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Figure 1: One-tep genered images using our proposed method DKD (i.e., SD 2.1).

ABSTRACT

Despite the impressive performance of diffusion models such as Stable Diffusion
(SD) in image generation, their slow inference limits practical deployment. Recent
works accelerate inference by distilling multi-step diffusion into one-step gener-
ators. To better understand the distillation mechanism, we analyze U-Net/DiT
weight changes between one-step students and their multi-step teacher counterparts.
Our analysis reveals that changes in weight direction significantly exceed those
in weight norm, highlighting it as the key factor during distillation. Motivated
by this insight, we propose the Low-rank Rotation of weight Direction (LoRaD).
LoRaD is designed to model these structured directional changes using learnable
low-rank rotation matrices. We further integrate LoRaD into Variational Score
Distillation (VSD), resulting in Directional Knowledge Distillation (DKD)—a
novel one-step distillation framework. DKD achieves state-of-the-art FID scores on
COCO 2014 and COCO 2017 while using only approximately 10% of the trainable
parameters of the U-Net. Furthermore, the distilled one-step model demonstrates
strong versatility and scalability, generalizing well to various downstream tasks
such as controllable generation, relation inversion, and high-resolution synthesis.

1 INTRODUCTION

Diffusion models (DMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021b) have
received considerable attention for their ability to generate high-quality and diverse content. Thus,
they are widely applied to tasks such as text-to-image (Rombach et al., 2022; Li et al., 2024b; Ruiz
et al., 2023; Zhang et al., 2023) generation, text-to-video (Khachatryan et al., 2023; Wu et al., 2023a;
Zhou et al., 2024c; Kong et al., 2024) generation, and image-to-video (Wang et al., 2025; Ni et al.,
2023; Bar-Tal et al., 2024; Hu et al., 2025) generation. However, the reliance of DMs on multiple
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Figure 2: Motivational analysis of our method. (a) Differences in weight norm and direction between
the one-step student and the teacher model. See Appendix E for details and additional examples. (b)
SVD analysis of the residual matrix for DMD?2. (c) Replacing the one-step model’s norm with that of
the multi-step model has little effect ((D, @); replacing the direction severely degrades generation
quality (@), ). (d) Qualitative examples corresponding to (b). (e) lllustration of LoRaD.

(e)

sampling steps leads to high computational cost and slow inference. To address this, recent distillation
methods reduce the number of steps to a few (Luo et al., 2023b; Chadebec et al., 2025) or even
one (Ren et al., 2024; Lin et al., 2024; Dao et al., 2024). Interestingly, during distillation we find the
weight norm remains relatively small across layers, while the direction shows larger variations when
reparameterizing weights into norm and direction for both teacher and student generators.

Inspired by the weight reparameterization (Salimans & Kingma, 2016; Liu et al., 2024), we adopt a
similar decomposition to analyze weight changes in diffusion distillation. To begin our analysis, we
examine weight updates between state-of-the-art (SOTA) one-step models (e.g., DMD2 (Yin et al.,
2024a) and Pixart-o« DMD (Yin et al., 2024b)) and their corresponding multi-step counterparts (e.g.,
SD 1.5 (Rombach et al., 2022) and Pixart-a (Chen et al., 2023)). As shown in Fig. 2 (a) (left), in
U-Net-based architectures the weight norm remains nearly stable across layers, with a mean and
standard deviation (STD) of 0.1% and 0.2%, respectively. In contrast, the weight direction exhibits
much more pronounced change, with a mean of 2.2% and STD of 2.1%, corresponding to ratios
of 22x and 10x those of the norm. A similar trend is observed in DiT-based architectures (see
Fig. 2 (a) (right)). These observations suggest that the weight direction may carry richer and more
sensitive information than the norm in distillation. Further, if the direction indeed accounts for the
primary information differences, we ask whether these differences exhibit a structured pattern. To
this end, we perform SVD on the residual matrix—the difference between the one-step and multi-
step direction matrices—and find that retaining 30% of its rank recovers 93% of the information,
highlighting its low-rank nature (see Fig. 2 (b)).

To quantify the impact of these two components, we conduct a controlled ablation study by selectively
replacing either the norm or direction of the one-step model with that from the multi-step teacher (see
Fig. 2 (d)). As shown in Fig. 2 (c), substituting the norm leads to negligible performance change (e.g.,
DMD2: +0.7 FID, unchanged CLIP), whereas substituting the directions causes severe degradation
(e.g., DMD2: +241.3 FID, -0.18 CLIP). These findings suggest that the weight direction plays a
primary role in distillation, while variation in the norm appears comparatively minor. One possible
explanation is that initializing the student with teacher weights aligns the initial norm, and weight
decay during training further constrains norm drift (Loshchilov & Hutter, 2017); the distillation
signal then acts mainly through adjustments in the weight direction to reduce representational
discrepancy (Salimans & Kingma, 2016). Taken together, these results indicate that direction
reconstruction a key factor underlying performance improvement in distillation.

The distillation methods mentioned above can be broadly categorized into two types: full fine-tuning
(FT) and Low-Rank Adaptation (LoRA) (Hu et al., 2022)-based fine-tuning. However, they directly
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update the model parameters while optimizing both norm and direction. The changes in norm and
direction differ, with norm showing minimal variation and directions experiencing significant changes,
which increases the optimization difficulty due to the strong coupling between them. Furthermore,
both FT and LoRA face issues of slow convergence (Huang et al., 2024a; Dong et al., 2024),
instability (Han et al., 2024; Hayou et al., 2024), and overfitting (Aghajanyan et al., 2021; Huang
et al., 2025), further complicating the optimization process.

To address the above challenges, we propose Low-rank Rotation of weight Direction (LoRaD) (see
Fig. 2 (e)), which adjusts the direction of pre-trained weights via learnable rotation matrices. Given the
structured nature (i.e., low-rank property) of directional changes, the rotation angles are parameterized
as the product of two low-rank matrices to further reduce the number of learnable parameters.
We integrate LoRaD into Variational Score Distillation (VSD) (Wang et al., 2023) and introduce
Directional Knowledge Distillation (DKD), a novel one-step text-to-image distillation framework.
Experiments on the COCO 2014 (Lin et al., 2014) and COCO 2017 (Lin et al., 2014) datasets show
that DKD achieves SOTA FID scores, outperforming all existing one-step generation methods, This
was accomplished by optimizing only the direction, which reduced the difficulty of distillation,
while using only about 10% of the U-Net parameters as trainable components—greatly enhancing
parameter efficiency. Furthermore, we apply DKD to downstream tasks including controllable
generation, relation inversion, high-resolution synthesis, and image customization, demonstrating its
acceleration capability and broad applicability. Our contributions are summarized as follows:

* We conduct an in-depth analysis of weight changes in U-Net between multi-step and one-step gen-
eration models, which points to weight-direction adjustment as a key driver of one-step distillation.
This provides a new theoretical perspective for efficient distillation.

* We propose a novel distillation framework for one-step text-to-image generation, named DKD,
which employs LoRaD to model weight directions via low-rank rotations, effectively guiding the
student model to align with the teacher distribution.

* DKD is evaluated on the COCO dataset and several downstream tasks. Both qualitative and quanti-
tative results demonstrate that DKD significantly improves inference efficiency while achieving
substantial gains in image quality.

2 RELATED WORK

Diffusion models. Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Song et al., 2021b) excel in image generation, but pixel-space computation imposes a heavy
computational burden. To improve efficiency, Rombach et al. (2022) introduced Latent Diffusion
Models (LDM), shifting denoising to latent space. However, existing text-guided methods (Rombach
et al., 2022; Podell et al., 2023; Li et al., 2024b; Ruiz et al., 2023; Zhang et al., 2023) are still
slow due to multi-step generation. While most use a U-Net backbone, Diffusion Transformer
(DiT) (Peebles & Xie, 2023) replaces it with a Transformer for better scalability, advancing text-to-
image generation (Chen et al., 2023; 2024b;a; Esser et al., 2024). Despite improvements, iterative
denoising remains a slow process. Recently, many acceleration methods have emerged.

Diffusion model acceleration. The existing acceleration methods can be divided into training-free
and training-based approaches. Training-free acceleration methods for diffusion models fall into
two main categories. The first method, which reduces redundant computation through caching (Ma
et al., 2024; Wimbauer et al., 2024; Selvaraju et al., 2024; Li et al., 2024a), is exemplified by Faster
Diffusion (Li et al., 2024a). The second method uses high-order solvers (Song et al., 2021a; Liu
et al., 2022; Zhang & Chen, 2022; Lu et al., 2022a;b), such as DDIM (Song et al., 2021a) and
DPM-Solver (Lu et al., 2022a;b), to reduce the number of sampling steps. However, the acceleration
effects of these two methods are limited, so training-based methods have received more attention.

