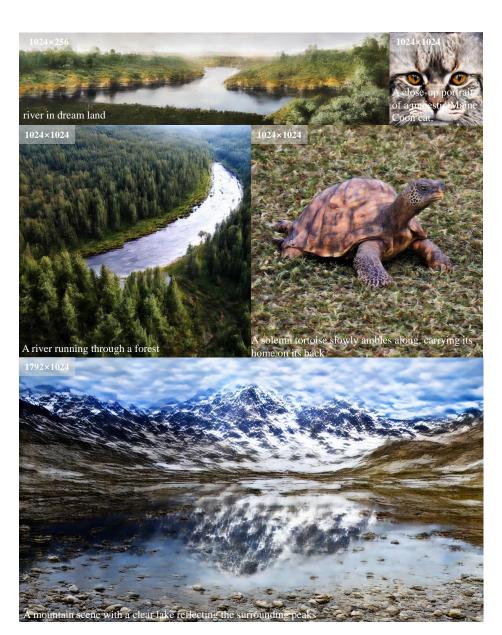


Figure 25: Quality results by ScaleCrafter (He et al., 2023) with DKD.