Training-based acceleration methods can be broadly categorized into four groups: consistency
distillation (CD), progressive distillation (PD), diffusion-GAN distillation, and variational score
distillation (VSD). CD (Song et al., 2023; Wang et al., 2024; Ren et al., 2024; Kim et al., 2023;
Luo et al., 2023a;b) learns trajectory-level consistency for faster sampling but often suffers from
low image fidelity. PD (Salimans & Ho, 2022; Ren et al., 2024) reduces steps in stages, introducing
significant training overhead. Diffusion-GAN distillation (Luo et al., 2024; Lin et al., 2024; Xu et al.,
2024; Kang et al., 2024), such as Diffusion2GAN (Kang et al., 2024), enhances fidelity by distilling
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Figure 3: (Left) Detailed architecture of the Low-rank Rotation of weight Direction (LoRaD) module.
The LoRaD rotates the pre-trained weight directions using learnable low-rank rotation angles. (Right)
Overview of the Directional Knowledge Distillation (DKD) framework.

multi-step diffusion into a GAN. VSD adopts a dual-teacher strategy for distribution alignment (Dao
et al., 2024; Nguyen & Tran, 2024; Zhou et al., 2024a; Yin et al., 2024a;b). SwiftBrush (Nguyen
& Tran, 2024) achieves one-step, image-free generation. SwiftBrushv2 (Dao et al., 2024) leverages
model ensembling, while DMD (Yin et al., 2024b) employs a regression loss to further improve
performance. DMD?2 (Yin et al., 2024a) extends VSD to few-step generation and underpins recent
text-to-video acceleration frameworks (Yi et al., 2025; Shao et al., 2025).

However, existing training-based methods commonly use FT or LoRA, which can raise optimization
difficulty. We find that directional changes are generally more influential in distillation. Therefore,
we propose DKD, which leverages LoRaD to focus on modeling directional rotations.

3 METHOD

We first provide a brief overview of Variational Score Distillation (VSD) in Section 3.1, which serves
as the foundation of our work. Motivated by the observation that weight direction changes play a
key role in distillation, we introduce a Low-rank Rotation of weight Direction (LoRaD) module in
Section 3.2 (See Appendix D for more theoretical explanation.). Finally, we integrate LoRaD into the
VSD to form our proposed distillation framework, Directional Knowledge Distillation (DKD).

3.1 PRELIMINARY

Latent Diffusion Models (LDM) (Rombach et al., 2022) perform the diffusion process in a low-
dimensional latent space, which improves computational efficiency. The training objective of LDM
can be formulated as:

‘Cmse = mvin]Et,e,c ||€<p (Zt,C, t) - 6”; 5 (1)

where € ~ N(0,I) is Gaussian noise, z; is the latent variable at timestep ¢, and ¢ denotes the
condition (e.g., prompt) used to guide image generation. €, (2, ¢, t) is the noise predicted by the
model parameterized by .

Variational Score Distillation (VSD) (Wang et al., 2023) was initially proposed for text-to-3D
generation to address issues such as oversaturation and reduced diversity. It was subsequently
extended to 2D text-to-image generation in methods such as Swiftbrush (Nguyen & Tran, 2024),
DMD (Yin et al., 2024b;a), and SiD (Zhou et al., 2024b;a), enabling one-step generation. The training
objective of VSD is formulated as:

0G\(Zinit, €)

v/\£vsd = IEt,e,c UJ(t) (ew (Zta C, t) - 6¢> (zt7 C, t)) a/\ )

(@)
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where w(t) is a time-dependent weighting term, ¢, is the real model parameterized by v, €4 is
the fake model parameterized by ¢, and G, is the one-step generator parameterized by A, with
Zinit ~ N (0, I) as its input noise. Additionally, €4 is trained using Eq. (1). VSD alternates between
updating €4 and G, until convergence.

3.2 LOW-RANK ROTATION OF WEIGHT DIRECTION

Analyzing the weight changes between multi-step U-Net models and their one-step counterparts
suggests notable directional shifts with relatively small changes in norm. Motivated by this, we
propose Low-rank Rotation of weight Direction (LoRaD) (see Fig. 3 (left)), which updates weights
by learning rotations that alter only their directions. Furthermore, we observe that the changes in
weight direction exhibit a low-rank structure (see Fig. 2 (b)). To exploit this property and reduce the
overhead of full-rank modeling, which introduces additional parameters equivalent to 50% of the
original weights, we adopt the low-rank decomposition strategy of LoRA (Hu et al., 2022). Starting
from the 2D case (d = 2), given a weight vector o € R¢, we apply a 2D rotation matrix as follows:

cosf —sinf a®
o = : ; 3
sinff  cosf a2
where «.., is the rotated weight vector. Inspired by the Rotary Position Embedding (RoPE) (Su et al.,

2024), which generalizes the 2D case to any even dimension d, we apply a different rotation matrix'
to each column of the pre-trained weight matrix W € R%**:

Wio = [Rde,lw.,lng),ZW,Qf" 7R%,kW1k:| ’ @

where the rotation matrices Rg = {R¢ ,}¥_; are defined as:

cosb,; —sinbi; 0 0 0 0
sin 01 ; cos b1, 0 0 0 0
0 0 cosb; —sinfa; 0 0
d 0 0 sin 02 ; cos by ; 0 0
Re,; = . . . . _ . . ) ®)
0 0 0 0 COS@%YZ. —sinﬂ%yi
0 0 0 0 sinQ%’i COSO%J

d
where © = {0;}2_, € Rz *k,

Given the sparsity of Rd@,i in Eq. (5), the matrix-vector multiplication Réﬂ-W.,i € R9 can be
computed efficiently as:

(1) (1)
Wé) cos By, Wé) —sinf;
W cos 1 ; W sin 61 ;
w cosfa; w') —sinfs;
(4) cos 02,; (4) sin 0y ;
RE W, =| Wi ® . +1 W ® . 7 (6)
W<‘..171) COSH%,,L. W<"7l71) _?ine%,i
I/I}A(d) cos 9% p WA(@ sin 9% p

where © denotes element-wise multiplication. This implementation leverages the sparsity of the
rotation matrix, allowing the computation to be performed using only element-wise operations, thus
significantly reducing the computational cost.

Furthermore, since the rotation matrices in Egs. (5) and (6) are block-diagonal with independent 2 x 2
submatrices, the computation can be efficiently implemented as a parallel application of multiple
2 x 2 rotations across odd-even index pairs. As shown in Fig. 3 (left), we split the d-dimensional
space of the pre-trained weight matrix 1/ € R4** into g subspaces and rotate each independently.
By separating the odd and even rows of W, we define:

T
Woas = (WO, WO, w@D) ",
@)

i

W = (WO, W, w®)"

'We do not need to explicitly separate the norm matrix, as rotations do not affect norm.



Under review as a conference paper at ICLR 2026

resulting in two matrices Woaq € R%** and Wiyen € R,

The resulting parallel 2 x 2 rotations over each odd-even row pair can be expressed compactly as:

cos® —sin® } |:Wodd ]

Wio=ReW =1 410 cos0 Weven

®)

where W, € R¥* is the rotated weight matrix, and © € R ** is the learnable rotation angle param-
eter matrix. To further reduce the number of trainable parameters, we apply low-rank decomposition
to ©, inspired by LoRA (Hu et al., 2022), as follows:

O = AB, ©)
where A € R2%" and B € R™** are low-rank parameter matrices with rank r. Finally, Eq. (8) can
be rewritten as:

Wiyo = ReW = RypW =

cos AB —sin AB } { Wodd ] (10)

sinAB cos AB Weven

3.3 DIRECTIONAL KNOWLEDGE DISTILLATION

To fully leverage the directional characteristics observed in distillation, we integrate LoRaD into the
VSD. This yields a direction-aware distillation framework, which we term Directional Knowledge
Distillation (DKD). As illustrated in Fig. 3 (right), DKD employs a pre-trained diffusion model €, as
the teacher (real model) and introduces a trainable fake model €4 (initialized from €, ) to approximate
the teacher’s distribution. The final student model (one-step generator) Gy, also initialized from e,
is trained to synthesize high-quality images in one-step. See Appendix F.3 for algorithm details.

To enhance alignment with the real distribution, we apply LoRaD to both the student and fake models.
Specifically, the one-step generator GG, incorporates a high-rank rotation matrix ©! to better fit the
teacher, while the fake model €4, . uses a low-rank rotation matrix ©° to provide adaptive guidance.
Finally, we alternate the optimization of Ag: and ¢g- to jointly improve the quality of the generation.

Accordingly, the DKD training objective can be rewritten from Eq. (2) as:
5GA@, (zinita C)

V)\@l Lvsd = Et,e,c UJ(t) (Ew (ztv C, t) — €pos (ztv C, t)) 3)\@ ) (11)
The training objective for €4, can also be rewritten from Eq. (1) as:
minEq o o |l€so. (26, ¢,t) — €2 (12)

dos
4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Evaluation Datasets and Metrics. We systematically evaluate the zero-shot text-to-image generation
capability of DKD on the COCO 2014 (Lin et al., 2014) and COCO 2017 (Lin et al., 2014) datasets,
using 30k and 5k randomly sampled images, respectively. To comprehensively assess the quality of
the generation, we use the Fréchet Inception Distance (FID) (Heusel et al., 2017) to measure image
fidelity and the CLIP score (Radford et al., 2021) to evaluate the semantic alignment of text-image.
The FID is calculated using Inception V3 (Szegedy et al., 2016) as the feature extractor, while
the CLIP score is based on the ViT-G/14 (Cherti et al., 2023) model. We further adopt precision
and recall (Kynkddnniemi et al., 2019) to evaluate fidelity and diversity. Finally, we also evaluate
text-image alignment on the Human Preference Score v2 (HPSv2) (Wu et al., 2023b) benchmark.
See Appendix G.1 for details.

Implementation Details. Following prior methods (Nguyen & Tran, 2024; Dao et al., 2024; Yin et al.,
2024a;b), the student model in DKD adopts the same architecture as the teacher and is initialized
with the teacher’s weights. DKD is trained on 1.4 M prompts sampled from the JourneyDB (Sun
et al., 2023) dataset. During training, the learning rate (LR) for the student is set to 1e-4, while the
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Table 1: Quantitative comparison of DKD and other methods on zero-shot COCO 2014 results. *
indicates our reproduced results, and ! indicates results using the official pre-trained models. ‘-’
denotes unknown. Best and second-best scores are in bold and underline, respectively. Image-free"

refers to training without supervision from real images.

Method #Params NFEs Type Trainable params FID | CLIP1 Precision Recallt Image-free? Training Data
Stable Diffusion 1.5-based backbone
_ SD15(cfg=30) 80M 25 UNet 860M 878 030 059 03 X 5B
LCM-LoRA! 860M 1 LoRA 67.50M 77.73 0.24 0.22 0.15 X 12M
InstaFlow 860M 1 U-Net 860M 13.10 0.28 0.53 0.45 X 32M
UFOGen 860M 1 U-Net 860M 12.78 - X 12M
DMD 860M 1 U-Net 860M 11.49 0.32 - - X 3M
DMD2* 860M 1 U-Net 860M 12.96 0.30 0.60 047 v 1.4M
SiD-LSG* 860M 1 U-Net 860M 14.27 0.30 0.56 0.48 v 1.4M
PCM 860M 1 U-Net 860M 17.91 0.29 - X 3M
Hyper-SD? 860M 1 LoRA 67.25M 22.90 0.31 0.62 0.25 X -
YOSO! 860M 1 LoRA 67.25M 23.68 0.29 0.56 0.36 X 4M
DKD 860M 1 LoRaD 83.80M 10.79 0.31 0.62 0.48 v 1.4M
Stable Diffusion 2.1-based backbone
SD 2.1 (¢fg = 3.0) 865M 1 U-Net 865M 9.60 0.32 0.59 0.50 X 5B
~ SD-Turbo’ ~  85M I U-Net 865M 1 1614 033 065 035 x -
Swiftbrush 865M 1 U-Net 865M 16.67 0.29 0.47 0.46 v 1.4M
Swiftbrushv2* 865M 1 U-Net+LoRA 884.14M 15.98 0.33 0.58 047 v 1.4M
SiD-LSG* 865M 1 U-Net 865M 15.17 0.30 0.56 0.46 v 1.4M
TiUE! 865M 1 U-Net 865M 13.49 0.31 0.59 0.48 v 1.4M
DKD 865M 1 LoRaD 94.43M 12.34 031 0.60 0.48 v 1.4M
PixArt-a-based backbone
PixArt-a (¢fg = 4.5)'  610.86M 20 DiT 610.86M 8.75 0.32 0.75 0.45 X 25M
"7 " Swiftbrush® ~ " 610.86M I 1 DIT ~ 610.86M 2089 028 050 026 oo T Y
PG-SB* 610.86M 1 DiT 610.86M 25.58 0.28 0.53 0.27 v 1.4M
DKD 610.86M 1 LoRaD 81.22M 18.99 0.30 0.64 0.29 v 1.4M

fake model uses a LR of 1e-2. We use AdamW (Loshchilov & Hutter, 2019) as the optimizer, with a
batch size of 128 (16 per GPU). The classifier-free guidance (CFG) scale is set to 1.5, and the training
is conducted for 2 epochs. We distill student models based on three different backbones, namely SD
1.5 (Rombach et al., 2022), SD 2.1 (Rombach et al., 2022), and PixArt-« (256 x 256) (Chen et al.,
2023). For SD 1.5 and SD 2.1, the LoRaD rank of the student is set to 256, while for PixArt-q, it is
set to 128. The LoRaD rank for all fake models is uniformly set to 32. See Appendix F.1 for details.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Quantitative results. We comprehensively evaluate DKD on the COCO 2014 dataset against SOTA
zero-shot one-step generation methods across three backbones: SD 1.5, SD 2.1, and PixArt-a. To
ensure fair comparison and considering computational constraints, we follow the setup of TiUE (Li
etal., 2025) and uniformly reproduce DKD, DMD2, SiD-LSG, and SwiftBrushv2 using 1.4M prompts.
As shown in Tab. 1, DKD achieves the best FID and Recall scores on all backbones, demonstrating
superior fidelity and diversity. It also ranks first or second in CLIP and Precision, indicating strong
text-image alignment and perceptual quality. Notably, only 9.74%, 10.92%, and 13.30% of the
model parameters are trainable for SD 1.5, SD 2.1, and PixArt-«, respectively, highlighting DKD’s
parameter efficiency. These improvements stem from our proposed LoRaD, which reparameterizes
weight updates via low-rank rotations to enable stable and efficient distillation. See Appendix F.4, G.3.
Qualitative results. Fig. 4 presents a qualitative comparison of DKD with SOTA one-step generation
methods based on SD 1.5 and SD 2.1 backbones. Across diverse prompts, DKD consistently produces
visually coherent and semantically aligned results. For example, in the first and second rows, DKD
better preserves structure and stylistic fidelity, capturing sharp features and vibrant colors without
artifacts or distortions. In the third and fourth rows, it accurately follows prompts involving specific
subjects (e.g., sphynx cat, corgi, shiba inu) and contexts (e.g., theater, clothing), while alternative
methods often miss key attributes or yield unrealistic shapes. Notably, in the last row, DKD generates
complex scenes (e.g., dog looking at TV) with consistent spatial composition and background details,
demonstrating superior holistic understanding compared to other baselines. See Appendix G.5.

4.3 DOWNSTREAM TASKS

Controllable generation. ControlNet (Zhang et al., 2023) is a widely used controllable generation
model that incorporates spatial conditions into SD (Rombach et al., 2022) for fine-grained control. As
shown in Fig. 5, applying DKD to ControlNet significantly improves inference efficiency, reducing
inference time by 86.26 % while preserving image quality, faithfully following spatial conditions,
and maintaining prompt adherence comparable to ControlNet.



Under review as a conference paper at ICLR 2026

SD 1.5-based Methods SD 2.1-based Methods
SiD-LSG* DMD2* Hyper-SD YOSO DKD Swiftbrush Swiftorushv2* SiD-LSG*  DKD

ELLNNSKSSS

<wwrawm 8

l‘\zr_\

L KIY MAsE

Highly detailed mysterious egyptian (sphynx cat), Portrait of a woman wnth freckles and a necklace on

skindentation: 1.2 her neck lightly smlllng at the camera
[N 2 (A

Half-length head portrait of the goddess of autumn with wheat Large dog looking at television show in Ilvmg
ears on her head, depicted as dreamy and beautiful by wlop room.

Figure 4: Qualitative comparison with other methods, where * indicates our reproduced results.

<R>=painted <R>=inside <R>=carved
on by

Condition

Reversion

-
5]
=
<)
2
=}
e
)
@]

DKD

One-step 0.165 88.89% .
“cat <R>  “dog <R> ‘“rabbit <R>
wall” bucket” jade”

One steF 0. 653 86. 26%l . .
“themona  “bird” “a ye low “aredcar” “amanin “a be_ail’fiful Flgure 6: Quality results by Re-

lisa” asuit” version (Huang et al., 2024b)
Figure 5: Quality results by Controlnet (Zhang et al., 2023) with yith or without DKD.
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Relation inversion. Reversion (Huang et al., 2024b) is the first method to guide specific object
relationship synthesis in SD via relational prompts. Integrating DKD into Reversion significantly
accelerates inference. As shown in Fig. 6, DKD reduces inference time by 88.89 % while producing
high-fidelity images that align with the relational prompts, with quality close to that of the original
multi-step Reversion. See Appendix F.2 for more results.

denote the norm mean and direction mean for all layers,
respectively.

Type #Params FID CLIP NM DM

LoRA 1209M 2527 029 0.06 0.83 =\

DoRA 121.2M  26.56 030 0.03 0.55 Aphoto of a sks duck toy in a basket.
FT (DMD2) 860.0M 2330 0.30 0.10 2.21 _ Dataset Dreambooth ~LoRA  LoRaD

LoRaD 83.8M 2086 031 } 289 Figure 7: Quality results by Dream-
booth with or without LoRaD.
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Table 3: Ablation study on the wy
impact of the rank on DKD (SD #
1.5) on COCO 2014 dataset.

3 SIDLSG*
=3 oMD2*

=3 Hyper-SD
=3 Y050

@ Swiftbrush
B Swiftbrushv2*

Rank
Setting FID CLIP

Student #Params Fake #Params
model

A 64 2095M 32 9.38M 13.64 0.30
B 128 4190M 32 9.38M 13.16029 ]

C 256 83.80M 32 938M 1079 0.31 Figure 8: One-step image
D

E

F

512 167.59M 32 9.38M 1275 0.30 . . : Figure 9: User study results compared
256 $380M 16 4.69M 1753029 generation with various g y P

25 8380M 64 1876M 1698031 geftings. to other methods.

Image customization. Dreambooth (Ruiz et al., 2023) is a pioneering personalized text-to-image
framework that binds the target subject to a rare token via FT of the U-Net. To enhance parameter
efficiency, we integrate our proposed LoRaD into Dreambooth and compare it with Dreambooth (FT)
and LoRA (Hu et al., 2022). As shown in Fig. 7, vanilla DreamBooth overfits by capturing the subject
while memorizing training images, thus reducing prompt sensitivity. LoRA alleviates overfitting,
but degrades subject identity and image fidelity. In contrast, LoRaD maintains subject fidelity while
adhering to prompts, achieving a better balance. These results highlight the generalizability of LoRaD
beyond distillation, motivating future applications in broader vision tasks requiring fine-tuning.

4.4 USER STUDY

To evaluate image quality and text-image alignment, we conducted a user study with 57 partici-
pants, covering zero-shot generation and downstream tasks. As shown in Fig. 9, the results clearly
demonstrate the superiority of our method over existing baselines. See Appendix F.5 for details.

4.5 ABLATION STUDIES

Tab. 2 compares the performance of four different fine-tuning types (LoRA, DoRA, FT, and LoRaD)
on the COCO 2017 dataset. LoRaD attains the best scores (FID 20.86, CLIP 0.31) with the fewest
trainable parameters (83.8M; 31% fewer than LORA/DoRA and 90% fewer than FT). Moreover,
LoRaD achieves the highest direction mean (2.89% vs. 2.21% for FT, 0.83%/0.55% for LoORA/DoRA),
suggesting a broader and more effective update direction space under a compact parameterization.
Overall, the results indicate a favorable quality—efficiency trade-off for LoRaD.

We conduct an ablation study on the COCO 2014 dataset to assess the impact of rank configuration
in DKD. As shown in Tab. 3, we make three key observations: 1) Increasing student rank con-
sistently improves performance. Raising the rank from setting A to C reduces FID from 13.64 to
10.79, indicating that higher rank enables the student to better capture the teacher’s distribution and
improve generation quality. 2) Increasing the rank beyond a threshold yields diminishing returns.
Comparing settings C and D, further increasing the rank degrades FID (12.75 vs. 10.79) and CLIP
(0.31 vs. 0.30), suggesting that overly large ranks may cause overfitting. 3) Fake model rank affects
fidelity more than alignment. Varying the fake model rank (settings C, E, F) changes FID but leaves
CLIP largely stable, implying fidelity is more sensitive to capacity than alignment. In summary,
setting C offers a favorable trade-off between model capacity and performance, consistent with the
qualitative results in Fig. 8. See Appendix G.2, G.4 for details.

5 CONCLUSION

This paper presents Directional Knowledge Distillation (DKD), an efficient one-step text-to-image
distillation framework. Through an in-depth analysis of weight changes between multi-step and one-
step models, we find that changes in weight direction serve as a key mechanism in distillation, while
changes in norm play a comparatively smaller role. Based on this insight, we introduce the Low-rank
Rotation of weight Direction (LoRaD) module to model directional adjustments in a parameter-
efficient manner. Extensive experiments demonstrate that DKD significantly outperforms existing
one-step methods—such as DMD, SiD-LSG, and SwiftBrush—in both image quality and inference
speed. Moreover, the distilled model can be seamlessly adapted to a wide range of downstream tasks,
showcasing strong generalization and practical applicability. Our work offers a novel theoretical
perspective and practical solution for efficient diffusion model distillation.
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enabling others to replicate the experiments. All experiments in this work were conducted using
publicly available datasets.

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2008. 16

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 7319-7328, 2021. 3

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep
nets via a compression approach. In International conference on machine learning, pp. 254-263.
PMLR, 2018. 17

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
Junhwa Hur, Guanghui Liu, Amit Raj, et al. Lumiere: A space-time diffusion model for video
generation. In SIGGRAPH Asia 2024 Conference Papers, pp. 1-11, 2024. 1

Alessandro Barp, Chris J Oates, Emilio Porcu, and Mark Girolami. A riemann—stein kernel method.
Bernoulli, 28(4):2181-2208, 2022. 16

Hadi Beik-Mohammadi, Sgren Hauberg, Georgios Arvanitidis, Gerhard Neumann, and Leonel
Rozo. Reactive motion generation on learned riemannian manifolds. The International Journal of
Robotics Research, 42(10):729-754, 2023. 16

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023. 16

Clement Chadebec, Onur Tasar, Eyal Benaroche, and Benjamin Aubin. Flash diffusion: Accelerating
any conditional diffusion model for few steps image generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 15686—15695, 2025. 2

Junsong Chen, YU Jincheng, GE Chongjian, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-a: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. In The Twelfth International Conference on Learning
Representations, 2023. 2, 3,7, 17, 18, 21, 24

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-o: Weak-to-strong training of diffusion transformer for
4k text-to-image generation. In European Conference on Computer Vision, pp. 74-91. Springer,
2024a. 3

Junsong Chen, Simian Luo, and Enze Xie. Pixart-d: Fast and controllable image generation with
latent consistency models. In ICML 2024 Workshop on Theoretical Foundations of Foundation
Models, 2024b. 3

10



Under review as a conference paper at ICLR 2026

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2818-2829, 2023. 6

Trung Dao, Thuan Hoang Nguyen, Thanh Le, Duc Vu, Khoi Nguyen, Cuong Pham, and Anh Tran.
Swiftbrush v2: Make your one-step diffusion model better than its teacher. In European Conference
on Computer Vision, pp. 176—192. Springer, 2024. 2,4, 6, 17, 18, 19, 21, 22, 24

Yanjie Dong, Haijun Zhang, Chengming Li, Song Guo, Victor Leung, and Xiping Hu. Fine-
tuning and deploying large language models over edges: Issues and approaches. arXiv preprint
arXiv:2408.10691, 2024. 3

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.
3

Yanhong Fei, Yingjie Liu, Chentao Jia, Zhengyu Li, Xian Wei, and Mingsong Chen. A survey of
geometric optimization for deep learning: from euclidean space to riemannian manifold. ACM
Computing Surveys, 57(5):1-37, 2025. 17

Andi Han, Bamdev Mishra, Pratik Kumar Jawanpuria, and Junbin Gao. On riemannian optimiza-
tion over positive definite matrices with the bures-wasserstein geometry. Advances in Neural
Information Processing Systems, 34:8940-8953, 2021. 16

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. Transactions on Machine Learning Research, 2024. 3

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.
Advances in Neural Information Processing Systems, 37:117015-117040, 2024. 3

Yingqing He, Shaoshu Yang, Haoxin Chen, Xiaodong Cun, Menghan Xia, Yong Zhang, Xintao Wang,
Ran He, Qifeng Chen, and Ying Shan. Scalecrafter: Tuning-free higher-resolution visual generation
with diffusion models. In The Twelfth International Conference on Learning Representations,
2023. 18, 19, 20, 22, 30

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017. 6

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020. 1, 3

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022. 2,
5,6,9,18,22,23

Yaosi Hu, Zhenzhong Chen, and Chong Luo. Lamd: Latent motion diffusion for image-conditional
video generation. International Journal of Computer Vision, pp. 1-17, 2025. 1

Qiushi Huang, Tom Ko, Lilian Tang, and Yu Zhang. Comlora: A competitive learning approach for
enhancing lora. In The Thirteenth International Conference on Learning Representations, 2025. 3

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Lazy safety alignment
for large language models against harmful fine-tuning. arXiv preprint arXiv:2405.18641, 2, 2024a.
3

Ziqi Huang, Tianxing Wu, Yuming Jiang, Kelvin CK Chan, and Ziwei Liu. Reversion: Diffusion-
based relation inversion from images. In SIGGRAPH Asia 2024 Conference Papers, pp. 1-11,
2024b. 8, 18, 19, 22,29

Jean Kaddour, Linging Liu, Ricardo Silva, and Matt J Kusner. When do flat minima optimizers work?
Advances in Neural Information Processing Systems, 35:16577-16595, 2022. 17

11



Under review as a conference paper at ICLR 2026

Minguk Kang, Richard Zhang, Connelly Barnes, Sylvain Paris, Suha Kwak, Jaesik Park, Eli Shecht-
man, Jun-Yan Zhu, and Taesung Park. Distilling diffusion models into conditional gans. In
European Conference on Computer Vision, pp. 428—447. Springer, 2024. 3

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
are zero-shot video generators. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15954-15964, 2023. 1

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning prob-
ability flow ode trajectory of diffusion. In The Twelfth International Conference on Learning
Representations, 2023. 3

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 19

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024. 1

Tuomas Kynkéddnniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32,2019. 6

Senmao Li, Taihang Hu, Joost van de Weijer, Fahad Shahbaz Khan, Tao Liu, Linxuan Li, Shigi Yang,
Yaxing Wang, Ming-Ming Cheng, et al. Faster diffusion: Rethinking the role of the encoder for
diffusion model inference. Advances in Neural Information Processing Systems, 37:85203-85240,
2024a. 3

Senmao Li, Lei Wang, Kai Wang, Tao Liu, Jiechang Xie, Joost van de Weijer, Fahad Shahbaz Khan,
Shiqi Yang, Yaxing Wang, and Jian Yang. One-way ticket: Time-independent unified encoder
for distilling text-to-image diffusion models. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 23563-23574, 2025. 7, 18, 21

Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Photomaker:
Customizing realistic human photos via stacked id embedding. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8640-8650, 2024b. 1, 3

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024. 2, 3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision—
ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
partv 13, pp. 740-755. Springer, 2014. 3, 6, 23

Chang Liu and Jun Zhu. Riemannian stein variational gradient descent for bayesian inference. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018. 16

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. In International Conference on Learning Representations, 2022. 3

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024. 2, 16, 23

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference on
Learning Representations, 2023. 18, 21, 22, 24

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101,2017. 2

12



Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. 7, 17

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775-5787, 2022a. 3

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b. 3

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023a. 3

Simian Luo, Yiqgin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolindrio Passos, Longbo Huang,
Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module. arXiv
preprint arXiv:2311.05556, 2023b. 2, 3, 18, 21, 23, 24

Yihong Luo, Xiaolong Chen, Xinghua Qu, Tianyang Hu, and Jing Tang. You only sample once:
Taming one-step text-to-image synthesis by self-cooperative diffusion gans. arXiv preprint
arXiv:2403.12931,2024. 3, 17, 18, 19, 21, 22, 23, 24

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normal-
ization layers: Sharpness reduction. Advances in Neural Information Processing Systems, 35:
34689-34708, 2022. 16

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for
free. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
15762-15772, 2024. 3

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in Neural Information Processing Systems, 37:
121038-121072, 2024. 23

Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7807-7816, 2024. 4,6, 17, 18, 21, 22, 24

Viet Nguyen, Anh Nguyen, Trung Dao, Khoi Nguyen, Cuong Pham, Toan Tran, and Anh Tran.
Snoopi: Supercharged one-step diffusion distillation with proper guidance. arXiv preprint
arXiv:2412.02687, 2024. 18, 21, 24

Haomiao Ni, Changhao Shi, Kai Li, Sharon X Huang, and Martin Rengiang Min. Conditional
image-to-video generation with latent flow diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 18444—-18455, 2023. 1

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023. 3

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2023. 3

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021. 6

Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, XING WANG, and Xuefeng
Xiao. Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. 2,3, 17, 18,
21,22,23,24

13



Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022. 1, 2,3,4,7, 18, 21, 22,
24

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 22500-22510,
2023. 1, 3,9, 18, 19, 22, 29

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. 3

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016. 2,
16

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. In European Conference on Computer Vision, pp. 87-103. Springer, 2024. 17, 18, 21,
23,24

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration. arXiv preprint arXiv:2407.01425, 2024. 3

Shitong Shao, Hongwei Yi, Hanzhong Guo, Tian Ye, Daquan Zhou, Michael Lingelbach, Zhigiang
Xu, and Zeke Xie. Magicdistillation: Weak-to-strong video distillation for large-scale few-step
synthesis. arXiv preprint arXiv:2503.13319, 2025. 4

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256-2265. pmlr, 2015. 1, 3

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a. 3, 19

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32,2019. 3

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b. 1, 3

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, pp. 32211-32252. PMLR, 2023. 3

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. 5

Keqgiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
Zhou, Zipeng Qin, Yi Wang, et al. Journeydb: A benchmark for generative image understanding.
Advances in neural information processing systems, 36:49659-49678, 2023. 6, 18

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024. 17

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818-2826, 2016. 6

Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
Jianxiao Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025. 1

14



Under review as a conference paper at ICLR 2026

Fu-Yun Wang, Zhaoyang Huang, Alexander Bergman, Dazhong Shen, Peng Gao, Michael Lingelbach,
Keqgiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency models. Advances
in neural information processing systems, 37:83951-84009, 2024. 3, 17, 18, 19, 21

Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and Lei Li. Solo: Segmenting objects by
locations. In Computer Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XVIII 16, pp. 649-665. Springer, 2020. 22

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in Neural Information Processing Systems, 36:8406-8441, 2023. 3,4

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models
through block caching. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6211-6220, 2024. 3

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
models for text-to-video generation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7623-7633, 2023a. 1

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis. arXiv preprint arXiv:2306.09341, 2023b. 6

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 36:15903—-15935, 2023. 22

Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 81968206, 2024. 3, 18, 21, 24

Hongwei Yi, Shitong Shao, Tian Ye, Jiantong Zhao, Qingyu Yin, Michael Lingelbach, Li Yuan,
Yonghong Tian, Enze Xie, and Daquan Zhou. Magic 1-for-1: Generating one minute video clips
within one minute. arXiv preprint arXiv:2502.07701, 2025. 4

Tianwei Yin, Michaél Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill
Freeman. Improved distribution matching distillation for fast image synthesis. Advances in neural
information processing systems, 37:47455-47487, 2024a. 2, 4,6, 17, 18, 21, 22, 24

Tianwei Yin, Michaél Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613-6623, 2024b. 2,
4,6,18,21

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 3836-3847,2023. 1, 3,7, 8, 18, 19, 22, 23

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In NeurlPS 2022 Workshop on Score-Based Methods, 2022. 3, 28

Mingyuan Zhou, Zhendong Wang, Huangjie Zheng, and Hai Huang. Long and short guidance in
score identity distillation for one-step text-to-image generation. arXiv preprint arXiv:2406.01561,
2024a. 4,17, 18, 19, 21, 22, 24

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024b. 4

Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffusion: Con-
sistent self-attention for long-range image and video generation. Advances in Neural Information
Processing Systems, 37:110315-110340, 2024c¢. 1

15



Under review as a conference paper at ICLR 2026

Table 4: Comparison of different methods in terms of memory, number of trainable parameters, FID,
CLIP score, and latency.

Type Memory (M) #Train Param. FID  CLIP Latency
LoRA 1259 120.90M 25.27 0.29 0.11s
LoRaD 2021 83.8M 20.86 0.31 0.11s
FT (DMD?2) 17397 860M 23.30  0.30 0.11s

A LIMITATIONS AND FUTURE WORK

Assuming the weight matrix W € R%** the training memory usage of full fine-tuning (FT) is
2 x d x k, while that of LoRA is 2 X (d X r + 7 x k). In comparison, LoRaD requires d x k + 2 X
(4 xr+7rxk)=dxk+dxr+2xrxk, reflecting higher memory overhead than LoRA due to
the need to reconstruct a full-rank rotated weight matrix during forward pass. Note that this operation
is performed only in the forward pass and does not incur additional gradient storage. As shown in
Tab. 4, LoRA uses ~7% of DMD2’s memory, while LoRaD uses slightly more at ~12%. Future
work may explore more memory-efficient rotation strategies that avoid explicit construction of the
full rotated matrix. Additionally, given the flexibility and generality LoRaD has demonstrated in the
image customization task, we plan to further investigate its applicability to a broader range of model
fine-tuning tasks.

B LLM USAGE STATEMENT

We only employed a large language model (ChatGPT) for polishing the language and improving the
clarity of expression. The model was not involved in the conception or design of the research, the
development or execution of methods or experiments, data processing or statistical analysis, nor in
the interpretation of results or the derivation of conclusions; therefore, it had no substantive impact
on the core scientific contributions of this work.

C BROADER IMPACTS

DKD compresses the inference process of diffusion models into one-step through knowledge distil-
lation, significantly reducing computational resource consumption. At the same time, it promotes
creativity among content generators and lowers the barrier to entry. However, the technology may
also be misused to generate false or harmful images, thereby spreading misinformation and raising
concerns related to copyright and intellectual property.

D MORE THEORETICAL EXPLANATION

While our empirical results demonstrate that knowledge distillation primarily preserves weight direc-
tions, we further provide a theoretical perspective to support this observation. When optimizing only
the directional component of weights, the parameters are constrained to lie on a unit hypersphere—a
compact and smooth Riemannian manifold (Absil et al., 2008; Boumal, 2023). According to manifold
optimization theory (Liu & Zhu, 2018; Han et al., 2021), such geometric constraints improve gradient
flow and mitigate sharp or pathological minima, thereby stabilizing training.

In addition, constraining optimization to the hypersphere reduces the degrees of freedom in pa-
rameter space, serving as an implicit regularizer. This aligns with modern generalization theory
in overparameterized settings, which suggests that limiting parameter complexity improves ro-
bustness (Beik-Mohammadi et al., 2023; Barp et al., 2022). LoRaD explicitly models directional
changes through learnable 2D rotations, analogous to reparameterizations used in weight normaliza-
tion (Salimans & Kingma, 2016), which have been shown to accelerate convergence and enhance
generalization (Salimans & Kingma, 2016; Liu et al., 2024).

Optimizing directions alone substantially reduces sensitivity to weight norm and tends to produce
smoother loss landscapes (Lyu et al., 2022), favoring flatter minima—empirically associated with
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better generalization (Kaddour et al., 2022; Arora et al., 2018). These effects are particularly important
for robustness under distribution shifts (Fei et al., 2025). This theoretical grounding is consistent
with our empirical findings, including the superior performance of LoRaD shown in Tab. 1 and its
convergence behavior in Fig. 16 and Fig. 17.

E MORE DETAILS ON WEIGHT ANALYSIS

In our weight analysis, we decompose the weight matrix W € R?** into a norm vector and direction
matrix as follows:
W =nV (13)

where 17 € R1*¥ represents the column-wise norm, and VV € R?** denotes the normalized direction
matrix.

To quantify the difference between the multi-step and one-step U-Net weights, we compute the mean
and standard deviation (STD) of the changes in their norm and direction:

* Changes in the mean norm:

1 k
AT/mean = E Z

% %
none-step nmulli—step

- (14)
i=1 nmulti—step
* Changes in the mean direction:
1 d o o 2
AVmean = % Z Z (Vél’lje—step - Vrlnﬂhi-slep> . (15)
i=1 \ j=1
* Changes in the STD norm:
. _ , 2
1 néne—step - n&ulti—slep
Anstd = T Z K - A'r]mean (16)
k i=1 nmulli-slep
* Changes in the STD direction:
2
RS i.j i 2
AVar = | 7 [ 24|22 (Viikser = Vishiosen) — AVincan (17)
i=1 \ j=1

As shown in Fig. 10, Fig. 11, Fig. 12, and Fig. 13, we also provide more visualization results
including Swiftbrush (Nguyen & Tran, 2024), Hyper-SD (Ren et al., 2024), SD-Turbo (Sauer et al.,
2024), YOSO (Luo et al., 2024), SiD-LSG (Zhou et al., 2024a), Swiftbrushv2 (Dao et al., 2024), and
PCM (Wang et al., 2024), etc. with SD 1.5, SD 2.1 or Pixart-« as the backbone. Similar conclusions
can be drawn as in Sec. 1.

F IMPLEMENTATION DETAILS

F.1 TRAINING AND INFERENCE DETAILS

Zero-shot generation. 1) We implement DKD using PyTorch and optimize it with the
AdamW (Loshchilov & Hutter, 2019) optimizer (51 = 0.9, B2 = 0.999). LoRabD is applied to
all linear layers in the U-Net/DiT architecture, including the feedforward layers, time_emb_proj
layers, projection layers, and @), K, V, out layers. Although we observe similar directional changes in
convolutional layers, applying LoRaD to them introduces additional parameter overhead and lacks
generality, as architectures like DiT (Chen et al., 2023) and autoregressive (Sun et al., 2024) models
are primarily composed of linear layers. Notably, applying LoRaD solely to linear layers is sufficient
to achieve SOTA performance. 2) We reproduce DMD2 (Yin et al., 2024a), SiD-LSG (Zhou et al.,
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Figure 10: Visualization of changes in weight norm and direction (Hyper-SD (Ren et al., 2024) and
Swiftbrush (Nguyen & Tran, 2024)).
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Figure 11: Visualization of changes in weight norm and direction (YOSO (Luo et al., 2024) and
SD-Turbo (Sauer et al., 2024)).

2024a), SwiftBrush (Nguyen & Tran, 2024), and PG-SB (Nguyen et al., 2024), following the default
hyperparameter settings reported in their respective papers, except for using JourneyDB (Sun et al.,
2023) as the training dataset. Specifically, our reproduction of DMD2 adopts the image-free variant
without the second-stage GAN loss. For SiD-LSG, the guidance scales k1, ko, k3, k4 are set to 1.5.

Baselines. We conduct DKD evaluations against a range of baselines on different model backbones.
For the SD 1.5-based (Rombach et al., 2022) backbone, we select LCM-LoRA (Luo et al., 2023b),
InstaFlow (Liu et al., 2023), UFOGen (Xu et al., 2024), DMD (Yin et al., 2024b), DMD2 (Yin et al.,
2024a), SiD-LSG (Zhou et al., 2024a), PCM (Wang et al., 2024), Hyper-SD (Ren et al., 2024), and
YOSO (Luo et al., 2024) as baselines. For the SD 2.1-based (Rombach et al., 2022) backbone, we
compare with SD-Turbo (Sauer et al., 2024), SwiftBrush (Nguyen & Tran, 2024), SwiftBrushv2 (Dao
et al., 2024), SiD-LSG (Zhou et al., 2024a), and TiUE (Li et al., 2025). For the DiT-based (Chen
et al., 2023) backbone, SwiftBrush (Nguyen & Tran, 2024) and PG-SB (Nguyen et al., 2024) are
chosen as baselines. In addition, we apply DKD to four downstream tasks, including controllable
generation, relation inversion, high-resolution synthesis, and image customization. For these tasks,
we use ControlNet (Zhang et al., 2023), Reversion (Huang et al., 2024b), ScaleCrafter (He et al.,
2023), DreamBooth (Ruiz et al., 2023), and LoRA (Hu et al., 2022) as baselines.

Downstream tasks. For all tasks except image personalization, we replace the original multi-step
U-Net with our distilled one-step DKD model to accelerate inference. For image customization,
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Figure 12: Visualization of changes in weight norm and direction (SiD-LSG (Zhou et al., 2024a) and

Swiftbrushv2 (Dao et al., 2024)).
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Figure 13: Visualization of changes in weight norm and direction (PCM (Wang et al., 2024) and
YOSO-Pixart (Luo et al., 2024)).

we apply LoRaD during fine-tuning. 1) During inference with ControlNet (Zhang et al., 2023),
Reversion (Huang et al., 2024b), ScaleCrafter (He et al., 2023), and DreamBooth (Ruiz et al., 2023),
we use the DDIM (Song et al., 2021a) scheduler with 50 inference steps. 2) In implementing
DreamBooth, LoRA, and LoRaD, we adopt the prior-preservation loss with a weight factor of 1.0,
and use the Adam (Kingma & Ba, 2014) optimizer. The number of class-conditioned images is set to
200. For DreamBooth, the learning rate (LR) is set to Se-6 with 800 training steps. For both LoRA
and LoRaD, the LR is set to 1e-4, the number of training steps is 1500, and the rank is set to 64.

F.2 MORE DESCRIPTIONS OF DOWNSTREAM TASKS.

Controllable generation introduces structured control signals (e.g., edge maps, human pose, or depth
maps) into text-to-image models to guide the generation process toward producing images that not
only match the textual description but also conform to specific spatial or semantic constraints. By
incorporating external structural priors, controllable generation enables fine-grained manipulation of
object layout, shape, and orientation—capabilities that are difficult to achieve with pure text prompts
alone. Controllable generation plays an important role in tasks such as conditional image synthesis
and creative visual design, where strict adherence to user-provided structure is crucial for usability
and reliability.
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Figure 14: Quality results by ScaleCrafter (He et al., 2023) with DKD.

Relation inversion aims to learn specific relational patterns (e.g., handshake, back-to-back, hugging)
from a few input images and encode them into relation prompts, which can then be generalized to novel
subjects, poses, and styles. Instead of focusing on individual object identity or appearance, relation
inversion captures the spatial and semantic relationships between multiple entities, allowing the
model to reproduce similar interactions under new contexts. Relation inversion enables controllable
multi-subject generation and relational transfer.

High-resolution synthesis aims to generate high-resolution images (e.g., 512x512 or higher) with
both strong global coherence and rich local detail. Compared to low-resolution generation, this task
presents greater challenges in terms of spatial consistency, object fidelity, and fine-grained texture
reconstruction. High-resolution synthesis requires the model to capture long-range dependencies
across the image while preserving subtle local variations such as edges, patterns, and shading. Despite
these challenges, it plays a crucial role in applications such as photo-realistic content creation and
artistic image generation.

Image customization aims to learn the visual concept of a specific subject from a few example images
and generalize it to new images. Specifically, it involves fine-tuning a pre-trained model to capture
and retain the subject’s distinctive visual features, enabling the model to generate personalized images
that preserve the subject identity when given new text prompts. This capability is particularly valuable
in applications such as creative design, personalized content generation, and artistic image synthesis.

High-resolution synthesis. ScaleCrafter (He et al., 2023) enables variable-resolution image gen-
eration in SD without retraining, which is accomplished by adjusting receptive fields within the
pre-trained U-Net. To address the fixed-resolution limitation inherited from SD 1.5/2.1, we inte-
grate DKD with ScaleCrafter. As illustrated in Fig. 14, this combination allows DKD to generate
high-fidelity images at varying resolutions, demonstrating strong scalability.

F.3 PSEUDO TRAINING CODE

As shown in Algorithm 1, we provide the pseudocode for DKD to clearly outline the key steps of the
algorithm.
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Algorithm 1 DKD: Directional Knowledge Distillation

1: Require: Pretrained real model €., fake model €4, , one-step generator G Aot learning rates 7
and 2, initial timestep i, time-dependent weight function w (¢), prompts dataset D, maximum
number of timesteps Tpax and scheduler schedule {(ay, o) ile
Initialize: ¢os < ¥, Agt < ¥, v1 = le — 4, o = le — 2, tiniy = 999
repeat

Sample input noise z ~ N (0, I) and prompt ¢ ~ D

Generate one-step output o = G, (2, ¢, tinit)

Sample timestep ¢ ~ U (0.027T nax, 0.98T .« ) and noise € ~ N(0, )

Compute noisy latent code x; = axg + o€

dxg

Update G, with Agi <= Agt — 71 {w(t) (ep (e, 1) — €40 (T4, €, 1)) DA
9: Sample another timestep ¢ ~ U (0.027 ax, 0.98Tinax ) and noise € ~ A(0, 1)

10: Compute noisy latent code x; = azxo + 0z€

11: Update €4, with ©° = O — 15V, ||€pe. (x7,t,€) — €||2

12: until processing 1.4M prompts or training budget is exhausted

13: return Trained one-step generator G5 _,

F.4 COMPARISON OF TRAINING AND INFERENCE TIME

Table 5: Comparison of inference and training times of our method vs. other methods on the zero-shot
benchmark of COCO 2014. * indicates our reproduced results, and ! indicates results using the official
pre-trained models. ‘-’ denotes unknown. Best and second-best scores are in bold and underline,
respectively.

Method NFEs Type Trainable params FID | CLIPT Image-free? Inference A100 Days
Stable Diffusion 1.5-based backbone
SD 1.5 (¢fg = 3.0) (Rombach et al., 2022) 25 U-Net 860M 8.78 0.30 X 1.11s 4783
LCM-LoRA (Luo et al., 2023b)! 1 LoRA 67.50 71.73 0.24 X 0.11s 1.3
InstaFlow (Liu et al., 2023) 1 U-Net 860M 13.10 0.28 X 0.11s 1832
UFOGen (Xu et al., 2024) 1 U-Net 860M 12.78 - X - -
DMD (Yin et al., 2024b) 1 U-Net 860M 11.49 0.32 X 0.11s 108
DMD2 (Yin et al., 2024a)* 1 U-Net 860M 12.96 0.30 v 0.11s 5.1
SiD-LSG (Zhou et al., 2024a)* 1 U-Net 860M 14.27 0.30 v 0.11s 6.4
PCM (Wang et al., 2024) 1 U-Net 860M 17.91 0.29 X - unk
Hyper-SD (Ren et al., 2024)? 1 LoRA 67.25M 22.90 031 X 0.11s 333
YOSO (Luo et al., 2024)! 1 LoRA 67.25M 23.68 0.29 X 0.11s 20
DKD 1 LoRaD 83.80M 1079 031 v 0.11s 2.1
Stable Diffusion 2.1-based backbone
SD 2.1 (¢fg = 3.0) (Rombach et al., 2022) 25 U-Net 865M 9.60 0.32 X 1.04s 8332
SD-Turbo (Sauer et al., 2024)! 1 U-Net 865M 16.14 0.33 X 0.11s -
Swiftbrush (Nguyen & Tran, 2024) 1 U-Net 865M 16.67 0.29 v 0.11s 4.1
Swiftbrushv2 (Dao et al., 2024)* 1 U-Net+LoRA 884.14M 15.98 0.33 4 0.11s 24.1
SiD-LSG (Zhou et al., 2024a)* 1 U-Net 865M 15.17 0.30 v 0.11s 6.4
TiUE (Li et al., 2025)! 1 U-Net 865M 13.49 031 v 0.16s 3.9
DKD 1 LoRaD 94.43M 12.34 031 v 0.11s 2.1
PixArt-a-based backbone 256 x 256
PixArt-a (cfg = 4.5) (Chen et al., 2023)? 20 DiT 0.6B 8.75 0.32 X 0.59s 753
Swiftbrush (Nguyen & Tran, 2024)* 1 DiT 0.6B 29.89 0.28 v 0.05s 2.6
PG-SB (Nguyen et al., 2024)* 1 DiT 0.6B 25.58 0.28 v 0.05s 2.6
DKD 1 LoRaD 81.22M 18.99 0.30 v 0.05s 1.6

We compared the performance of DKD with other state-of-the-art (SOTA) methods on the zero-shot
benchmark of COCO 2014. As shown in Tab. 5, DKD demonstrates excellent inference efficiency,
with an inference time of 0.11 seconds on both the SD 1.5 and SD 2.1 backbones, making it one of
the fastest methods. In terms of training, DKD completes distillation in only 2.1 A100 GPU days,
significantly outperforming methods like InstaFlow (Liu et al., 2023) and DMD (Yin et al., 2024b),
which require much longer training times. DKD achieves SOTA FID (10.79) and competitive CLIP
score (0.31), striking a strong balance between speed and performance, particularly in image-free
settings. This makes DKD an efficient distillation solution, especially in environments with limited
computational resources.

We measured the inference time of the models on a server equipped with an NVIDIA A40 GPU,
using a batch size of 1. The experiments were conducted with PyTorch 2.4.0 and Hugging Face
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Figure 15: User study examples.

Table 6: Quantitative comparison of DKD and other methods on HPSv2 results. * indicates our
reproduced results, and ! indicates results using the official pre-trained models. ‘- denotes unknown.
Best and second-best scores are in bold and underline, respectively.

Method Anime Photo Concept Art Paintings Average
Stable Diffusion 1.5-based backbone
SD 1.5 (Rombach et al., 2022)  26.51 27.19 26.06 26.12 26.47
~InstaFlow (Liu et al., 2023) ~~ 26.10 26.62 2592 2595 2615
DMD?2 (Yin et al., 2024a)* 25.65  26.13 24.98 25.22 25.49
SiD-LSG (Zhou et al., 2024a)*  26.24  26.46 25.88 25.86 26.11
Hyper-SD (Ren et al., 2024)! 27.37  27.59 27.13 27.15 27.31
YOSO (Luo et al., 2024) 26.24  26.26 25.92 25.79 26.05
DKD 26.39  26.80 25.79 25.81 26.20

Diffusers 0.25.0, with the inference time including the computation of the text encoder and latent
decoder.

F.5 USER STUDY DETAILS

This study recruited 57 volunteers from our university to participate in a questionnaire-based evalua-
tion. The questionnaire consisted of 44 questions, each presenting several images—one generated
by our DKD method and the others by alternative approaches, including SiD-LSG (Zhou et al.,
2024a), DMD2 (Yin et al., 2024a), Hyper-SD (Ren et al., 2024), YOSO (Luo et al., 2024), Swift-
Brush (Nguyen & Tran, 2024), SwiftBrushv2 (Dao et al., 2024), ControlNet (Zhang et al., 2023),
Reversion (Huang et al., 2024b), DreamBooth (Ruiz et al., 2023), LoRA (Hu et al., 2022), and
ScaleCrafter (He et al., 2023). An example of the questionnaire is shown in Fig. 15.

G ADDITIONAL RESULTS

G.1 RESULTS FOR HPSV2

Table 6 presents a quantitative comparison of DKD with other SOTA methods on the HPSv2
benchmark. With an average score of 26.20, DKD outperforms several competitive methods, including
SiD-LSG (Zhou et al., 2024a) (26.11) and YOSO (Luo et al., 2024) (26.05). Notably, DKD excels
in the photo category, achieving a score of 26.80, demonstrating its strong text-to-image alignment
capability. It is worth noting that Hyper-SD (Ren et al., 2024) achieves SOTA performance across all
metrics, thanks to its use of the aesthetic predictor of LAION dataset, the ImageReward (Xu et al.,
2023) aesthetic preference reward model, and the SOLO (Wang et al., 2020) visual perception model,
which guide the optimization process through multiple supervision signals.
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Table 7: Ablation experiments on the impact of LoRaD application layer types.

Type #Trainable Params FID  CLIP
Linear 83.8M 10.79 0.31
Linear + Conv 174.89M 16.42 0.30

Table 8: Ablation experiments on LoraD initialization strategy.

Initialization FID CLIP

A =0, B = Xavier 10.79  0.31
A = Xavier, B = Xavier 1841 0.31

G.2 ADDITIONAL ABLATION STUDIES

In our main experiments, we apply LoRaD only to linear layers to achieve a better trade-off between
performance and parameter efficiency. As shown in Tab. 7, extending LoRaD to convolutional layers
leads to a performance drop, suggesting that LoRaD already possesses sufficient representational
capacity. Extending to more layers increases parameter count and may introduce overfitting.

To ensure the student initially matches the teacher, we initialize the student network with teacher
weights. Specifically, in LoRaD, we set the low-rank matrix A = 0 and initialize B with Xavier,
resulting in AB = 0 at the start of training—thus applying no rotation and preserving the teacher’s
parameter directions. As shwon in Tab. 7, we also experimented with Xavier initialization for both A
and B, which led to a significantly worse FID (10.79 — 18.41), indicating degraded convergence.
This may be because non-zero initialization perturbs the pretrained model and causes optimization to
converge to a suboptimal region, thereby affecting final performance.

Our zero initialization follows recent work. For example, both LoRA (Hu et al., 2022) and DoRA (Liu
et al., 2024) set at the beginning of training, making the model initially equivalent to the pretrained
weights , thus avoiding disruption of the original model behavior. Similarly, ControlNet Zhang
et al., 2023 initializes the image-conditional branch to output zero, ensuring that the initial behavior
remains consistent with the base model and allowing conditional control signals to be gradually
introduced through training. This prevents training instability or performance degradation caused
by the premature influence of untrained control branches. We believe that pretrained weights
provide a strong anchor for distillation models, making optimization more stable and convergence
easier. In addition, recent work PiSSA (Meng et al., 2024) is the first to apply SVD to the original
model, leveraging principal singular values and vectors to initialize the adapter for fine-tuning. This
approach further accelerates LoORA’s convergence and improves its performance. These observations
collectively highlight the crucial role of good initialization in achieving both fast convergence and
strong final performance. Motivated by this, we plan to further investigate initialization strategies for
LoRaD in future work.

G.3 MORE QUANTITATIVE RESULTS

We compare DKD with representative distillation methods on COCO02014 (Lin et al., 2014), and
further evaluate its generalization on COCO2017 (Lin et al., 2014). As shown in Tab. 9, DKD
consistently achieves strong performance across three backbone models: SD 1.5, SD 2.1, and PixArt-
«. Specifically, DKD achieves the best or second-best results in both FID and CLIP scores across
all settings, and strikes a favorable balance between precision and recall, demonstrating strong
capability in image quality and semantic alignment. Notably, DKD is distilled using only 1.4M text
prompts, yet outperforms or matches methods that rely on over 3M prompts, such as LCM (Luo et al.,
2023b) (12M) and YOSO (Luo et al., 2024) (4M). This highlights both the efficiency of DKD under
low-resource settings and the effectiveness of its distillation mechanism. In contrast to methods like
Hyper-SD (Ren et al., 2024), YOSO (Luo et al., 2024), and SD-Turbo (Sauer et al., 2024), DKD
requires no real images and is trained via prompt-only distillation, enhancing its practicality and
scalability.
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Table 9: Quantitative comparison of DKD and other methods on zero-shot COCO 2017 results. *

L L . . . <
indicates our reproduced results, and ! indicates results using the official pre-trained models. ‘-
denotes unknown. Best and second-best scores are in bold and underline, respectively.
Method #Params NFEs Type Trainable params FID | CLIPT Precision?T Recall! Image-free? Training Data
Stable Diffusion 1.5-based backbone
_SD L5 (cfg = 3.0) (Rombachetal, 2022) _ 860M __ 25 UNet _____ S6OM_ 1980 031 064 ¢ 060 X _____B____
LCM-LoRA (Luo et al., 2023b)? 860M 1 LoRA 67.50M 89.65 0.24 0.22 0.24 X 12M
InstaFlow (Liu et al., 2023) 860M 1 U-Net 860M 23.49 0.31 0.53 0.46 X 3.2M
UFOGen (Xu et al., 2024) 860M 1 U-Net 860M 22.50 0.31 - - X 12M
DMD2 (Yin et al., 2024a)* 860M 1 U-Net 860M 23.30 0.30 0.60 0.49 v 1.4M
SiD-LSG (Zhou et al., 2024a)* 860M 1 U-Net 860M 2422 0.30 0.60 0.52 v 1.4M
Hyper-SD (Ren et al., 2024)! 860M 1 LoRA 67.25M 32.49 0.31 0.52 0.33 X -
YOSO (Luo et al., 2024)! 860M 1 LoRA 67.25M 33.54 0.29 0.50 0.44 X 4M
DKD 860M 1 LoRaD 83.80M 20.86 0.31 0.63 0.54 v 1.4M
Stable Diffusion 2.1-based backbone
_SD21(cfg =3.0) Rombachetal, 2022) 865M __ 25 = UNet S6M 1966 032 066 ¢ 057 ___ X ______SB____
SD-Turbo (Sauer et 865M 1 U-Net 865M 26.36 0.34 0.69 0.47 X -
Swiftbrush (Nguyen & Tra 865M 1 U-Net 865M 26.87 0.32 0.61 0.44 v 1.4M
Swiftbrushv2 (Dao et al 865M 1 U-Net+LoRA 884.14M 25.96 033 0.65 0.45 v 3.3M
SiD-LSG (Zhou et al., 2024a)* 865M 1 U-Net 865M 25.02 0.30 0.62 0.51 v 1.4M
DKD 865M 1 LoRaD 94.43M 22.62 0.31 0.65 0.53 v 1.4M
PixArt-a-based backbone
PixArt-a (cfg X 0.6B 20 DiT 0.6B 20.85 0.27 0.65 0.59 X 25M
"7 "Swiftbrush & 0247 =~ 7 7 06B" "~ T 7777 DT~~~ "~~~ 06B ~ " ™ 4107 ~ 028" T T 053 T T 035~~~ oo T T T aM -
0.6B 1 DiT 0.6B 35.84 0.28 0.57 0.36 v 1.4M
0.6B 1 LoRaD 81.22M 28.91 0.30 0.62 0.37 v 1.4M
FID (1) CLIP (1)
250 —— SwiftBrush | 0.30
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Figure 16: Convergence analysis of DKD and other methods. * indicates our reproduced results.

G.4 CONVERGENCE ANALYSIS

Fig 16 presents the convergence analysis of DKD compared to other SOTA one-step distillation
models, including SwiftBrush (Nguyen & Tran, 2024), SiD-LSG (Zhou et al., 2024a), and DMD?2 (Yin
et al., 2024a). The plot shows that DKD achieves faster convergence, with both FID and CLIP scores
improving consistently across iterations. DKD demonstrates superior performance in terms of FID
reduction, reaching a lower value than the other models by the end of the training. In terms of CLIP,
DKD maintains a steady and significant increase, outperforming SwiftBrush (Nguyen & Tran, 2024)
and SiD-LSG (Zhou et al., 2024a) in the later stages. This highlights DKD’s efficiency in both
training stability and perceptual alignment, which aligns with the qualitative results in Fig. 17.

G.5 MORE VISUALIZATION RESULTS

Fig. 18 to Fig. 25 present the sampling results of DKD (based on SD 1.5), the sampling results of
DKD (based on PixArt-«), additional qualitative comparisons, visualizations of ControlNet-DKD
and Reversion-DKD, qualitative results of DreamBooth-LoRaD, and extended visualizations of
ScaleCrafter-DKD, further demonstrating the generality and adaptability of our approach across
diverse tasks.
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in the style of Rembrandt”
Figure 17: Iteration qualitative results. "* indicates our reproduced results"

Figure 18: One-step generated images using our proposed method DKD (SD 1.5).
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Figure 19: One-step generated images using our proposed method DKD (PixArt-a 256 x 256).
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Figure 20: Qualitative comparison with other methods.
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Figure 21: Qualitative comparison to state-of-the-art one-step distillation models. * indicates our
reproduced results.
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Figure 22: Quality results by Controlnet (Zhang & Chen, 2022) with or without DKD.
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Figure 23: Quality results by Reversion (Huang et al., 2024b) with or without DKD.

A phoo o sks duck toy
in a paper bag.

Figure 24: Quality results by Dreambooth (Ruiz et al., 2023) with or without LoRaD.
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Figure 25: Quality results by ScaleCrafter (He et al., 2023) with DKD.
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